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Abstract—Information-theoretic lower bounds on the estima-
tion error are derived for problems of distributed computat ion.
These bounds hold for a network attempting to compute a
real-vector-valued function of the global information, when the
nodes have access to partial information and can communicate
through noisy transmission channels. The presented bounds
are algorithm-independent, and improve on recent results by
Ayaso et al., where the exponential decay rate of the mean
square error was upper-bounded by the minimum normalized
cut-set capacity. We show that, if the transmission channels
are stochastic, the highest achievable exponential decay rate
of the mean square error is in general strictly smaller than
the minimum normalized cut-set capacity of the network. This
is due to atypical channel realizations, which, despite their
asymptotically vanishing probability, affect the error exponent.

I. I NTRODUCTION

As large-scale networks have emerged –characterized by
the lack of centralized access to information, and possibly
time-varying topologies–, problems of distributed computation
have received an increasing amount of attention by the re-
search community in the last few years. In these scenarios,
large collections of agents –each having access to some
partial information– aim at computing an application-specific
function of the global information. The computation must
be completely distributed, i.e. each agent can rely only on
local observations, while iteratively processing the available
information and communicating with the other agents. The
main challenge in the design of such distributed computation
systems is posed by the scarce energetic autonomy of the
agents, which severely constrains both their computational and
communication capabilities. In the present paper we shall fo-
cus on the latter and investigate the fundamental performance
limitations of distributed computation algorithms on networks
with noisy communication channels.

Different models for problems of distributed computation
over networks have been proposed in the information-theoretic
literature: the reader is referred to [1] for an overview of
the main research lines which have been developed. In this
paper, we shall study the case of a network attempting to
evaluate a real-vector-valued function of the global informa-
tion with increasing precision. The motivations for considering
such a model mainly come from applications to distributed
inference and control, as well as to opinion dynamics, where

the quantities of interest are very often continuous- rather
than discrete-valued. As an example, one can consider the
average consensus problem, which has been the object of
recent extensive research: here, each node of the network has
access to a real number –or possibly a vector– representing a
noisy measurement of the same physical quantity, and the goal
is to evaluate the arithmetic mean of all the measurements.

The recent literature on distributed control and estimation
problems with communication constraints has highlighted the
centrality of delay. In fact, large delays can be detrimental for
the overall system performance. For this reason, one of the
main performance measures of distributed computation algo-
rithms is the speed of convergence to zero of the estimation
error, i.e. of the distance between the value of the functionto
be evaluated and the estimate each node of the network has of
it. In the recent work [2], which considers a framework very
similar to the one studied here, it was shown that the mean
square error of the nodes’ estimates of the global function
cannot decrease to zero at an exponential rate faster than the
normalized capacity of the worst cut-set of the network.

In the present paper, upper bounds will be proved for the ex-
ponential decay rate of the tails of the probability distribution
of the error made by any node in the network in estimating
a function of the global information. As a corollary, upper
bounds on the exponential decay rate of arbitrary moments
of the estimation error will be obtained. In particular, it will
be shown that, for non-deterministic channels, the exponential
decay rate of any moment of the error is bounded away from
worst normalized cut-set capacity. The insufficiency of the
Shannon capacity as a measure of the achievable performance
stems from the atypical channel realizations which, despite
their asymptotically vanishing probability, strongly impact the
error rate. This observation is coherent with some of the
available results in the literature on control and estimation
with communication constraints [3], [4].

Our approach draws on techniques developed for upper
bounds on the error exponent of fixed-length block-codes
on discrete memoryless channels with feedback [5], [6],
combined with a novel inequality playing the role of Fano’s
inequality in Euclidean spaces. Our arguments involve three
main steps. First, an upper bound on the probability that
two real-vector-valued random variables are within a certain



distance is derived in terms of their conditional entropy.
Second, using network-information-theoretic techniques, the
conditional entropy between a function of the global informa-
tion and the estimate any node of the network can have of it
is bounded in terms of the mutual information across a cut-
set of the network. Finally, a change of probability measure
argument is used in order to capture the large deviations of
the channel behaviour.

