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Abstract

Typical minimum distances and error exponents are analyzed on the 8-PSK Gaussian
channel for two capacity-achieving code ensembles with different algebraic structure. It
is proved that the ensemble of group codes over Z8 achieves both the Gilbert-Varshamov
bound and the expurgated error exponent with probability one. On the other hand,
the ensemble of binary coset codes (under any labeling) is shown to be bounded away,
with probability one, both from the Gilbert-Varshamov bound (at any rate) and the
expurgated exponent (at low rates). The reason for this phenomenon is shown to rely on
the symmetry structure of the 8-PSK constellation, which is known to match Z8, but not
Z

3

2
.
The presented results indicate that designing group codes matching the symmetry

of the channel guarantees better typical-code performance than designing codes whose
algebraic structure does not match the channel. This stands in partial contrast with the
well-known fact that the average binary coset code achieves both the capacity and the
random-coding error exponent of any discrete memoryless channel.

Keywords: random codes, linear codes, group codes, coset codes, minimum distance, error
exponent, Gilbert-Varshamov bound, expurgated exponent.

1 Introduction

As low-complexity modern coding schemes are based on random constructions of linear codes
with sparse graphical representation [33], the analysis of random codes with algebraic struc-
ture has recently attracted renewed attention from the research community [2]. In fact, a
precise evaluation of the performance of random linear codes (with no constraints on their
density) is propaedeutic to the theory of low-density parity-check (LDPC) and turbo codes,
since it allows to quantify the loss in performance due to the sparsity constraint.

On the other hand, it has long been known that random constructions of algebraically
structured codes can outperform purely random code constructions. For instance, this is the
case in some problems in multi-terminal information theory, where random linear codes allow
to achieve larger capacity regions than purely random codes do (see [27], or the more recent
work [32] and references therein). Restricting attention to point-to-point communication,
which will be the framework of the present paper, random binary-linear codes are known to
outperform purely random codes on binary-input symmetric-output memoryless channels in
terms of typical minimum distances and error exponents (see [2]).
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The present paper is concerned with the performance analysis of code ensembles with
group or coset structure, when employed over non-binary discrete-input memoryless channels
(DMCs). In this case, while structured code ensembles are expected to outperform purely
random code constructions, it is not a priori clear which algebraic structure is the optimal
one: indeed, many non-isomorphic groups typically exist of order equal to some non-prime
number [26]. As it will be shown in this paper, it turns out that the choice of the algebraic
structure is critical for the typical code performance of the ensemble. Rather than presenting
a general theory, we shall focus on a specific case, the additive white Gaussian noise channel
(AWGNC) with input restricted to the 8-Phase Shift Keying (8-PSK) signal constellation:
our choice is motivated both by the applicative interest of this channel, and by the fact that
it presents most of the key characteristics of the general case. While the arguments of [2] can
be easily extended to show that the typical-code performance of the random coding ensemble
(RCE) is suboptimal, we shall provide precise results for the ensemble of group codes over
the cyclic group Z8 (GCE), and the ensemble of binary-coset codes (BCE), respectively (see
Sect.2.3 for their formal definitions). These results will show that the typical group code has
both better minimum distance and better error exponent than the typical binary-coset code.

The Gilbert-Varshamov (GV) bound [23, 37] is one of the most famous lower bounds on
the achievable minimum Hamming distance of binary codes. Given a rate R in (0, 1), and
defined γ2(R) as the unique solution in (0, 1/2) of the equation H(x) = 1−R 1, it states that
for every n ≥ 1 there exist codes of block-length n, rate R, and minimum distance at least
nγ2(R). Its asymptotic tightness is considered one of longest-standing unproved conjectures
in coding theory. A closely related issue concerns the tightness of the expurgated exponent,
which is conjectured by many to coincide with the reliability function of the DMC, i.e. the
highest achievable error exponent (see [19, 30, 31, 5, 38]). Although both the classical GV
bound and expurgated bound are mere existence results, for binary symmetric memoryless
channels it is known that the binary-linear coding ensemble asymptotically achieves both the
GV bound and the expurgated exponent, with probability one (see [18, 2]). It is also known
that the same does not hold true [2] for the RCE, whose typical-code performance is bounded
away from the GV bound, as well as (at low rates) from the expurgated error exponent.

Generalizations of the above issues to non-binary DMCs are considered in the present
paper. Here, the GV distance and the expurgated bound are defined as solutions of simple
finite-dimensional convex optimization problems, having the form of distortion-rate functions
for the Bhattacharyya distance (see (12) and (22)). Analogously to the binary case, the RCE
can be easily shown to be bounded away with probability one from both the GV distance and
the expurgated error exponent of the 8-PSK AWGNC. The main results of the this paper
show that, with probability one, the GCE achieves the GV bound (Theorem 1), while the
BCE is bounded away from it (Theorem 2). Similarly, the GCE asymptotically achieves the
expurgated exponent (Theorem 3), while the BCE does not (Theorem 4), with probability
one.

As it will be clarified in the sequel, the reason for the outperformance of the GCE over the
BCE resides in the symmetry structure of the 8-PSK AWGNC. Such a channel is symmetric
with respect to the action of two groups of order 8, the cyclic group Z8 and the non-Abelian
dihedral group D4, none of which supports Galois field structure. In contrast, the additive
group of the Galois field with 8 elements, which is isomorphic to Z

3
2, does not match the 8-PSK

in the sense of [29]. Thus, the results of the present paper suggest that random group codes
matching the symmetry of the channel outperform random codes whose algebraic structure
does not match that symmetry.

1Here H(x) denotes the binary entropy.
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It is well known that, despite not matching the symmetry of the channel, the BCE achieves
the capacity and the random-coding exponent of the 8-PSK AWGNC, likewise of any other
DMC [19, pagg.206-209]. Recent works [25, 3, 4], analyzing the performance of binary-coset
LDPC codes on non-binary input DMCs, find information-theoretical basis in the aforemen-
tioned fundamental results. In contrast, Theorem 2 and Theorem 4 imply that, when the
symmetry of the channel is not matched, the BCE is suboptimal in terms the typical minimum
distance and the typical error exponent.

On the other hand, group codes for symmetric channels have been widely investigated in
the channel coding literature. They allow to use more spectrally efficient signal constellations,
while inheriting many of the structural properties enjoyed by binary-linear codes: uniform
error property, invariant distance profiles, congruent Voronoi regions, minimal encoders, syn-
drome formers and trellis representations. The reader is referred to [34, 16, 29, 7, 15, 17]
and references therein. It is well known [14] that group codes over Abelian groups admitting
Galois field structure (i.e. isomorphic to Z

r
p for some prime p) allow to achieve the capac-

ity and the random coding exponent. More recently, information-theoretic limits of finite
Abelian group codes were investigated in [8], where it was shown that group codes over Zm

allow to achieve capacity on the m-PSK AWGNC when m is the power of a prime (thus
including the case m = 8). Theorem 1 and Theorem 3 show that, at least on the 8-PSK
AWGNC, random group codes matching the symmetry of the channel are optimal in terms
of typical-code performance. They provide theoretical foundation for the analysis and de-
sign of bandwidth-efficient high-performance coding schemes based on LDPC or turbo codes
matched to geometrically uniform constellations [3, 35, 21, 9, 22]. It was empirically observed
in [35] that LDPC codes over Z8 perform better than their binary counterparts on the 8-PSK
AWGNC: the results of the present paper point out to an analytical explanation for this
phenomenon.

Observe that, despite the cyclic group Z8 matches the 8-PSK constellation, in [8] the
average error exponent of the GCE was shown to be strictly smaller than the random-coding
error exponent at low rates (more in general this is the case for group code ensembles over
finite Abelian groups not admitting Galois field structure, confirming an early conjecture of
[14]). Since, as already mentioned, the average error exponent of the BCE coincides instead
with the random-coding error exponent, it turns out that, at low rates, the BCE outperforms
the GCE in terms of average error exponent, while the latter outperforms the former in terms
of typical error exponent. While this phenomenon might appear paradoxical at a first glance,
it can be easily explained by the fact that the average error exponent only provides a lower
bound on the typical error exponent (by Markov’s inequality). This estimation fails to be
tight at rates not close to capacity, where the average error exponent is dragged down by an
asymptotically vanishing fraction of codes with poor performance.

The remainder of the paper is organized as follows. In Sect.2, after introducing all the
notation (Sect.2.1), analyzing the symmetry properties of the 8-PSK constellation (Sect.2.2),
and formally introducing the GCE and the BCE (Sect.2.3), the main results of the paper are
stated in Sect.2.4 and Sect.2.5. They are: Theorem 1, characterizing the typical asymptotic
minimum distance of the GCE; Theorem 2, providing upper and lower bounds to the typical
minimum distance of the BCE; Theorem 3, providing a lower bound to the typical error
exponent of the GCE; Theorem 4 providing an upper bound to the typical error exponent
of the BCE. In Sect.3 the most relevant part of Theorem 1, showing that the GCE achieves
the GV bound, is proved by an application of the first-moment method followed by some
considerations on the geometry of the 8-PSK constellation. Proving the tightness of this
result requires a second-moment method and is technically more involved: for the sake of
completeness, a proof is provided in Sect.B. Theorem 2 is proved in Sect.4 by applying the
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second-moment method (Sect.4.1) and some convex optimization techniques (Sect.4.2). The
proof of Theorem 3is provided in Sect.5, while Theorem 4 is proved in Sect.6. Finally, Sect.7
presents some concluding remarks and points out to generalizations of the results to balanced
DMCs. Sect.A is of a technical nature and discusses some continuity issues. Sect.C contains
the proofs of some of the results of Sect.4.

Some of the material of this paper has been presented at ISIT 2007 [10].

2 Problem statement and main results

2.1 Notation

For two sets A ⊆ B, 1A : B → R will denote the indicator function of A in B, i.e. 1A(x) = 1
for x in A and 1A(x) = 0 for all x ∈ B \ A.

For a non-empty finite set A, the inner product of two functions f ,g : A → R will be
denoted by 〈f ,g〉 :=

∑

a∈A f(a)g(a), while supp(f) := {a ∈ A : f(a) 6= 0} will denote the
support of f . We shall consider the set P(A) of probability measures over A, which can
be identified with the simplex of functions θ : A → [0,+∞) satisfying the linear constraint
∑

a∈A θ(a) = 1. In particular, for a ∈ A, δa ∈ P(A) will denote the delta distribution
concentrated in a, defined by δa(b) = 0 for b 6= a, δa(a) = 1. If θ is in P(A) and B ⊆ A is
such that θ(B) :=

∑

b∈B θ(b) > 0, the conditioned measure θ|B ∈ P(B) is defined by

θ|B(b) := θ(B)−1θ(b) .

The entropy function H : P(A) → R
+ is defined as 2 3

H(θ) := −
∑

a∈supp(θ)

θ(a) log θ(a) .

To any function π : A → B between two nonempty finite sets A and B we can associate
a map π♯ : P(A) → P(B) sending the probability measure θ in P(A) to its image measure
π♯θ ∈ P(B) defined by [π♯θ] (b) := θ

(

f−1(b)
)

=
∑

a:f(a)=b θ(a).The entropy of a measure θ

and that of its image measure π♯θ are related by the following equality

H (θ) = H (π♯θ) +
∑

b∈supp(π♯θ)

π♯θ(b)H
(

θ|π−1(b)

)

. (1)

A special case which will be considered in the paper is when A = B×B, and π1, π2 : A → B,
are the projection operators, πj(b1, b2) := bj. In this case, the image measures π1

♯ θ and π2
♯ θ

are simply the two marginals of the joint measure θ ∈ P(B × B).
The type or empirical frequency of a string a in An is the probability measure υA(a) in

P(A) defined by [υA(a)] (a) := 1
n |{1 ≤ i ≤ n |a(i) = a}| for all a in A. For every positive

integer n, Pn(A) will denote the set of the types of all length-n A-strings, i.e. Pn(A) :=
υA (An) ⊆ P(A). It is immediate to check that the set of all A-types PN(A) := ∪n≥1Pn(A)
is dense in P(A). Given a type θ in Pn(A), the set of all length-n A-strings of type θ

will be denoted by An
θ := υ−1

A (θ) ∩ An. Its cardinality, equal to the multinomial
( n
nθ

)

:=
n!/

∏

a∈A (nθ(a))!, grows exponentially fast in n with exponent given by H(θ). More precisely,

2With an abuse of notation for any x in [0, 1] we will sometimes denote by H(x) the entropy of the binary
measure θ in P ({0, 1}) defined by θ(1) = x, θ(0) = 1 − x.

