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Abstract—A class of large-scale stochastic discrete-time this model, in scalar opinion case, it was proven in [9] that t
continuous-opinion dynamical systems is analyzed. Agentsave gsystem converges to a certain number of opinion clusteps, se
pairwise random interactions in which their vector-valued opin- 5,440 by a distance not smaller than the confidence thgshol

ions are updated to a weighted average of their current valug itself. Simil It b d ically in [3hd
The intensity of the interactions is allowed to depend on the IS€lf. Similar results were observed numerically in [3hda

agents’ opinions themselves through an interaction kerelThis ~Proved analytically for an analogous deterministic mode# d
class of models includes as a special case the bounded-coefide to Krause [7] in [6], [4], [10].
opinion dynamics models recently introduced by Deffuant e@l., The main contributions of the present paper concern the
in which agents interact only when their opinions differ by less o ayior of this system in the limit of large population size
than a given threshold, as well as more general interaction és- We shall sh that . v i
nels. It is shown that, in the limit as the population size inceases, " € sha _S ow tha . as mcreases,_ a properly tme-
upon a proper rescaling of the time index, the trajectories 6 rescaled version of the discrete stochastic system cortest
such stochastic processes concentrate, at an exponentidte, -at an exponential rate- around the solution of a measure-
around the solution of a measure-valued differential equabn. valued differential equation. We shall prove the well-phrsess
The asymptotic properties of the solution of such a differeial ; o gyistence and uniqueness of a solution) of such ezuati
equation are then studied, and convergence is proven to a cegex . . . L
combination of delta measures whose number depends on the‘glnd then study the asymptot!cs Qf Its SO'_Ut'On' showing ithat
interaction kernel. converges to a convex combination of Dirac’s delta measures
Such deltas correspond to opinion clusters, and their numbe
. INTRODUCTION and mutual distances depend on the interaction kernel.e/¢ghil
Os['ﬁr_nilar differential equation for probability densitiesas/non-

orously introduced in [3] for the case of the Deffuant et

Opinion dynamics systems have recently attracted a ¢
siderable amount of attention from the research communit . . .
In these models, agents, belonging to a large populatian 'S modell, no rigorous analysis of it has been proposed so
assumed to interact according to very simple local ruleg T rin the literature, to the best of our knowledge, and, most

interest is in the emerging global behavior of the systerﬁnportamly’ we are r_10_t aware Of. any proof pf conC(_antratlon
f the discrete-time finite-population around its solution

While models where the opinions are binary-, or, more geﬂ-_l_h ind fh ) >ed as foll Aft
erally, finite-valued, have been successfully studied iwith, € remainder of the paper IS organized as 1oflows. After
troducing the necessary notation, we shall introduce the

the framework of interacting particle systems [8], the lad f di to-ti tochast dels of i o
decade has witnessed an increasing interest for continu§S O' discrete-time stochastic models of continuousiop!
ynamics in Sect. Il. In Sect. Ill, we shall pass from the agen

opinion dynamics systems. This is motivated primarily b : e
P y y b y sed model to the density-based one, the latter consisting

social and economic networks, in which opinions are oft di to-ti tochasti in th f oritvabil
better modeled by continuous rather than discrete quasv,titia iscrete-time stochastic process in the space of pratyabi

as well a5 by engineered muit-agent systems, where omnidl{tS T % B SRS SHRLE: G0 CURE NARERS e
usually represent positions in space or velocities. Inioapus P Y

opinion dynamics it is usually assumed that each agent epda\falued d|ﬁerentlal equation will then be provided. In Sdkﬂ; .
his vector-valued opinion to a convex combination of a sma e shall first prove the well-posedness of such a differentia
number of interacting agents’ values equation (Theorem 1), and then investigate the asymptotic