The remainder of this paper is organized as follows. In
Sect. II a the problem is formally stated and the main results
of the paper are presented. Sect. III contains two of the afore-
mentioned technical results: Sect. III-A presents a Fano-like
inequality in Euclidean spaces, while Sect. III-B we discuss
bounds for the conditional entropy across a cut-set. A change
of probability measure argument is developed in Sect. IV-A,
and subsequently applied in Sect. IV-B and Sect. IV-C in order
to prove the main results.

II. PROBLEM STATEMENT AND MAIN RESULTS

In this section, we shall present a formal statement of the
problem and anticipate the main results of the paper, to be
proved in the following sections.

We start by introducing a few notational conventions. The
set of the firstn naturals will be denoted by[n] := {1, . . . , n}.
For subscript-indexed (respectively superscript-indexed) vector
v = (vi)i∈I (v = (v(i))i∈I ), and a subset of indicesS ⊆ I,
vS := (vi)i∈S (vS = (v(i))i∈S) will denote the restriction of
v to S. For two finite-valued random variables (r.v.)V,W ,
the entropy ofV , the conditional entropy ofV givenW and
their mutual information will be denoted byH(V ), H(V |W )
andI(V ;W ), respectively. The same notation will be used for
continuous-valued random variables to denote their differential
entropy, conditional entropy and mutual information. Witha
common abuse of notation, for a probability measureµ on Rd

H(µ) will denote its differential entropy (whenever it exists);
for x ∈ [0, 1], H(x) will denote the binary entropy ofx.

We shall consider a network consisting of a finite set of
nodesV . Each nodev has access to some local information,
by observing a r.v.Wv; the complete vector of observations
will be denoted byW = (Wv)v∈V . The goal of the net-
work is to evaluate a functionZ = f(W ) of the global
information in a distributed way, through successive rounds
of computation/communication. At each timet ∈ N, every
node v ∈ V transmits a signalX(v)

t , and receives a signal
Y

(v)
t ; Xt = (X

(v)
t )v∈V and Yt = (Y

(v)
t )v∈V will denote

the complete vectors of transmitted and received signals,
respectively. The communication channel is represented bya
stochastic kernelP (y|x) describing the probability thatYt = y
is received given thatXt = x has been transmitted. The
channel is assumed to be memoryless, i.e.Yt is conditionally
independent fromW,X[t−1], Y[t−1] givenXt. Distributedness

of the algorithm is then ensured by requiring thatX
(v)
t depends

only on the local information(Wv, Y
(v))[t−1]) available at

nodev at the beginning of thet-th round of communication.
Finally, at timet, each nodev makes an estimatêZ(v)

t of Z

based on the local information(Wv, Y
(v)
[t] ) available at the end

of the t-th round of communication. The performance of the
distributed computation algorithm is measured in terms of the
decay rate of the estimation errors of the nodes

∆
(v)
t :=

∣

∣

∣

∣Z
(v)
t − Z

∣

∣

∣

∣ , v ∈ V , (1)

where||z|| denotes the Euclidean norm of a vectorz.
More formally, we shall assume that the r.v. observed by

nodev, Wv , takes values in some measurable spaceWv.1

The a priori distribution of the complete observation vector
W is described by an arbitrary probability measureµW on
the product spaceW :=

∏

v∈V Wv. The measureµW need not
have a product structure, so that the proposed model is able
to handle the case of correlated observations. The function

f : W → Rd

is assumed to be measurable. The transmitted (respectively
received) signalsX(v)

t (Y (v)
t ) take values in a finite alphabet

Xv (Yv); the complete channel input (output) alphabet will be
denoted byX :=

∏

v∈V Xv (Y :=
∏

v∈V Yv). The distributed

algorithm consists of a sequence of encodersΦ = (φ
(v)
t ) and

a sequence of decodersΨ = (ψ
(v)
t ), where

φ
(v)
t : Wv × Yt−1

v → Xv , ψ
(v)
t : Wv × Yt

v → Rd ,

are measurable functions, such that

X
(v)
t =φ

(v)
t

(

Wv, Y
(v)
[t−1]

)

, Z
(v)
t =ψ

(v)
t

(

Wv, Y
(v)
[t]

)

. (2)

Observe that the a priori measureµW , the encoders’ sequence
Φ and the channelP naturally define a joint probability
measureP on the spaceΩ := W × YN, equipped with its
standard product sigma-fieldA. All the r.v.s of interest can be
though of as defined over(Ω,A,P). Throughout the paper the
symbolE will denote the expectation operator with respect to
this probability space. We shall make the following assumption
on µW andf .

