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Abstract-Information-theoretic lower bounds on the estima­
tion error are derived for problems of distributed computation. 
These bounds hold for a network attempting to compute a 
real-vector-valued function of the global information, when the 
nodes have access to partial information and can communicate 
through noisy transmission channels. The presented bounds 
are algorithm-independent, and improve on recent results by 
Ayaso et al., where the exponential decay rate of the mean 
square error was upper-bounded by the minimum normalized 
cut-set capacity. We show that, if the transmission channels 
are stochastic, the highest achievable exponential decay rate 
of the mean square error is in general strictly smaller than 
the minimum normalized cut-set capacity of the network. This 
is due to atypical channel realizations, which, despite their 
asymptotically vanishing probability, affect the error exponent. 

I. INTRODUCTION 

As large-scale networks have emerged -characterized by 
the lack of centralized access to information, and possibly 
time-varying topologies-, problems of distributed computation 
have received an increasing amount of attention by the re­
search community in the last few years. In these scenarios, 
large collections of agents -each having access to some 
partial information- aim at computing an application-specific 
function of the global information. The computation must 
be completely distributed, i.e. each agent can rely only on 
local observations, while iteratively processing the available 
information and communicating with the other agents. The 
main challenge in the design of such distributed computation 
systems is posed by the scarce energetic autonomy of the 
agents, which severely constrains both their computational and 
communication capabilities. In the present paper we shall fo­
cus on the latter and investigate the fundamental performance 
limitations of distributed computation algorithms on networks 
with noisy communication channels. 

Different models for problems of distributed computation 
over networks have been proposed in the information-theoretic 
literature: the reader is referred to [1] for an overview of 
the main research lines which have been developed. In this 
paper, we shall study the case of a network attempting to 
evaluate a real-vector-valued function of the global informa­
tion with increasing precision. The motivations for considering 
such a model mainly come from applications to distributed 
inference and control, as well as to opinion dynamics, where 
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the quantItIes of interest are very often continuous- rather 
than discrete-valued. As an example, one can consider the 
average consensus problem, which has been the object of 
recent extensive research: here, each node of the network has 
access to a real number -or possibly a vector- representing a 
noisy measurement of the same physical quantity, and the goal 
is to evaluate the arithmetic mean of all the measurements. 

The recent literature on distributed control and estimation 
problems with communication constraints has highlighted the 
centrality of delay. In fact, large delays can be detrimental for 
the overall system performance. For this reason, one of the 
main performance measures of distributed computation algo­
rithms is the speed of convergence to zero of the estimation 
error, i.e. of the distance between the value of the function to 
be evaluated and the estimate each node of the network has of 
it. In the recent work [2], which considers a framework very 
similar to the one studied here, it was shown that the mean 
square error of the nodes' estimates of the global function 
cannot decrease to zero at an exponential rate faster than the 
normalized capacity of the worst cut-set of the network. 

In the present paper, upper bounds will be proved for the ex­
ponential decay rate of the tails of the probability distribution 
of the error made by any node in the network in estimating 
a function of the global information. As a corollary, upper 
bounds on the exponential decay rate of arbitrary moments 
of the estimation error will be obtained. In particular, it will 
be shown that, for non-deterministic channels, the exponential 
decay rate of any moment of the error is bounded away from 
worst normalized cut-set capacity. The insufficiency of the 
Shannon capacity as a measure of the achievable performance 
stems from the atypical channel realizations which, despite 
their asymptotically vanishing probability, strongly impact the 
error rate. This observation is coherent with some of the 
available results in the literature on control and estimation 
with communication constraints [3], [4]. 

Our approach draws on techniques developed for upper 
bounds on the error exponent of fixed-length block-codes 
on discrete memoryless channels with feedback [5], [6], 
combined with a novel inequality playing the role of Fano's 
inequality in Euclidean spaces. Our arguments involve three 
main steps. First, an upper bound on the probability that 
two real-vector-valued random variables are within a certain 
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distance is derived in terms of their conditional entropy. 
Second, using network-information-theoretic techniques, the 
conditional entropy between a function of the global informa­
tion and the estimate any node of the network can have of it 
is bounded in terms of the mutual information across a cut­
set of the network. Finally, a change of probability measure 
argument is used in order to capture the large deviations of 
the channel behaviour. 

