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We study a stochastic gossip model of continuous opinion dynamics in a society consisting of two types of agents:
regular agents, who update their beliefs according to information that they receive from their social neighbors; and
stubborn agents, who never update their opinions and might represent leaders, political parties or media sources
attempting to influence the beliefs in the rest of the society. When the society contains stubborn agents with
different opinions, opinion dynamics never lead to a consensus (among the regular agents). Instead, beliefs in the
society almost surely fail to converge, and the belief of each regular agent converges in law to a non-degenerate
random variable. The model thus generates long-run disagreement and continuous opinion fluctuations. The
structure of the social network and the location of stubborn agents within it shape opinion dynamics. When the
society is “highly fluid,” meaning that the mixing time of the random walk on the graph describing the social
network is small relative to (the inverse of) the relative size of the linkages to stubborn agents, the ergodic beliefs
of most of the agents concentrate around a certain common value. We also show that under additional conditions,
the ergodic beliefs distribution becomes “approximately chaotic,” meaning that the variance of the aggregate
belief of the society vanishes in the large population limit while individual opinions still fluctuate significantly.
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1. Introduction Disagreement among individuals in a society, even on central questions that have
been debated for centuries, is the norm; agreement is the rare exception. How can disagreement of this
sort persist for so long? Notably, such disagreement is not a consequence of lack of communication or
some other factors leading to fixed opinions. Disagreement remains even as individuals communicate and
sometimes change their opinions.

Existing models of communication and learning, based on Bayesian or non-Bayesian updating mech-
anisms, typically lead to consensus provided that communication takes place over a strongly connected
network (e.g., Smith and Sorensen [42], Banerjee and Fudenberg [7], Acemoglu, Dahleh, Lobel and
Ozdaglar [1], Bala and Goyal [6], Gale and Kariv [23], DeMarzo, Vayanos and Zwiebel [17], Golub and
Jackson [24], Acemoglu, Ozdaglar and ParandehGheibi [2]), and are thus unable to explain persistent
disagreements.1

1One notable exception is provided by models that incorporate a form of “homophily” mechanism in communication,

whereby individuals are more likely to exchange opinions or communicate with others that have similar beliefs, and fail to

interact with agents whose beliefs differ from theirs by more than some given confidence threshold. This mechanism was

first proposed by Axelrod [5] in the discrete opinion dynamics setting, and then by Krause [27], and Deffuant and Weisbuch

[16], in the continuous opinion dynamics framework. Such beliefs dynamics typically lead to the emergence of different
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In this paper, we investigate a possible source of persistent disagreement in social networks. We
propose a tractable model that generates both long-run disagreement and opinion fluctuations so that a
consensus fails to emerge even as individuals communicate and sometimes change their opinions.

We consider a stochastic gossip model of communication combined with the assumption that there are
some “stubborn” agents in the network who never change their opinions. We show that the presence of
these stubborn agents leads to persistent opinion fluctuations and disagreement among the rest of the
society.

More specifically, we consider a society envisaged as a social network of n interacting agents (or
individuals), communicating and exchanging information. Each agent a starts with an opinion (or belief)
Xa(0) ∈ R and is then “activated” according to a Poisson process in continuous time. Following this
event, she meets one of the individuals in her social neighborhood according to a pre-specified stochastic
process. This process represents an underlying social network. We distinguish between two types of
individuals, stubborn and regular. Stubborn agents, which are typically few in number, never change
their opinions (they might thus correspond to media sources or political leaders wishing to influence the
rest of the society). In contrast, regular agents, which make up the great majority of the agents in the
social network, update their beliefs to some weighted average of their pre-meeting belief and the belief of
the agent they met. The opinions generated through this information exchange process form a Markov
process over the graph induced by the social network. Much of our analysis characterizes the long-run
behavior of this Markov process.

We show that, under general conditions, these opinion dynamics never lead to a consensus (among the
regular agents). In fact, regular agents’ beliefs almost surely fail to converge, and keep on oscillating.
Instead, the belief of each regular agent converges in law to a non-degenerate random variable and thus
has a limiting ergodic distribution (and similarly, the vector of beliefs of all regular agents jointly converge
to a non-degenerate random vector). This model therefore provides a new approach to understanding
persistent disagreements.

We then study the long-run dynamics of opinions in “highly fluid” social networks, defined as networks
where the product between the fraction of edges incoming in the stubborn agent set times the mixing time
of the associated random walk is small. We show that in highly fluid social networks, the expected value
and variance of the ergodic opinion of most of the agents concentrate around certain values in the large
population limit. We refer to this result as “approximately equal influence” of stubborn agents on the
rest of the society—meaning that their influence on most of the agents in the society are approximately
the same.