In the present paper, we shall study a class of stochaé%%hav'or of its solution (Theorem 2). Fl_naIIy, n _Sec_t. v,
we shall prove that, upon properly rescaling the time index,

opinion dynamics systems in which, at each discrete tim : . :
op y ys . . s?ochasnc process corresponding to the the density-based
instant, a random pair of agents interact by updating théir

opinion to a weighted average of their current values. T ode! concentrates arqund _the solution of the differential
probability of effective interaction between two agentd e equat!on, as t_h(_e populauon SIZ€ grows.

assumed to depend on the current value of the agents’ opini%t\/\lllh'.le prokV|d|rr]19 hngorou? defflmtlons alnd sta(;emdednts, WE
through an interaction kernel. This generalizes the Detfug o1 JuSt Sketch the proofs of our results, and address the
Weisbuch model of bounded confidence opinion dynamics fil ader interested in the details to a forthcoming full arsi
introduced in [5]. In the latter, interactions occur only evh of the paper.

the agents’ opinions differ by less than a certain thresHedd Il. PROBLEM FORMULATION
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of all the entries ofz but thei-th. If z and y belong to % € N, not only does agent updates its opinion as above, but
R?, for somed € N, ||z — y|| will denote their Euclidean also so does agehtby settingX” = (1—w) X", +wX (..
distance. The indicator function of a sdt will be denoted This symmetric model may be more suitable in certain applica
by 14, with 14(z) =11if 2 € A, 14(z) =01if z ¢ A. We tive contexts, the asymmetric one in some others. However,
shall denote byC?(R?) the space of real-valued, continuouswhile for finite population sizes some of the properties of
bounded functions oveR?, and by P(R?) the space of the two models differ (for example, in the symmetric model
probability measures ovet. For a measure. € P(RY), and the average of the opinions is preserved, while this is not
a test functionp € CP(R?), we shall write (i, o) for the necessarily the case for the asymmetric model), all thelteesu
integral [ ¢(x)du(z), with the convention that, whenever notand proofs of this paper hold as well, with minor changes, for
explicitely indicated, the domain of integration is assdne the symmetric model.
be the entire spack?. Forz € RY, §, € P(R?) will be the
Dirac delta measure centeredandefined by(d,, ) = ()
for all ¢ € CY(R?). Finally, for X C R?, the space of
probability measureg whose support is contained iti will Example 1. Assume the interaction kernel(z,y) is con-
be denoted byP(X). stantly equal tol. Then, the above described system reduces
We shall study the following family of discrete time stochado the standard asymmetric gossip on the complete graph with
tic models of continuous opinion dynamics. Agents belong to agents.
a finite populationA4,, of cardinality |A4,,| = n. Each agent
a € A, starts with an initial opinionXé“) € R4, We shall
assumeX, := {X\” : a € A,} to be a family of independent t(z,y) = Lo g |z —yll) .
and |dent|cally dlstributed (i.i.d.) random variablev @), the
law of eachX being given by some probability measur
1o € P(RY). The opinion profileX;, = {X”|a € A,} is
then updated according to the following stochastic rule. Atxample 3. Assume thak is a Gaussian kernel, namely that
each subsequent time instahte N, two agents,a and b,
are independently sampled from a unn‘orm distribution over k(2,y) = exp(=|lz —yll*/o
A,. Then, with some probabilitys( X, l,X( 1), possibly  for somes > 0.
depending on their current opinions, agentupdates its
opinion to a weighted average of its current op|n|on and that!lll. FROM AGENT-BASED TO DENSITY BASED MODELS

; (a) _ (a) . _ . -
of agentb, by setting X, = (1 —w)X, 7, + wX(?1. The  Ag our main interest s in the global behavior of the opinion
parametew € [0, 1] has to be interpreted as a measure of t"ti%namics system, rather than on that of the single agents’
o

We end this section by introducing three explicit examples
of interaction kernel.