The remainder of this paper is organized as follows. In 
Sect. II a the problem is formally stated and the main results 
of the paper are presented. Sect. III contains two of the afore­
mentioned technical results: Sect. III-A presents a Fano-like 
inequality in Euclidean spaces, while Sect. III-B we discuss 
bounds for the conditional entropy across a cut-set. A change 
of probability measure argument is developed in Sect. IV-A, 
and subsequently applied in Sect. IV-B and Sect. IV-C in order 
to prove the main results. 

II. PROBLEM STATEMENT AND MAIN RESULTS 

In this section, we shall present a formal statement of the 
problem and anticipate the main results of the paper, to be 
proved in the following sections. 

We start by introducing a few notational conventions. The 
set of the first n naturals will be denoted by [n] : = {I, ... , n}. 
For subscript-indexed (respectively superscript-indexed) vector 
v = (Vi)iEZ (v = (v(i))iEZ), and a subset of indices S ~ I, 
Vs := (Vi)iES (v(S) = (v{i))iES) will denote the restriction 
of v to S. For two finite-valued random variables (r.v.) V, W, 
the entropy of V, the conditional entropy of V given W and 
their mutual information will be denoted by H(V), H(vIW) 
and J(V; W), respectively. The same notation will be used for 
continuous-valued random variables to denote their differential 
entropy, conditional entropy and mutual information. With a 
common abuse of notation, for a probability measure J..L on IRd 

H(J..L) will denote its differential entropy (whenever it exists); 
for x E [0,1], H(x) will denote the binary entropy of x. 

We shall consider a network consisting of a finite set of 
nodes V. Each node v has access to some local information, 
by observing a r.v. Wv ; the complete vector of observations 
will be denoted by W = (WV)VEV, The goal of the net­
work is to evaluate a function Z = f(W) of the global 
information in a distributed way, through successive rounds 
of computation/communication. At each time tEN, every 
node v E V transmits a signal X~v), and receives a signal 
~(v); X t = (X~v))VEV and yt = (~(v))VEV will denote 
the complete vectors of transmitted and received signals, 
respectively. The communication channel is represented by a 
stochastic kernel P(ylx) describing the probability that yt = y 
is received given that X t = x has been transmitted. The 
channel is assumed to be memoryless, i.e. yt is conditionally 
independent from W, X[t-l], y[t-l] given X t . Distributedness 
of the algorithm is then ensured by requiring that X~ v) depends 
only on the local information (WV , y(v))[t_l]) available at 
node v at the beginning of the t-th round of communication. 
Finally, at time t, each node v makes an estimate Z~v) of Z 

based on the local information (WV , 1[~1)) available at the end 
of the t-th round of communication. The performance of the 
distributed computation algorithm is measured in terms of the 
decay rate of the estimation errors of the nodes 

~~v):=IIZ~v)_ZII, VEV, (1) 

where II z II denotes the Euclidean norm of a vector z. 
More formally, we shall assume that the r.v. observed by 

node v, Wv , takes values in some measurable space Wv.1 

The a priori distribution of the complete observation vector 
W is described by an arbitrary probability measure J..Lw on 
the product space W := I1vEV Wv' The measure J..Lw need not 
have a product structure, so that the proposed model is able 
to handle the case of correlated observations. The function 

f: W --+lRd 

is assumed to be measurable. The transmitted (respectively 
received) signals X~v) (~(v) take values in a finite alphabet 
Xv (Yv); the complete channel input (output) alphabet will be 
denoted by X := I1vEV XV (Y := I1vEV Yv). The distributed 
algorithm consists of a sequence of encoders ~ = (¢~ v)) and 
a sequence of decoders \II = ('l/Jiv )), where 

",(v) W yt-l v 'f/t : v X v --+ rl.v , .,,(v) • W x yt --+ IRd 
'f/t . v v , 

are measurable functions, such that 

X(V)=",(V)(w: y;(v) ) Z(V)=.,,(V)(w: y;(V)) (2) 
t 'f/t v, [t-l]' t 'f/t v, [t] • 

Observe that the a priori measure J..Lw, the encoders' sequence 
~ and the channel P naturally define a joint probability 
measure JP' on the space n := W x yN, equipped with its 
standard product sigma-field A. All the r.v.s of interest can be 
though of as defined over (n, A, JP'). Throughout the paper the 
symbol IE will denote the expectation operator with respect to 
this probability space. We shall make the following assumption 
on J..Lw and f. 
Assumption 1. (a) H(ZIWs) < +00 for all S S;; V; 