Assumption 1. (a) H(Z|WS) < +∞ for all S ( V;
(b) m := E[||Z||2] < +∞.

In the rest of the paper bounds on the estimation error
will be derived, which depend on the channelP , the a priori
measureµW , as well as the functionf , and hold for any
distributed algorithm(Φ,Ψ). Although some of the arguments
which will be presented hold true for general memoryless
channelsP ( · | · ), we shall confine our discussion to channels
which are adapted to some graph topology. More precisely,
we shall consider a directed graphG = (V , E), where
E ⊆ V2 \ {(v, v)|v ∈ V} is a set of directed edges. To
each edgee ∈ E a discrete memoryless channel is associated,
having finite inputXe, outputYe, and transition probabilities
Pe(y|x). Transmission is assumed to be independent among
the different edges, so that

X =
∏

e∈E
Xe , Y =

∏

e∈E
Ye , P (y|x) =

∏

e∈E
Pe(ye|xe) .

1For concreteness the reader may assume thatWv = Rn for somen ≥ d,
though this assumption is not needed. Keeping this abstractsetting allows to
treat many different cases of relevant interest at once.



The bounds presented in this paper involve cut-set argu-
ments. Given a proper subset of nodes,∅ 6= S ( V , we
imagine to have cut the graphG by an hypothetic boundary
leaving nodes inS on left-hand side and nodes onSc on the
right-hand side. Consider the cut-setES := S × Sc ∩ E of
edges crossing this boundary from left to right, and the asso-
ciated memoryless channel, having input, output and transition
probabilities respectively given by

XS :=
∏

e∈ES

Xe , YS :=
∏

e∈ES

Ye , PS(y|x) =
∏

e∈ES

Pe(ye|xe) .

Let QS be the class of all stochastic kernels with inputXS

and outputYS . ForQ ∈ QS , we shall denote by

CQ := max I (XS , YS)

its Shannon capacity, and by

D (Q||PS) := max
x∈XS

D (Q( · |x)||PS( · |x))

the maximal Kullback-Leiber divergence between the output
distributions ofQ andPS .

The main result of this paper consists in an upper bound on
the exponential error decay of the estimation error. Define

ES(R) := min {D (Q||PS) |Q ∈ QS : CQ ≤ R} ; (3)

The quantity ES(R) coincides with the Dobrushin-
Haroutunian’s bound on the error exponent of rate-R
fixed-length block-codes with feedback on the channelPS

[6]. Let

Γ
(v)
t := −

1

t
log ∆

(v)
t , v ∈ V , t ∈ N . (4)

The following statement is proved in Sect. IV-B.

Theorem 1. If Assumption 1 holds,

lim sup
t

{

−
1

t
log P

(

Γ
(v)
t ≥ R

)

}

≤ min
∅6=S(V:

v∈Sc

ES(Rd) , (5)

for every node v ∈ V .

As a corollary of Theorem 1, it is possible to get, for all
η > 0, an upper bound on the exponential decay rate of the
averageη-moment of the error:

Λ
(η)
t :=

(

1
|V|

∑

v∈V

[

∆
(v)
t

]η
)1/η

. (6)

Define

β
(S)
η := min

Q∈QS

{

1
dCQ + 1

ηD(Q||PS)
}

, βη := min
∅6=S(V

{

β
(S)
η

}

.

(7)
The following result is proved in Sect. IV-C.

Corollary 1. If Assumption 1 holds,

lim sup
t

−
1

t
log Λ

(η)
t ≤ βη . (8)

A few comments are in order. First, observe that Assumption
1(a) captures a fundamental feature of the distributed compu-
tation problem, namely that no proper subset of the nodes has

enough information in order to computeZ = f(W ). On the
other end, Assumption 1(b) is more of a technical nature: for
instance it guarantees thatH(Z) exists and is bounded from
above by some finite constant (see Lemma 1).

