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Abstract

Minimum distances and maximum likelihood error probabilities of serial turbo concate-
nations with random interleaver are analyzed. It is shown that, with high probability, the
minimum distance of serial turbo codes grows as a positive power of the block-length, while
their error probability decreases sub-exponentially fast in the block-length, on sufficiently good
memoryless channels. Such a typical code behavior contrasts the performance of the average
serial turbo code, whose error probability is dominated by an asymptotically negligible fraction
of bad interleavers, and decays only as a negative power of the block-length. The analysis pro-
posed in this paper relies on precise estimations of the minimum distance distribution, whose
scaling law is shown to depend both on the free distance of the outer constituent encoder, and
on the effective free distance of the inner encoder. Hence, despite the lack of concentration of
the maximum likelihood error probability around its expected value, the main design param-
eters suggested by the average-code analysis turn out to characterize also the performance of
the typical serial turbo code.

Keywords: Turbo codes, serially concatenated codes, minimum distance, error probability,
typical code analysis.

1 Introduction

Serially concatenated convolutional codes with random interleaver, briefly serial turbo codes,
were introduced in [4], together with an analytical explanation of the simulation results. The
authors based their analysis on the so called uniform interleaver, a conceptual tool first intro-
duced in [5] in order to explain the performance of Berrou et al.’s parallel turbo codes [6]. In
a nutshell, the idea consists in fixing the outer and the inner constituent encoders, and in esti-
mating the maximum likelihood (ML) error probability averaged over all possible interleavers.
The main result in [4] is an upper bound to the average error probability which goes to zero as
a negative power of the interleaver length. The exponent of such power law decay, called the
interleaver gain, was shown to depend only on the free distance of the outer encoder, which
turns out to be the main design parameter of serial turbo codes. The effect of the inner con-
stituent encoder was analyzed by considering the limit performance in the high signal-to-noise
ratio. The fundamental design parameter characterizing the performance in this regime is the
effective free distance of the inner encoder, i.e. the smallest weight of codewords corresponding
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to inputs of weight two. These ideas have been rigorously formalized first in [13] and then, in a
more general setting, in [12], where also a lower bound is proved differing from the upper bound
only by a multiplicative constant, thus showing that the estimation is tight for the average se-
rial turbo code. Numerical simulations of serial turbo codes confirm the hierarchies of the two
aforementioned design parameters, suggesting that a typical serial turbo code should perform
closely to the average code, i.e. that the performance of serial turbo ensembles concentrates
around its average.

In the present paper, we shall disprove such a conjecture. Indeed, we shall show that, for
almost all choices of the interleaver, serial turbo codes have ML error probability subexpo-
nentially decreasing to zero in the block-length. This proves that, due to the presence of an
asymptotically vanishing fraction of bad codes, the average-code analysis provides too con-
servative a prediction of the behaviour of the typical serial turbo code. In fact an analogous
phenomenon is known to occur for LDPC code ensembles [10], as well as for random (linear)
code ensembles at low rates [2]. However, despite the lack of concentration of the serial turbo
code ensemble’s performance, we shall show that the free distance of the outer encoder and
the effective free distance of the inner encoder turn out to be the fundamental parameters
characterizing the scaling law of the performance of the typical serial turbo code.

The analysis presented in this paper relies on precise estimations of the probability dis-
tribution of the minimum distance, inspired both by the the tail estimations of [14] and the
deterministic upper bounding techniques devised in [3]. Our main results show that, with
high probability, the minimum distance of serial turbo codes scales as di

eN
1−2/do

f , where di
e

is the effective free distance of the inner constituent encoder, N is the blocklength, and do
f

is the free distance of the outer constituent encoder. While the dependence of the typical
minimum distance on do

f is the same highlighted in [14, 3], the dependence on di
e is a novel

contribution. Such a scaling law for the minimum distance of the typical turbo code will be
proven through both a detailed study of the left tail of the minimum distance’s probability
distribution (Theorem 1), and of a deterministic upper bound (Theorem 2). The former may
be thought of as a generalization of the results of [14], with the main improvement consisting in
the characterization of di

e as a linear scaling parameter for the minimum distance. The latter
generalizes some of the results of [3], and improves asymptotically on the best known determin-
istic bound for minimum distance of serial turbo codes, presented in [16]. Finally, by means of
code-expurgation techniques, these results will allow us to show that the ML error probability
of the typical turbo code decreases sub-exponentially fast in the block-length (Theorem 3).

The remainder of the paper is organized as follows. In Section 2 we introduce in a formal
way the serially concatenated codes. Section 3 gathers some fundamental estimations on the
weight enumerators of convolutional codes which will be used throughout the paper. Section
4 contains all the main results on minimum distances of serial codes. Finally, in Section 5 we
prove our main results on the typical behavior of minimum distance and ML error probability
and a number of related results. The most technical proofs are deferred to Appendix A, while
Appendix B contains some extensions.

2 Problem setting

In this section we establish some notation on convolutional encoders, and introduce the serial
turbo code ensemble.

2.1 Convolutional codes

We start by briefly recalling some fundamental facts on convolutional codes which will be
used throughout this paper. We shall denote by Z the set of integers and by Z2 = {0, 1} the
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binary field. Given a Z2-vector space V , the space of Laurent series with coefficients in V will be
denoted by V ((D)). We shall consider the following subspaces of V ((D)): the subspace of formal
power series V [[D]], the subspace of polynomials V [D], the subspace of Laurent polynomials
V [D, D−1], the subspace of rational functions V (D). If v ∈ V ((D)), v(t) denotes the coefficient
in v of Dt, so that we can write v =

P

t v(t)Dt. We shall often identify v with the sequence
(v(t))t∈Z. Given v ∈ V ((D)), we define the support of v as supp(v) := {t ∈ Z | v(t) 6= 0} . If
v =

P

t v(t)Dt, we define v− =
P

t<0 v(t)Dt. If v ∈ Z
r
2((D)), we define wH(v) :=

P

t wH(v(t)),
with wH(x) denoting Hamming weight of a string x ∈ Z

r
2.

A convolutional encoder is any φ ∈ Z
r×s
2 (D) ∩ Z

r×s
2 [[D]]. It naturally induces a map

(denoted with the same symbol) φ : Z
s
2((D)) → Z

r
2((D)) by simple matrix right multiplication

(vectors are intended as column vectors throughout the paper). If φ =
PM

t=0 φ(t)Dt ∈ Z
r×s
2 [D]

for some finite M , it is called polynomial. A convolutional encoder φ is said to be recursive
if each column j contains at least one entry φij which is not polynomial; equivalently, φ is
recursive if, for all input u with Hamming weight wH(u) = 1, the wH(φu) = +∞. The encoder
is said to be non-catastrophic if φu ∈ Z

s
2[D

−1, D] implies u ∈ Z
r
2[D

−1, D]. The free distance
and the effective free distance of φ are defined as

df := min{wH(φu) | u 6= 0} , de := min{wH(φu) | wH(u) = 2} ,

respectively.
Rationality of convolutional encoders is equivalent to the existence of a linear state-space

realization with a finite number of states: given φ ∈ Z
r×s
2 ((D)) ∩ Z

r×s
2 [[D]], there exist a

state space X = Z
µ
2 and matrices F ∈ Zµ×µ

2 , G ∈ Zµ×r
2 , H ∈ Z

s×µ
2 , W ∈ Z

s×r
2 , such that

y(D) = φ(D)u(D) if and only if there exists a state sequence x(D) ∈ Z
µ
2 (D) such that, for all

t, xt+1 = Fxt + Gut and yt = Hxt + Wut. For a given realization (F, G, H,W ), if u ∈ Z
r
2[[D]],

upon fixing x(0) = 0, x(D) is uniquely determined; we will say that such x(D) is the state
sequence associated with u(D). The state realization can be pictorially represented as a trellis:
for each t ∈ N, draw 2µ states, corresponding to the state space X; then draw an edge from
state x at time t to state x′ at time t + 1, with input label a and output label b if and only
if x′ = Fx + Ga and b = Hx + Wa. The minimal realization (i.e., having the smallest µ) is
unique up to a change of basis, and has observability and controllability properties which are
essential for defining the terminated encoders (see below) and for proving Lemma 1. In this
paper we will always assume that we are using the minimal trellis.