(b) m:= 1E[lIZI12] < +00. 
In the rest of the paper bounds on the estimation error 

will be derived, which depend on the channel P, the a priori 
measure J..Lw, as well as the function f, and hold for any 
distributed algorithm (~, \II). Although some of the arguments 
which will be presented hold true for general memory less 
channels P( . I . ), we shall confine our discussion to channels 
which are adapted to some graph topology. More precisely, 
we shall consider a directed graph 9 = (V, t'), where 
t' ~ V2 \ {(v,v)lv E V} is a set of directed edges. To 
each edge e E t' a discrete memory less channel is associated, 
having finite input Xe, output Ye, and transition probabilities 
Pe(Ylx). Transmission is assumed to be independent among 
the different edges, so that 

Y = I1 Ye, 
eE£ 

iFor concreteness the reader may assume that WV = ~n for some n ~ d, 
though this assumption is not needed. Keeping this abstract setting allows to 
treat many different cases of relevant interest at once. 
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The bounds presented in this paper involve cut-set argu­
ments. Given a proper subset of nodes, 0 =F s ~ V, we 
imagine to have cut the graph 9 by an hypothetic boundary 
leaving nodes in S on left-hand side and nodes on se on the 
right-hand side. Consider the cut-set £s := S x se n £ of 
edges crossing this boundary from left to right, and the asso­
ciated memoryless channel, having input, output and transition 
probabilities respectively given by 

Xs:= II Xe, 
eEes 

Ys:= II Ye, Ps(ylx) = II Pe(Yelxe) . 
eEes eEes 

Let Qs be the class of all stochastic kernels with input Xs 
and output Y s. For Q E Qs, we shall denote by 

CQ := maxI (Xs, Ys) 

its Shannon capacity, and by 

D (QllPs) := max D (Q( 'lx)llPs( . Ix)) 
xEXs 

the maximal Kullback-Leiber divergence between the output 
distributions of Q and Ps. 

The main result of this paper consists in an upper bound on 
the exponential error decay of the estimation error. Define 

Es(R):= min{D(QllPs) I Q E Qs: CQ :::; R} ; (3) 

The quantity Es(R) coincides with the Dobrushin­
Haroutunian's bound on the error exponent of rate-R 
fixed-length block-codes with feedback on the channel Ps 
[6]. Let 

v E V,t EN. 

The following statement is proved in Sect. IV-B. 

Theorem 1. If Assumption 1 holds, 

(4) 

lim sup {-! 10gJP (r~V) ~ R)}:::; min Es(Rd) , (5) 
t t 0;6SS;;V: 

vES C 

for every node v E V. 

As a corollary of Theorem 1, it is possible to get, for all 
TJ > 0, an upper bound on the exponential decay rate of the 
average TJ-moment of the error: 

( )
1/1] 

A(1]).- 1 ~ [~(v)]1] 
t .- 1Vf L..J t 

vEV 
(6) 

Define 

(3~S):= min {~CQ + ~D(QllPs)}, 
QEQs 

(3 := min {(3(S)}. 1] 0;6SS;;V 1] 

The following result is proved in Sect. IV-C. 

Corollary 1. If Assumption 1 holds, 

limtsup -~ log A~1]) :::; (31] . 

(7) 

(8) 

A few comments are in order. First, observe that Assumption 
l(a) captures a fundamental feature of the distributed compu­
tation problem, namely that no proper subset of the nodes has 

enough information in order to compute Z = f(W). On the 
other end, Assumption l(b) is more of a technical nature: for 
instance it guarantees that H(Z) exists and is bounded from 
above by some finite constant (see Lemma 1). 