Second, observe thatβ(S)
η ≤ 1

dCPS
, as can be easily seen

by choosingQ = PS in (7). In particular,β(S)
η = 1

dCPS

wheneverPS is a deterministic channel, i.e. when, for allx ∈
XS , PS( · |x) = δyx for someyx ∈ YS . Indeed, in this case, the
only stochastic kernelQ ∈ QS such thatD(Q||PS) < +∞ is
PS itself. Hence, for deterministic channels, Corollary 1 states
that the exponential rate of the mean square error is upper-
bonded by1/d times the capacity of the worst cut-set in the
network. However, for channels that are not deterministic,it
can be shown thatβ(S)

η < 1
dCS , i.e. the achievable exponential

decay rate of the mean square error is strictly smaller than the
normalized capacity of the worst cut-set in the network. In
particular, for any non-deterministic channelPS , it is not hard
to see that

lim
η→+∞

β(S)
η = 0 . (9)

Equation (9) has to be interpreted as follows: the higherη,
the more detrimental atypical channel realizations are forthe
system performance.

III. A FIRST BOUND BASED ON THE CUT-SET CAPACITY

A. A Fano-like inequality in Euclidean spaces

We shall obtain a result which may be interpreted as
a geometric analogous of Fano’s inequality for real-vector-
valued r.v.s.

Recall that Fano’s inequality states that for two r.v.sZ, Ẑ,
taking values in a finite setZ, the probabilityp that Ẑ = Z
can be estimated in terms of the conditional entropyH(Z|Ẑ)
as follows:

(1 − p) log(|Z| − 1) + H(p) ≤ H(Z|Ẑ) . (10)

The proof of (10) relies on two basic properties of the discrete
entropy function: its grouping property, and the fact that the
entropy of a probability measure over a finite set is upper-
bounded by that of a uniform measure on that set.

In the what follows, we wish to prove a similar result for
two r.v.sW, Ŵ taking values in thed-dimensional Euclidean
spaceRd. Rather than estimating the probability thatW and
Ŵ coincide,2 we shall look at the probability that the distance
betweenW andŴ does not exceed some positive constantr.
We shall estimate this probability in terms of the logarithmof
the volume of a ball of radiusr in Rd, and of the conditional
entropy associated to the joint law of̂Z and Z. Beside the
grouping property of the entropy functional, our proof relies on
some variational properties of the entropy which are recalled
in the following lemma.

Lemma 1. Consider µ ∈ P(Rd). Then:

(a) if µ is supported in some compact subset A ⊆ Rd,

H(µ) ≤ logλd(A) ,

2However, see the remark following Lemma 2.



with equality if and only if µ is the uniform measure
over A.

(b) if
∫

Rd ||z||
2dµ(z) ≤ md for some m > 0,

H(µ) ≤
d

2
log (2πem) ,

with equality if and only if µ is a homogeneous, zero-
mean, d-dimensional Gaussian measure.

Lemma 2. Let Z and Ẑ be two Rd-valued r.v.s, with joint
probability law µZ,Ẑ , and such that

m := E
[

||Z||2
]

< +∞ .

For any r > 0, let Ar := {(z, ẑ) : ||z − ẑ|| ≤ r} ⊆ Rd × Rd.
Then,

µ(Ar) log rd +
d

2
log (Jdm) ≥ H

(

Z|Ẑ
)

. (11)

where Jd := 4πe
d (2Kd)

2/d, with Kd := πd/2

Γ(d/2+1) denoting the
volume of a unitary ball in Rd. 3

Remark: Notice that the assumptionm < +∞ implies that
H(Z) < +∞, and, a fortiori,H(Z|Ẑ) < +∞. Observe that
(11) holds true also forr = 0: in this case, it implies that
eitherµ(Ar) = 0 or H(Z|Ẑ) = −∞.

Proof: Let µẐ andµZ|Ẑ( · |Z) be the marginal law of̂Z

and the conditional law ofZ given Ẑ, respectively.4 Since
H(Z|Ẑ) < +∞, necessarily

H
(

µZ|Ẑ( · |Ẑ)
)

< +∞ , µẐ − a.s.