The block-termination of a convolutional encoder φ after N trellis steps is defined as follows.
Fix N ∈ N, consider an input u supported inside [0, N − 1], and let x be the associated state
sequence. The output φu, however, may well be not supported in the same interval. Indeed,
it can happen that x(N) 6= 0. However, there exists an integer ν ≥ 0 (called constraint length
and not depending on the particular u or on N), and an input ũ coinciding with u on [0, N −1]
and supported inside [0, N + ν − 1] such that xN+ν = 0. The output is then also supported
in [0, N + ν − 1]. In the following, we shall assume that, for every input u, the terminating
extension ũ has been chosen in such a way to be a linear function of u (it is easy to see that
this can always be done). The block termination of φ after N trellis steps is a Z2-linear map

φN : Z
rN
2 → Z

s(N+ν)
2 defined by

φN(u(0), u(1), . . . , u(N − 1)) = (y(0), y(1), . . . , y(N − 1))

if
φ
`

u(0) + u(1)D + · · · + u(N − 1)DN−1 + · · · + ũ(N + ν − 1)DN+ν−1
´

= y(0) + y(1)D + · · · + y(N + ν − 1)DN+ν−1 .

Notice that, whenever convenient, the space Z
rN
2 is identified with the subspace of Z

r
2[D]

consisting of the polynomials of degree up to N − 1.
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Z
kN
2

−→ φo

N

Z
r(N+νo)
2
−→ πN

Z
sMN
2
−→ φi

N

Z
KN
2
−→

Figure 1: The serially concatenated encoding scheme

2.2 Serially concatenated convolutional codes with random in-

terleaver

We start from two convolutional encoders φo ∈ Z
r×k
2 (D) ∩ Z

r×k
2 [[D]] and φi ∈ Z

l×s
2 (D) ∩

Z
l×s
2 [[D]]. Let νo and νi be their corresponding constraint lengths and let N be such that s

divides r(N + νo). Let MN be such that sMN = r(N + νo), and let KN := l(MN + νi) =
l( r

s
(N + νo) + νi). Consider the block terminations of φo and φi after N and MN trellis steps,

respectively:
φo

N : Z
kN
2 → Z

r(N+νo)
2 , φi

N : Z
sMN
2 → Z

KN
2 .

Finally let πN be a permutation of length sMN and denote by the same symbol πN : Z
sMN
2 →

Z
sMN
2 the corresponding linear isomorphism. The serially concatenated encoder considered in

this paper is the composition

φi
N ◦ πN ◦ φo

N : Z
kN
2 → Z

KN
2

depicted in Fig.1. We shall refer to φo as the outer encoder, to φi as the inner encoder, and to
πN as the interleaver.

In order to avoid extremely cumbersome notation, we shall expose our results in full detail
under some simplifying assumptions. From now on, unless differently specified, we shall assume
that:

• φo is non-catastrophic, and its free distance do
f is even and satisfies do

f > 2;

• φi is non-catastrophic and recursive, has scalar input (s = 1) and is proper rational,
i.e. φi = 1

q(D)
[p1(D), . . . , pl(D)]T with deg(pi) < deg(qi) for all i.

The only essential assumptions, however, are non-catastrophicity and recursiveness of φi. We
shall discuss in Appendix B how to treat the case of odd do

f , while addressing the interested
reader to [11] for further generalizations.

In the rest of this paper, we shall investigate the performance of the above-described se-
rially concatenated coding schemes, assuming that the interleaver ΠN is a random variable
uniformly distributed on the group of permutations of MN symbols. This is the classical ‘uni-
form interleaver’ ensemble of [5, 4]. Since the interleaver ΠN is random, the minimum distance
dmin

N := min{wH(φi
N ◦ πN ◦ φo

N(u)) : u 6= 0)} is a random variable. Similarly, assuming trans-
mission over binary-input output-symmetric memoryless channel with ML decoding, the word
error probability of the serial turbo code is a random variable, to be denoted by P (e|ΠN).
While the focus of most of the literature [4, 12] has been of the error probability of the av-
erage serial turbo code, E[P (e|ΠN )], in this paper we shall be concerned with the minimum
distance and error probability of the typical serial turbo code, namely with the high-probability
behaviour of dmin

N and P (e|ΠN), as N goes to infinity.
We end this section by establishing the following notational convention, to be used through-

out the paper. When dealing with quantities depending on many parameters, such as w, d, N, n . . . ,
we shall implicitly assume that all the parameters are depending on N , but we shall avoid cum-
bersome notation wN , dN . . . . Hence, a statement such as ‘f(w, d, N) = o(Na) for N → ∞,
d = o(N) and w ≤ d’ means that if d = dN , w = wN satisfying wN ≤ dN and dN/N → 0 when
N → ∞, then limN→∞ f(wN , dN , N)/N = 0. When we say ‘w is constant’ we mean it does
not depend on N .
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3 Weight enumerators of the constituent encoders

In this section, we recall some well-known definitions and properties of convolutional encoders,
and we state the bounds on the weight enumerators of outer and inner encoder, which will be
used in the following sections. The proofs of such bounds, many of which relying on arguments
developed in [14], are given in Appendix A.1.

Consider a convolutional encoder φ ∈ Z
r×s
2 (D) ∩ Z

r×s
2 [[D]]. A sequence u ∈ Z

s
2((D)) (and

also its image φu) is called an error event if there exist t1 < t2 such that supp(u) ⊆ [t1, t2] and
the corresponding state sequence x is such that supp(x) = [t1 + 1, t2]. Notice that this implies
that necessarily u(t1) 6= 0 and supp(φu) ⊆ [t1, t2]. The length of such error event is t2 − t1 + 1,
while the discrete interval [t1, t2] is called its active window. Every finitely supported input
sequence u such that φu has also finite support, can be obtained as the summation of a finite
number of error events with non overlapping active windows. The following useful result was
proved in [9, Lemma 20].

Lemma 1 Given a non-catastrophic convolutional encoder, there exists a constant η such that
any of its error events with output Hamming weight w has length not greater than ηw.

Let ν be the constraint length of φ and consider the block termination of length N , φN :
Z

rN
2 → Z

s(N+ν)
2 . An error event for φN is any input (u(0), . . . u(N − 1)) such that

u(0) + u(1)D + · · · + u(N − 1)DN−1 + · · · + ũ(N + ν − 1)DN+ν−1

(where ũ is the usual linear terminating extension of u) is an error event for φ. Such an error
event is said to be regular if its active window [t1, t2] lies inside [0, N − 1] (the termination ũ
is 0). Otherwise, the error event is called terminating. It is clear that any input for φN can be
written as the sum of a finite number of regular error events plus, possibly, a terminating one,
all having disjoint active windows.

Consider φo ∈ Z
r×k
2 (D) and φi ∈ Z

l×1
2 (D). We shall denote by ηo and ηi the constants

defined in Lemma 1 for φo and φi respectively.
For the outer encoder, we define the enumerating coefficient Ao,N

d to be the number of
inputs of φN

o with output weight d. For it, we need only the following simple upper bound,
which holds true for all non-catastrophic terminated convolutional encoders. It is proved in
Sect. A.1.1.