Second, observe that (3~S) :::; ~Cps' as can be easily seen 

by choosing Q = Ps in (7). In particular, (3~S) = ~Cps 
whenever Ps is a deterministic channel, i.e. when, for all x E 

Xs, Ps( 'Ix) = 0Yx for some Yx E Ys. Indeed, in this case, the 
only stochastic kernel Q E Qs such that D(QllPs) < +00 is 
Ps itself. Hence, for deterministic channels, Corollary 1 states 
that the exponential rate of the mean square error is upper­
bonded by lid times the capacity of the worst cut-set in the 
network. However, for channels that are not deterministic, it 
can be shown that (3~S) < ~Cs, i.e. the achievable exponential 
decay rate of the mean square error is strictly smaller than the 
normalized capacity of the worst cut-set in the network. In 
particular, for any non-deterministic channel Ps, it is not hard 
to see that 

lim (3(S) = O. 
1]-++00 1] 

(9) 

Equation (9) has to be interpreted as follows: the higher TJ, 
the more detrimental atypical channel realizations are for the 
system performance. 

III. A FIRST BOUND BASED ON THE CUT-SET CAPACITY 

A. A Fano-like inequality in Euclidean spaces 

We shall obtain a result which may be interpreted as 
a geometric analogous of Fano's inequality for real-vector­
valued r.v.s. 

Recall that Fano's inequality states that for two r.v.s Z, Z, 
taking values in a finite set Z, the probability p that Z = Z 
can be estimated in terms of the conditional entropy H(ZIZ) 
as follows: 

(1 - p) 10g(IZI - 1) + H(p) :::; H(ZIZ). (10) 

The proof of (10) relies on two basic properties of the discrete 
entropy function: its grouping property, and the fact that the 
entropy of a probability measure over a finite set is upper­
bounded by that of a uniform measure on that set. 

In the what follows, we wish to prove a similar result for 
two r.v.s W, W taking values in the d-dimensional Euclidean 
space ]Rd. Rather than estimating the probability that W and 
W coincide, 2 we shall look at the probability that the distance 
between W and W does not exceed some positive constant r. 
We shall estimate this probability in terms of the logarithm of 
the volume of a ball of radius r in ]Rd, and of the conditional 
entropy associated to the joint law of Z and Z. Beside the 
grouping property of the entropy functional, our proof relies on 
some variational properties of the entropy which are recalled 
in the following lemma. 

Lemma 1. Consider f..l E p(]Rd). Then: 

(a) if f..l is supported in some compact subset A ~ ]Rd, 

2However, see the remark following Lemma 2. 
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(b) 

with equality if and only if J.L is the uniform measure 
over A. 
if JlRd IlzI1 2dJ.L(z) :::; mdfor some m > 0, 

d 
H(J.L) :::; 2 log (27Tem) , 

with equality if and only if J.L is a homogeneous, zero­
mean, d-dimensional Gaussian measure. 

Lemma 2. Let Z and Z be two ]Rd-valued r.v.s, with joint 
probability law J.Lz,z, and such that 

m:= lE [IIZI12] < +00. 

For any r > 0, let Ar := {(z,2) : liz - 211:::; r} ~]Rd x ]Rd. 
Then, 

(11) 

h J .- 47re(2K )2/d . h K·- 7rd / 2 d . h were d.- d d , WIt d .- r(d/2+1) enotmg t e 
volume of a unitary ball in ]Rd. 3 

Remark: Notice that the assumption m < +00 implies that 
H(Z) < +00, and, a fortiori, H(ZIZ) < +00. Observe that 
(11) holds true also for r = 0: in this case, it implies that 
either J.L(Ar) = 0 or H(ZIZ) = -00. 

Prool Let J.Lz and J.Lzlz( ·IZ) be the marginal law of Z 
and the conditional law of Z given Z, respectively. 4 Since 
H(ZIZ) < +00, necessarily 

H (J.Lzlz( ·IZ)) < +00, J.Lz - a.s. 

For 2 E ]Rd, let us denote by Bz := {z : liz - 211 :::; r} c]Rd 
the closed ball centered in 2 of radius r, and let B~ := ]Rd\Bz. 
For 2 E ]Rd, let 

pz := J.Lzlz (BzI2) , qz := J.Lzlz (B~12) = 1 - pz , 

and define the probability measures vv, "tv E p(]Rd) by 

vz(A):= ~J.LZIZ(A n BzI2), "tz(A):= ~J.LZlz(AnB~12), 
pz qz 

for all Borel set A ~ ]Rd. By the grouping property of 
differential entropy, we have that 

H(pz) + pz H(vz) + qz H{"{z) . (12) 

Since Vz is supported on B z, Lemma 1 (a) allows one to 
estimate its entropy by that of a uniform measure on B z : 