Finally, we show that, if the presence of stubborn agents in the society is “significant,” then the
variance of the ergodic aggregate belief of the society vanishes in the large population limit, and the
ergodic opinion distribution is “approximately chaotic”. If, moreover, the influence of any stubborn
agent does not dominate the influences of the rest, then the mean squared disagreement, i.e., the average
of the expected squared differences between the agents’ ergodic beliefs, remains bounded away from zero
in the large population limit.

Our analysis uses several new approaches to the study of belief dynamics. First, convergence in law
of the regular agents’ beliefs is established by first rewriting the dynamics in the form of an iterated
affine function system, and studying the corresponding time-reversed process; the latter is converging
almost surely and, at each time instant, has the same marginal distribution as the actual beliefs process.
Second, we use a characterization of the expected values and correlations of the ergodic beliefs in terms
of the hitting probability distribution of a pair of coupled random walks moving on the directed graph
describing the communication structure in the social network. Third, we use the characterization of
these hitting distributions as solutions of a Laplace equation with boundary conditions on the stubborn
agents set in order to find explicit solutions for the expected ergodic beliefs in some social networks with
additional structure. Fourth, we derive bounds on the behavior of the expected values and variances
of the ergodic beliefs in large population size limit, by showing that, on highly fluid networks, these
expectations and variances are almost equal for most of the agents. This is a consequence of the fact
that the hitting probabilities on the stubborn agents set of the associated random walk have a weak

asymptotic opinion clusters (see, e.g., [31, 9, 12]); however, they are unable to explain persistent opinion fluctuations in the

society.
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dependence on the initial state, which is in turn proved by combining properties of fast-mixing chains,
including the approximate exponentiality of the hitting times.

In addition to the aforementioned works on learning and opinion dynamics, our model is closely related
to the work by Mobilia and co-authors [33, 34, 35], which propose a variation of the discrete opinion
dynamics model, also called the voter model, with “zealots” (equivalent to our stubborn agents). This
work generally relies on heuristic mean-field approximations, valid for certain graphical structures, and
numerical simulations, to characterize belief dynamics. In contrast, we prove convergence in distribution
and characterize the properties of the limiting distribution for general finite graphs. Even though our
model involves continuous belief dynamics, we shall also show that Mobilia’s model can be recovered as
a special case of our general framework.

Our work is also related to work on consensus and gossip algorithms, which is motivated by different
problems, but typically leads to a similar mathematical formulation (Tsitsiklis [43], Tsitsiklis, Bertsekas
and Athans [44], Jadbabaie, Lin and Morse [26], Olfati-Saber and Murray [38], Olshevsky and Tsitsiklis
[39], Fagnani and Zampieri [22], Nedić and Ozdaglar [36]). In consensus problems, the focus is on
whether the beliefs or the values held by different units (which might correspond to individuals, sensors,
or distributed processors) converge to a common value. Our analysis here does not focus on limiting
consensus of values, but in contrast, characterizes the ergodic fluctuations in values.

The rest of this paper is organized as follows: In Section 2, we introduce our model of interaction
between the agents, describing the resulting evolution of individual beliefs, and we discuss two special
cases, in which the arguments simplify particularly, and some fundamental features of the general case
are highlighted. Section 3 presents convergence results on the evolution of agent beliefs over time, for
a given social network: the beliefs are shown to converge in distribution, and to be an ergodic process,
while in general they do not converge almost surely. Section 4 presents a characterization of the first and
second moments of the ergodic beliefs in terms of the hitting probabilities of two coupled random walks
on the network. Section 5 narrows down the discussion to reversible social networks, and presents explicit
computations of the expected ergodic beliefs and variances for some special network topologies. Section 6
provides bounds on the level of dispersion of the first two moments of the ergodic beliefs: it is shown that,
in highly fluid networks, most of the agents have almost the same ergodic belief and variance. Section 7
studies the mean square oscillations and disagreement in highly fluid networks: if there is a significant
presence of stubborn agents, the variance of the ergodic aggregate belief of the society vanishes in the
large population limit, and the joint distribution of the ergodic beliefs is close to a chaotic law. Section
8 contains some concluding remarks.

Basic Notation and Terminology

Before proceeding, we establish some notational conventions and terminology to be followed throughout
the paper. We shall typically label the entries of vectors by elements of finite alphabets, rather than
non-negative integers, hence RI will stand for the set of vectors with entries labeled by elements of the
finite alphabet I. An index denoted by a lower-case letter will implicitly be assumed to run over the
finite alphabet denoted by the corresponding calligraphic upper-case letter (e.g.