Lemma 2 The following inequalities hold true:

(a) If ⌊d/do
f ⌋ < N/2, then Ao,N

d ≤ 2(kηo+ηo+1)d+1
`

N
⌊d/do

f
⌋
´

(b) Ao,N
do
f

≤ mo
fN , where mo

f is the number of different error events for φo starting at 0 and

producing output weight do
f .

As for the inner encoder, we shall need a weight enumerator which considers both input
and output weight. Define Ai,N

w,≤d to be the number of inputs of φi
N with input weight w and

output weight not greater than d. Another weight enumerator which will play a key role is
Ri,N

w,≤d,n, defined as the number of inputs of φi
N with input weight w and output weight not

greater than d, consisting of exactly n regular error events.
By recursiveness of φi, wH(φiu) is infinite for all weight-one inputs u. On the contrary,

it is well known that there exists a positive integer δ such such that wH(φi(1 + Dδ)) is finite
(and hence di

e is finite). Let δi the smallest such value. Then, wH(φi(1 + Dδ)) is finite if and
only if δ = aδi for some positive integer a. Also, having assumed that φi is proper rational,
one has that wH(1 + Daδi) = awH(1 + Dδi) = a di

e. These considerations show, in particular,
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that any error event for φi has input weight 2 or larger. When considering φi
N , however, one

has to be slightly more careful: regular error events have indeed weight at least 2, while this is
not necessarily true for a terminating event u which could have weight 1, the remaining weight
being in the extended part ũ and not counted in the weight of u. The bounds we shall give
rely on such input-weight limitation of error events. Notice in particular that , for every even
w, the input sequences contributing to Ri,N

w,≤d,w/2 will exclusively be composed of error events
of input weight equal to 2.

For the weight enumerator coefficients of φi
N , we have the following estimations, proved in

Sect. A.1.3, and Sect. A.2.1, respectively.

Lemma 3 The following estimations hold:

(a) If w is even,

Ri,N
w,≤d,w/2 ≤ (2e)w

ww
M

w/2
N

—

d

di
e

�w/2

(b) For d ≤ MN/2ηi,

Ai,N
w,≤d ≤

8

<

:

Ri,N
w,≤d,w/2 + d

N
Cw

ww N⌊w/2⌋d⌈w/2⌉ if w is even

Cw

ww N⌊w/2⌋d⌈w/2⌉ if w is odd

where C is a constant only depending on the constituent encoders.

Lemma 4 If w is even and
di

ew

2
≤ d ≤ di

eMN

2δ

Ri,N
w,≤d,w/2 ≥ 2w/2

ww
M

w/2
N

—

d

di
e

�w/2

.

4 Minimum distance of the typical serial turbo code

In this section, we state and prove our main results on the minimum distance of the typical
serial turbo code. Our results will indicate that, with high probability, dmin

N scales as di
eN

β ,
where

β := 1 − 2

do
f

∈ (0, 1) .

First, we shall provide precise estimates of the left tail of the distribution of dmin
N . These

estimates, stated in Theorem 1, extend some of the results of [14]. Then, we shall prove a
deterministic upper bound on dmin

N . Such a bound, stated in Theorem 2, generalizes of the
results of [3]. The most novel contribution of both Theorems 1 and 2 with respect to the
existing literature consists in highlighting the role of the effective free distance of the inner
encoder, di

e, as a linear scaling parameter for dmin
N .

We start by observing that a standard application of the union bound gives the useful
estimation (see [14, Lemma 6]):

P(dmin
N ≤ d) ≤

ηid
X

w=do
f

 

MN

w

!−1

Ao,N
w Ai,N

w,≤d , ∀d ≤ KN (1)

The limitation w ≤ ηi is due to the remark that any terminating or regular error event of φi
N

with output weight w has input weight bounded from above by sηi (and here we are considering
s = 1).

Now, using the estimations on the weight enumerators established in the previous section,
we obtain the following result on minimum distances, which generalizes [14, Thm.2.a].
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Proposition 1 For N → ∞, if d = o(Nβ), then

P(dmin
N ≤ d) ≤ mo

f

„

2e√
r

«do
f

N1−
do
f
2

—

d

di
e

�

do
f
2

+ o

„

N1−
do
f
2 d

do
f
2

«

Proof: It follows from (1), Lemmas 2 and 3, and (6) that

P(dmin
N ≤ d) ≤ mo

f

“

2e√
r

”do
f

N1−do
f /2

¨

d/di
e

˝do
f /2

+ Se + So ,

where

Se :=
d

N

X

w≥do
f

w even

CwN⌊w/do
f ⌋−⌈w/2⌉d⌈w/2⌉ , So :=

X

w≥do
f

w odd

CwN⌊w/do
f ⌋−⌈w/2⌉d⌈w/2⌉ .

The terms Se, So may be estimated as follows

Se ≤
„

d

N

«1/2
X

w≥do
f

+1

"

CN1/do
f

„

d

N

«1/2
#w

, So ≤
X

w≥do
f

"

CN1/do
f

„

d

N

«1/2
#w

Notice now that, since d = o(Nβ), then CN1/do
f
`

d
N

´1/2 → 0. Both sums are thus convergent

and are dominated by their first term. It follows that both Se = o
“

N1−do
f /2ddo

f /2
”

, and

So = o
“

N1−do
f /2ddo

f /2
”

. �

It is possible to obtain also a lower bound for the left tail of the minimum distance dis-
tribution, showing that asymptotically the upper bound in Proposition 1 is tight. This lower
bound, stated below as Proposition 2 is a novel result. Its proof combines techniques similar
to those of [14, Thm. 2b] with the inclusion-exclusion principle [1, p. 124].

First of all, we fix an error event u∗ for φo having active window [0, T − 1] for some T , and
with an output c∗ = φou∗ such that wH(c∗) = do

f . Note that 2 ≤ T ≤ do
f ηo. Consider N > T .

Define c∗j = Djc∗; clearly, if |i − j| ≥ T , then c∗i and c∗j have non-overlapping supports. Define
the set of indexes J := {do

f ηo i , i ∈ Z
+} ∩ {0, 1, . . . , N − 1 − do

f ηo}, so that i, j ∈ J with i 6= j
clearly ensures |i − j| ≥ do

f ηo ≥ T . For j ∈ J and d ∈ N, define the events

E∗
j (d) :=

n

wH(φi
N(ΠN(c∗j ))) ≤ d

o

∩
n

φi
N(ΠN(c∗j )) has do

f /2 regular events
o

Clearly, for any j, E∗
j (d) implies dmin

N ≤ d, so that P(dmin
N ≤ d) ≥ P(∪j∈JE∗

j (d)) . The fol-
lowing lemma, proved in Sect. A.2.1, provides an expression for P

`

E∗
j (d)

´

and shows that,
asymptotically, the events Ej(d) are ‘almost’ pairwise independent.

Lemma 5

(a) for all j ∈ J, P(E∗
j (d)) =

 

MN

do
f

!−1

Ri,N
do
f

,≤d,do
f

/2 .

(b) for all i, j ∈ J with i 6= j,

P(E∗
i (d) ∩ E∗

j (d)) ≤
 

MN

do
f

! 

MN − do
f

do
f

!−1

P(E∗
i (d))P(E∗

j (d))
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We shall get our lower bound by estimating the probability of the union ∪j∈JE∗
j (d) with

the inclusion-exclusion principle.