Example 2. For some threshold valu& > 0, let

confidence that each agent puts on the opinion of other agegfSinions, it turns out to be convenient to undertake an Barer

Formally, we shall assume that the stochastic process is Qﬁproach and to study the evolution of the empirical disssit
fined on someflltiated probability spaf@,,, {7} }rez, . Pn).  of the agents’ opinions. Formally, this is accomplished by
such thatX;; is F;'-measurable for alk € Z. Then considering the sequence of random probability measures

P, (Xo € 4) = ju§"(4),

for all A C RY measurable, and, conditioned on the past
history 7;'_,, for everya,b € A,

1
M=~ > Oy € PRY), keZT.
a€A,

@ @) ®) (—a) (—a) Observe that, for every measurableC R¢,
Xy =1 -w) X +wXy?y X, =X, @

n _ (a)

with probability x(X '\, X{?.), while M) =2 ; La(X7),

X =Xg—1 wWp. 1- Z (XYL XPD). @ s nothing but the fraction of agents whose opinion at titne

a,bEAn belongs toA.
We shall assume the interaction kermel R¢ x R? — [0, 1] It turns out that the Markovian dynamics described by the
to be measurable, lower semicontinuous, and symmetrisin #Pdates (1) and (2), translate into a Markovian dynamics for
arguments, i.e. such that the opinion density proces{sMk} which is described below.
For u € P(R?), andy € C2(R?), define
k(z,y) = k(y,x), v,y € RY.

Further, we shall assume the initial probability lawy to be (H (¢ // (1-w)z +wy)—p(z))r(z, y)du(z)du(y).
compact supported, and denotebyC R the convex closure (3)
of the support ofu. Then, for allk € Z™,

Remark 1. The models considered in the cited literature . .
usually assume the interaction to be symmetric in that, @tea  (Miy1,9) — (M’ ) =

SRS

(<Hv (,0> + <AZ+15 90>) ) (4)



where the random variable}, ,, o) satisfies, foralk € Z*, i.e. the first moment is preserved.
n Nl n The following result states the well-posedness of the ODE
E (A o] =0, KAk @)l < llelle- ) (6) with compact-supported initial valye,.
Equation (5) means tha{Aj, ¢) : k € N} is a sequence thoorem 1. Let
- . ’ . . epP
of bounded martingale differences, which can be thoug\%x sett C R4 LIL_(Zatm
as ‘noise’. This suggests to think of the equation (4) as o
noisy discretization, or Euler approximation in the nuroaki
analysis language, of the the measure-valued ODE

(R%) be supported in a compact con-
be a piecewise-continuous, symmetric
ifteraction kernel, as in Sect. II, and léf be defined as in
(3). Then, there exists a unique solution of (6) with initial
value uo. Moreover, for every € [0, +00), the support ofu;

d is contained inX.

Eﬂt = H (). (6) _ _

) ) ) ] Proof: The proof is based on a standard contraction
with stepsizel /n. More precisely, one may conjecture thatygument in the Banach space of continuous signed-measure-
upon rescaling the time index by= k/n, the discrete time yued curves. For this, the essential ingredients are the
stochastic procesg\;’) should converge, in the limit of the | jyschitzianity of H in the total variation distance
population sizen going to infinity, to a solution{y; : ¢ €
[0,+00)} of the ODE (6) with initial conditiory,. Such an [[1#(A) = v(A)||zv = sup {u(A) — v(A) : A C R’ meas} .
intuition lies at the basis of the so called mean field apgroac (7)
of statistical physics, where the differential equation) & The second part of the claim follows from the easily verifeabl
usually referred to as the master equation. fact that the support off (11) is contained in the convex closure