3Throughout the paper the base of log and exp is understood to be the same arbitrarily chosen b > 1.
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Figure 1: The 8-PSK constellation with: (a) the isometric labeling µ : Z8 → X ; (b) a binary
labeling η : Z

3
2 → X . The latter is a so-called Gray labeling: neighbor signals are assigned

labels differing in one bit only.

given a sequence (θn) ⊆ P(A) such that limn θn = θ and θn belongs to Pn(A) for all n, it
holds

∣

∣An
θn

∣

∣ =

(

n

nθn

)

≤ exp(n H(θn)) , lim
n

1

n
log

(

n

nθn

)

= H(θ) . (2)

On the other hand, the number of types |Pn(A)| =
(n+|A|−1

|A|−1

)

grows polynomially fast with

n. We refer to [12] for proofs of these facts.

2.2 The 8-PSK AWGNC and its symmetries

We shall consider transmission over a memoryless AWGNC with input constrained on the
8-PSK signal constellation X := {ei 2π

8
k| 0 ≤ k < 8} and output space Y = R

2. For x ∈ X ,
P ( · |x) := 1

2πσ2 e−||x−· ||2/2σ2
will denote the conditional probability density of the channel

output given that the input x has been transmitted. The Bhattacharyya distance function
associated to the 8-PSK AWGNC is 4

D : X × X → R
+ , D(x1, x2) :=

log e

8σ2
||x1 − x2||

2 . (3)

The symmetry group of X , i.e. the automorphism group of its distance function D 5

Aut(D) := {π ∈ SX | D (π(x2), π(x1)) = D(x1, x2) , ∀x1, x2 ∈ X} (4)

is isomorphic to the dihedral group D8 with 16 elements [16, 29], generated by the rotation
around the origin by an angle of 2π

8 and the reflection through a straight line forming an
angle of 2π

16 with the real axis. 6 The constellation X is said to be geometrically uniform [16],
meaning that for every x1, x1 ∈ X there exists π ∈ Aut(D) such that π(x1) = x2.

Moreover, the cyclic group Z8 is said to be a generating group of X [29], meaning that
Aut(D) has a subgroup G isomorphic to Z8 such that for all x1, x2 ∈ X there exists a unique
π ∈ Aut(D) such that π(x1) = x2. In particular, let

µ : Z8 → X , µ(z) := ei 2π
8

z

be the standard isometric labeling, and consider the function Dµ : Z8×Z8 → R, Dµ(z1, z2) =
D(µ(z1 + z2), µ(z2)). Then, all the columns Dµ( · , z) coincide with the distance profile

d : Z8 → R , d(z) := D(µ(0), µ(z)) . (5)

4Here and throughout the paper for a vector z in R
d, ||z|| =

q

Pd
i=1 z(i)2 will denote its L2-norm.

5SX denotes the group of permutations of X .
6The reader is referred to the textbook [26] for standard notions of algebra, and in particular of group

actions on sets.
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On the other hand, observe that D8 has no subgroup isomorphic to Z
3
2.

7 This implies
that, for any binary labeling η : Z

3
2 → X , not all the columns of the induced distance function

Dη : Z
3
2 × Z

3
2 → R

+ , Dη(z1, z2) := D(η(z2), η(z2 + z1)) , (6)

coincide, i.e.
∃z1, z2 ∈ Z

3
2 : Dη(·, z1) 6= Dη(·, z2) . (7)

2.3 Two capacity-achieving code ensembles with different algebraic struc-

ture

We shall consider block-codes C ⊆ X n of rate R(C) := 1
n log |C|, whose minimum distance is

defined by
dmin(C) = min

{

Dn(x,z)
∣

∣ x 6= z ∈ C
}

,

where, for x,z ∈ X n, Dn(x,z) :=
∑n

i=1 D(xi, zi). The error probability of C is given by

pe(C) :=
1

|C|

∑

x∈C

∫

Λx

1

(2πσ2)n
e−

||y−x||2

2σ2 dy ,

where Λx :=
⋃

w6=x∈C {y ∈ Yn : ||y − x|| ≥ ||y − w||} is the error event conditioned on the
transmission of x ∈ C.

The focus of this paper will be on block-codes with algebraic structure compatible with
Z8 or Z

3
2, respectively. Specifically, a group code (over Z8) is the image of a subgroup K

of the direct group product Z
n
8 through the componentwise extension µn : Z

n
8 → X n of the

isometric labeling µ. As a consequence of the symmetry properties discussed in Sect.2.2, it
is easy to check that the minimum distance of a group code G := µn(K) coincides with its
minimum weight, i.e.

dmin(G) = min{
∑

1≤j≤n

d(xj)|x 6= 0 ∈ K} .

Similarly, group codes are known to enjoy the uniform error property, i.e.

pe(G|x1) = pe(G|x2) , ∀x1,x2 ∈ G .

A binary coset code is the image B of a coset J of the direct group product Z
3n
2 through

the componentwise extension ηn : Z
3n
2 → X n of an arbitrary binary labeling η : Z

3
2 → X .

As opposed to group codes, in general, neither binary coset codes enjoy the uniform error
property, nor their minimum distance coincide with their minimum weight. In the sequel, we
shall see as this reflects on the performance of random group and coset codes respectively.

For every design rate R in [0, log 8], set

R := log 8 − R , l :=

⌊

R

log 8
n

⌋

, n ∈ N .

and define the two following code ensembles:

Group coding ensemble (GCE) For n ≥ 1, let ΦR
n be a random variable (r.v.) uniformly

distributed over Hom
(

Z
n
8 , Zl

8

)

, the set of all group homomorphisms from Z
n
8 to Z

l
8. The

GCE of rate R is the sequence of random codes
(

GR
n

)

, where GR
n is defined as the image

through µn of the kernel of ΦR
n , i.e.

GR
n := µn

(

ker ΦR
n

)

;

7In fact, the only other generating group of X is the non-Abelian dihedral group D4. Notice that group
codes over non-Abelian groups are known to have poor minimum distance properties [28].
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Binary coset ensemble (BCE) Let η : Z
3
2 → X be an arbitrary labeling, and, for n ≥ 1,

consider a r.v. ΨR
n uniformly distributed over Hom

(

Z
3n
2 , Z3l

2

)

, the set of Z2-linear maps
from Z

3n
2 to Z

3l
2 , and let Zn be a r.v. uniformly distributed over Z

3l
2 , independent from

ΨR
n . The BCE of rate R is the sequence of random codes

(

BR
n

)

, where BR
n is defined as

the image through ηn of the preimage of Zn through ΨR
n , i.e.

BR
n := ηn

(

(

ΨR
n

)−1
Zn

)

. (8)

Notice that both, for a given n, the probability that ΨR
n fails to be surjective is nonzero. In

particular, it is possible that BR
n is empty. 8 However, the following standard result shows

that this event almost surely occurs only for finitely many values of n, and, therefore, does
not affect the typical asymptotic performance of these ensembles.

Lemma 1 For all 0 < R < log 8, with probability one there exists some n0 ≥ 0 such that ΨR
n

is surjective for all n ≥ n0.

Proof Let An be the event ‘ΨR
n is surjective’. We can identify ΨR

n in the standard way with
a random binary matrix H uniformly distributed over Z

3n×3l
2 , by defining Hij := (ΨR

n ei)j ,
where {ei}1≤i≤3n is the canonical bases of Z

3n
2 . Then ΨR

n is surjective iff H is full-rank. Since
the rows of H are i.i.d. uniformly on Z

3n
2 , we have that, for 1 ≤ j ≤ 3l, the probability

that the j-th row of H is linear dependent on the other (3l − 1) rows is bounded from
above by 2−3n23l−1 ≤ exp(−nR). Then a standard union-bounding technique gives us that
P(An) ≤ n exp(−nR), so that the series

∑

n≥1 P(An) is convergent and the Borel-Cantelli
lemma [6, pag.12] implies that, with probability one, An fails to occur at most for finitely
many n ∈ N.

As immediate consequence of the symmetry properties discussed in Sect.2.2 is that the
optimal input distribution is the uniform one on X , both for the 8-PSK AWGNC Shannon
capacity C8 and for its random coding error exponent [19] Er

8(R).
It is not hard to show BCE achieves capacity and

E
[

pe(B
R
n )

]

≤ exp(−nEr
8(R)) , lim

n
−

1

n
log E

[

pe(B
R
n )

]

= Er
8(R) . (9)

In fact, the standard random coding averaging arguments of [19, pagg.206-207] as well as the
tightness considerations of [20] apply, upon observing that the events Az :=

{

ΨR
n z = Zn

}

,
for z ∈ Z

3n
2 , have probability 8−l each and are such that, Az1 , Az2 and Az3 are mutually

independent for all three distinct n-tuples z1,z2,z3 ∈ Z
3n
2 .

For the GCE
(

GR
n

)

the situation is different due to the presence of zero-divisors in Z8. In
fact, the event Bx :=

{

ΦR
n x = 0

}

, for x ∈ Z
n
8 , does not have probability 8−l whenever x lies

in a proper subgroup of Z
n
8 . Nevertheless, it has been shown in [8] that the GCE achieves

capacity, and its average error probability can be upper-bounded by a term exponentially
decreasing in the block-length n

E
[

pe(G
R
n )

]

≤ exp(−nEr
Z8

(R)) . (10)

The exponent appearing in the righthand side of the above inequality is given by

Er
Z8

(R) := min
{

Er
8(R), Er

4(2
3R), Er

2(1
3R)

}

,

8In fact, the latter problem could be avoided by considering a r.v. Vn uniformly distributed over Z
3n
2 and

independent of ΨR
n . Then, kerΨR

n +Vn and
`

ΨR
n

´−1
Zn can be shown to be identically distributed, conditioned

on ΨR
n being surjective.
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with Er
4(2

3R) and Er
2(

1
3R) respectively denoting the random coding error exponents of the

AWGNCs with input restricted over the 4-PSK and the 2-PSK constellation. As shown in
[8], the bound (10) is necessarily tight for the average error probability both at rates close to
C, where Er

Z8
(R) = Er

8(R), and at low rates, where instead Er
Z8

(R) := Er
2(

1
3R) < Er

8(R).
Thus, the average error exponent of the BCE coincides with the random coding exponent

Er
8(R), while the average error exponent of the GCE is strictly smaller than it for low rates.

In other words, even if algebraic constraints do not affect the capacity achievable by group
codes over the 8-PSK AWGNC, they do lower the average error exponent achievable by the
GCE. In fact, we argue that this claim can be somehow misleading. Indeed, it refers to the
performance of the average code rather than to the performance of the typical code sampled
from the two ensembles. The results stated in the two following subsections show that,
instead, the typical code sampled from the GCE outperforms the typical code sampled from
the BCE, thus reversing the hierarchies outlined by the average-code analysis.

2.4 Gilbert-Varshamov bound and typical minimum distances

Let Ω := P(Z8) be the space of Z8-types, and, for 0 ≤ R ≤ log 8, define

Ω(R) :=
{

ω ∈ Ω : H(ω) ≥ R
}

(11)

γ8(R) := min
{

〈ω,d〉
∣

∣ ω ∈ Ω(R)

}

, (12)

where d is the squared Euclidean weight function defined in (5). In Sect.A γ8(R) is proved to
be continuous and non-increasing as a function of the rate R. The GV bound for the 8-PSK
AWGNC states that for every design rate 0 ≤ R ≤ log 8, and any n ≥ 1,

∃Cn ⊆ X n : R(Cn) ≥ R , dmin(Cn) ≥ nγ8(R) . (13)

While (13) above is an existence result, the question we want to address is whether γ8(R)
is achieved by random codes. In fact, using arguments analogous to those in [2], it is not
difficult to see that the RCE does not achieve the GV bound with probability one: its typical
asymptotic normalized minimum distance can be shown to coincide with γ8(2R). We shall
therefore concentrate on the performance of the GCE and BCE introduced in Sect.2.3. The
following result states that a typical code sequence sampled from the GCE asymptotically
meets the GV-bound.