Proposition 2 For N → ∞, if d = o(Nβ) and d ≥ 1
2
do
f di

e, then

P(dmin
N ≤ d) ≥ 2do

f /2

r
do
f

/2
e

do
f do

f ηo

N1−
do
f
2

—

d

di
e

�

do
f
2

+ o

„

N1−
do
f
2 d

do
f
2

«

Proof: Using the inclusion-exclusion principle we obtain

P(dmin
N ≤ d) ≥ P

„

[

j∈J

E∗
j (d)

«

≥
X

j∈J

P(E∗
i (d)) −

X

i,j∈J
i<j

P(E∗
i (d) ∩ E∗

j (d))

We lower bound the first summation using Lemmas 5(a), and 4, and (6). Also remember that
|J | = ⌊N/(do

f ηo)⌋. We get:

X

j∈J

P(E∗
i (d)) ≥ |J |

Ri,N
do
f

,≤d,do
f

/2
`

MN

do
f

´ ≥
$

N

do
f ηo

%

2do
f /2

edo
f

M
−do

f /2

N

—

d

di
e

�do
f /2

(2)

We now upper bound the second summation using Lemmas 5 (b), and 3, and estimation (6):

X

i,j∈J
i<j

P(E∗
i (d) ∩ E∗

j (d)) ≤
 

|J |
2

!

`

MN

do
f

´

`MN−do
f

do
f

´

2

4

Ri,N
do
f

,≤d,do
f

/2
`

MN

do
f

´

3

5

2

≤ Γ ,

where

Γ :=
1

2

 

N

do
f ηo

!2
`

MN

do
f

´

`MN−do
f

do
f

´
(2e)2do

f

 

M
−do

f /2

N

—

d

di
e

�do
f /2
!2

.

Notice that 1 ≤
`

MN

do
f

´`MN−do
f

do
f

´−1 ≤
“

1 +
do
f

MN−2do
f

+1

”do
f

. Hence, lim
N→∞

`

MN

do
f

´`MN−do
f

do
f

´−1
= 1.

This implies that

Γ = O

„

N1−
do
f
2 d

do
f
2

«2

= o

„

N1−
do
f
2 d

do
f
2

«

.

Together with (2), the foregoing yields the result. �

We may combine Propositions 1 and 2, in the following:

Theorem 1 For all sufficiently large N , for all ε ∈ (0, β),

C1N
−εdo

f /2 ≤ P

“

dmin
N ≤ di

eN
β−ε
”

≤ C2N
−εdo

f /2 ,

for two positive constants C1 and C2, depending on the outer encoder only.

Theorem 1 provides fundamental insight into the effect of the constituent convolutional
encoders on the minimum distance of the typical serial turbo code. On the one hand, it shows
that, with probability approaching one as N goes to infinity, the minimum distance grows as
a positive power of N . The exponent of such a power law growth, β, depends only on the free
distance of the outer encoder, do

f , in an increasing way. This is in line with the results of [14].
On the other hand, it shows that the minimum distance of the typical turbo scales linearly in

8



the effective free distance of the inner encoder, di
e. While the effect of di

e on the average error
probability of serial turbo codes has been studied in [4, 12], up to our knowledge no results
have previously appeared in the literature relating di

e to the minimum distance. Such a scaling
effect of di

e on dmin
N is particularly relevant for moderate values of N . It is confirmed by the

following deterministic upper bound on dmin
N .

Theorem 2 For all N ≥ max{2do
f ηo,

1
2
do
f δi}

dmin
N ≤ Kdi

eN
β log N ,

where K := do
f δ2

i (8do
f ηo)

2/do
f .

Theorem 2, whose proof is deferred to Sect. A.2.2, may be thought of as a generalization of
[3, Thm.2]. There, only the case when the outer encoder is a repetition code was considered,
while we extend it to general serial turbo codes. Indeed, [3, Thm. 3] covers a more general class
of encoders with growing memory, which includes serial turbo codes, but, when specialized to
the constant-memory case, gives a weaker bound than Theorem 2. The result we obtain is also
asymptotically tighter than the current best known bound for serial turbo codes, presented in
[16]. Moreover, our modification of [3, Thm.2] unveils the fundamental role played by di

e.

5 Error probability of the typical serial turbo code

In this section, we discuss implications of the previous results to the analysis of the error
probability of the typical serial turbo code. For the sake of concreteness –even if the results
can be easily generalized to binary-input output-symmetric memoryless channels– we shall
assume the channel to be the binary additive white Gaussian noise channel: when ω ∈ {0, 1} is
transmitted, the output of the channel is (−L)ω +Ω, where L ∈ R and Ω is a Gaussian variable
Ω ∼ N (0, σ2). The signal-to-noise ratio is SNR := L2/(2σ2).

As already mentioned, the focus of most of the previous literature on the analysis and
design of serial turbo codes has been on the error probability of the average code, for which it
is known [4, 12] that

C1N
−⌊(do

f −1)/2⌋ ≤ E(P (e|ΠN)) ≤ C2N
−⌊(do

f −1)/2⌋ ,

for some constants C1, C2 whose dependence on di
e in the high SNR regime can be made explicit.

However, the error probability of the average code turns out to be way larger than that of
the typical code. Indeed, the former is dominated by an asymptotically negligible fraction of
poorly performing codes. In the sequel, we shall use expurgation techniques in order to show
that the decay rate of the typical serial turbo code is of order exp(−Nβ).

We define, for every N ∈ N and ε > 0, the event Eε
N := {dmin

N > Nβ−ε} . It follows from
Theorem 2 that

P(Eε
N) ≥ 1 − C1N

−εdo
f /2 . (3)

Simply using the union-Batthacharyya bound, we get the following estimation of the average
error probability of the serial turbo codes conditioned on the event Eε

N .

Proposition 3 If the SNR is sufficiently high, for all ε ∈ (0, β), and sufficiently large N ,

E[P (e|ΠN) |Eε
N ] ≤ C2 exp(−2Nβ−ε)

for some positive constant C2 depending on ε but not on N .

9



Proof: We use the union-Bhattacharyya bound for serial turbo codes established in [4].
Upon denoting by χ the indicator function of the event Eε

N , one has

E[P (e|ΠN)|Eε
N ] = P(Eε

N)−1
E[P (e|ΠN) χ] ≤ P(Eε

N)−1
KN
X

h=Nβ−ε

ηih
X

w=do
f

Ao,N
w Ai,N

w,h
`

MN

w

´ γh .

where γ = exp(−SNR). By Theorem 1, P(Eε
N)

N→∞−→ 1. So, for some c > 0, P(Eε
N) ≥ c. We

estimate Ai,N
w,h ≤Ai,N

w,≤h by Lemma 3 and Ao,N
w by Lemma 2, so we can find a positive C such

that:

E[P (e|ΠN)|Eε
N ]≤c−1

KN
X

h=Nβ−ε

ηih
X

w=do
f

Cw

„

h

w

«w
2“w

N

”w
2
− w

do
f γh.

Then, we remark that the function g(z) := (a/z)z has maximum value g(a/e) = ea/e and hence

(h/w)w/2 ≤ eh/(2e). Moreover, w ≤ c̃N for some c̃ ≥ 1, so (w/N)
w
2
− w

do
f ≤ c̃

( 1
2
− 1

do
f

)w
. Hence, as

w ≤ ηih, we can find a constant C̃ ≥ 1 such that:

E[P (e|ΠN)|Eε
N ] ≤

KN
X

Nβ−ε

(C̃γ)h .

For γ ≤ e−2/C̃ the series is convergent and the claim follows. �

From Proposition 3 and the deterministic bound on dmin
N , Theorem 2, we can obtain the

following result, characterizing the asymptotic decay rate of the error probability of the typical
serial turbo code.

Theorem 3 For sufficiently high SNR, for any ε > 0, and sufficiently large N ,

P

“

exp(−Nβ+ε) ≤ P (e|ΠN) ≤ exp(−Nβ−ε)
”

≥ 1 − CN−εdo
f /2 ,

for some positive constant C.

