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Abstract- The problem of the minimum Bhattacharyya dis-
tance of group codes over symmetric channels is addressed.
Ensembles of rn-linear codes are introduced and their typi-
cal minimum distance characterized in terms of the Gilbert-
Varshamov distances associated to the subgroups of Zm. For the
AWGN channel with 8-PSK as input it is shown that the typical
Z8-linear code achieves the Gilbert-Varshamov bound.

I. INTRODUCTION

The Gilbert-Varshamov (GV) bound is one of the most
famous lower bounds on the achievable minimum Hamming
distance of binary codes. Given a rate R in (0,1) and defined
6GV(R) as the unique solution in (0, 1/2) of the equation
H(x) = 1-R (H(x) denotes the binary entropy), it states
that there exist codes of length n and minimum distance at
least n5GV(R), for every n. It was introduced in early '50s
and since then has attracted a huge amount of attention from
researchers. In particular the asymptotic tightness of the GV
bound is one of the most famous unproved conjectures in
coding theory, as pointed out by A.Vardy in his plenary talk at
last ISIT [10]. This problem is closely related to the tightness
of the expurgated error exponent at low rates. A well known
fact is that the Gilbert-Varshamov bound is asymptotically
achieved with probability one by the binary linear coding
ensemble [6], while this is not the case for the random coding
ensemble. In [1] the relationships of this problem with the
typical distance spectra and typical error exponent of the
random coding ensemble and of the linear coding ensemble,
are explored for binary symmetric channels.

In this paper we will deal with an extension of these issues
to the non binary case. There are many different notions
of distance for non binary alphabets; the Hamming distance
and the Lee distance for instance have been widely studied.
However these distances have no direct application to the
error exponents of channels usually considered. Here we
will follow the approach of [2] considering the notion of
Bhattacharyya distance of a memoryless channel and dealing
with the corresponding Gilbert-Varshamov bound. We will
focus on symmetric memoryless channels, an important special
case of which is the AWGN channel with input restricted on
a Geometrically Uniform (GU) constellation: in this case the
Bhattacharyya distance corresponds to the squared Euclidean
distance up to a scaling factor. Group codes for such a class
of channels constitute a natural generalization of binary linear
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codes for binary symmetric channels [8], [5]. In [3], [4]
Abelian group codes ensembles have been introduced and their
error probability analyzed leading to an exact characterization
of the capacity achievable by such codes.

In this paper also we will deal with Abelian codes ensem-
bles. Our main contribution is an exact characterization of the
minimum Bhattacharyya distance asymptotically achievable
by ensembles of codes over the cyclic group ZEm: it turns
out that with probability one ZEm-linear ensembles of codes
asymptotically achieve a distance which is the minimum of the
GV distances associated to the subchannels having as inputs
all the possible nontrivial subgroups of Zm. This phenomenon
closely resembles what has been shown in [3] and [4] for the
capacity of Abelian group codes. In fact, both are related to
the characterization of distance spectra for such codes. As a
specific example we then consider the AWGN channel with
the 8 -PSK input constellation. We prove that in this case
the above minimum of the GV distances is equal to the GV
distance of the channel itself with respect to the squared
Euclidean distance: in other terms typical Z8 group codes
always achieve the GV distance on the AWGN channel with
the 8 -PSK input constellation.

In Section II the general notion of Bhattacharyya distance
for symmetric channels is introduced and two examples are
presented where it coincides respectively with the Hamming
distance for BIOS channels and with the squared Euclidean
distance for the AWGN channel with a GU constellation as
input. In Section III we state the Gilbert-Varshamov bound
on the Bhattacharyya distance. Section IV contains the main
results consisting in an exact characterization the typical
distance spectra and minimum distance of Zm-linear coding
ensembles. In Section V we analyze the special case of the
AWGN channel with 8 -PSK input constellation.

II. BHATTACHARYYA DISTANCE FOR SYMMETRIC
MEMORYLESS CHANNELS

In this section we introduce a general framework for the
minimum distance. While perhaps looking rather abstract, we
will see that this framework unifies many different definitions
and allows to formulate a general problem.