Theorem 1 (Typical minimum distance of the GCE) For all 0 < R < log 8, with
probability one

lim
n

1

n
dmin(G

R
n ) = γ8(R) . (14)

Proof See Sect.3 and Sect.B.

For the BCE instead, we will prove that a typical code sequence almost surely does not
meet the GV-bound. More precisely, let Θ := P(Z3

2 × Z
3
2) be the set of joint Z

3
2-types. For

0 ≤ R ≤ log 8, define the sets

Θ(R) :=
{

θ ∈ Θ : H(θ) ≥ 2R , H
(

π1
♯ θ

)

≥ R
}

, (15)

Θ(R) :=
{

θ ∈ Θ : H(θ) − H
(

π1
♯ θ

)

≥ R , H
(

π1
♯ θ

)

≥ R
}

, (16)

where we recall that [π1
♯ θ]( · ) =

∑

z θ( · , z) is the marginal of θ. Define the functions

γ
η
(R) = min

{

〈θ,Dη〉|θ ∈ Θ(R)

}

, (17)

γη(R) := min
{

〈θ,Dη〉|θ ∈ Θ(R)

}

, (18)
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Figure 2: A comparison of γ8(R) (purple line) and γη(R) where η : Z
3
2 → X is the Gray

labeling described in Fig.1. As a reference γ8(2R) (which is the typical normalized minimum
distance of the RCE) is plotted in dotted red.

Theorem 2 (Typical minimum distance of the BCE) For every design rate 0 < R <
log 8, with probability one

lim inf
n

1

n
dmin

(

BR
n

)

≥ γ
η
(R) . (19)

lim sup
n

1

n
dmin

(

BR
n

)

≤ γη(R) . (20)

Moreover, for all 0 < R < log 8

γ
η
(R) ≤ γη(R) < γ8(R) . (21)

Proof See Sect 4.

As an immediate consequence of (20) and (21) we have that, with probability one, the
BCE is asymptotically bounded away from the GV-bound.

In Fig.2 the typical minimum distance of the GCE and of the BCE are plotted as a
function of the rate, together with that of the RCE. For the specific choice of the binary
labeling η : Z

3
2 → X , and the chosen resolution, it seems that γη(R) = γ

η
(R).

2.5 Expurgated bound and typical error exponents

For every rate 0 ≤ R ≤ log 8 the expurgated exponent of the 8-PSK AWGNC is

Ex
8 (R) := min

{

〈ω,d〉 + R − H(ω)|ω ∈ Ω(R)

}

. (22)

The expurgated exponent Ex
8 (R) and the GV distance γ8(R) coincide at small rates. Indeed,

let ωx := e−d/
∑

z e−d(z) be the minimizer of 〈ω,d〉 + R − H(ω) over the whole type space
Ω, Rx

8 := H(ωx) > 0 be the minimum rate R for which ωx ∈ Ω(R), and R0
8 := log

∑

z
1
8e−d(z)

denote the so-called cut-off rate. We have that:

• for rates Rx
8 ≤ R ≤ R0

8, the minimum in (22) is achieved by ωx, and Ex
8 (R) = R0

8 − R;

• for rates 0 ≤ R ≤ Rx
8 , Lemma 11 implies that the minimum in (22) is achieved by some

type ω such that H(ω) = R, so that

Ex
8 (R) = γ8(R) , ∀0 ≤ R ≤ Rx

8 . (23)
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The expurgated bound (see [19, pagg.153-157], and [11, pagg.185-186,192-195]) guaran-
tees, for all rates 0 < R < log 8, the existence of code sequences (Cn ⊆ X n) with

R(Cn) ≥ R , lim inf
n

−
1

n
log pe(Cn) ≥ Ex

8 (R) .

Similarly to the GV bound, the expurgated bound is a mere existence result, while we are
interested in whether the expurgated exponent Ex

8 (R) is achieved by random codes. In fact,
arguments as in the binary case [2] show that the expurgated exponent is not achieved, at
low rates, by the RCE. Therefore, we shall be concerned with the typical error exponents of
the GCE and the BCE, respectively. The following result states that with probability one
the GCE asymptotically achieves the expurgated exponent.

Theorem 3 (Typical error exponent of the GCE) For every rate 0 < R < Rx
8 , with

probability one

lim inf
n

−
1

n
log pe(Cn) ≥ Ex

8 (R) . (24)

Proof See Sect.5.

In contrast, the following result shows that, at sufficiently low rates, the BCE does not
achieve the expurgated exponent.

Theorem 4 (Typical error exponent of the BCE) There exists some Rx
η > 0 such that,

for every rate 0 < R < Rx
η , with probability one

lim sup
n

−
1

n
log pe(B

R
n ) < Ex

8 (R) .

Proof See Sect.6.

3 The typical group code achieves the Gilbert-Varshamov bound

In this section we shall show that the sequence
(

1
n dmin

(

GR
n

))

is asymptotically bounded
from below by γ8(R) with probability one. The tightness of this result will instead be proven
in Sect.B, completing the proof of Theorem 1. Throughout, the notation Ω = P(Z8), and
Ωn := Pn(Z8) will be adopted for the sets of Z8-types.

We shall apply the first-moment method [1] to the type-enumerator function

GR
n : Ω → Z+ , GR

n (ω) :=
∣

∣(Z8)
n
ω ∩ ker ΦR

n

∣

∣ .

It is not difficult to express the minimum distance of the GCE in terms of its type-enumerating
function. Indeed, we have

dmin

(

GR
n

)

= min
{

∑

1≤j≤n d(xj) | x ∈ ker ΦR
n \ {0}

}

= n min
{

〈ω,d〉
∣

∣ ω ∈ Ω \ {δ0} : GR
n (ω) ≥ 1

}

.

As a first step in our analysis, we evaluate the expected type-enumarating function
E[GR

n (ω)]. For ω ∈ Ω, it is convenient to denote by 9

ζ(ω) :=
8

gcd(supp(ω))
, (25)

9Here gcd denotes the great common divisor of a set of positive integers.
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the order of the smallest subgroup of Z8 supporting ω. Observe that the map ζ : Ω → N takes
values only on the set of divisors of 8. Moreover it is lower semicontinuous as it jumps to
lower values when approaching Z8-types supported on smaller subgroups of Z8. The following
result motivates definition (25).

Lemma 2 For every design rate 0 < R < log 8 and Z8-type ω 6= δ0 in Pn(Z8), we have

E
[

GR
n (ω)

]

=

(

n

nω

)

1

ζ(ω)l
.

Proof Let {ei}1≤i≤n be the canonical basis of Z
n
8 , and define h := 8

ζ(ω) . Writing x =
∑

1≤i≤n xiei, we have that xi belongs to hZ8 for every 1 ≤ i ≤ n, and there exists some

1 ≤ i∗ ≤ n such that gcd(xi∗ , 8) = h. Since
{

Wi := ΦR
Nei

}

1≤i≤n
is a collection of i.i.d. r.v.s

uniformly distributed over Z
l
8, it follows that Ki∗ := xi∗Wi∗ is uniformly distributed over

hZ
l
8, and is independent from the r.v. K−i∗ :=

∑

i6=i∗ xiWi, which in turn takes values in

hZ
l
8. Then, for every z in hZ

l
8 we have

P(ΦR
n x = z) =

∑

w∈hZl
8

P (Ki∗ = z − w ,K−i∗ = w)

=
∑

w∈hZl
8

1
ζ(ω)l P (K−i∗ = w)

= ζ(ω)−l ,

which shows that ΦR
n x is uniformly distributed over 8

ζ(ω)Z
l
8. Then, from the linearity of the

expectation, we have

E
[

GR
n (ω)

]

= E[
∑

x∈(Z8)n
ω

1{ΦR
n x=0}] =

∑

x∈(Z8)n
ω

P
(

ΦR
n x = 0

)

,

and the claim easily follows from (2).

For 0 ≤ R ≤ log 8, define the sets

Ω′′
(R) :=

{

ω ∈ Ω : supp(ω) ⊆ 2Z8, H(ω) ≥ 2
3R

}

,

Ω′
(R) :=

{

ω ∈ Ω : supp(ω) ⊆ 4Z8, H(ω) ≥ 1
3R

}

.
(26)

and let
γ4

(

2
3R

)

:= min{〈ω,d〉|ω ∈ Ω′′
(R)} ,

γ2

(

1
3R

)

:= min{〈ω,d〉|ω ∈ Ω′
(R)}

be the GV-distances associated to the subconstellations 4-PSK and 2-PSK, respectively.
The following almost sure lower bound on the asymptotic normalized minimum distance

of the GCE is proved by applying a first-moment method and Lemma 2.

Proposition 1 For every design rate 0 < R < log 8, and every 0 < ε < R

lim inf
n

1

n
dmin(G

R
n ) ≥ min

{

γ8(R + ε), γ4(
2
3 (R + ε)), γ2(

1
3 (R + ε))

}

(27)

with probability one.
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Proof As a consequence of Lemma 2 and (2) we have that, for every ω ∈ Ω,

E
[

GR
n (ω)

]

≤ exp
(

n
(

H(ω) − log ζ(ω)
log 8 R

))

. (28)

Define the set Ω̃ :=
{

ω ∈ Ω : H(ω) < log ζ(ω)
log 8 (R − ε)

}

, and for n ≥ 1, Ω̃n := Ωn ∩ Ω̃.

Consider the events Fn,ε := ∪ω∈Ω̃n

{

GR
n (ω) ≥ 1

}

, and Fε := {Fn,ε i. o.}. 10 Then, using a
standard union bound, Markov’s inequality and (28), we have

P (Fn,ε) ≤
∑

ω∈Ω̃n
E

[

GR
n (ω)

]

≤
∑

ω∈Ω̃n
exp

(

n
(

H(ω) − log ζ(ω)
log 8 R

))

≤ |Ωn| exp(−nε) .

Since the number of Z8-types |Ωn| =
(

n+7
7

)

grows only polynomially fast with n, we have that
the series

∑

n≥1 P (Fn,ε) is convergent. Hence, the Borel-Cantelli lemma implies that P(Fε) =

0. Then, the claim follows upon observing that Ω \ Ω̃ ⊆ Ω(R+ε) ∪ Ω′′
(R+ε) ∪ Ω′

(R+ε) .

Observe that the proofs of Lemma 2 and Proposition 1 only depend on the algebraic
structure of Z8. Instead, the following result relies on the geometric structure of X . In fact,
counterexamples can be constructed as in [8] showing that Lemma 3 fails to hold true for
other DMCs with the same symmetry structure of the 8-PSK AWGNC.

Lemma 3 For every design rate 0 ≤ R ≤ log 8

γ2(
1
3R) = γ4(

2
3R) ≥ γ8(R) , (29)

Proof For R = log 8, trivially γ2(
1
3R) = γ4(

2
3R) = γ8(R) = 0.

For R < log 8, since the entropy function is concave and the unique minimum of the
linear map ω 7→ 〈ω,d〉 on Ω is achieved in ω = δ0, we can apply Lemma 11 and claim that
a minimizer ω ∈ Ω(R) in the definition (12) of γ8(R) necessarily satisfies H(ω) = R. Then,
using Lagrangian multipliers, we obtain

γ8(R) =

∑

x∈Z8
d(x)e−λ8d(x)

∑

x∈Z8
e−λ8d(x)

,

where λ8 > 0 solves the equation H
(

e−λ8d
P

x e−λ8d(x)

)

= R. Similarly, we have γ2

(

1
3R

)

= d(4)α,

where

α :=
1

Z2(λ2)
e−λ2d(4) , Z2(λ2) := 1 + e−λ2d(4) ,

and λ2 > 0 solves H
(

Z2(λ2)
−1e−λ2d(4)

)

= 1
3R, while

γ4

(

2
3R

)

=

∑

x∈2Z8
e−λ4d(x)d(x)

Z4(λ4)
.

where Z4(λ4) :=
∑

x∈2Z8
e−λd(x), and λ4 > 0 is the solution of H

(

Z4(λ4)
−1e−λ4d12Z8

)

= 2
3R.