(13) 

On the other hand, Lemma 1 (b) allows one to estimate the 

Now, observe that 

(15) 
=: mz · 

By combining formula (12) with the inequalities (13), (14) 
and (15), and using the fact that 

-x log x :::; H(x) :::; log 2 , \7'0:::; x:::; 1, 

we get that, J.Lz-almost surely, 

H(J.LzIZ( ·IZ)) =Pz H(vz ) + qz H{"{z) + H(pz) 

:::;Pz 10g(Kdrd ) + qz~ log 2:~~z + log 2 

:::;Pz logrd + ~ log (Jdmz) . 

Hence, Jensen's inequality implies that 

H(ZIZ)=lE[H(J.LZlz( ·IZ))] 

:::;lE [Pz] logrd + ~lE [log (Jdmz)] 

:::;J.L(Ar)1ogrd + ~log(Jdm), 

and the claim follows. 

B. Bounding the conditional entropy through a cut-set 

• 

Consider a non-trivial cut-set Es. For an arbitrary node on 
the right-hand side, v Ese, Lemma 2 can be applied in order 
to upper bound the left tails of the estimation error ~} v) in 
terms of the conditional entropy H(Zlziv )). The next natural 
step consists in deriving a lower bound on H(Zlziv )), a task 
which is accomplished below. The key idea, borrowed from 
standard cut-set arguments in network information theory [7, 
pagg. 587-594], consists in relaxing the problem, by assuming 
that all the nodes on the left-hand side of the cut can share 
instantaneous information among themselves in order to estab­
lish communication in the most efficient way with the nodes 
on the right-hand side, which in turn are able to distribute 
the received information instantaneously among themselves. 
These arguments lead to the proof of the following result. 

Lemma 3. Let Es be non-trivial cut-set. Then, 

H (zlziV)) ~ H (ZIWsc) - L I (Xy),yYC)IXYC)) , 
l::;j::;t 

(16) 
entropy of "tz with that of a zero-mean homogeneous Gaussian for every node v Ese, and all tEN. 
measure with the same second moment, obataining 

(14) 

3Here r( . ) denotes Euler's Gamma function. 
4Recall that tlzlz( ·IZ) is a random probability measure on JRd, which is 

well defined tl z -almost surely. 

Prool It is an immediate consequence of the assumption 
(2) that the vector xiSC ) of the signals transmitted by all the 
nodes on the left-hand side of the cut, is a function of the total 
information available to them (Wsc, Y[~~)11). Again from (2), 

it follows that the estimation ziv ) is a function of the total 
information (Wsc, Y[~r)) available at the right-hand side of 
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the cut. As a consequence, we have the following chain of 
(in)equalities: 

H (ZIZ}V)) 
(a) (A(V) ) > H ZIZt ,Wsc 

(

A (v) ) H(ZIWsc) - I Z; Zt IWsc 

(b) (SC)) > H(ZIWsc)-I W;Wsc,y[tj IWsc 

( (SC) ) H (ZIWsc) - I Ws; y[tj IWsc 

(c) ( • (SC) (SC)) 
- H(ZIWsc)- L I Ws,1j IWsc,y['_lj , 

l~j~t J 
(17) 

where: inequality (a) follows since conditioning does not 
increase entropy; inequality (b) is a consequence of the data 
processing inequality and the fact that Z = f(W) and Z}v) is 
a function of Wsc and Y[~r); equality (c) follows from the 
chain rule for mutual information. Now, for all 1 :::; j :::; t, we 
have that 

(18) 
where: equality (d) follows from the fact that, due to the 
assumptions of causality of the encoders and memorylessness 
of the channel, 1j(SC) is conditionally independent from W and 

Y/~~:j-l given Xj; inequality (e) follows form the fact that, 

as observed, XfC) is a function of Wsc and Y;\~?j' whereas 
removing the conditioning does not increase J{e entropy in 
the second term. Therefore, by combining (17) with (18), the 
claim (16) follows. • 

Observe that Lemma 3 holds for every memoryless channel 
P( ·1· ). Imposing the further constraint that P is adapted to 
some graph topology 9 allows one to bound the conditional 
mutual information terms I ( Xf); 1j(SC) IXdSC)), as in the 

following statement. 