∑

i will stand for
∑

i∈I).
For any finite set J , we use the notation 1J to denote the indicator function over the set J , i.e., 1J (j)
is equal to 1 if j ∈ J , and equal to 0 otherwise. For a matrix M ∈ RI×J , ||M ||1 := maxj

∑

i Mij and
||M ||∞ := maxi

∑

j Mij will denote its 1-norm, and∞-norm, respectively, as an operator from RI to RJ .
For a probability distribution µ over a finite set I, and a subset J ⊆ I we will write µ(J ) :=

∑

j µj . If
ν is another probability distribution on I, we shall use the notation

||µ− ν||TV :=
1

2

∑

i
|µi − νi| = sup {µ(J )− ν(J ) : J ⊆ I} ,

for the total variation distance between µ and ν. The probability law (or distribution) of a random
variable Z will be denoted by L(Z).

Let V (t) and V ′(t) be continuous-time random walks on a finite set V , defined on the same
probability space, both with marginal transition probability matrix P . We use the notation Pv( · ),
and Pvv′( · ), for the conditional probability measures given the events V (0) = v, and, respectively,
(V (0), V ′(0)) = (v, v′). Similarly, for some probability distribution π over V (possibly the stationary
one), Pπ( · ) :=

∑

v,v′ πvπv′Pvv′( · ) will denote the conditional probability measure of the Markov chain
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Figure 1: A social network with seven regular agents (colored in grey), and five stubborn agents (colored
in white, and black, respectively). Links are only incoming to the stubborn agents, while links between
pairs of regular agents may be uni- or bi-directional.

with initial distribution π, while Ev[ · ], Ev,v′ [ · ], and Eπ[ · ] will denote the corresponding conditional
expectations.

For two non-negative real-valued sequences {an : n ∈ N}, {bn : n ∈ N}, we will write an = O(bn) if
for some positive constant K, an ≤ Kbn for all sufficiently large n, an = Θ(bn) if bn = O(an), an = o(bn)
if limn an/bn = 0, an ≈ bn if limn an/bn = 1, and an = ω(bn) if bn = o(an).

2. Belief evolution model We consider a finite population V of interacting agents, of possibly
very large size n := |V|. The connectivity among the agents is described by a simple directed graph
−→
G =

(

V ,
−→
E

)

, whose node set is identified with the agent population, and where
−→
E ⊆ V × V stands for

the set of directed edges (or links) among the agents.

At time t ≥ 0, each agent v ∈ V holds a belief (or opinion) about an underlying state of the world,
denoted by Xv(t) ∈ R. The full vector of beliefs at time t will be denoted by X(t) = {Xv(t) : v ∈ V}.
We distinguish between two types of agents: regular and stubborn. Regular agents repeatedly update

their own beliefs, based on the observation of the beliefs of their out-neighbors in
−→
G . Stubborn agents

never change their opinions, i.e., they do not have any out-neighbors. Agents which are not stubborn are
called regular. We shall denote the set of regular agents by A, the set of stubborn agents by S, so that
the set of all agents is V = A ∪ S (see Figure 1).

More specifically, the agents’ beliefs evolve according to the following stochastic update process. At
time t = 0, each agent v ∈ V starts with an initial belief Xv(0). The beliefs of the stubborn agents stay
constant in time:

Xs(t) = Xs(0) =: xs , s ∈ S .

In contrast, the beliefs of the regular agents are updated as follows. To every directed edge in
−→
E of

the form (a, v), where necessarily a ∈ A, and v ∈ V , a clock is associated, ticking at the times of an
independent Poisson process of rate rav > 0. If the (a, v)-th clock ticks at time t, agent a meets agent v
and updates her belief to a convex combination of her own current belief and the current belief of agent
v:

Xa(t) = (1− θav)Xa(t−) + θavXv(t
−) , (1)

where Xv(t−) stands for the left limit limu↑tXv(u). Here, the scalar θav ∈ (0, 1] is a trust parameter that
represents the confidence that the regular agent a ∈ A puts on agent v’s belief.2 That rav and θav are

strictly positive for all (a, v) ∈
−→
E is simply a convention (since if ravθav = 0, one can always consider the

subgraph of
−→
G obtained by removing the edge (a, v) from

−→
E ). Similarly, we also adopt the convention

2We have imposed that at each meeting instance, only one agent updates her belief. The model can be easily extended

to the case where both agents update their beliefs simultaneously, without significantly affecting any of our general results.
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that rvv′ = θvv′ = 0 for all v, v′ ∈ V such that (v, v′) /∈
−→
E . For every regular agent a ∈ A, let Sa ⊆ S

be the subset of stubborn agents which are reachable from a by a directed path in
−→
G . We refer to Sa as

the set of stubborn agents influencing a. For every stubborn agent s ∈ S, As := {a : s ∈ Sa} ⊆ A will
stand for the set of regular agents influenced by s.