Elementary geometrical considerations based on Pythagoras’ theorems allow to show that

d(4) = 2d(2) = 2d(6) (30)

10For a sequence of events (An), the event {An i. o.} := ∩k≥0∪n≥k Ak denotes the event ‘An occurs infinitely
often’.
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d(1) = d(7), d(3) = d(5), d(1) = d(4) − d(3) <
1

4
d(4). (31)

It follows from (30) that Z4(2s) =
(

1 + e−sd(4)
)2

= Z2 (s)2, for all s ≥ 0.Then, it follows
from (30) that

e−2λ2d(0)

Z4(2λ2)
=

1

Z2(λ2)2
= (1−α)2 ,

e−2λ2d(2)

Z4(2λ2)
=

e−2λ2d(6)

Z4(2λ2)
= α(1−α) ,

e−2λ2d(4)

Z4(2λ2)
= α2 .

Therefore, H
(

e
−2λ2d|2Z8

Z4(2λ2)

)

= 2H (α) = 2H
(

e
−λ2d|4Z8

Z2(λ2)

)

, so that 2λ2 = λ4. Hence,

γ4

(

2
3R

)

=

〈

e−λ4d12Z8 ,d
〉

Z4(λ4)
= α2d(4) + 2α(1 − α)d(2) = αd(4) =

d(4)e−
λ4
2 d(4)

Z2(λ4/2)
= γ2

(

1
3R

)

,

thus showing the equality in (29). It remains to show the inequality in (29). In order to do
that, we introduce the Z8-type ω̂ defined by

ω̂(0) := (1 − α)3 , ω̂(1) := ω̂(2) := ω̂(7) := α(1 − α)2 ,
ω̂(4) := α3 , ω̂(6) := ω̂(5) := ω̂(3) := α2(1 − α) ,

(32)

It is straightforward to verify that H(ω̂) = 3H (α) = R. Moreover, it follows from (30) and
(31) that

〈ω̂,d〉 =
∑

x∈Z8
d(x)ω̂(x)

= α3d(4) + 2α2(1 − α) (d(4) − d(1)) + α(1 − α)1
2d(4) + 2α(1 − α)2d(1)

= αd(4)1
2

(

−2α2 + 3α + 1
)

+ αd(1)2
(

1 + 2α2 − 3α
)

= αd(4) + αd(4)
(

2d(1) − 1
2d(4)

) (

2α2 − 3α + 1
)

≤ αd(4) ,

last inequality following from (31) and the fact that 2α2 − 3α + 1 > 0 for every α > 0. It
follows that

γ8(R) ≤ 〈ω̂,d〉 ≤ αd(4) = γ2

(

1
3R

)

,

thus concluding the proof.

Remark: From the proof of Lemma 3 it is evident that the rightmost inequality in (29)
is strict for all 0 < R < log 8.

As immediate consequence of Proposition 1 and Lemma 3, we have that, for every rate
0 < R < log 8 and every 0 < ε < R,

P

(

lim inf
n

1

n
dmin

(

GR
n

)

≥ γ8(R + ε)

)

= 1 .

Then, it follows from the monotonicity and continuity properties of γ8(R) that

P

(

lim inf
n

1
n dmin

(

GR
n

)

≥ γ8(R)
)

= P

(

⋃

k≥1

{

lim inf
n

1
n dmin

(

GR
n

)

≥ γ8(R + 1
k )

})

= lim
k

P

(

lim inf
n

1
n dmin

(

GR
n

)

≥ γ8(R + 1
k )

)

= 1 ,

(33)

i.e. almost surely the asymptotic normalized minimum distance of the GCE is not smaller
than the GV-distance γ8(R). In order to complete the proof of Theorem 1, it remains to
prove that almost surely 1

n dmin(G
R
n ) is asymptotically upper-bounded by γ8(R). This will be

the object of Sect.B.
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4 The typical binary-coset code does not achieve the GV

bound

In the present section, we shall prove that the normalized minimum distance of the BCE is
asymptotically bounded away from the GV distance. We shall proceed in two steps. First,
in Sect.4.1, we shall use a second-moment method [1] in order to prove the upper bound
(20). Then, in Sect.4.2, we shall prove the rightmost inequality in (21): this will involve some
convex optimization arguments. Throughout, we shall assume to have fixed an arbitrary
labeling

η : Z
3
2 → X ,

and use the notation Θ = P(Z3
2×Z

3
2) and Θn := Pn(Z3

2×Z
3
2) for the spaces of joint Z

3
2-types,

and Υ := P(Z3
2) and Υn := Pn(Z3

2) for the spaces of Z
3
2-types.

4.1 Bounds on the typical minimum distance of the BCE

A first observation is that, since binary-coset codes are not GU, their minimum distance
does not in general coincide with their minimum weight, as it is the case for Z8-group codes.
Rather, it is necessary to look at all pairs of codewords of a binary coset code in order
to evaluate its minimum distance. It is therefore convenient to introduce the joint-type-
enumerating functions UR

n : Θ → Z+,

UR
n (θ) :=

∣

∣

{

(x,y) ∈ (Z3
2)

n
θ : ΨR

n x = 0,ΨR
n y = Zn

}∣

∣ ,

counting the number of pairs (x,y) of different joint types such that both y and x + y

belong to coset of Z
3n
2 given by the counter-image of Zn through ΨR

n . We also introduce the
enumerating function

V R
n : Υ → Z+ , V R

n (υ) :=
∣

∣

{

x ∈ (Z3
2)

n
υ : ΨR

n x = 0
}
∣

∣

counting the number of n-tuples in the kernel of ΨR
n of different types. It is straightforward

to check that the minimum normalized distance of the random code BR
n can be rewritten as

1

n
dmin

(

BR
n

)

= inf
{

〈θ,Dη〉 | θ ∈ Θ : π1
♯ θ 6= δ0, UR

n (θ) ≥ 1
}

,

where [π1
♯ θ]( · ) =

∑

x θ( · , x) ∈ Υ is the marginal of θ on the first component.

The average value of the enumerating functions UR
n (θ) and V R

n (ω) is easily evaluated as
shown in the following result.

Lemma 4 For every θ ∈ Θn and υ ∈ Υn such that

π1
♯ θ 6= δ0 , υ 6= δ0 ,

it holds

E
[

UR
n (θ)

]

=

(

n

nθ

)

1

82l
, E

[

V R
n (υ)

]

=

(

n

nυ

)

1

8l
.

Proof For every x and y in Z
3n
2 such that x 6= 0 we have that ΨR

n x and ΨR
n y − Zn are

independent and both uniformly distributed over Z
3l
2 . It follows that

E
[

UR
n (θ)

]

= E

[

∑

(x,y) 1{ΨR
n x=0}1{ΨR

n y=Zn}
]

=
∑

(x,y) P
(

ΨR
n x = 0 , ΨR

n y − Zn = 0
)

=
( n
nθ

)

1
82l ,
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where the summations above are extended to all pairs (x,y) of joint type θ. E[V R
n (υ)] is

computed analogously.

A first-moment method based on Lemma 4 allows to prove the following lower bound on
the typical asymptotic minimum distance of the BCE.

Proposition 2 For every design rate 0 < R < log 8 and 0 < ε < R, with probability one

lim inf
n

1

n
dmin

(

BR
n

)

≥ γ
η
(R + ε) .

Proof See Sect.C.1.

From the continuity of γ
η
(R) as a function of the design rate R (see Sect.A), (19) of

Theorem 2 follows by an argument analogous to the one used in (33).
We now want to obtain an upper bound on the typical asymptotic normalized minimum

distance of the BCE using a second-order method [1]. Toward this end, we need to estimate
the variance of the joint-type-enumerating functions UR

n (θ).

Lemma 5 For all n ≥ 1, and every joint type θ ∈ Θn such that π1
♯ θ 6= δ0,

Var
[

UR
n (θ)

]

≤

(

n

nθ

)(

n

nπ1
♯ θ

)

16

83l
+

(

n

nθ

)2( n

nπ1
♯ θ

)−1 1

83l
+

(

n

nθ

)

8

82l
, (34)

Proof See Sect.C.2.

A second-order method based on Lemma 4 and Lemma 5 allows one to show that, given
a sequence of joint types (θn) converging to some θ lying in the interior of the set Ω(R), with

probability one UR
n (θ) ≥ 1 for all but finitely many n. This idea is exploited in the proof

of the following upper bound on the typical asymptotic normalized minimum distance of the
BCE.

Proposition 3 For every design rate 0 < R < log 8 and every 0 < ε < R,

P

(

lim sup
n

1

n
dmin(B

R
n ) ≤ γη(R − ε)

)

= 1 .

Proof Let θε in Ω(R−ε) be such that γη(R−ε) = 〈θε,Dη〉. Consider a sequence of joint types

(θn) converging to θε, with θn in Θn for every n ≥ 1. Define the event An := {UR
n (θn) = 0}.

We can apply Chebyshev inequality and use Lemma 4 and Lemma 5 obtaining

P (An) ≤
Var

[

UR
n (θn)

]

E [UR
n (θn)]2

≤ 16

(

n

nπ1
♯ θn

)(

n

nθn

)−1

8l +

(

n

nπ1
♯ θn

)−1

8l + 8

(

n

nθn

)−1

82l .

It follows that

lim sup
n

1

n
log P

(

UR
n (θn) = 0

)

≤ max
{

R+H(π1
♯ θε)−H(θε), R−H(π1

♯ θε), 2R−2H(θε)
}

≤ −ε .

so that the series
∑

n≥1 P (An) is convergent, so that P (An i. o.) = 0 by the Borel-Cantelli
lemma, and the claim easily follows.

Observe now that Proposition 3 and the monotonicity and continuity properties of γη(R)
(see Sect.A) imply the second claim (20) of Theorem 2.
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4.2 Comparing γη(R), γ
η
(R) and γ8(R)

We now want to compare the distance bounds γ
η
(R), γη(R), and γ8(R) defined in (17), (18)

and (12) respectively. First, observe that any joint type θ ∈ Θ(R) trivially satisfies H(θ) ≥ 2R,

so that Θ(R) ⊆ Θ(R). From this, it immediately follows that γη(R) ≥ γ
η
(R). Notice also that

the inequality above holds as an equality whenever γ
η
(R) = 〈θ,Dη〉 for some joint type θ

belonging to Θ(R). It can be shown that this is the case for every binary labeling η : Z
3
2 → X

for large enough values of R, so that often γη(R) and γ
η
(R) do coincide. However, we will

now concentrate on comparing γη(R) with the GV-distance γ8(R), in particular showing that
the former is strictly below the latter.

In order to do that, we start by considering the Z8-type ω(R) in Ω(R) giving the GV-
distance, i.e. such that γ8(R) = 〈ω(R),d〉. Since the entropy function is concave and the map
ω 7→ 〈ω,d〉 is linear and it achieves its global minimum in δ0, Lemma 11 can be applied to
guarantee that H(ω(R)) = R. Hence, using Lagrangian multipliers we get

ω(R)(x) =
e−λd(x)

Z(λ)
, Z(λ) :=

∑

x∈Z8

e−λd(x) , (35)

where λ ∈ (0,+∞) is the unique solution of the equation H
(

Z(λ)−1e−λd
)

= R.
From ω(R) ∈ Ω we define a joint type θ(R) in Θ as follows. For every z in Z

3
2, consider

the bijection
σz : Z

3
2 → Z8 , σz(x) := µ−1 (η(x + z)) − µ−1 (η(z)) .

11 Now define

θ(R)(x, z) :=
1

8
ω(R) (σz(x)) , x, z ∈ Z

3
2 , (36)

and let υ(R) := π1
♯ θ(R) in Υ be its marginal measure. A few simple properties of θ(R) and

υ(R) are gathered in the following result.

Lemma 6 For all 0 < R < log 8

θ(R)(x, z) > 0 , υ(R)(x) > 0 , ∀x, z ∈ Z
3
2 , (37)

〈θ(R),Dη〉 = γ8(R) . (38)

H(θ(R)) = log 8 + R . (39)

H(υ(R)) > R . (40)

Proof See Sect. C.3.

We are now ready to prove the rightmost inequality in (21).

Proposition 4 For every labeling η : Z
3
2 → Z8 and every rate 0 < R < log 8,

γη(R) < γ8(R) .

11Observe that, in the expression above, the + sign refers to addition in Z8, while the − refers to difference
in Z

3
2.
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Proof For x ∈ Z
3
2, define mx := min{Dη(x, z)| z ∈ Z

3
2}, Mx := {z ∈ Z

3
2 : Dη(x, z) = mx}.