Throughout this paper the base exp and log has to be
considered the same arbitrary fixed positive number. For
a finite set A, P(A) will denote the space of probability
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measures over A. If a in A, da in P(A) denotes the delta
probability concentrated on a. The entropy function is

H(6) = O(a) log O(a).

2

4

For every n in N, the A-type function is defined as

VA: An -P(A), [vA(X)1(a):= - {1 < i < n: xi= a}l
n

We definePn(A): vA(An) andP (A) := UnNPn(A); the
set 'P(A) is countable and dense in P(A).

For two real valued functions f and g over A we consider
their scalar product (f 9) = ZacA f (a)g(a); for a subset B
of A, f B B R denotes the restriction of f to B.

For an arbitrary finite group G we shall denote by 1G its unit
element and generally use the multiplicative notation. When
G is Abelian we shall switch to the additive notation with
0 denoting the unit element. We will also use the notation

P*(G) := P(G) \ {f1G}.
A memoryless channel (MC) of finite input set X and

continuous output set Y = RV is described by a family of
transition probability densities {W(. x)}zIx. Our theory also
works in a more general framework including channels with
discrete outputs: this choice is only made for simplicity.

Consider two elements x,x' of X. Since both W(. x)
W (.x') are nonnegative measurable functions over Y the
quantity f /W(ylx)W(ylx')dy is well defined in [0, +oo].
Both X) and W(x are in L2(y) so that Schwartz

inequality gives

O < f- VW(ylx)W(yxl')dy
< W(ylx)dpi(y) fy W(ylx')dy 1.

The first inequality above is an equality iff the supports of
W( Ix) and W( Ix')) intersects in a set of zero measure.

Instead, the second inequality is equality iff W(. x) = W(. x')
almost surely, which means that actually x and x' have
indistinguishable outputs. In this paper we will assume that
for every x 7y '

< VW(y X)W(y x') < 1;

While there is no loss of generality in the latter part of this
assumption, the former excludes from our analysis the class
of channels whose 0-error capacity is strictly positive.

To any memoryless channel we can associate a function
D : X x X R+ defined by

D(x,X') :-log VW(yIx)W(yxl')dd(y).
This function is usually called the Bhattacharyya distance
function of the channel and satisfies

D(x, x') = D(x', x),

d(x, x') = 0

Vx,x' C G,

,#=== X = 'x.

As in [4] we introduce the following definition of symm
for memoryless channels.

7

6 6

Fig. 1. Two GU constellations admitting generating group Z8

Definition 1 A MC {W(. x)} cx is G-symmetric if
(i) G acts simply and transitively on X;

(ii) G acts isometrically on Y;
(iii) W(gylgx) = W(ylx) for every g E G, x E X, and

y C Y.

Notice that property (i) implies that for any fixed x0 C X we

have a bijection g C G H-* gxo C X. Through such a mapping
G and X ca actually be identified and subset over GN will
naturally lead to codes of length N over X. From now on

we assume that the base point x0 has been fixed and X will
be identified with G. In particular, we will write D(g, h) for
D(gxo, hxo).

It is easy to verify that the Bhattacharyya distance function
D of a G-symmetric memoryless channel satisfies

D(g, h) = D(h- g, IG) = d(h-1g),

where we define

d: G R+ , d(g) = D(g, IG), g CG.

The arguments above motivate the following definition.

Definition 2 A function d: G R+ such that

d(g) = d(g-1) d(g)=0g l= G, g CG,

is called a G-Bhattacharyya weight function.

A Bhattacharyya weight function can be extended to direct
products in a natural way. Given two elements x and y of the
direct group product GN, and a Bhattacharyya weight function
D, the D-distance between x and y is defined by

N N

D(xC,y)=E,D(xCi,yj)=Ed(yilxj)=T(UG(Y-lX),4
i=l i=l

Example 1 (Binary-input symmetric-output channels)
Consider the case when G =72.Z22-symmetric channels
are known in the literature as binary-input symmetric-output
(BIOS) channels. In this case