For ẑ ∈ Rd, let us denote byBẑ := {z : ||z − ẑ|| ≤ r} ⊂ Rd

the closed ball centered in̂z of radiusr, and letBc
ẑ := Rd\Bẑ.

For ẑ ∈ Rd, let

pẑ := µZ|Ẑ (Bẑ|ẑ) , qẑ := µZ|Ẑ (Bc
ẑ|ẑ) = 1 − pẑ ,

and define the probability measuresνv̂, γv̂ ∈ P(Rd) by

νẑ(A) :=
1

pẑ
µZ|Ẑ(A ∩Bẑ |ẑ) , γẑ(A) :=

1

qẑ
µZ|Ẑ(A∩Bc

ẑ |ẑ) ,

for all Borel set A ⊆ Rd. By the grouping property of
differential entropy, we have that

H(pẑ) + pẑ H(νẑ) + qẑ H(γẑ) . (12)

Sinceνẑ is supported onBẑ , Lemma 1 (a) allows one to
estimate its entropy by that of a uniform measure onBẑ:

H(νẑ) ≤ log Vol(Bẑ) = log
(

Kdr
d
)

. (13)

On the other hand, Lemma 1 (b) allows one to estimate the
entropy ofγẑ with that of a zero-mean homogeneous Gaussian
measure with the same second moment, obataining

H(γẑ) ≤
d

2
log

(

2πe

d

∫

Rd

||z||2dγẑ(z)

)

. (14)

3HereΓ( · ) denotes Euler’s Gamma function.
4Recall thatµ

Z|Ẑ ( · |Z) is a random probability measure onRd, which is
well definedµ

Ẑ
-almost surely.

Now, observe that

qẑ

∫

Rd

||z||2dγẑ(z) =

∫

Bc
ẑ

||z||2dµZ|Ẑ(z|ẑ)

≤

∫

Rd

||z||2dµZ|Ẑ(z|ẑ) =: mẑ .
(15)

By combining formula (12) with the inequalities (13), (14)
and (15), and using the fact that

−x log x ≤ H(x) ≤ log 2 , ∀ 0 ≤ x ≤ 1 ,

we get that,µẐ -almost surely,

H(µZ|Ẑ( · |Ẑ)) = pẐ H(νẐ) + qẐ H(γẐ) + H(pẐ)

≤ pẐ log(Kdr
d) + qẐ

d
2 log

2πemẐ

dqẐ
+ log 2

≤ pẐ log rd + d
2 log

(

JdmẐ

)

.

Hence, Jensen’s inequality implies that

H
(

Z|Ẑ
)

= E
[

H
(

µZ|Ẑ

(

· |Ẑ
))

]

≤E
[

pẐ

]

log rd + d
2E
[

log
(

JdmẐ

)]

≤µ(Ar) log rd + d
2 log (Jdm) ,

and the claim follows.

B. Bounding the conditional entropy through a cut-set

Consider a non-trivial cut-setES . For an arbitrary node on
the right-hand side,v ∈ Sc, Lemma 2 can be applied in order
to upper bound the left tails of the estimation error∆

(v)
t in

terms of the conditional entropyH(Z|Ẑ
(v)
t ). The next natural

step consists in deriving a lower bound onH(Z|Ẑ
(v)
t ), a task

which is accomplished below. The key idea, borrowed from
standard cut-set arguments in network information theory [7,
pagg. 587-594], consists in relaxing the problem, by assuming
that all the nodes on the left-hand side of the cut can share
instantaneous information among themselves in order to estab-
lish communication in the most efficient way with the nodes
on the right-hand side, which in turn are able to distribute
the received information instantaneously among themselves.
These arguments lead to the proof of the following result.

Lemma 3. Let ES be non-trivial cut-set. Then,

H
(

Z|Ẑ
(v)
t

)

≥ H(Z|WSc) −
∑

1≤j≤t

I
(

X
(S)
j ,Y

(Sc)
j |X

(Sc)
j

)

,

(16)
for every node v ∈ Sc, and all t ∈ N.