Observe that, since Dη(0, z) = 0 for every binary labeling η and any z ∈ Z
3
2, we have that

m0 = 0 and |M0| = 8. However, since no binary labeling η is isometric, we have that

∃x, z ∈ Z
3
2 : mx < Dη(x, z) . (41)

For υ ∈ Υ, consider the set Θυ := {θ ∈ Θ : π1
♯ θ = υ} of joint measures with marginal υ,

and define f : Υ → R, f(υ) := min
{

〈θ,Dη〉|θ ∈ Θυ : H(θ) − H(υ) ≥ R
}

. As an immediate
consequence of (40), we have that γη(R) ≤ f(υ(R)) , so that, in order to prove the claim, it
is sufficient to show that f(υ(R)) < γ8(R).

First, suppose that
∑

x υ(R)(x) log nx ≥ R. Then, it is easy to check that f(υ(R)) =
∑

x υ(R)(x)mx. Hence, it follows from, (37), (41) and (38) that

f(υ(R)) =
∑

x mxυ(R)(x)

=
∑

x

∑

z
1
8θ(R)(σz(x))mx

<
∑

x

∑

z
1
8θ(R)(σz(x))Dη(x, z)

= γ8(R) ,

thus proving the claim.
Now, assume that

∑

x υ(R)(x) log nx < R. For any x 6= 0 in Z
3
2, we have

υ(R)(0) =
∑

z∈Z3
2

θ(R)(0, z) =
1

Z(λ)
>

∑

z∈Z3
2

e−λd(σz(x))

8Z(λ)
=

∑

z∈Z3
2

θ(R)(x, z) = υ(R)(x) .

Hence, υ(R) is not the uniform measure over Z
3
2 and, as a consequence H

(

υ(R)

)

< log 8.

Therefore, from (39) and (40), H(θ(R)) = log 8 + R > H(υ(R)) + R . Then, thanks to the con-
cavity of the entropy function, we can apply Lemma 11, obtaining that f(υ(R)) < 〈θ(R),Dη〉 =
γ8(R) , the last equality following from (38).

5 The typical group code achieves the expurgated exponent

In this section, we shall show that with probability one the GCE achieves the expurgated
error exponent Ex

8 (R), thus proving Theorem 3. We shall use the union-Bhattacharyya bound
[38], in order to estimate of the error probability of the GCE in terms of its type-enumerating
functions:

pe(G
R
n ) ≤

∑

ω∈Ωn

GR
n (ω) exp(−n〈ω,d〉) . (42)

The reader is referred to [36, 8, 24] for tighter bounds on the error probability of group codes
based on their type-enumerating functions.

We start by introducing the expurgated exponents of the 4-PSK and 2-PSK AWGNC,
respectively given by

Ex
4 (2

3R) := min
{

〈ω,d〉 − H(ω) + 2
3R|ω ∈ Ω′′

(R)

}

,

Ex
2 (1

3R) := min
{

〈ω,d〉 − H(ω) + 1
3R|ω ∈ Ω′

(R)

}

,

where Ω′
(R) and Ω′′

(R) have been defined in (26).
The following result can be proved using the first-moment method based on Lemma 2

and (42).
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Proposition 5 For every 0 < R < log 8 and every 0 < ε < R, with probability one

lim inf
n

−
1

n
log pe(G

R
n ) ≥ min

{

Ex
8 (R + ε), Ex

4 (2
3 (R + ε)), Ex

2 (1
3(R + ε))

}

Proof For any ε > 0, consider the events

An,ε :=
{

∪ω∈ΩnGR
n (ω) ≥ exp

(

n
[

H(ω) − (R − ε) log ζ(ω)
log 8

])}

, n ≥ 1 ,

and define Aε := {An,ε i. o.}. From Markov’s inequality, Lemma 2 and (2), we have

P (An,ε) ≤
∑

ω∈Ωn

E
[

GR
n (ω)

]

exp

(

−n

(

H(ω) − (R − ε)
log ζ(ω)

log 8

))

≤ |Ωn| exp
(

−n
ε

3

)

,

so that the series
∑

n≥1 P(An,ε) is convergent, and the Borel-Cantelli lemma implies P(Aε) =

0. Hence, with probability one there exists n0 such that, for all n ≥ n0, GR
n (ω) = 0 for

ω ∈ Ω̃ (where Ω̃ is defined as in the proof of Proposition 1), and GR
n (ω) ≤ exp(n H(ω)− (R−

ε) log ζ(ω)
log 8 ) for all ω ∈ Ωn. It follows from (42) that, for n ≥ n0,

pe(G
R
n ) ≤

∑

ω∈Ωn\Ω̃ GR
n (ω) exp(−n〈ω,d〉)

≤ |Ωn| exp
(

−n min
{

〈ω,d〉 − H(ω) + (R − ε) log ζ(ω)
log 8 |ω ∈ Ω \ Ω̃

})

≤ |Ωn| exp
(

−n min
{

Ex
8 (R + ε), Ex

4 (2
3(R + ε)), Ex

2 (1
3 (R + ε))

})

,

and the claim follows since |Ωn| grows polynomially fast in n.

The following result constitutes an analogous of Lemma 3, showing that the proper sub-
groups of Z8 cause no algebraic obstruction to the error exponent achievable by the typical
group code over Z8.

Lemma 7 For all 0 ≤ R ≤ log 8,

Ex
8 (R) ≤ E4(

2
3R) ≤ E2(

1
3R) .

Proof In order to prove the rightmost inequality, let ω′ be a minimizer of 〈ω,d〉−H(ω)+ 1
3R

in Ω′
(R), and define ω′′ ∈ Ω by ω′′(x) := 0 for all x /∈ 2Z8, ω′′(2) = ω′′(6) := ω′(4)ω′(0),

ω′′(4) := ω′(4)2, ω′′(0) := ω′(0)2. As in the proof of Lemma 3, it is immediate to show that
〈ω′,d〉 = 〈ω′′,d〉, while H(ω′′) = 2H(ω′). It follows that ω′′ ∈ Ω′′

(R), so that

Ex
4 (2

3R) = min
{

〈ω,d〉 − H(ω) + 2
3R|ω ∈ Ω′′

(R)

}

≤ 〈ω′′,d〉 − H(ω′′) + 2
3R

= 〈ω′,d〉 − 2(H(ω′) − 1
3R)

≤ 〈ω′,d〉 − H(ω′) + 1
3R

= Ex
2 (1

3R) .

Let us now consider Ex
8 (R) and Ex

4 (2
3R). Define α :=

√

e−d(4)
P

z∈2Z8
e−d(z) , and ω̂ ∈ Ω as in (32).

Moreover, define ω̂′′ ∈ Ω by ω̂′′(x) = 0 for x /∈ 2Z8, ω̂′′(4) = α2, ω̂(2) = ω̂(6) = α(1 − α),
while ω̂(0) = (1 − α)2. Then, as in the proof of Lemma 3, it is not hard to see that
H(α) = 1

2 H(ω̂′′) = 1
3 H(ω̂), while 〈ω̂,d〉 = 〈ω̂′′,d〉. Moreover ω̂′′ is a global minimizer of

〈ω,d〉 − H(ω) + 2
3R in Ω′′ := {ω ∈ Ω : supp(ω) ⊆ 2Z8}.

18



Let Rx
4 = H(ω̂) be the minimum rate R for which ω̂ ∈ Ω′′

(R). By Lemma 3, for 0 < R ≤
3
2Rx

4 , it holds
Ex

8 (R) ≤ γ8(R) ≤ γ4(
2
3R) = Ex

4 (2
3R) .

Finally, for R ≥ Rx
4 , we have

Ex
8 (R) = min

{

〈ω,d〉 − H(ω) + R|ω ∈ Ω(R)

}

≤ 〈ω̂,d〉 − H(ω̂) + R

= 〈ω̂′′,d〉 − 3
2

(

H(ω̂′′) − 2
3R

)

≤ 〈ω̂′′,d〉 − H(ω̂′′) + 2
3R

= Ex
4 (2

3R) ,

which completes the proof.

Now, from Proposition 5, Lemma 3 and the continuity of the expurgated exponent Ex
8 (R)

as a function of the rate R (see Sect.A), Theorem 3 follows by an argument analogous to
(33).

6 The typical binary-coset code does not achieve the expur-

gated exponent

In this section we shall prove Theorem 4 by showing that the BCE does not achieve the
expurgated bound, with probability one. First, we obtain the following upper bound on the
typical error exponent which is valid at any rate R.

Proposition 6 For all 0 < R < log 8,

lim sup
n

−
1

n
log pe(B

R
n ) ≤ γη(R) + R

Proof First, observe that

pe(B
R
n ) =

1

|BR
n |

∑

x∈BR
n

pe(B
R
n |x)

≥ 1
|BR

n | min
x6=w∈BR

n

∫

Yn
1

(2πσ2)n e−
||y−x||2

2σ2 1{|| ·−x||<|| · −w||}(y)dy

= 1
|BR

n |ς
(

σ
√

2
log e dmin(B

R
n )

)

,

where ς(t) :=
∫ +∞√

t
1√

2πσ2
e−t2/2πσ2

dt. It is a standard result [13, pag.2] that lim
n

− 1
n log ς(αn) =

α
σ

√

2
log e . Combined with Proposition 3, this immediately implies that, with probability one,

lim sup
n

−
1

n
log ς

(

dmin

(

BR
n

))

≤ lim sup
n

1

n
dmin

(

BR
n

)

≤ γη(R) .

Then, since Lemma 1 implies that lim sup
n

1
n log |BR

N | ≤ R with probability one, the claim

follows.

Consider now the optimization problem

Ex
η (R) := min

{

〈θ,Dη〉 − H(θ) + R + log 8|θ ∈ Θ(R)

}

, (43)

where Θ(R) has been defined in (16). The following result relates Ex
η (R) and γη(R) for small

rates R.
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Lemma 8 There exists Rx
8 > 0 such that, for all 0 ≤ R ≤ Rx

8 ,

Ex
η (R) ≥ γη(R) + R ,

and, if θ ∈ Θ(R) is a minimizer in the variational definition (43), then necessarily

H(θ) − H
(

π1
♯ θ

)

= R . (44)

Proof First, we shall show that there exists R′ > 0 such that, for all 0 ≤ R ≤ R′, if θ ∈ Θ(R)

is minimizer in the definition (43) of Ex
η (R), then (44) holds. For a fixed υ ∈ Υ, consider the

set Θυ := {θ ∈ Θ : π1
♯ θ = υ}. The strictly convex function θ 7→ 〈θ,Dη〉 − H(θ) admits a

unique minimizer in Θυ, given by

θ∗
υ(x, z) := υ(x)

e−Dη(x,z)

∑

z e−Dη(x,z)
.

Consider the uniform measure u over Z
3
2. Then θ∗

u does not coincide with the uniform
measure over Z

3
2 × Z

3
2, so that in particular H(θ∗

u)−H(u) < 2 log 8− log 8 = log 8. Since the
map υ 7→ θ∗

υ is continuous on Υ, while the of the entropy function is convex and continuous,
Lemma 10 guarantees that the map

R 7→ −R + min {H(θ∗
υ) − H(υ)| H(υ) ≥ R}

is continuous on the interval [0, log 8]. In particular, it follows that there exists some R′ > 0
such that, if 0 ≤ R < R′, then H(θ∗

υ) − H(υ) < R for all υ ∈ Ω with H(υ) ≥ R. Therefore,
by Lemma 11, a minimizer θ ∈ Θυ for the constrained optimization problem

min
{

〈θ,Dη〉 − H(θ)|θ ∈ Θυ : H(θ) ≥ H(υ) + R
}

necessarily satisfies H(θ) = H(υ)+R for all υ ∈ Υ such that H(υ) ≥ R > R′. Hence, equality
(44) follows for R < R′, since

Ex
η (R) = R+log 8+min

{

min
{

〈θ,Dη〉 − H(θ)|θ ∈ Θυ : H(θ) ≥ H(υ) + R
} ∣

∣υ : H(υ) ≥ R
}

.