Proof: By Proposition 3 and Markov’s inequality, one gets that

P
`

P (e|ΠN) ≥ exp(−Nβ−ε)
˛

˛Eε
N

´

≤ P

„

P (e|ΠN) ≥ E [P (e|ΠN)|Eε
N ]

exp(−Nβ−ε)

˛

˛

˛

˛

Eε
N

«

≤ C2 exp(−Nβ−ε) .

Thus, by (3), one gets

P
`

P (e|ΠN) ≥ exp(−Nβ−ε)
´

≤ 1 − P(Eε
N) + P

`

P (e|ΠN) ≥ exp(−Nβ−ε)
˛

˛Eε
N

´

P(Eε
N)

≤ C1N
−εdo

f /2 + C2 exp(−Nβ−ε)

≤ CN−εdo
f /2 ,

(4)
where the last inequality holds with C := 2 max{C1, C2}, for sufficiently large N .

On the other hand, using the inequality P (e|ΠN) ≥ pdmin
N , where p = 1/2 erfc(

√
SNR) is

the equivocation probability of the channel, and Theorem 2, one gets that deterministically,

P (e|ΠN) ≥ exp(−Nβ+o(1)) . (5)

Then, the claim is an immediate consequence of (4) and (5). �

We conclude this section by observing that both Theorems 1 and 3 imply weak probabilistic
convergence results, since the left tails of dmin

N and P (e|ΠN) decrease slowly in N . Indeed, one
may prove [8] that, while converging in distribution to β, with probability one both the growth

rate XN :=
log dmin

N

logN
and the decay rate YN := log(− log P (e|ΠN ))

log N
) densely cover the interval [α, β],

where α = 1 − 2/⌈do
f /2⌉.
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6 Conclusion

In this paper we have studied the behaviour of the minimum distance and ML error probability
of serial turbo concatenations with random interleaver. We have shown that the minimum
distance of the typical serial turbo code grows as a positive power of the block-length, whose
exponent is an increasing function of the free distance of the outer encoder, and scales linearly
with the effective free distance of the inner constituent encoder. Such a scaling law has been
proven by means of a detailed study of the left tail of the minimum distance’s probability
distribution, and of a deterministic upper bound. As a consequence, we have characterized the
subexponential decay rate of the ML error probability of the typical turbo code. In spite of
the lack of concentration around the performance of the average code, our results confirm the
centrality of two main design parameters for serial turbo codes suggested by the average-code
analysis.

A Proofs

In the present appendix, we provide the proofs of some of the statements of Sect.s 3 and 4.
Throughout, we shall make repeated use of the following well known combinatorial estimations

nm

mm
≤
 

n

m

!

≤ (en)m

mm
(6)

 

n − m

m

!

≤ en+m (7)

tt(w − t)w−t ≥ (w/2)w for all t ∈ [0, w] (8)

1

(t − 1)(t−1)
≤ e t

tt
(9)

A.1 Proofs of the results presented in Sect. 3

Our proof techniques are based on ideas from [14]. We retrace here the proofs in all detail,
both since [14] has not appeared yet, and in order to be able to underline the role of di

e.

A.1.1 Proof of Lemma 2

Our arguments parallel those of [14, Lemma 3]. We start by introducing some notation:

• Ro,N
d and T o,N

d denote, respectively, the number of inputs to φo
N having output weight

d and consisting exclusively of regular error events, or containing a terminal error event.
We thus have Ao,N

d = Ro,N
d + T o,N

d .

• Ro,N
(d1,...,dn)

is the number of inputs to φo
N consisting of n regular error events whose output

weights are d1, . . . , dn, respectively. Similarly, T o,N
(d1,...,dn) is the number of inputs to φo

N

consisting of n − 1 regular error events having output weights, in order, d1, . . . , dn−1 and
a final terminating one of weight dn.

Suppose that d1 + · · · + dn = d. It holds

Ro,N
(d1,...,dn) ≤ 2kdηo

 

N

n

!

11



In fact, we are considering n error events, with lengths at most d1ηo, . . . , dnηo respectively, so
that the sum of their lengths is bounded by dηo. The number of inputs in the active windows
of these error events are thus at most 2kdηo . The only remaining freedom is in the choice of the
starting points of the error event, and the number of possibilities is clearly bounded by

`

N
n

´

.
Hence, one has

Ro,N
d =

⌊d/do
f ⌋

X

n=1

X

d1,...,dn:
P

i di=d,di≥1

Ro,N
(d1,...,dn)

≤
d
X

n=1

 

d

n

!

2kdηo

 

N

⌊d/do
f ⌋

!

≤ 2(kηo+1)d

 

N

⌊d/do
f ⌋

!

,

(10)

where we are using the fact that ⌊d/do
f ⌋ ≤ N/2. Similarly,

T o,N
(d1,...,dn) ≤ 2kdηo

 

N

n − 1

!

dηo

because the n-th event, being terminating and having length at most dηo, starts in a position
between N − dηo and N − 1 on the trellis. Therefore,

T o,N
d =

⌈d/do
f ⌉

X

n=1

X

d1,...,dn:
P

i di=d,di≥1

T o,N
(d1,...,dn)

≤ 2d2kdηo

 

N

⌈d/do
f ⌉ − 1

!

dηo

≤ 2(kηo+ηo+1)d

 

N

⌊d/do
f ⌋

!

(11)

Summing up (10) and (11) we get (a). The tighter estimation (b) when d = do
f is easily obtained

from the observation that inputs with output weight do
f necessarily consist of just one error

event starting in the interval [0, N − 1]. �

A.1.2 Proof of Lemma 3

Our arguments parallel those of [14, Lemma 1]. Similarly to what we have done before, we
need to introduce several auxiliary weight enumerators for φi:

• let Ri,N
w,≤d (respectively, T i,N

w,≤d) denote the number of inputs for φi
N having input weight

w, output weight not larger than d, and containing n regular error events (resp. n − 1
regular error events plus a terminating one);

• let Ri,N
w,≤d,n (respectively, T i,N

w,≤d,n) denote the number of inputs for φi
N having input weight

w, output weight not larger than d, and consisting of n regular events (resp. n−1 regular
error events plus a terminating one);

• Fix two vectors of integers w = (w1, . . . , wn) and b = (b1, . . . , bn) with wi > 0 and
bi ∈ [0, N − 1]. Let Ri,N

w,b,≤d,n (respectively, T i,N
w,b,≤d,n) denote the number of weight-w

inputs to φi
N such that: the output has weight not larger than d, and contains n regular

error events (resp. n − 1 regular error events plus a terminating one); for all 1 ≤ j ≤ n
the j-the error event starts in position bj and has input weight wj .

12



(a): For any input word with w/2 error events and input weight w, recursiveness of φi forces
input weight 2 for each error event. So the input words contributing to Ri,N

w,≤d,w/2
can be

written as

u(D) =

w/2
X

t=1

Dbt (1 + Dδat)

with bt > δat−1 (so that the error events have disjoint active windows). We also have the
restriction wH

`

φi(D)u(D)
´

≤ d, but we can obtain an upper bound on the number of such
words by imposing a weaker condition.

Notice that

wH

0

@φi(D)

w/2
X

t=1

Dbt(1 + Dδat)

1

A =

w/2
X

t=1

wH

“

φi(D)(1 + Dδat)
”

≥ di
e

w/2
X

t=1

at

The restriction wH

`

φi(D)u(D)
´

≤ d thus implies di
e

w/2
X

t=1

at ≤ d and there are
`⌊d/di

e⌋
w/2

´

choices

for a1, . . . , aw/2 satisfying this relation. Finally, there are at most
`

MN
w
2

´

choices for the starting

positions b1, . . . , bw/2 of the error events. Summing up, and using (6) and (8), we obtain

Ri,N
w,≤d,w/2 ≤

 

⌊d/di
e⌋

w
2

! 