Proof: It is an immediate consequence of the assumption
(2) that the vectorX(Sc)

t of the signals transmitted by all the
nodes on the left-hand side of the cut, is a function of the total
information available to them

(

WSc , Y
(S)
[t−1]

)

. Again from (2),

it follows that the estimation̂Z(v)
t is a function of the total

information
(

WSc , Y
(Sc)
[t]

)

available at the right-hand side of



the cut. As a consequence, we have the following chain of
(in)equalities:

H
(

Z|Ẑ
(v)
t

)

(a)

≥ H
(

Z|Ẑ
(v)
t ,WSc

)

= H(Z|WSc) − I
(

Z; Ẑ
(v)
t |WSc

)

(b)

≥ H(Z|WSc) − I
(

W ;WSc , Y
(Sc)
[t] |WSc

)

= H(Z|WSc) − I
(

WS ;Y
(Sc)
[t] |WSc

)

(c)
= H(Z|WSc) −

∑

1≤j≤t

I
(

WS ;Y
(Sc)
j |WSc , Y

(Sc)
[j−1]

)

,

(17)
where: inequality(a) follows since conditioning does not
increase entropy; inequality(b) is a consequence of the data
processing inequality and the fact thatZ = f(W ) andẐ(v)

t is
a function ofWSc andY (Sc)

[t] ; equality (c) follows from the
chain rule for mutual information. Now, for all1 ≤ j ≤ t, we
have that

I
(

X
(S)
j ;Y

(Sc)
j |X

(Sc)
j

)

(d)
= I

(

Y
(Sc)
j ;X

(S)
j

∣

∣WSc , Y
(Sc)
[j−1], X

(Sc)
j

)

= H
(

Y
(Sc)
j

∣

∣WSc , Y
(Sc)
[j−1], X

(Sc)
j

)

−H
(

Y
(Sc)
j

∣

∣W,Y
(Sc)
[j−1], Xj

)

(e)

≥ H
(

Y
(Sc)
j

∣

∣WSc , Y
(Sc)
[j−1]

)

− H
(

Y
(Sc)
j

∣

∣W,Y
(Sc)
[j−1]

)

= I
(

WS ;Y
(Sc)
j |WSc , Y

(Sc)
[j−1]

)

,

(18)
where: equality(d) follows from the fact that, due to the
assumptions of causality of the encoders and memorylessness
of the channel,Y (Sc)

j is conditionally independent fromW and

Y
(Sc)
1,...,j−1 givenXj ; inequality (e) follows form the fact that,

as observed,X(Sc)
j is a function ofWSc andY (Sc)

[j−1], whereas
removing the conditioning does not increase the entropy in
the second term. Therefore, by combining (17) with (18), the
claim (16) follows.

Observe that Lemma 3 holds for every memoryless channel
P ( · | · ). Imposing the further constraint thatP is adapted to
some graph topologyG allows one to bound the conditional
mutual information termsI

(

X
(S)
j ;Y

(Sc)
j |X

(Sc)
j

)

, as in the
following statement.

Proposition 1. Let (S,Sc) be a non-trivial cut, and v ∈ Sc.
Then, for every t ∈ N and r > 0,

−P
(

∆
(v)
t ≤ r

)

log rd≤ tCS+
d

2
log (Jdm)−H(Z|WSc) , (19)

where CPS
:=

∑

e∈ES

Ce is the capacity of the cut-set ES .

Proof: By applying Lemmas 2 and 3, one gets, for every
nodev ∈ Sc,

−P
(

∆
(v)
t ≤ r

)

log rd ≤
∑

1≤j≤t

I
(

X
(S)
j ,Y

(Sc)
j |X

(Sc)
j

)

+K ,

whereK := −H(Z|WSc) + d
2 log(Jdm). Then, observe that,

sinceY
(Sc)
j is conditionally independent fromX(Sc)

j given

X
(S)
j ,

I
(

X
(S)
j ,Y

(Sc)
j |X

(Sc)
j

)

= I
(

X
(S)
j ,Y

(Sc)
j

)

≤ CS ,

the last inequality above following from the definition of cut-
set capacity as maximal mutual information between the input
and output of the channels crossing the cut.