For any family ϑ = {ϑx ∈ Υ}x∈Z3
2

of probability distributions over Z
3
2, define a,h ∈ Υ

by aϑ(x) :=
∑

z ϑx(z)Dη(x, z) and hϑ(x) := H(ϑx), respectively. The minimum of strictly
convex function gϑ(υ) := 〈υ,a〉 − H(υ) + R, over the set Υ(ϑ,R) :=

{

υ ∈ Υ : 〈υ,hϑ〉 = R
}

(which is an affine subspace of Υ) is achieved by

υ∗
(ϑ,R)

∈ Υ , υ∗
(ϑ,R)

(z) :=
e−a

ϑ
(z)−λh

ϑ
(z)

∑

w e−a
ϑ
(w)−λh

ϑ
(w)

, z ∈ Z
3
2 ,

where λ > 0 solves the equation
∑

x e−a
ϑ
(x)−λh

ϑ
(x)hϑ(x) = R

∑

x e−a
ϑ
(x)−λh

ϑ
(x).

Observe that (by the implicit function theorem) the map (ϑ, R) 7→ υ∗
(ϑ,R)

is continuous

on ΥZ
3
2 × [0, log 8]. Moreover, the map

Γ : Θ → ΥZ3
2 , Γ(θ) :=

{

θ|{x}×Z3
2

}

x∈Z3
2

(associating to the joint type θ the vector of its conditioned probability distributions) is well
defined and continuous on a neighborhood N of the uniform measure u⊗u on Z

3
2×Z

3
2. Then,

the composition map (θ, R) 7→ H(υ∗
Γ(θ),R)−R is continuous on N × [0, log 8]. It follows that,
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since H is concave on Θ and H(θ) = 0 iff θ = u ⊗ u, we can apply Lemma 10 in order to
guarantee continuity of the map

f(R) := −R + min
{

H(υ∗
(Γ(θ),R))| H(θ) ≥ 2R

}

in a nonempty interval [0, R̃).
Notice that, for R = 0 and ϑ = u := {ϑx = u} ∈ ΥZ

3
2 constantly equal to the uniform

distribution u on Z
3
2, hu(z) = log 8 for all z, while 0 = au(0) < au(x) for all x 6= 0. It follows

that υ∗
(u,0) 6= u, so that in particular H

(

υ∗
(u,0)

)

< log 8. Therefore, by the continuity of f(R),

there exists R′′ ∈ (0, R̃) such that, H(υ∗
(Γ(θ),R)) < R for all θ ∈ Θ such that H(θ) ≥ 2R > 2R′′.

Hence, for all θ and R such that H(θ) ≥ 2R > 2R′′, Lemma 11 implies that a minimizer
υ ∈ Υ(Γ(θ),R) for the constrained optimization problem

min
{

gΓ(θ)(υ) − R|υ ∈ Υ(Γ(θ),R) : H(υ) ≥ R
}

(45)

necessarily satisfies H(υ) = R. Then, for all 0 < R < Rx
8 := min{R′, R′′}, we have

Ex
η (R)

(a)
= min

{

〈θ,Dη〉 − H(θ) + R + log 8|θ ∈ Θ : H(π1
♯ θ) ≥ R,H(θ) − H(π1

♯ θ) = R
}

(b)
= R + min

{

gΓ(θ)(π
1
♯ θ) − R

∣

∣ θ ∈ Θ : H(π1
♯ θ) ≥ R, 〈π1

♯ θ,hΓ(θ)〉 = R
}

(c)

≥ R + min
{

min
{

gΓ(θ)(υ) − R
∣

∣ υ ∈ Υ(Γ(θ),R) : H(υ) ≥ R
}

∣

∣θ ∈ Θ(R)

}

(d)
= R + min

{

min
{

gΓ(θ)(υ) − R
∣

∣ υ ∈ Υ(Γ(θ),R) : H(υ) = R
} ∣

∣θ ∈ Θ(R)

}

(e)

≥ R + min
{

gϑ(υ) − R
∣

∣ϑ ∈ ΥZ3
2 ,υ ∈ Υ : H(υ) = R, 〈υ,hϑ〉 = R

}

(f)
= R + min

{

〈θ,Dη〉
∣

∣ θ ∈ Θ : H(π1
♯ θ) = R, H(θ) − H(π1

♯ θ) = R
}

(g)

≥ R + γη(R) ,

where: (a) follows from the definition (43) of Ex
η (R) end (44); (b) from the definitions of gϑ,

hϑ and Γ(θ), respectively; (c) since π1
♯ θ ∈ Υ(Γ(θ),R) for all θ ∈ Θ(R); (d) from the previous

considerations on the properties of the maximizers of the problem (45); (e) from the fact that
Γ(Θ(R)) ⊆ ΥZ3

2 ; (f) by considering the surjective map

ϕ : Υ × ΥZ
3
2 , [ϕ(υ,ϑ)](x, z) := υ(x)ϑx(z) , x, z ∈ Z

3
2 ;

(g) from the definition (18) of γη(R).

Now, fix some rate 0 < R < Rx
8 , and consider the joint type θ(R) ∈ Θ defined by (36). It

follows from Lemma 6 that H(θ(R)) = log 8 + R, H(π1
♯ θ) = R, and 〈θ(R),Dη〉 = γ8(R). In

particular θ(R) ∈ Θ(R) and H(θ) − H(π1
♯ θ) > R. Then, by Lemma 8,

Ex
η (R) < 〈θ(R),Dη〉 − H(θ(R)) + R + log 8 = γ8(R) .

Therefore, again from Lemma 8, and using the fact that at low rates the expurgated exponent
Ex

8 (R) coincides with the GV-distance γ8(R) (see (23)), we have

γη(R) + R ≤ Ex
η (R) < γ8(R) = Ex

8 (R) , (46)

for every 0 < R < Rx
η := min{Rx

8 , Rx
η}. Hence, by combining (46) with Proposition 6, we

have finally proved Theorem 4.
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7 Conclusion

In this paper we have analyzed the typical minimum distances and error exponents of two
code-ensembles for the 8-PSK AWGNC with different algebraic structure. We have shown
that the ensemble of group codes over Z8 achieves the GV bound as well as the expurgated
exponent with probability one, whereas the ensemble of binary coset codes, under any pos-
sible labeling, is bounded away from the GV bound and, at low rates, from the expurgated
exponent. While the paper has been focused on the specific case of the 8-PSK AWGNC, a
closer look at the derivations shows that generalizations are possible to much larger classes
of DMCs.

On the one hand, it is possible to consider DMCs which are symmetric with respect to the
action of an arbitrary finite Abelian group G, and to characterize the typical asymptotic min-
imum distance achievable by the ensemble of group codes over G. This idea has been pursued
in [10], where it was shown that on every Zm-symmetric channel, the normalized minimum
distance (respectively the error exponent) of the typical group code over Zm asymptotically
achieves the minimum of the GV distances (the expurgated exponents) associated to all the
nontrivial subgroups of Zm. Then, one is left to verify whether results analogous to Lemma
1 and Lemma 7 hold true, showing that proper subgroups cause no loss in the performance
of the typical group code.

On the other hand, it is interesting to see how the impossibility results of Sect.4 can
be generalized. Consider a DMC with input X of cardinality |X | = pr (where p is a prime
number and r a positive integer), output Y, and transition probabilities P (y|x). Define the
Battacharyya distance function

D(x1, x2) := − log

∫

Y

√

P (y|x1)P (y|x2)dy .

Assume that the DMC has has zero-error capacity equal to zero, so that D(x1, x2) is finite
for every x1, x2 ∈ X , and further that it is balanced (see [31]), i.e. that, for all x, z ∈ X ,

{D(x, z)| z ∈ X} = {D(x, z)|x ∈ X} = {d(x)|x ∈ X} ,

for some d : X → R. Then, the GV distance and the expurgated exponent are respectively
given by (see [11, pag.185])

γ(R) := min
ω∈Ω(R)

{〈ω,d〉} , Ex(R) := min
ω∈Ω(R)

{〈ω,d〉 − H(ω) + R} ,

where, for 0 ≤ R ≤ log |X |,

R := log |X | − R , Ω(R) := {ω ∈ P(X ) : H(ω) ≥ R} .

Now consider the automorphism group Aut(D) defined as in (4). Assume that Aut(D) does
not have any subgroup isomorphic to Z

r
p, so that, for any binary labeling η : Z

r
p → X ,

(7) holds, with Dη defined as in (6). Then, it follows that both Theorem 2 and Theorem 4
continue to hold for the ensemble of coset codes over Zp, which turns out to be bounded away
from the GV distance at any rate, and from the expurgated exponent at low rates. Observe
that, if instead Aut(D) does contain a subgroup isomorphic to Z

r
p, then the arguments of [2]

can be used to show that the ensemble of coset codes over Zp (and in fact the ensemble of
linear codes over Zp), achieve the GV-bound and the expurgated exponent with probability
one. In other words, we have that, for balanced DMCs, having a Bhattacharyya distance
function symmetric with respect to the action of the group Z

r
p is a necessary and sufficient

condition for the typical coset codes over Zp to achieve the GV-bound and the expurgated
exponent.
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A Some lemmas on continuity

This section is devoted to the proof of the continuity of the some functions which have been
defined in the paper as solutions of finite-dimensional convex optimization problems, such
as the GV-distance γ8(R) and the expurgated error exponent Ex

8 (R), as well as the bounds
γη(R) and γη(R). We shall obtain these results as a consequence of the general lemmas
presented below.

For some fixed d ∈ N, let Ξ ⊆ R
d be a compact and convex set. It is a standard fact that

any lower semicontinuous (l.s.c.) function achieves its minimum on every closed nonempty
subset C ⊆ Ξ. Consider two functions g : Ξ → R and h : Ξ → R, and define

f : R → R , f(y) := inf
{

g(ξ)
∣

∣ ξ ∈ Ξ : h(ξ) ≤ y
}

. (47)

It is immediate to verify that f(y) is nonincreasing in y. The following simple result was
proved in [9, Lemma 8.1].

Lemma 9 If g and h are both l.s.c., then f defined in (47) is l.s.c.

Notice that, even if g and h are both continuous, h fails in general to be continuous; in fact
it is simple to provide counterexamples in this sense, when h has local minima which are
not global minima. By ensuring that this cannot happen (for instance requiring that h is
convex), it is possible to strengthen the previous result and prove continuity of h.

Lemma 10 If g : Ξ → R is continuous and h : Ξ → R is l.s.c. and such that every local
minimum is necessarily a global minimum, then f defined in (47) is continuous on [h∗,+∞)
where h∗ := min {h(ξ) | ξ ∈ Ξ}.

Proof Since f is nonincreasing and l.s.c. by Lemma 9, it remains to show that

lim
n

f(yn) ≤ f(y) (48)

for every increasing sequence (yn) ⊂ [h∗,+∞) converging to some y > h∗. Notice that the
existence of the limit in the lefthand side of (48) is guaranteed by the monotonicity of f .
From the semicontinuity of g and h, there exists some ξ in Ξ such that f(y) = g(ξ) and
h(ξ) ≤ y. If h(ξ) < y, then h(ξ) ≤ yn for sufficiently large n, so that f(yn) ≤ g(ξ) = f(y)
definitively in n and (48) follows. Thus we can assume that h(ξ) = y. Since y > h∗ the point
ξ is not a global minimum for h. Hence, it is not even a local minimum for h, by assumption.
It follows that every neighborhood of ξ in Ξ contains some ξ such that h(ξ) < h(x). It is
then possible to construct a sequence (ξn) in Ξ converging to ξ and such that h(ξn) < y for
every n. From (ξn) we can extract a subsequence (ξnk

) such that h(ξnk
) ≤ yk for every k.

Therefore we have f(yk) ≤ g(ξnk
) and so

lim
n

f(yn) ≤ lim sup
k

g(ξnk
) ≤ g(ξ) = f(y) ,

thus concluding the proof.
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By considering Ξ = Ω, h(ω) = −H(ω) and g(ω) = 〈ω,d〉 (respectively g(ω) = 〈ω,d〉 +
R − H(ω)), Lemma 10 implies the continuity of γ8(R) (Ex

8 (R)). Indeed, observe that
−H( · ) is convex and therefore does not admit local minima which are not global min-
ima. Similarly, the continuity of γη(R) follows by taking Ξ = Θ, g(θ) = 〈θ,Dη〉, and

h(θ) = max{−1
2 H(θ),−H(π1

♯θ)}, which is convex, as it is the maximum of two convex func-
tions.