MN
w
2

!

≤ 1

ww
(2MN )w/2⌊d/di

e⌋w/2ew

This yields (a).

(b): We start by considering the case when w is even. We first show that

Ri,N
w,b,≤d,n ≤

 

dηi

w − n

!

(12)

Notice indeed that Ri,N
w,b,≤d,n is smaller than the number of binary words of length dηi with

exactly w − n ones, because it is possible to exhibit an injective map between the words we
want to count and such words. Given an input word (of length MN ) producing n error events
having input weights w1, . . . , wn, fixed starting points b1, . . . , bn, and total output weight ≤ d,
map it into a word of length dηi in the following way: remove all the zeros outside the active
windows of the error events, and furthermore remove the bit corresponding to the starting
point of each error event (which is surely a one). The word obtained in such a way has surely
length < dηi, then add dummy zeros at the end to get a word of length dηi; the number of
ones is w − n. This map is injective since the starting points of the error events are fixed and
known. This proves (12).

Now, we consider the decomposition

Ri,N
w,≤d,n =

X

w=(w1,...,wn):
wj≥2,

P

wj=w

X

b=(b1,...,bn):
0≤b1≤···≤bn≤MN−1

Ri,N
w,b,≤d,n

13



(again the constraint wj ≥ 2 comes from the recursiveness of φi), and we estimate using (12)

w/2−1
X

n=1

Ri,N
w,≤d,n ≤

w/2−1
X

n=1

 

w − n − 1

n − 1

! 

MN

n

! 

dηi

w − n

!

≤
w/2−1
X

n=1

ew+n−1 (eMN)n

nn

(edηi)
w−n

(w − n)w−n
by (6) and (7)

≤ e5w/2

(w/2)w

w/2−1
X

n=1

Mn
N (ηid)w−n by (8)

≤ e5w/2η
w/2
i

(w/2)w

d
w
2 M

w
2

N
MN

dηi
− 1

Finally, we have to consider weight enumerators of type T .

T i,N
w,≤d =

w/2
X

n=1

T i,N
w,≤d,n =

w/2
X

n=1

X

w=(w1,...,wn):
P

wj=w
wj≥2 ∀j<n, wn≥1

X

b=(b1,...,bn):
0≤b1≤···≤bn≤MN−1

bn≥MN−dηi

T i,N
w,b,≤d,n

Everything is similar to the regular case, except for the additional condition bn ≥ MN − dηi.
This comes from the remark that the terminating event has clearly output weight smaller
than d, hence of length smaller than dηi. Being it a terminating event, it cannot start before
MN − dηi. Moreover, the recursiveness imposes wj ≥ 2 for the regular events, while for the
terminating event only wn ≥ 1 is required.

With the same proof as for the estimation (12) of Ri,N
w,b,≤d,n, we have also T i,N

w,b,≤d,n ≤
`

dηi

w−n

´

,
so that

T i,N
w,≤d ≤

w/2
X

n=1

X

w=(w1,...,wn):
P

wj=w
wj≥2 ∀j<n, wn≥1

X

b=(b1,...,bn):
0≤b1≤···≤bn≤MN−1

bn≥MN−dηi

 

dηi

w − n

!

≤
w/2
X

n=1

 

w − n

n − 1

! 

MN

n − 1

!

dηi

 

dηi

w − n

!

≤ e5w/2−3 dηi

w/2
X

n=1

Mn−1
N (dηi)

w−n

(n − 1)(n−1)(w − n)(w−n)
by (6) and (7)

≤ e5w/2−2 w

2

dηi

MN

w/2
X

n=1

Mn
N (dηi)

w−n

nn(w − n)(w−n)
by (9)

≤ e5w/2−2

(w/2)w

w

2

dηi

MN

w/2
X

n=0

Mn
N (dηi)

w−n by (8)

≤ e5w/2−2

(w/2)w

w

2

M
w/2
N (dηi)

w/2

MN

dηi
− 1
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Now everything follows from the fact that

Ai,N
w,≤d = Ri,N

w,≤d,w/2 +

w/2−1
X

n=1

Ri,N
w,≤d,n + T i,N

w,≤d

The case of odd w needs slightly more attention. We start with the analysis of Ri,N
w,≤d,⌊w/2⌋.

Input words contributing to this term are made of w/2− 1 events with input weight 2 and one
event with input weight 3:

u(D) =

⌊w/2⌋−1
X

t=1

Dbt(1 + Dδat) + Db(1 + Da + Da′

)

All the error events have disjoint support, which implies, the weaker condition that b1 < · · · <
b⌊w/2⌋−1 and b 6= b1, . . . , b⌊w/2⌋−1. The overall output weight is ≤ d, and this implies, as in

(b), the weaker condition di
e

P⌊w/2⌋−1
t=1 at ≤ d and a < a′ < ηid. There are

 

ηid

2

!

choices for

such a, a′,

 

⌊d/di
e⌋

⌊w/2⌋ − 1

!

choices for a1, . . . , a⌊w/2⌋−1, no more than ⌊w/2⌋
 

MN

⌊w/2⌋

!

choices for

b1, . . . , b⌊w/2⌋−1, b, where the factor ⌊w/2⌋ comes from the choice of the position where to put
the error event of weight 3 in between the other events. Summarizing:

Ri,N
w,≤d,⌊w/2⌋ ≤

jw

2

k

 

MN

⌊w/2⌋

! 

ηid

2

! 

⌊d/di
e⌋

⌊w/2⌋ − 1

!

≤ µ2
i

4e2

wew M
⌊w/2⌋
N d2

j

d
di

e

k⌊w
2 ⌋−1

¨

w
2

˝⌊w
2 ⌋ `¨w

2
− 1
´˝⌊w

2 ⌋−1
by (6)

≤ µ2
i

16

w3(2e)w

ww
M

⌊w/2⌋
N d2

—

d

di
e

�⌊w
2 ⌋−1

by (8) and (9)

The remaining regular terms are estimated exactly as in the case when w is even:

⌊w/2⌋−1
X

n=1

Ri,N
w,≤d,n ≤ e5w/2η

⌈w
2
⌉

i

(w/2)w

d⌈w
2
⌉M

⌊ w
2
⌋

N
MN

dηi
− 1

We now pass to studying the terms T i,N
w,≤d. Differently from the even case, we shall consider

the main term T i,N
w,≤d,⌈w/2⌉ separately. Inputs contributing to T i,N

w,≤d,⌈w/2⌉ consist of ⌊w/2⌋
regular error events, each with input weight 2, and one terminating event with input weight 1,
with overall output weight ≤ d. We represent such inputs as

u(D) =

⌊w/2⌋
X

t=1

Dbt(1 + Dδat) + DMN−l

and we observe that the following conditions hold: 0 ≤ b1 < · · · < b⌊w/2⌋ < MN , l ≤ ηid,
di

e

P

t at ≤ d . We thus get:

T i,N
w,≤d,⌈w/2⌉ ≤

 

MN

⌊w/2⌋

!

dηi

 

⌊d/di
e⌋

⌊w/2⌋

!