IV. U PPER BOUNDS ON THE ERROR EXPONENT

A. A change of measure argument

We shall now develop some arguments based on a change
of measure. Recall that, a memoryless channel with inputX ,
output Y, and transition probabilitiesP , and a sequence of
encodersΦ = {φ

(v)
t } induce a probability measureP on Ω =

W×YN. Now consider a stochastic kernelQ( · | · ), having the
same inputX and outputY. The stochastic kernelQ, together
with the encoder sequence of encodersΦ, induces another
probability measure onΩ, to be denoted byQ.

The core idea consists in finding a relationship between the
probability of an eventA measured byP and that measured by
Q, by proving a large deviations bound on the channel behav-
ior. In doing that, the stochastic kernelQ should be interpreted
as a conditional empirical distribution of the channel output
sequence(Yt) given (Xt).

Let us assume that, for all input symbolsx ∈ X , Q( · |x) is
absolutely continuous with respect toP ( · |x), so that

λQ := max

{∣

∣

∣

∣

log
Q(y|x)

P (y|x)

∣

∣

∣

∣

∣

∣

∣
x, y : P (y|x) > 0

}

< +∞ ,

(20)
and, a fortiori,

D(Q||P ) := max
x∈X

∑

y

Q(y|x) log
Q(y|x)

P (y|x)
< +∞ .

Lemma 4. For t ∈ N, let A ∈ A be an event measurable
with respect to (W,Y t

1 ). Then, for all α > 1 and ε >
√

(α− 1)8λ3
Q, it holds

P(A) ≥ 21/1−αQ(A)α exp (−t[D(Q||P ) + ε]) ,

where α is such that 1
α + 1

α = 1.

Proof: Let us consider the r.v.

Υt :=
QY t

1 |W (Y t
1 |W )

PY t
1 |W (Y t

1 |W )
.

From Hölder’s inequality, it follows that

Q(A) = EQ [1A]

= E [1AΥt]

≤ E [Υα
t ]1/α

E
[

1
α
A

]1/α

= E [Υα
t ]1/α

P(A)1/α .

(21)



We now look for an upper bound onE [Υα
t ]. To this end,

observe that
E [Υα

t ] = EQ

[

Υα−1
t

]

,

whereEQ denotes the expectation operator on the probability
space(Ω,A,Q). For all 1 ≤ j ≤ t, we consider theσ-field
Aj := σ(W,Y[j]), and the r.v.s

Ξj := D (Q( · |Xj)||P ( · |Xj)) ,

Mj := log
Q(Y j

1 |W )

P(Y j
1 |W )

−

j
∑

i=1

Ξi .

Let us also defineA0 := σ(W ), andM0 ≡ 0. Then,(Mj)j≥0

is a martingale on the filtrated probability space(Ω, (Aj),Q).
Indeed, it is easily verified that, for alls ≥ 0, Mj is Aj -
measurable, and that

EQ[Mj+1|Aj ]−Mj = EQ

[

log
Q(Yj+1|W,Y[j])

P(Yj+1|W,Y[j])

∣

∣

∣
Aj

]

−Ξj+1 = 0 .

Moreover, since the channel transition probabilitiesQ( · |x) are
absolutely continuous with respect toP ( · |x) for all x ∈ X ,
we have that

|Mj −Mj−1| ≤
∣

∣

∣
log

Q(Yj |Xj)
P (Yj |Xj)

∣

∣

∣
+ Ξj ≤ 2λQ ,

so that(Mj) has uniformly bounded increments. Hence, we
can apply the Hoeffding-Azuma inequality [8] obtaining that

Q (Mt ≥ εt|W ) = Q (Mt ≥M0 + εt|W ) ≤ exp

(

−t
ε2

8λ2

)

.

Now, observe that, since
∑

1≤j≤t

Ξj ≤ tD(Q||P ) ,

the Q-probability of the event

E := {Υt ≥ exp (t[D(Q||P ) + ε])}

can be estimated as follows:

Q (E) ≤ Q (Mt ≥ εt) ≤ exp

(

−t
ε2

8λ2
Q

)

.