Finally, the continuity of γη(R) follows from Lemma 10 again with Ξ = Θ, g(θ) = 〈θ,Dη〉,
and h(θ) = max{−H(θ) + H(π1

♯ θ),−H(π1
♯θ)}. In this last case, the absence of strictly local

minima of h can be verified directly as follows. If θ ∈ Θ is a local minimum for h(θ) =
−H(θ) + H(π1

♯θ) = −
∑

x[π1
♯ θ](x)H(θ|{x}×Z3

2
), then, for every x ∈ supp(π1

♯ θ), necessarily

θ|{x}×Z3
2

is the uniform distribution over Z
3
2; it follows that h(θ) = − log 8, and therefore θ

is a global minimum.
We end this section with the following result, giving sufficient conditions for the minimizer

of a convex optimization problem to satisfy the constraint with equality.

Lemma 11 Let g, h : Ξ → R be convex functions. Let g∗ := minξ∈Ξ g(ξ) be the global
minimum of g, and consider the set Ξ∗ := {ξ : g(ξ) = g∗} where such minimum is achieved.
Then, for all y < h∗ := min

ξ∈Ξ∗
h(ξ), any minimizer ξy for the convex optimization problem

f(y) := min
h(ξ)≤y

g(ξ)

necessarily satisfies g(ξy) = y.

Proof Let ξ ∈ Ξ be such that h(ξ) ≤ y, and g(ξ) = f(y). Since h(ξ) ≤ y < h∗, necessarily
g(ξ) > g∗. Consider some ξ∗ ∈ Ξ∗ such that h∗ = h(ξ∗), and, for 0 ≤ λ ≤ 1, define
ξλ := λξ + (1 − λ)ξ∗. Then, by the convexity of h, we have

h(ξλ) ≤ λh(ξ) + (1 − λ)h(ξ∗) ≤ λy + (1 − λ)h∗ ,

so that, since y < h∗, there exists 0 < λ∗ < 1 such that h(ξλ∗) ≤ h(ξ) ≤ y. From the
convexity of g, it follows that

g(ξλ∗) ≤ λ∗g(ξ) + (1 − λ∗)g(ξ∗) = λ∗g(ξ) + (1 − λ∗)g∗ < g(ξ) .

Then, f(y) = min
h(ξ)≤y

g(ξ) ≤ g(ξλ∗) < g(ξ), so that ξ cannot be a minimizer.

B An upper bound on the typical asymptotic minimum dis-

tance of the GCE

In this section we shall show that the bound (33) is tight, i.e. that the asymptotic normalized
minimum distance of the GCE does not exceed the GV distance γ8(R), thus completing the
proof of Theorem 13. Our arguments are will involve an application of the second moment
method [1, pagg.43-63], and the key point consists in estimating the variance of the type-
enumerating function GR

n (ω).
We start with some preliminary considerations about the structure of the product set

(Z8)
n
ω × (Z8)

n
ω, ω ∈ Ωn being some Z8-type. Let m = ζ(ω) be the order of the smallest

subgroup of Z8 supporting ω, and consider two non necessarily distinct n-tuples x and z of
type ω. Let < x >, < z > and < x,z > be the subgroups of Z

n
8 respectively generated by
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x, by z, and by x and z. It is easy to realize that both < x > and < z > are isomorphic to
8
mZ8. Moreover, define: the isomorphism

i :< x >→ 8
mZ8 , i(αx) := α;

the standard injections

j1 :< x >→< x,z >, j1(αx) = αx ,

j2 : 8
mZ8 → 8

mZ8 ⊕
8
mZ8, j2(k) = (k, 0) ;

the surjective homomorphism

f :
8

ζ(ω)
Z8 ⊕

8

ζ(ω)
Z8 →< x,z >, f(a, b) = ax + bz .

Then, we have that
j1 = f ◦ j2 ◦ i .

In other words, the following diagram commutes

< x >
j1
→֒ < x,z >

↓ i ↑ f

8
mZ8

j2
→֒ 8

mZ8 ⊕
8
mZ8

It follows that < x,z > contains a subgroup isomorphic to 8
mZ8 and is itself isomorphic to

a subgroup of 8
mZ8 ⊕

8
mZ8. An immediate consequence is that < x,z > is isomorphic to a

group of type 8
mZ8 ⊕

8
hZ8 for some h dividing m (possibly h = 1 when x = w). It is then

possible to partition the set of ordered pairs of n-tuples of type ω as follows:12

(Z8)
n
ω × (Z8)

n
ω =

⋃

h|ζ(ω)

An,ω,h , (49)

with An,ω,h denoting the set of all pairs (x,z) in (Z8)
n
ω × (Z8)

n
ω such that the subgroup

< x,z > generated by x and z is isomorphic to 8
mZ8 ⊕

8
hZ8. The following lemma provides

an estimation of the cardinality of An,ω,h, with h ranging over the set of divisors of ζ(ω).

Lemma 12 For every n, ω in Pn(Z8), and h dividing ζ(ω), we have

|An,ω,h| ≤ 4

(

n

nω

)

∏

1≤i≤8/h:

ω(i+ 8
h

Z8)>0

(

ni

niω|i+ 8
h

Z8

)

, (50)

where ni := nω
(

i + 8
hZ8

)

is the number of entries from the coset i + 8
hZ8 in any n-tuple of

type ω.

Proof Let x and z be in (Z8)
n
ω. A necessary condition for the subgroup < x,z > to be

isomorphic to 8
ζ(ω)Z8 ⊕

8
hZ8 is the existence of some α in the set Z

∗
8 of invertible elements of

Z8, such that
−hαx + hz = 0 . (51)

12For two integers a and b a | b means that a divides b.
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For (51) to hold, necessarily z has to belong to the coset αx + 8
hZ

n
8 . Thus, whenever (51)

holds, the set of positions of the entries of x belonging to any coset i + 8
hZ8 and the set of

positions of the entries of z belonging to the coset αi + 8
hZ8 need to coincide, i.e.

x−1
(

i + 8
hZ8

)

= z−1
(

αi + 8
hZ8

)

, ∀ i ∈ Z8 . (52)

Notice that since both x and z are assumed to be of type ω, (52) in particular implies

ω
(

i + 8
hZ8

)

= ω
(

αi + 8
hZ8

)

, ∀ i ∈ Z8 . (53)

For those α for which (53) is not satisfied there exists no pair (x,z) satisfying (51). Thus,
with no loss of generality we can restrict ourselves to considering values of α such that (53)
is satisfied (as it is the case always for α = 1).

Notice that a necessary and sufficient condition for x and z both to belong to (Z8)
n
ω is

the existence of an index permutation σ ∈ Sn such that σx := x ◦ σ−1 = z. Equation (52)
can be read as a constraint on the structure of σ, which has necessarily to be of the form

σ = σ1 ◦ σ2 ◦ . . . ◦ σ8/h ◦ σ̃α,x , (54)

where

• σ̃α,x is the index permutation mapping, for every coset i+ 8
hZ8, the smallest element of

x−1
(

α−1i + 8
hZ8

)

in the smallest element of x−1
(

i + 8
hZ8

)

, the second smallest element
x−1

(

α−1i + 8
hZ8

)

in the second smallest element of z−1
(

i + 8
hZ8

)

, and so on;

• for every coset i + 8
hZ8 instead, σi ∈ Sn is any permutation such that

σi(j) = j , ∀ j ∈ {1, . . . , n} \ x−1

(

i +
8

h
Z8

)

. (55)

Thus, for a given x in (Z8)
n
ω and α in Z

∗
8 such that (53) is satisfied, we have that the

number of z in (Z8)
n
ω satisfying (52) equals the cardinality of the orbit of σ̃α,xx under the

action of the group of index permutations

G(x) := {σ = σ1 ◦ σ2 ◦ . . . ◦ σ8/h : (55) ∀ 1 ≤ i ≤ 8
h} .

Clearly the order of this group is
∣

∣G(x)
∣

∣ =
∏8/h

i=1 ni!, while the cardinality of the stabilizer of

σ̃α,xx in G(x) is
∣

∣Stab
(

σ̃α,xx, G(x)
)
∣

∣ =
∏8

i=1 (nω(i))!, so that the orbit of σ̃α,xx in G(x) has
cardinality

∣

∣

∣
O

(

G(x), σ̃α,xx
)
∣

∣

∣
=

8/h
∏

i=1

ni!/
8

∏

i=1

(nω(i))! =

8/h
∏

i=1

(

ni

niω|i+ 8
h

Z8

)

, .

This allows us to estimate the cardinality of An,ω,h as follows

|An,ω,h| ≤ |Z∗
8|

∑

x∈(Z8)n
ω

∣

∣

∣
O

(

G(x), σ̃α,xx
)∣

∣

∣
= 4

(

n

nω

) 8/h
∏

i=1

(

ni

niω|i+ 8
h

Z8

)

,

hence proving the claim.
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Lemma 13 For every n ∈ N and ω in Pn(Z8)

Var
[

GR
n (ω)

]

≤ 4

(

n

nω

)(

1

ζ(ω)

)l
∑

h|ζ(ω)
h<ζ(ω)

(

1

h

)l 8/h
∏

i=1

(

ni

niω|i+ 8
h

Z8

)

, (56)

for ni defined as in Lemma 12.

Proof Assume that x,z ∈ An,ω,h for some h | ζ(ω). Notice that, for every 1 ≤ j ≤ l, the
image of the evaluation homomorphism

Λj : hom(Zn
8 , Z8) → Z

2
8 , Λj(Φ) = ((Φx)j , (Φz)j)

coincides with the subgroup < (xi, zi) >1≤i≤n of Z
2
8 generated by {(xi, zi)}1≤i≤n. Hence,

(see [8, Lemma 9] for instance) each pair
(

(ΦR
n x)j , (Φ

R
n z)j

)

is uniformly distributed over
< (xi, zi) >1≤i≤n≤ Z8 ⊕ Z8, which is isomorphic to < x,z >. As < x,z > is in turn is
isomorphic to a group of type 8

ζ(ω)Z8 ⊕
8
hZ8, it follows that

P
(

(ΦR
n x)j, (Φ

R
n z)j = 0

)

= (hζ(θ))−1 , ∀1 ≤ j ≤ l ,

and, since the r.v.s
(

(ΦR
n x)j , (Φ

R
n z)j

)

1≤j≤l
are mutually independent,

P
(

ΦR
n x = 0,ΦR

n z = 0
)

= (hζ(ω))−l . (57)

It follows from (49), (50) and (57) that

Var
[

GR
n (ω)

]

=
∑

x,w∈(Z8)n
ω

Cov
[1{ΦR

n x=0}1{ΦR
n z=0}

]

=
∑

h|ζ(ω)

∑

(x,z)∈An,ω,h

P
(

ΦR
n x = 0,ΦR

n z = 0
)

− P
(

ΦR
n x = 0

)

P
(

ΦR
n z = 0

)

=
∑

h|ζ(ω)

|An,ω,h|
(

1
hlζ(ω)l −

1
ζ(ω)2l

)

,

and the claim follows immediately from Lemma 12.

For every h dividing 8, consider the projection τh of Z8 onto the quotient group Z8

/

8
hZ8,

defined by
τh(x) = y + 8

hZ8 ⇔ x ∈ y + 8
hZ8 ,

and, for every ω in Ω denote by τh
♯ ω in P

(

Z8

/

8
hZ8

)

the image measure under τh. As an

immediate consequence of Lemma 2 and Lemma 13 we have

lim sup
n

1
n log

(

Var[GR
n (ω)]

E[GR
n (ω)]2

)

≤ lim sup
n

1
n log

[

(

n
nω

)−1 ∑

h|ζ(ω)
h<ζ(ω)

(

ζ(ω)
h

)l
∏8/h

i=1

(

ni

niω|
i+ 8

h
Z8

)

]

= max
h|ζ(ω)
h<ζ(ω)

{

log ζ(ω)/h
log 8 R − H(ω) +

8/h
∑

i=1
ω(i + 8

hZ8)H
(

ω|i+ 8
h

Z8

)

}

= max
h|ζ(ω)
h<ζ(ω)

{

log ζ(ω)/h
log 8 R − H

(

τh
♯ (ω)

)}

.

(58)
We are now ready to state the following result, whose proof relies on relies on an appli-

cation of the second moment method and the key point consists in showing that the Z8-type
ω minimizing the righthand side of (12) can be approximated by Z8-types ωε such that

H
(

τh
♯ ωε

)

> log l(ωε)/h
log 8 R for all h = 1, 2, 4.
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Proposition 7 For every 0 < R < log 8, and 0 < ε < R,

P

(

lim sup
n

1

n
dmin

(

GR
n

)

≥ γ8(R − ε)

)

= 1 .