≤ ηi

2

w(2e)w

ww
M

⌊w/2⌋
N d

—

d

di
e

�⌊w/2⌋
. (13)
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The remaining terms are estimated as in the even case,

⌊w/2⌋
X

n=1

T i,N
w,≤d,n ≤ e5w/2−2

(w/2)w

w

2

M
⌊w/2⌋
N (dηi)

⌈w/2⌉

MN

dηi
− 1

This completes the proof of Lemma 3. �

A.1.3 Proof of Lemma 4

We shall use ideas similar to those of [14, Lemma 2]. We consider a subclass of inputs con-
tributing to the term Ri,N

w,≤d,w/2
, exactly those which can be written as

w/2
X

t=1

Dit+ht−1δ + Dit+htδ

with 0 ≤ i1 < i2 < · · · < iw/2 < MN − δ⌊d/di
e⌋, and 0 = h0 < h1 < h2 < · · · < hw/2 ≤ ⌊d/di

e⌋.
It is evident that they have input weight w and consist of w/2 disjoint error events. The only
property which remains to be verified is whether they produce output weight not exceeding d.
In fact, the t-th error event has input Dit+ht−1(1+Dδ(ht−ht−1)), so that the output has weight
wH

`

φi((1 + Dδ(ht−ht−1)))
´

≤ di
e (ht − ht−1). The total output weight is thus bounded above

by di
e

Pw/2
t=1 (ht − ht−1) = di

ehw/2 ≤ d.
Observe that, for every choice of the two w/2-uples (i1, i2, . . . , iw/2) and (h1, h2, . . . , hw/2),

one obtains distinct inputs. It follows that

Ri,N
w,≤d,w/2 ≥

 

MN − δ⌊d/di
e⌋

w/2

! 

⌊d/di
e⌋

w/2

!

The final estimation follows applying (6) (notice that, because of the assumption made, w/2 ≤
MN − δ⌊d/di

e⌋ and w/2 ≤ ⌊d/di
e⌋) and the inequality MN − δ⌊d/di

e⌋ ≥ MN

2
. �

A.2 Proofs of the results presented in Section 4

A.2.1 Proof of Lemma 5

This proof follows part of the proof of [14, Thm. 2.b].

The first statement is immediate, let’s prove the second one. Let c∗i =
Pdo

f

m=1 Dtm ∈ Z2[D].

Given a multi-index τ = (τ1, . . . , τdo
f
) ∈ [MN ]d

o
f , where [MN ] := {0, . . . , MN − 1}, define the

event Eτ := {ΠN(Dtm ) = Dτm∀m = 1, . . . , do
f }. Clearly

P
`

E∗
i (d) ∩ E∗

j (d)
´

=
X

τ∈[MN ]
do
f

P
`

E∗
i (d) ∩ Eτ

´

P
`

E∗
j (d)

˛

˛E∗
i (d) ∩ Eτ

´

Then, notice that

P
`

E∗
j (d)

˛

˛E∗
i (d) ∩ Eτ

´

= P
`

E∗
j (d)

˛

˛Eτ

´

≤
Ri,N

do
f

,≤d,do
f

/2

`MN−do
f

do
f

´
= P

`

E∗
j (d)

´

`

MN

do
f

´

`MN−do
f

do
f

´
.

Therefore,

P
`

E∗
i (d) ∩ E∗

j (d)
´

≤
X

τ∈[MN ]
do
f

P
`

E∗
i (d) ∩ Eτ

´

P
`

E∗
j (d)

´

`

MN

do
f

´

`MN−do
f

do
f

´
.
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Now, observe that
P

τ∈[MN ]
do
f

P(E∗
i (d) ∩ Eτ ) = P(E∗

i (d)). From this, the claim immediately

follows. �

A.2.2 Proof of Theorem 2

The key idea, first introduced in [3], consists in turning the problem of finding codewords of
small weight into the problem of finding a generalized cycle on an hypergraph. We describe
here the construction of the suitable hypergraph, adapting the construction from [3] to our
setting, and then we state the Lemma on hypergraphs given in [3] which completes the proof.

Let c∗, J , c∗j be defined as in Section 4. The aim is to show that, for any interleaver, it is
possible to find a suitable subset of the c∗j , with cardinality growing at most as c log N , such
that the corresponding output has weight smaller than KNβ log N .

Define a map σ : J → Z
do
f

δ by associating to an index j ∈ J a vector (σ1(j), . . . , σdo
f
(j)) in

the following way: if c∗j =
Pdo

f

m=1 Dtm (with tm increasing sequence) and π(Dtm

) = Dτm , then

σm(j) = τm mod δ. By the pigeonhole principle, clearly there exists U ⊆ J with |U | ≥
l

|J|
δ

do
f

m

such that σ(i) = σ(j) for all i, j ∈ U .
From now on, we shall consider only c∗j with j ∈ U . The idea is that, as all the ones in

these words are permuted to positions at a distance multiple of δ, when applying φi any pair
of them gives an output weight which is proportional to the distance within the input ones.
So, the aim is to find a subset of indexes S ⊆ U such that the corresponding cj ’s form pairs of
ones in such a way that we number of pairs grows at most logarithmically in N , and that the
distance within ones of the same pair grows at most as Nβ .

Now look at [MN ] = {0, . . . , MN − 1} and divide it in b intervals I1, . . . , Ib, each of length
⌊MN/b⌋ (except for a possibly longer one at the end); b is a parameter depending on N that
will be properly chosen later.

Define an hypergraph H = (V, E) in the following way. Take a do
f -partite vertex set V being

the union of do
f disjoint copies of W = {I1, . . . , Ib}. The set of hyperedges E has cardinality |U |

and is do
f -regular in the sense that E ⊆ W do

f , i.e. every hyperedge contains exactly one vertex
from each of the do

f copies of W . Any hyperedge in E corresponds to an index j ∈ U , and is

defined as e = (Ih1 , . . . , Ihdo
f
) ∈ W do

f where, denoting c∗j =
Pdo

f

m=1 Dtm as before, hm is such

that π(Dtm) ∈ Ihm .
Define the degree of a vertex in the hypergraph as the number of hyperedges that contain

that vertex. The following lemma holds true:

Lemma 6 ([3], Lemma 3) Given a k-partite, k-regular hypergraph (V, E) with b vertices in
each part, if 4b⌈k/2⌉ ≤ |E|, then there exists a non-empty subset S ⊂ E, with |S| ≤ k log b, such
that in the induced subhypergraph (V, S) every vertex has even degree (possibly zero). �

We shall show here that this lemma implies Theorem 2. In the above construction of the

hypergraph H , choose b such that 4bdo
f /2 ≤

l

1

δ
do
f

j

N
do
f

ηo

km

; this ensures 4bdo
f /2 ≤ |E| = |U |, so

that we can apply Lemma 6 and find the subset S. There is a bijection from S to a subset
S̃ ⊂ U : any s ∈ S corresponds to some c∗j , j ∈ S̃. Observe that c :=

P

j∈S̃ c∗j is clearly a
feasible output of the inner encoder. Then, φi,N (π(c)) is a possible output of the serial scheme.

By construction π(c) is composed of |S|do
f /2 pairs of 1’s. Each pair lives in the same interval

Ij and has distance a multiple of δ. Hence,

wH

`

φi
N (π(c))

´

≤ |S|do
f

2
di

e
N

b
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Finally use the bound on |S| which is the key contribution of Lemma 6: |S| ≤ do
f log b. By the

way b was chosen, this completes the proof of the claim. �

B Generalizing to the case of odd d
o
f

In this section, we discuss how one of the simplifying assumptions we made, i.e. that do
f be

even, can be removed. The reader is referred to [11] for further generalizations, in particular
the cases when the inner encoder has non-scalar input (s > 1), or is not proper-rational, and
the case when do

f = 2.
Throughout this section, we shall consider the case when do

f ≥ 3 is odd. Most of the results

extend to this case, and in particular we will prove that the growth rate for dmin
N is Nβ (Thm. 4).

First, notice that Lemmas 2 and 3 hold true without any modification. This allows one to
prove the following result, consisting in the analogous of Proposition 1 for odd do

f .