(2) n(d,vz2(x-y)) =d(t) {1 < i <N: xj 7y yj}I,
'try i.e. the d-distance is proportional to the Hamming distance.
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Example 2 (Geometrically Uniform AWGN channel)
Given the n-dimensional Euclidean space Rn, an
n-dimensional constellation is a finite subset S C Rn
that spans Rn; we denote with F(S) its symmetry group, i.e.
the group of those isometries of Rn mapping S into S itself.
A constellation S is said to be geometrically uniform (GU)
if there exists a subgroup G of F(S) such that for every
s, r C S a unique g C G exists such that gs = r (i.e. the
action of G on S is simply transitive). Such a G is called
a generating group for S: for every s C S the mapping
C,: G - S defined by -, : g C G H-* gs C S is a bijection
called isometric labelling. Two examples of GU constellations
both admitting Z8 as a generating group, are presented in
Fig. 1. Both the constellations also admit the non Abelian
dihedral group D4 as a generating group.

It is easy to check that the AWGN channel with input
restricted on GU constellation S admitting a generating group
G is G-symmetric. Moreover, if we denote by a2 the variance,
we have that

d(g)=- log
2

_ee(IIy_- (g)H12+±Hy_,L (1)122)/4 22dy
Is (g) -s (I G) 2 log e/ (2wu2),

i.e. the Bhattacharyya distance is proportional to the squared
Euclidean distance.

III. GILBERT-VARSHAMOV BOUND ON
THE MINIMUM BHATTACHARYYA DISTANCE

Suppose a finite group G and a G-Bhattacharyya function
d are given. For N in N, a block-code over G of length N is
any subset C of GN. It's rate is R(C) k log ICI; we define
its complementary rate as

R(C)R(C): 1 loglGl

For every 0 in P(G), So (C) will denote the number of
codewords in C of type 0, while No (C) will denote the number
of ordered pairs of codewords of C whose difference has type
6:

So(C) SE {0}(VG(X)),
xc

No(C) =EfJo}(VG(X 1y)).
(X,y) CC2

The normalized minimum d-distance of a code C is

6d(C) := inf G(O,d)| 0 CP*(G): No(C) >O}

A G-code of length N is a subgroup C of the direct group
product GN. For a G-code No(C) = ICISN(C), so that

6d(C) = inf 6(0,d)| 0 CP*(G): So(C) >O}

The Gilbert-Varshamov bound is a lower bound on the
largest normalized minimum d-distance achievable by codes
over G with rate greater than or equal to some value R. The

result can be summarized as follows. For every R in [0, 1] and
d in [0, d], define

d (R) := inf {(0, d) 0 CP* (G): H(G) > R log IGI}

Theorem 3 For every R C [0,1]
sup { d(C) C code over G, R(C) < R} > dV(R)

A proof of Theorem 3 can be found for instance in [2] and is
essentially based on an estimation of the volume of discrete
d-balls in GN [9].

Note that Theorem 3 guarantees the existence of a code
over G with large enough minimum d-distance, but this code
needs not to be a G-code. Moreover it is possible to show that
in this case the random coding ensemble (notice that, since
the channel is G-symmetric, the optimal input distribution for
both capacity and error exponent is the uniform one), with
probability one does not achieve the GV bound [1].
When G is the binary field Z2 Theorem 3 reduces to

the classical Gilbert-Varshamov bound for binary codes. As
mentioned in the introduction, it is known that in this case the
Gilbert-Varshamov bound is achievable by binary liner codes,
and, more remarkably, it is achieved with probability one by
the binary linear coding ensemble [1]. When G is any finite
field Fq, the same is also known to hold true for the random
FFq-linear ensemble.

The question we want to address is how this phenomenon
generalizes to arbitrary finite groups G. In the sequel we will
provide a complete answer for the class of cyclic groups.
While our techniques can be generalized to arbitrary finite
Abelian groups using Kronecker decomposition theorem, gen-
eralizations to nonAbelian groups seem to require completely
different algebraic tools.

IV. ENSEMBLES OF CYCLIC GROUP CODES:
DISTANCE SPECTRA AND MINIMUM d-DISTANCE

In this section we restrict ourself to the special class of finite
groups, that of cyclic groups. For every positive integer m we
denote by ZEm the group of integers modulo m. ZEm admits
ring structure and Zm is in fact a Zm-free module [7].