Proposition 1. Let (S, SC) be a non-trivial cut, and v ESc. 
Then, for every tEN and r > 0, 

-1P' (~}V):::; r) logrd:::; tCs+~ log (Jdm)-H(ZIWsc) , (19) 

where Cps:= L Ce is the capacity of the cut-set Es. 
eEEs 

Prool By applying Lemmas 2 and 3, one gets, for every 
node v ESc, 

-1P' (~}V) :::; r) logrd :::; L I (xf) , YdSC)IXdSC)) + K, 

l~j~t 

where K:= -H(ZIWsc) + ~log(Jdm). Then, observe that, 
since YdSC ) is conditionally independent from XdSC ) given 
X~S), 

J 

I (X~S) y(SC)IX(SC)) = I (X(S) y~SC)) < Cs 
J'J J J'J -, 

the last inequality above following from the definition of cut­
set capacity as maximal mutual information between the input 
and output of the channels crossing the cut. • 

IV. UPPER BOUNDS ON THE ERROR EXPONENT 

A. A change of measure argument 

We shall now develop some arguments based on a change 
of measure. Recall that, a memoryless channel with input X, 
output y, and transition probabilities P, and a sequence of 
encoders ~ = {¢} v)} induce a probability measure IP' on n = 
w x yN. Now consider a stochastic kernel Q( . I . ), having the 
same input X and output y. The stochastic kernel Q, together 
with the encoder sequence of encoders ~, induces another 
probability measure on n, to be denoted by Q. 

The core idea consists in finding a relationship between the 
probability of an event A measured by IP' and that measured by 
Q, by proving a large deviations bound on the channel behav­
ior. In doing that, the stochastic kernel Q should be interpreted 
as a conditional empirical distribution of the channel output 
sequence (Yt) given (Xt ). 

Let us assume that, for all input symbols x E X, Q( ·Ix) is 
absolutely continuous with respect to P( . Ix), so that 

.- {I Q(ylx) I I . } AQ .- max log P(ylx) x, y. P(ylx) > ° < +00, 
(20) 

and, a fortiori, 

~ Q(ylx) 
D(QIIP) := ~~ L.,., Q(ylx) log P(ylx) < +00. 

y 

Lemma 4. For tEN, let A E A be an event measurable 
with respect to (W, Yl). Then, for all a > 1 and e > 
J (a - 1 )8A~, it holds 

IP'(A) ~ 21/ 1- a Q(A)a exp (-t[D( QIIP) + eD , 

where a is such that i- + ~ = 1. 

Prool Let us consider the r.v. 

Y ._ Q¥itJ!w(y[tjIW) 
t .- lP'¥itllw(y[tjIW) . 

From Holder's inequality, it follows that 

Q(A) IEQ [:D.Al 

IE [:D.AYtl 

< IE[Yfll/alE[:D.~]l/a 

IE [Yfl 1/ a IP'(A)l/a. 

(21) 
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We now look for an upper bound on IE [Tf]. To this end, 
observe that 

where IEQ denotes the expectation operator on the probability 
space (n, A, IQ). For all 1 ~ j ~ t, we consider the a-field 
Aj := a(W, YU))' and the r.v.s 

3 j := D(Q( ·IXj)IIP( ·IXj )) , 

IQ(YU)IW) ~~ 
Mj := log IP'(Yr. IW) - ~':'i' 

U) i=l 

Let us also define Ao := a(W), and Mo == 0. Then, (Mj)j~o 
is a martingale on the filtrated probability space (n, (Aj), IQ). 
Indeed, it is easily verified that, for all s ~ 0, Mj is Ar 
measurable, and that 

[M · IA·] M·-IE [1 Q(Y:i+ 1 Iw ,Yjj))IA']_';:;" -0 IEQ 3+1 3 - 3 - Q og IP'(Yj+llw,Yjj)) 3 ~3+1 - . 

Moreover, since the channel transition probabilities Q( 'Ix) are 
absolutely continuous with respect to P( 'Ix) for all x E X, 
we have that 

1M· M· 1<11 Q(YjIXj) I +';:;'. < 2' 3 - 3-1 - og p(Yjlxj) ~3 _ AQ, 

so that (Mj ) has uniformly bounded increments. Hence, we 
can apply the Hoeffding-Azuma inequality [8] obtaining that 

IQ(Mt ~ etl W) = IQ(Mt ~ Mo +etl W) ~ exp ( -t8~2~) . 