The conjecture above will be formalized and proved to % the support of.. u

true in_ the fo_IIowing sgct?ons. In Sect. IV, in_particularew Now, we proceed to study the asymptotic properties of the
shall first define what it is meant by a solut|-or.1_of (6,)’ ‘_”mgolutions of the ODE (6). The following result guarantees th
then prov;a that for every compact—SUPported initial cdodit convergence of any such a solution to an asymptotic measure
#o € P(R) there exists a unique solutidm. : ¢ € [0, +00)} | " P(R%). Here, convergence iR(R?) is intended to hold

of (6) with initial value 1. Then, we shall investigate thej, 1o \yeak sense of probability measures, i.e. we shall say
asymptotics of the solutions of the ODE (6). In Sect. V, wg o 1. e = g in P(RY) if
t——+o0

shall prove that a linearly interpolated, and properly adst

in time, version of the discrete time stochastic procees; } li 0/md
’ ) ’ im , o) = {1, ), Vo € Cp (RY). 8

concentrates around such a solutign }. t—>+oo</” #) =l e) v € G (RY) ®

IV. EXISTENCE, UNIQUENESS AND ASYMPTOTICS OF THE 1heorem 2. Let {u.} be the solution of (6) corresponding

MEASURE-VALUED ODE PROBLEMS to a compact-supported initial valugy. Then, there exists
: . R?) such that
In this section, we shall prove the well-posedness of thee € PRY)

ODE (6), and then analyze the asymptotics of its solutions. . lim = poo in P(RY).

To start with, we formalize what it is meant by a solution of e

(6). Moreover, if the interaction kernel is such that, for soies

initi i . . 0,+ respectively,R = +00),
Definition 1. A family {¢; : t € [0,+00)} is a solution of (0, +00) (resp YR o0)

ODE fif, for every test functiop € C)(R?), the real-valued k(z,y) >0, Va,y: ||z —y|| < R, 9)

ma . L - .
P thenpu, is a convex combination of a finite number of Dirac’s

t te 0 . . . . .
— (), € [0, +00), deltas centered in points whose inter-distance is not leas t
is absolutely continuous and satisfies R (respectivelyiioo = dz,).
d Proof: The core idea consists in studying the evolution
1. ) = H ) ) ’ y g
dt (e, ) = (H (o) ) of the second moment

for almost everyt € (0, +00).

. . . - m® i= [ elPdu(z).
Before proving the existence of a solution of the differahti Rd
equation (6), it is worth noting two conservation propestieUsing the fact thaf,} is a solution of (6), and the symmetry
such a solution is going to enjoy. By taking = 1z« We of the interaction kernet, one finds that

obtain that d d o
5 | dml@)=0 g =) [ [ Nl =yl y)du @) y)
at | ! at o
i.e. the total mass is preserved. On the other hand, it felloyg always nonpositive. Hencengz) is nonincreasing, and
from the symmetry of: that therefore convergent. As in [4], this fact is used to show

d convergence of i, } in the sense of distributions first, and



In order to prove the second part of the claim, assume hye given byu and v, respectively. The reason for choosing
contradiction thatr*, y* € supp(us) and|jz* — y*|| < R. such a metric resides in the rich duality it enjoys (see,
Then k(z*,y*) > 0, and, sincex is lower semicontinuous, e.g. [2, Ch. 7] and [11, Ch. 6]). In particular, the so-called
there exists neighborhoodd and B are of z* and y*, Kantorivich-Rubinstein duality formula allows one to réer
respectively, such that(z,y) > 0 for x € A andy € B. thel-Wasserstein distance as

Then, Wi (p,v) =sup{{, p) — (v, ) : ¢ : X — R, 1-Lipschitz}
[ [ 1l =it panteancy (12

Furthermore, the Wasserstein distance is known to induce on

> / / o — |25 (2, y)dpos (2)dpa (y) > 0. P(X) @ topology equivalent to the weak one, as defined by
AJB (8): see [11, Th. 6.9], and recall that is compact.