Let us consider a complementary design rate R. For every N
in N define L := FNR1 and consider the set hom (zN7 Em)
of all homomorphisms from Em to ZL. To every m in
hom(7N, ZL4) a Zm-code is naturally associated, namely its
kernel C, := ker(q). It is easy to check that the complemen-
tary rate of Co, is less than or equal to R.
We now introduce a probabilistic structure on the set of all

ZEm-codes of complementary rate less than or equal to R.

Definition 4 For every R G [0,1] the Zm-linear ensemble
of complementary rate R is a sequence (CON )NGN of random
variables, with ±N uniformly distributed over hom (7N, zL).
Its distance spectra will be denoted by

SO :=SO(CDN)I 0 e P(Zm),
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and its minimum Bhattacharyya distance by

d := 6d(CIN).

Consider a base B of ZN, i.e. a set of N Zm-linear
independent elements of ZN. Since every b in hom(7N, Em)
can be uniquely characterized by the images of the elements of
B [7], from Def.4 it follows that {±Nb b C B} is collection
of independent random variables, identically distributed with
uniform distribution over M.
We now introduce the function

m(0):
m

gcd (supp (0))*

Let us fix x and y in ZN such that lm(vzm (X))
lm(vz (y)) = 1. This implies that x,y C m7ZN, and that
x is Zm-linear independent. It follows that there exists a

basis of ZN containing 1 x. Thus the r.v. ±(NX is uniformly
distributed over ZL, and ±NX is uniformly distributed over

The same is obviously true for the r.v.s m(NY
and ±NY respectively. Moreover, if 1 y and -x are linear
independent, then there exists a basis of ZN containing both:
it follows that the r.v.s ¾ ±DNx and r ±DNy are independent
and so do ±Nx and ±NX-

Based on the reasonings above, standard combinatorial
and probabilistic arguments allow to characterize the typical
asymptotic distance spectra of the Zm-linear ensemble. First,
both the expected value of the distance spectra of the Znm
linear ensemble and its variance can be evaluated as follows.

Theorem 5 For every N in N and 0 in 1PN (7/m) we have:

E [SoN] = (N) jM (O)L (3'

-I lm(G) L E< V < m (1-m(0) L) .(4E [SN]- )

For every R C [0,1] define

the second part a first order method based on (3) is sufficient
to show that

limrsup N logSN < GR (0),

while a second moment method based on (4) allows to show
that

lim inf N ogS > Gzm (0).
NCN N

We are now ready to evaluate the typical asymptotic mini-
mum d-distance of the Zm-linear ensemble of complementary
rate R. We can rewrite

6N := inf {(0, d)| 0 C6P* (G): SN >O}

In order to state our main result we need some more notation.
For a subset A of Z/m we define

AA: {0 e P*(G) supp(6) C Al
d (A, R) := inf{ (0, d) 0 CAA, H(G)> R log A}.

Theorem 7 For any ZLm-Bhattacharyya function d, the uni-
form ZEm-linear ensemble of complementary rate R has nor-
malized minimum d-distance satisfying

P ( lim 6SNGNd d (TR) 1,

where

Sd-(R) .= mntd 1tzm R) IC m >1 (5)

Proof (sketch) A first observation is that the closure of the set
{lm (0) = l} in 'P(Zm) is A m . Then continuity arguments
allow to show that

dd(R) = inf{ (0, d) G0 C P* (7m): GR (0) > O}

Define the events

AN:=GzF3 (0)i =Hf(0)w-sR logr 6(0)i

From (3) and (4) it follows that for every 0 in 'Prq(Z,)
U {SN>0},NcN.

0GPN( m):GRf (0)<0

lr log Var [SoN]Nli N
=GR

The following result exactly characterizes the asymptotic dis-
tance spectra of the Zm-linear ensemble.

Corollary 6 For the uniform Zm-linear ensemble of rate R
we have that, with probability 1,

lim SN = 0, VG C P(zm) G (0) < 0;

rimN log So =G0 m (0) 7 V 0 C PN (Em ) Gm)>
N N N

Proof (sketch) In order to show the first point it is sufficient to
use a first order method and (3) and Borel Cantelli lemma. For

From the first point of Corollary 6, since the set Pr (sm) is
countable, we have that P (AN i. o. ) = 0. It follows that

P (lim inf dd dd (R) >1- P (d dd (R)
> 1 -P(ANi.o. ) = 1.