Hence, we obtain, forβ := α− 1,

E [Υα
t ] = EQ

[

Υβ
t

]

= EQ

[

Υβ
t 1E

]

+ EQ

[

Υβ
t 1Ec

]

≤ exp (βtλQ) Q(E) + exp (βt[D(Q||P ) + ε]))Q(Ec)

≤ exp
(

−t
[

ε2

8λ2
Q
− βλQ

])

+ exp (βt[D(Q||P ) + ε])

≤ exp (βt[D(Q||P ) + ε])
[

1 + exp
(

−t
[

ε2−8βλ3
Q

8λ2
Q

])]

≤ exp (βt[D(Q||P ) + ε]) 2 ,
(22)

the last inequality following since ε2

8λ2
Q
> βλQ. Then, the

claim follows by substituting (22) into (21).

B. Proof of Theorem 1

We are now ready to prove the main result. Given a node
v ∈ V , and a non-trivial cut-setES such thatv ∈ Sc, applying
Proposition 1 to some stochastic kernelQ ∈ QS leads to an
upper bound on the leftQ-tail of the estimation error∆(v)

t .
Then, Lemma 4 allows one to recover an upper bound on the
left P-tail of ∆

(v)
t , which is stated below.

Proposition 2. For a node v ∈ V , consider a non-trivial cut-
set ES such that v ∈ Sc, and a stochastic kernel Q ∈ QS .
Then, for every 0 < r < 1, α > 1 and ε >

√

(α − 1)8λ3
Q, it

holds

P
(

∆
(v)
t > r

)

≥ θ
(α)
t exp (−t[D(Q||P ) + ε]) ,

where

θ
(α)
t := 2

1
1−α

(

1 −
tCQ − H(Z|WSc) + d

2 log (Jdm)

− log rd

)α

We can now prove Theorem 1. For a givenR > 0, fix
δ > 0 and choose a stochastic kernelQ ∈ QS such that
CQ ≤ d(R − δ). Clearly, for anyα > 1,

lim inf
t

{

θ
(α)
t

}

≥
δ2

1
1−α

CQ + δ
> 0 .

Then, Proposition 2 implies that, for allε >
√

(α− 1)λ3
Q8,

D(Q||P ) + ε = D(Q||P ) + ε+ lim sup
t

{

− 1
t log θ

(α)
t

}

≥ lim sup
t

{

− 1
t log P

(

Γ
(v)
t < R

)}

.

(23)
From the arbitrariness of the choice of the constantsα andε,
and of the stochastic kernelQ ∈ QS , it follows that

lim sup
t

{

−
1

t
log P

(

Γ
(v)
t < R)

)

}

≤ ES(R− δ) .

Finally, (5) follows from the arbitrariness ofδ > 0 and the
continuity of the exponentES(R) as a function ofR.

C. Proof of Corollary 1

Let S andQ ∈ QS be, respectively, the minimizing cut-set
and stochastic kernel in (7). Forδ > 0, we have that
(

Λ
(η)
t

)η
= 1

|V|

∑

u∈V
E
[

(

∆
(u)
t

)η
]

≥ 1
|V|E

[

(

∆
(u)
t

)η
]

≥ P
(

Γ
(u)
t < 1

d (CQ + δ)
)

exp(−tη
d (CQ + δ)) .

(24)
As in (23) one gets that

lim sup
t

{

− 1
t log P

(

Γ
(u)
t < 1

d (CQ + δ)
)}

≤ D(Q||P ) + ε .

(25)
Then, (24) and (25) imply that

lim sup
t

{

− 1
t log Λ

(η)
t

}

≤ 1
d(CQ + δ) + 1

η (D(Q||P ) + ε) .

Finally, (8) follows from the arbitrariness of the choices of
δ > 0, α > 0, andε >

√

(α− 1)λ3
Q8.



V. CONCLUSION

Upper bounds on the error exponent have been presented for
problems of distributed computation of a real-vector-valued
function on a network with noisy communication channels.
It has been shown that, on non-deterministic channels, the
exponential decay rate of any moment of the estimation erroris
strictly smaller than the capacity of the worst cut-set capacity.

Current research includes understanding how these bounds
affect scaling limits of large networks, and proving tighter
bounds for cases when the system dynamics cannot be fully
designed but rather it is partially given.
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