It thus follows from (10) thatlim imff) < 0, which is in . We are now in the position to state our main result. This
) oo dt is stated in terms of the linearly interpolated, time resdal
contrast with the fact tha&tggo [t = fhoo- [ | processeg M} : t € [0,+0c)}, defined by

Example 4. Consider the case of interaction kernel= 1. M;i' = (L+tn — [tn])M{;,| + (tn — [tn]) M}, . (13)
Then, Theorem 21implies thitn, o py = dz,- Observe that Theorem 3. For po € P(X), let {u: : t € [0,400)} be
the fist momentn{" := [ wdyu,(x), satisfies the unique solution of the ODE (6) with initial conditiqn.
d Assume thak(x,y) is Lipschitz. For alln € N, let {M] :
—my =0, k € Z. } be the discrete time stochastic process introduced in

dt .
so that in this case the system preserves the first momeﬁﬁd' Il and leg M : ¢ € [0, +o0)} its rescaled, interpolated

Assuming with no loss of generality tha D=0, (10) implies version as in (13). Then, for eveny & (0, +o0),

that -
d (o 2 P, [ su {W v, } > (K o+ K 03/2) e
Emg ) = —2W(1 — w)mi(f ) ) <t€[017)7.] 1( t ﬂt) - ! 2

SO thatm§2) = méQ)e—Qw(l—w)t.

Example 5. For the casex(x,y) = Lo.m (|| — yl|), The- yvhereKl, K, Hi, H,, and.J, are positive constants depend-
orem 2 guarantees convergence to a convex combinationi®d on X, and s only.

deltas, each pair separated by a distance of at least Proof: The proof involves two main steps. The first one
(opinion clusters). On the other hand, for the cade:,y) = consists first in approximating the space of real-valued,
exp(—||z — y||/o?), Theorem 2 guarantees convergence t0 gipschitz functions overt by a finite set of functions whose
single delta (consensus). cardinality is at most exponential in the inverse of the jziea
(evaluated in the sup norm). The second one consists in
applying the Hoeffding-Azuma inequality [1, Th. 7.2.1] toet

In this section, we finally show that, in the limit of they, nded martingale difference sequer¢A”, ¢) : k € Z+}
population sizen going to infinity, the stochastic processnioduced in Sect. Il (recall, in particular, (5)), for yan

{M;} concentrattjs around the solution of the ODE (8jynctiony e . In particular, the second step is close in spirit
Throughoutt’ C R? will be assumed compact and convex. , the proof of the ODE method for random graph processes

In or_der to formalize the_ aforementioned. notionlof COMN4ngd randomized algorithms [12]. Finally, the two steps are
centration, we need to equip the spaeet) with a suitable ,mpined by means of the duality formula (12), in order to
notion of distance. The topology induced 6% X) by the get the result. -

total variation distance, as defined in (7), turns out to be
too strong for our purposes. Indeed, for instance, it can Bemark 2. The additional assumption that the interaction
immediately verified that, for every initial distributiopo  kernel s be Lipschitz is made for technical reasons. Indeed
absolutely continuous with respect to the Lebesgue measuffs guarantees global Lipschitzianity of the operafdrin
||[M§ — pol|7v = 1 for all n, so thatM{ does not converge the Wasserstain metric ove?(X). It is not hard to see that
to yio in total variation. such a global Lipschitianity fails to hold true in the case
We shall prove our results in the so-callédVasserstein of discontinous kernels as the one of Ex. 2. However, we
distance, which is defined as follows. For two probabilit¢onjecture that the result holds even for discontinuousedsr
measures, v € P(X), define provided that the initial measune, is absolutely continuous

with smooth density.
Witu) = min{ [ oy~ anlldreran } ¢ )
XXX

in the righthand side of (11), the minimization runs over all We have studied a class of stochastic models of continuous
joint probability measures. € P(X x X') whose marginals opinion dynamics. The main result presented shows coreentr

< Hy 7y exp(Hy /o) exp(—Jo"n).

V. CONCENTRATION AROUND THE SOLUTION OF THEODE

VI. CONCLUSION



tion, in the limit of increasing population size, around Hodu-
tion of a measure-valued differential equation. The asytipt
properties of the solution of such differential equatiovéna
been studied as well, and convergence to a convex comhinatio
of deltas, each representing an emerged opinion cluster, ha
been proven. Current work involves extension of these tresul
to more general opinion dynamics models.
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