Now, observe that, since 

L 3 j ~tD(QIIP), 
15j5,t 

the IQ-probability of the event 

E:= {Tt ~ exp(t[D(QIIP) +e])} 

can be estimated as follows: 

IQ (E) ~ IQ (Mt ~ et) ~ exp ( -t 8~2~) 
Hence, we obtain, for {3:= a-I, 

IE [Tf] = IEQ [Tf] 
= IEQ [TfllE] + IEQ [TfllEc] 
~ exp ((3tAQ) IQ(E) + exp ({3t[D( QIIP) + e]) )IQ(EC ) 

~ exp (-t [~ - (3AQ]) + exp ((3t[D(QIIP) + e]) 

~ exp ((3t[D(QIIP) + e]) [1 + exp (-t [e2~~rQ])] 
~ exp ((3t[D(QIIP) + e]) 2, 

(22) 
2 

the last inequality following since b- > (3AQ. Then, the 
Q 

claim follows by substituting (22) into (21). • 

B. Proof of Theorem 1 

We are now ready to prove the main result. Given a node 
v E V, and a non-trivial cut-set £s such that v ESc, applying 
Proposition 1 to some stochastic kernel Q E Qs leads to an 
upper bound on the left IQ-tail of the estimation error ~~v). 
Then, Lemma 4 allows one to recover an upper bound on the 
left lP'-tail of ~~v), which is stated below. 

Proposition 2. For a node v E V, consider a non-trivial cut­
set £s such that v ESc, and a stochastic kernel E Qs. 
Then, for every 0< r < 1, a> 1 and e > (a - 1)8A~, it 

holds 

IP' (~~V) > r) ~ O~a) exp (-t[D( QIIP) + e]) , 

where 

O(a) := 21~a (1 _ tCQ - H(ZIWsc) + ~ log (Jdm))O 
t -logrd 

We can now prove Theorem 1. For a given R > 0, fix 
8 > ° and choose a stochastic kernel Q E Qs such that 
CQ ~ d(R - 8). Clearly, for any a > 1, 

821~a 
limtinf{O~a)} ~ CQ+8 >0. 

Then, Proposition 2 implies that, for all e > V,....( a---l-)-A-~-8, 

D(QIIP) + e D(QIIP) + e + limtsup {-t 10gO~a)} 

> limtsup{-tloglP'(r~V) <R)}. 
(23) 

From the arbitrariness of the choice of the constants a and e, 
and of the stochastic kernel Q E Qs, it follows that 

limtsup{ -~IOglP'(r~V) < R))} ~ Es(R-8). 

Finally, (5) follows from the arbitrariness of 8 > ° and the 
continuity of the exponent Es(R) as a function of R. 

C. Proof of Corollary 1 

Let Sand Q E Qs be, respectively, the minimizing cut-set 
and stochastic kernel in (7). For 8 > 0, we have that 

(A~1J)r fvr L IE [(~~U))1J] 
uEV 

> fvrIE [(~~U))1J] 

> IP' (r~U) < ~(CQ + 8)) exp( -t~(CQ + 8)). 
(24) 

As in (23) one gets that 

lim SUp { -t 10glP' (r~u) < ~(CQ + 8)) } ~ D(QIIP) + e. 

t 05) 
Then, (24) and (25) imply that 

limtsup {-t 10gA~1J)} ~ ~(CQ + 8) + ~ (D(QIIP) + e) . 

Finally, (8) follows from the arbitrariness of the choices of 

8> 0, a> 0, and e > v(a -1)A~8. 

Authorized licensed use limited to: MIT Libraries. Downloaded on October 14, 2009 at 16:37 from IEEE Xplore.  Restrictions apply. 



V. CONCLUSION 

Upper bounds on the error exponent have been presented for 

problems of distributed computation of a real-vector-valued 

function on a network with noisy communication channels. 
It has been shown that, on non-deterministic channels, the 

exponential decay rate of any moment of the estimation error is 

strictly smaller than the capacity of the worst cut-set capacity. 
Current research includes understanding how these bounds 

affect scaling limits of large networks, and proving tighter 

bounds for cases when the system dynamics cannot be fully 

designed but rather it is partially given. 
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