Proof Let ω = ω(R−ε) ∈ Ω be the Z8-type achieving the GV distance, defined as in (35).
Observe that (30) and (31) imply that ω has the following ordering

ω(0) > ω(1) = ω(7) > ω(2) = ω(6) > ω(3) = ω(5) > ω(4) . (59)

Define A0 := {0, 1, 7, 2} , B0 := {0, 1, 6, 3} , C0 := {0, 5, 6, 7} , and let A1, B1 and C1 be the
complements in Z8 respectively of A0, B0 and C0. It follows from (59) that

ω(A0) ≥ ω(2Z8) , ω(A0) ≥ ω(2Z8 + 1) ,

ω(B0) ≥ ω(2Z8) , ω(B0) ≥ ω(2Z8 + 1) ,

ω(C0) ≥ ω(2Z8) , ω(C0) ≥ ω(2Z8 + 1) .

(60)

Moreover, it is easy to check that |Aa ∩ Bb ∩ Cc| = 1, for every choice of (a, b, c) in {0, 1}3.
Thus, f : Z8 → {0, 1}3, where f(x) = (a, b, c) if and only if x is in Aa ∩Bb∩Cc, is a bijection.
Then, from (1) and (60), it thus follows that

H(ω) = H (f♯ω) ≥ H (ω(A0)) + H (ω(B0)) + H (ω(C0)) ≥ 3H (ω(2Z8)) = 3H
(

τ4
♯ ω

)

. (61)

Let us now introduce the sets D := {0, 2} and E := {1, 7}. We have from (59) that

ω(D) ≥ ω(4Z8) , ω(D) ≥ ω(4Z8 + 2) ,

ω(E) ≥ ω(4Z8 + 1) , ω(E) ≥ ω(4Z8 + 3) .

It thus follows that

H
(

τ2
♯ ω

)

= H
(

τ4
♯ ω

)

+ ω(2Z8)H
(

τ4
♯ ω|2Z8

)

+ ω(2Z8 + 1)H
(

τ4
♯ ω|2Z8+1

)

≥ H(ω(2Z8)) + ω(2Z8)H (ω|2Z8(D)) + ω(2Z8 + 1)H (ω|2Z8+1(E)) .
(62)

Observe that

ω|2Z8(D) =
ω(0)

ω(2Z8)
+

ω(2)

ω(2Z8)
= ω|2Z8(4Z8)ω|4Z8(0) + ω|2Z8(4Z8 + 2)ω|4Z8+2(2)

so that, by the concavity of the entropy function, we get

H (ω|2Z8(D)) ≥ ω|2Z8(4Z8)H (ω|4Z8(0)) + ω|2Z8(4Z8 + 2)H (ω|4Z8+2(2)) .

An analogous reasoning leads to

H (ω|2Z8+1(E)) ≥ ω|2Z8+1(4Z8 + 1)H (ω|4Z8+1(1)) + ω|2Z8+1(4Z8 + 3)H (ω|4Z8+3(3)) .

Upon substituting the two inequalities above in (62), we get

H(τ2
♯ ω) ≥ H(τ4

♯ ω) +
∑3

i=0 ω(4Z8 + i)H(ω|4Z8+i(i))

= H(τ4
♯ ω) + H(ω) − H(τ2

♯ ω)

≥ 4
3 H(ω) − H(τ2

♯ ω) ,
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last inequality following from (61). Then

H
(

τ2
♯ ω

)

≥
2

3
H(ω) . (63)

Now let (ωn) ba a sequence of Z8-types converging to ω, with ωn ∈ Ωn for every n. By
successively applying Chabyshev inequality, (58), (61) and (63), we get

lim sup
n

1
n log P

(

GR
n (ωn) = 0

)

≤ lim sup
n

1
n log

Var[GR
n (ωn)]

E[GR
n (ωn)]2

≤ max
{

1
3R − H(τ 4

♯ ω), 2
3R − H(τ 2

♯ ω), R − H(ω)
}

≤ max
{

1
3

(

R − H(ω)
)

, 2
3

(

R − H(ω)
)

, R − H (ω)
}

≤ −1
3ε ,

Thus the series
∑

n P(Sn(ωn) = 0) is convergent, and the Borel-Cantelli lemma implies the
claim.

Finally, observe that, from Proposition 7 and the continuity of γ8(R), it follows that
lim sup 1

n dmin(G
R
n ) ≤ γ8(R) with probability one, thus completing the proof of Theorem 1.

C Proofs for Section 4

C.1 Proof of Proposition 2

Proposition 2 For every design rate 0 < R < log 8 and 0 < ε < R, with probability one

lim inf
n

1

n
dmin

(

BR
n

)

≥ γ
η
(R + ε) .

Proof For θ ∈ Θ, consider the events Kθ,n :=
{

UR
n (θ) ≥ 1

}

and Hθ,n := {V R
n (π1

♯ θ) ≥ 1}.

Observe that Kθ,n implies the existence of a pair (x,y) such that ΨR
n x = 0, so that

Kθ,n ⊆ Hθ,n . (64)

From Lemma 4, using (2), we have that, for every joint type θ in Θ̃n := Θn \Θ(R−ε), at least
one of the two following inequalities holds true:

E
[

UR
n (θ)

]

=

(

n

nθ

)

1

82l
≤ exp

(

n
(

H(θ) − 2R
))

≤ exp(−2nε) , (65)

E
[

V R
n

(

π1
♯ θ

)]

=

(

n

nπ1
♯ θ

)

1

8l
≤ exp

(

n
(

H
(

π1
♯ θ

)

− R
))

≤ exp(−nε) . (66)

Using a union bound estimation for the event Kn :=
⋃

θ∈Θ̃n
Kθ,n and applying (64) and

Markov’s inequality, we have

P(Kn) ≤ P

(

⋃

θ∈Θ̃n
Kθ,n ∩ Bθ,n

)

≤
∑

θ∈Θ̃n
P (Kθ,n ∩ Bθ,n)

≤
∑

θ∈Θ̃n
min {P (Kθ,n) , P (Bθ,n)}

≤
∑

θ∈Θ̃n
min

{

E [Un(θ)] , E
[

V R
n (θ)

]}

≤ |Ωn| exp(−nε) .

Thus the series
∑

n≥1 P(Kn) ≤
∑

n≥1 |Ωn| exp(−nε) is convergent, and, by Borel-Cantelli
lemma, P (Kn i. o.) = 0, which, in turn, implies the claim.
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C.2 Proof of Lemma 5

Lemma 5 For all n ≥ 1, and every joint type θ ∈ Θn such that π1
♯ θ 6= δ0,

Var
[

UR
n (θ)

]

≤

(

n

nθ

)(

n

nπ1
♯ θ

)

16

83l
+

(

n

nθ

)2( n

nπ1
♯ θ

)−1 1

83l
+

(

n

nθ

)

8

82l
.

Proof We have

Var
[

UR
n (θ)

]

= Var
[

∑

(x,y) 1{ΨR
n x=0}1{ΨR

n y=Zn}
]

=
∑

(x1,y1),(x2,y2)

c
(

x1,x2,y1,y2

)

,

where the summations are extended to all pairs (x,y), (x1,y1) and (x2,y2) in (Z3
2 × Z

3
2)

n
θ,

and
c
(

x1,x2,y1,y2

)

:= Cov
[1{ΨR

n x1=0}1{ΨR
n y1=Zn} , 1{ΨR

n x2=0}1{ΨR
n y2=Zn}

]

.

We are now going to estimate the covariance terms c
(

x1,x2,y1,y2

)

, separately considering
four possible different linear dependency structures among x1, x2, y1, and y2. Observe that,
since π1

♯ θ 6= δ0, x1 and x2 need to be nonzero in order for the pairs (x1,y1) and (x2,y2) to
have type θ.

Suppose first that (x1,y1), (x2,y2) in
(

Z
3
2 × Z

3
2

)n

θ
are such that x1,x2,y1 and y2 are

linear independent. Then, the r.v.s ΨR
n x1,Ψ

R
n x2,Ψ

R
n y1 and ΨR

n y2 are independent, so that

c
(

x1,x2,y1,y2

)

= 0 .

Second, consider the case when x1 and x2 are linear independent but x1,x2,y1 and y2

are not linear independent. In this case we have that the random variables ΨR
n x1,Ψ

R
n x2 and

ΨR
n y1 − Zn are independent, so that

c
(

x1,x2,y1,y2

)

≤ P
(

ΨR
n x1 = 0,ΨR

n x2 = 0,ΨR
n y2 = Zn

)

=
1

83l
.

Since there are at most 16
( n
nθ

)( n
nπ1

♯ θ

)

possible choices of such pairs (x1,y1), (x2,y2) in
(

Z
3
2 × Z

3
2

)n

θ
,

they contribute to the first addend in the righthand side of (34).
As a third case, consider pairs (x1,y1), (x2,y2), such that x1 = x2, and x1, y1 and y2

are linear independent. In this situation the random variables ΨR
n x1, ΨR

n y1 and ΨR
n y2 are

independent so that

c
(

x1,x2,y1,y2

)

≤ P
(

ΨR
n x1 = 0,ΨR

n y1 = Zn,ΨR
n y2 = Zn

)

=
1

83l
.

Since there are at most
(

n
nθ

)2( n
nπ1

♯
θ

)−1
possible choices of such pairs (x1,y1), (x2,y2) in (Z3

2×

Z
3
2)

n
θ, they contribute to the second addend in the righthand side of (34).
Finally, it remains to be considered the case when x1 = x2, and x1, y1 and y2 are

linear dependent. There are at most
( n
nθ

)

8 possible choices of pairs (x1,y1) and (x2,y2) in
(

Z
3
2 × Z

3
2

)n

θ
satisfying these requirements and for each of them

c
(

x1,x2,y1,y2

)

≤ P
(

ΨR
n x1 = 0,ΨR

n y1 = Zn

)

=
1

82l
.

Therefore, they contribute to the third addend in the righthand side of (34).
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C.3 Proof of Lemma 6

Lemma 6 For all 0 < R < log 8

θ(R)(x, z) > 0 , υ(R)(x) > 0 , ∀x, z ∈ Z
3
2 , (67)

〈θ(R),Dη〉 = γ8(R) . (68)

H(θ(R)) = log 8 + R . (69)

H(υ(R)) > R . (70)

Proof (67) follows immediately from (35).
It is easy to verify that

Dη(x, z) = D(η(z), η(x + z))
= d

(

µ−1(η(x + z)) − µ−1(η(z))
)

= d(σz(x)) .

Then (68) follows, since

〈θ(R),Dη〉 =
∑

x,z∈Z3
2

θ(R)(x, z)Dη(x, z)

=
∑

z∈Z3
2

1
8ω(R) (σz(x)) d (σz(x))

= 〈ω(R),d〉
= γ8(R) .

From (36) we have
∑

x θ(R)(x, z) = 1
8

∑

x ω(R)(σz(x)) = 1
8 , so that the marginal π2

♯ θ(R) is

the uniform measure over Z
3
2. Again from (36) we have that the conditioned measures satisfy

θ(R)|Z3
2×{z} = ω(R) ◦ σz for every z in Z

3
2. Then, by applying (1) we have

H(θ(R)) = H
(

π2
♯ θ(R)

)

+
∑

x∈Z3
2

θ(R)

(

Z
3
2 × {x}

)

H
(

θ(R)|Z3
2×{x}

)

= log 8 + H(ω(R))

= log 8 + R ,

showing (69).
Finally, observe that υ(R) = π1

♯ θ(R) = 1
8

∑

x ω(R) ◦ σx is a convex combination of permu-

tations of the vector ω(R). As argued in Sect.2.2, for every labeling η : Z
3
2 → X there exists

at least a pair of nonequal columns of the matrix Dη, say Dη(·, z1) 6= Dη(·, z2). As a conse-
quence, we have d ◦ σz1 6= d ◦ σz2 which, together with (35), implies ω(R) ◦ σz1 6= ω(R) ◦ σz2.
Hence, from the strict concavity and the permutation invariance of the entropy function H it
follows that

H(υ(R)) = H
(

1
8

∑

x∈Z3
2
ω(R) ◦ σx

)

> 1
8

∑

x∈Z3
2
H

(

ω(R) ◦ σx

)

= H(ω(R))

= R ,

showing (70).
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