In order to show that

Ip (limsup d < 67-- )
N

1,

one uses the second point of Corollary 6 and the density of

PN(m)nA\rn in A'\n, .

Theorem 7 characterizes the typical normalized d-distance
achieved by ensembles of Zm-free codes in the simple form
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(5). It turns out that 7d- (R) is the minimum of Gilbert-
Varshamov d-distances associated to all the nontrivial sub-
groups of Z/m so that clearly

d-z (R) < dG (R)

When m is a prime number the only non trivial subgroup
is Z7m itself, so that always in this case we have 6d (R)
6ddV (R) and Theorem 7 directly implies that the Gilbert-
Varshamov bound is achieved with probability one by the Z,m-
linear random coding ensemble.
When m is not prime, the presence of proper subgroups

of Z7m may prevent this to hold true. In fact it is possible to
construct examples when 67- (R) < 6GV(I), for instance
using the AWGN channel with input restricted to the 3-
dimensional GU constellation depicted in the righthand side
of Fig. 1. In next section instead, we will analyze a simple
case when 67d-(R) = (iGV()

V. THE 8-PSK AWGN CASE

In this section we restrict ourselves to the 8-PSK AWGN
channel and prove that in this special case the 28-linear en-
semble minimum d-distance achieves the Gilbert-Varshamov
bound asymptotically with probability one.

Theorem 8 For every R in (0,1)

Po eis (R) =tGVh

Proof We will show that

dV(R, 478) V(R~278) > dV (7HR 8)

Since by definition

6z(R = min f dGV(WM 2) SGV(R 8), dGV(R, Z8)}

(6) clearly implies the claim.
Simple geometrical considerations based on Pythagoras

theorems allow to show that

d(4) = 2d(2) = 2d(6),
d(1) = d(7), d(3) d(5), (7)

d(1) = d(4) -d(3) <4
Using Lagrange multipliers it is possible to write

-AdI4Z8
d (R, 4Z8) = ( Z2 (A) , d)

d(4) e-Ad(4)
Z2 (A)

where A solves H ('Z( =)8) Rlog2, while

GV(- ) exp(-A'dl2Z8), d 2 )
74(A)

d(4) exp(-A'd(2))+d(4) exp(-A'd(4))
Z4 (A)

d(4) exp(-A'd(4))
Z2 (A')

where A' solves H ( ' 8) R log 4. From (7) it follows

that H (( ) = 2 H ( ) ,so that A = A' and thus

the equality in (6) holds true. In order to show the inequality
in (6), we introduce the 78-type 0 defined by

(0) := (1- a)3, 0(1) := 0(2) := 0(7) := a(1 a)2,
0(4) := a3 0(6) := 0(5) := 0(3) := a2(1 a),

where a exp( Ad(4)) It can be verified that

H( A)= 3H ( A ) R

A straightforward calculation gives us

(0, d) = (I (2d(1)- id(4)) (2a2
last inequality following from (7).

-3a+ 1)) a> a,

U

Corollary 9 With probability 1 minimum d distance of the
Z8-linear ensemble achieves the Gilbert-Varshamov bound of
the 8-PSK AWGN channel.

VI. CONCLUSIONS

In this paper we have analyzed the asymptotic behavior of
the minimal Bhattacharyya distance of Abelian group codes
over symmetric channels. In particular we have proven that
typical 78-codes achieve the GV bound over the AWGN
channel with input on the 8 -PSK constellation. We believe
a lot more needs to be understood about this problem. As a
first goal, we are currently trying to extend our final result
to all pr PSK constellations (where p is a prime number).
Secondly, we would like to study the typical behavior of the
minimal Bhattacharyya distance of linear (or affine) binary
codes over non-binary symmetric channels. For the specific
case of PSK constellations we conjecture that linear binary
codes will exhibit smaller typical distances than Abelian group
codes. We believe that this type of analysis is a first fun-
damental step to understand the behavior of more structured
ensembles of codes, for instance LDPC or turbo group codes
over non-binary symmetric channels.
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