Proposition 4 For N → ∞, if d = o(Nβ), then

P(dmin
N ≤ d) = O

“

N1−⌈do
f /2⌉d⌈do

f /2⌉
”

+ O
“

N2−do
f ddo

f

”

Proof: From (1), by estimating the enumerating coefficients of the constituent encoders
with Lemmas 2 and 3, one gets:

P(dmin
N ≤ d) ≤

ηid
X

w=do
f

CwN⌊w/do
f ⌋−⌈w/2⌉d⌈w/2⌉ (14)

for some C > 0 depending on φo and φi, but neither on N nor d. Now, we shall separately
consider different terms. Write w = ado

f + b, with integers a ≥ 1, 0 ≤ b < do
f . Then, observe

that

N⌊w/do
f ⌋−⌈w/2⌉d⌈w/2⌉ =

8

<

:

`

d
N

´b/2
“

N1−do
f /2ddo

f /2
”a

if a + b is even
`

d
N

´
b+1
2

“

N1−do
f /2ddo

f /2
”a

if a + b is odd

As N → ∞, If d = o(Nβ), then N1−do
f /2ddo

f /2 → 0. Hence,
P

a(N1−do
f /2ddo

f /2)a converges for
all sufficiently large N . We may split the summation in (14) in the following four terms (with
the notation [do

f ] = {0, 1, . . . , do
f − 1}):

•
X

b∈[do
f ]

b even

„

d

N

«b/2
X

a∈Z
+

a even

“

N1−do
f /2ddo

f /2
”a

≤ c1N
2−do

f ddo
f

•
X

b∈[do
f ]

b odd

„

d

N

«b/2
X

a∈Z
+

a odd

“

N1−do
f /2ddo

f /2
”a

≤ c2

„

d

N

«1/2

N1−do
f /2ddo

f /2

•
X

b∈[do
f ]

b even

„

d

N

«
b+1
2 X

a∈Z
+

a odd

“

N1−do
f /2ddo

f /2
”a

≤ c3
d

N
N2−do

f ddo
f

•
X

b∈[do
f ]

b odd

„

d

N

«
b+1
2 X

a∈Z
+

a even

“

N1−do
f /2ddo

f /2
”a

≤ c4

„

d

N

«1/2

N1−do
f /2ddo

f /2
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for some constants c1, c2, c3, c4 > 0. Finally, the claim follows upon observing that d
N

N2−do
f ddo

f =

o
“

N2−do
f ddo

f

”

. �

More precise results highlighting the dependence on di
e as in Proposition 1 could be obtained,

as well a lower bound on the left tail of dmin
N analogous to Proposition 2. However, we shall not

pursue this direction here. Also, one may try to extend the deterministic upper bound on dmin
N .

It turns out that Theorem 2 holds true in the case when do
f is odd, with the growth parameter

β replaced by the larger parameter

β̃ := 1 − 1

⌈do
f /2⌉ = 1 − 2

do
f + 1

.

However, it is still possible to prove that Nβ is the actual growth rate of dmin
N , using a second-

order method, as shown below.

Theorem 4 Assume that do
f is odd. If d/Nβ → ∞, then P(dmin

N ≤ d) → 1.

Proof: We follow the same arguments used to prove the lower bound for the left tail of
the minimum distance distribution for even do

f . We fix an error event u∗ for φo having active
window [0, T − 1] for some T , and with an output c∗ = φou∗ such that wH(c∗) = do

f . We
consider I = {0, 1, . . . , N − 1 − do

f ηo} and error events c∗i = Dic∗ for i ∈ I . Assume that
N > T .

For i, j ∈ I , we define:

E∗
ij(d) :=



Π(c∗i ) =

do
f
X

t=1

Dbt and Π(c∗j ) =

do
f
X

t=1

Dbt+ltδ

for some 0 ≤ b1 < · · · < bdo
f
≤ MN , lt ≥ 1,

do
f
X

t=1

lt ≤
—

d

di
e

� ff

Now define the random variable Z :=
P

i,j∈I, i6=j 1E∗

ij
(d). Clearly

P(dmin
N ≤ d) ≥ P

“

[

i,j∈I, i6=j

E∗
ij(d)

”

= 1 − P(Z = 0)

A standard argument, consequence of Chebyshev’s inequality [1, Thm. 4.3.1], gives

P(Z = 0) ≤ E(Z2)

[E(Z)]2
− 1 ,

so that

P(dmin
N ≤ d) ≥ 2 − E(Z2)

[E(Z)]2
= 2 −

P

i,j,k,l∈I
i6=j,k 6=l

P
`

E∗
ij(d) ∩ E∗

kl(d)
´

»

P

i,j∈I
i6=j

P
`

E∗
ij(d)

´

–2 (15)

We now estimate the right hand term in a number of steps:

• a look at the proof of Lemma 4 (with w = 2do
f ), gives:

P
`

E∗
ij(d)

´

≥ 1
`

MN

2do
f

´

2do
f

(do
f )2do

f

M
do
f

N

—

d

di
e

�do
f
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• with a similar proof to Lemma 5 (i.e. using the same conditioning trick) you find that, if
i, j, k, l are all distinct:

P
`

E∗
ij(d) ∩ E∗

kl(d)
´

≤
`

MN

2do
f

´

`MN−2do
f

2do
f

´
P
`

E∗
ij(d)

´

P
`

E∗
kl(d)

´

• simple counting gives that, if i, j, k are all distinct,

P
`

E∗
ij(d) ∩ E∗

ik(d)
´

≤ 1
`

MN

3do
f

´

 

MN

do
f

! 

¨

d/di
e

˝

do
f

!2

and the same bound holds for P
`

E∗
ij(d) ∩ E∗

kj(d)
´

so that we can split the summation in Eq. (15) in the following terms:

•

P

i,j,k,l∈I
i,j,k,l distinct

P
`

E∗
ij(d) ∩ E∗

kl(d)
´

»

P

i,j∈I
i6=j

P
`

E∗
ij(d)

´

–2

N→∞−→ 1

•

P

i,j,k∈I
i,j,k distinct

ˆ

P
`

E∗
ij(d) ∩ E∗

ik(d)
´

+ P
`

E∗
ij(d) ∩ E∗

kj(d)
´˜

»

P

i,j∈I
i6=j

P
`

E∗
ij(d)

´

–2 ≤ c1
1

N

for some constant c1 > 0;

•

P

i,j∈I
i6=j

P
`

E∗
ij(d)

´

»

P

i,j∈I
i6=j

P
`

E∗
ij(d)

´

–2 ≤ c2
1

N
2−do

f d
do
f

= c2

„

Nβ

d

«do
f

for some constant c2 > 0.

This ends the proof. �
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The authors thank Rüdiger Urbanke for an interesting discussion on the topics of this paper.

References

[1] N. Alon, and J. Spencer, “The probabilistic method”, 3rd Ed., J. Wiley & Sons, Hoboken,
NJ, USA, 2008.

[2] A. Barg, and G. D. Forney, Jr., “Random codes: minimum distances and error exponents”,
IEEE Trans. Inf. Theory, vol. 48, pp. 2568–2573, 2002.

[3] L. Bazzi, M. Mahdian, and D.A. Spielman, “The Minimum Distance of Turbo-like Codes”,
IEEE Trans. Inf. Theory, vol. 55, pp. 6–15, 2009.

[4] S. Benedetto, D. Divsalar, G. Montorsi and F. Pollara, “Serial concatenation of interleaved
codes: Performance analysis, design and iterative decoding”, IEEE Trans. Inf. Theory,
vol. 44, pp. 909–926, 1998.

[5] S. Benedetto and G. Montorsi, “Design of parallel concatenated convolutional codes”,
IEEE Trans. Communicat., vol. 44, pp. 591–600, 1996.

20



[6] C. Berrou, A. Glavieux and P. Thitimajshima, “Near Shannon Limit Error-Correctiong
Coding and Decoding: Turbo Codes”, Proc. of ICC’93 (Genève, Switzerland), pp. 1064–
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