The tuple N =
(−→
G , {θe}, {re}

)

contains the entire information about patterns of interaction among

the agents, and will be referred to as the social network. Together with an assignment of a probability
law for the initial belief vector, L(X(0)), the social network designates a society. Throughout the paper,
we make the following assumptions regarding the underlying social network.

Assumption 2.1 Every regular agent is influenced by some stubborn agent, i.e., Sa is non-empty for
every a in A.

Assumption 2.2 Every stubborn agent influences some regular agent, i.e., As is non-empty for every s
in S.

Notice that both assumptions may be easily removed. If there are some regular agents which are not
influenced by any stubborn agent, then there is no edge in E connecting the set R of such regular agents
to V \R. Then, one may decompose the subgraph obtained by restricting G to R into its communicating
classes, and apply the results in [22] (see Example 3.5 therein), showing that, with probability one, a
consensus on a random belief is achieved on every such communicating class. On the other hand, if a
stubborn agent does not influence any agent, it can clearly be neglected.

In the subsequent analysis, it is convenient to consider a rate matrix R ∈ RA×V whose entries coincide
with the edge activation rates rav. We denote the total meeting rate of agent v ∈ V by rv, i.e., rv :=
∑

v′∈V rvv′ , and the total meeting rate of all agents by r, i.e., r :=
∑

v∈V rv. We use N(t) to denote
the total number of agent meetings (or edge activations) up to time t ≥ 0, which is simply a Poisson
arrival process of rate r. We also use the notation Tk to denote the time of the k-th belief update, i.e.,
Tk := inf{t ≥ 0 : N(t) ≥ k}.

For a given social network, we associate a transition rate matrix H ∈ RA×V , whose entries are defined
by

Hav := θavrav , a ∈ A , v ∈ V , (2)

and a transition probability matrix P ∈ RA×V , whose entries are defined by

Pav = Hav/
∑

v′
Hav′ , a ∈ A , v ∈ V . (3)

The following example describes the canonical construction of a social network from an undirected
graph, and will be used often in the rest of the paper.

Example 2.1 Let G = (V , E) be an undirected connected graph, and S ⊆ V, A = V \ S. Define the

directed graph
−→
G = (V ,

−→
E ), where (a, v) ∈

−→
E if and only if a ∈ A, v ∈ V, and {a, v} ∈ E, i.e.,

−→
G

is the directed graph obtained by making all edges in E bidirectional except edges between a regular and
a stubborn agent, which are unidirectional (pointing from the regular agent to the stubborn agent). For
every node v ∈ V, let dv be its degree in G. Let the trust parameter be constant, i.e., θav = θ ∈ (0, 1] for

all (a, v) ∈
−→
E . Define

rav = 1/da , a ∈ A , v ∈ V : {a, v} ∈ E . (4)

This concludes the construction of the social network N =
(−→
G , {θe}, {re}

)

. For this social network, one

has
Hav = θ/da , Pav = 1/da , ∀(a, v) ∈

−→
E .

We conclude this section by discussing in some detail two special cases whose simple structure sheds
light on the main features of the general model. In particular, we consider a social network with a single
regular agent and a social network where the trust parameter satisfies θav = 1 for all a ∈ A and v ∈ V ,
which corresponds to the classical voter model with zealots. We show that in both of these cases agent
beliefs almost surely fail to converge.
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Figure 2: Typical sample-path behavior: in (a) the actual belief process Xa(t), oscillating ergodically on
the interval [0, 1]; in (b), the time-reversed process, rapidly converging to an asymptotic random belief
Xa.

2.1 Single regular agent Consider a society consisting of a single regular agent, i.e., A = {a}, and
two stubborn agents, S = {s, s′}. Assume that ras = ras′ = 1/2, θas = θas′ = 1/2, xs = 0, xs′ = 1, and
Xa(0) = 0. Then, one has for all t ≥ 0,

Xa(t) =
∑

1≤k≤N(t)

2k−N(t)−1W (k) ,

where N(t) is the total number of agent meetings up to time t (or number of arrivals up to time t of
a rate-1 Poisson process), and {W (k) : k ∈ N} is an independent sequence of Bernoulli(1/2) random
variables. Consider the events Ek := {W (3k − 2) = 0,W (3k − 1) = 0,W (3k) = 1}, for k ≥ 1, which are
independent and all have probability 1/8. Then, an application of the Borel-Cantelli lemma implies that
Ek occurs for infinitely many values of k ≥ 1. Notice that, when Ek occurs, one has

Xa(T3k) = 1
2 +

∑

1≤j≤3k−3

2j−3k−1W (j) ≥ 1
2 ,

Xa(T3k−1) =
∑

1≤j≤3k−3

2j−3kW (j) ≤ 1
4 ,

(5)

where Tk is the time of the k-th belief update. It follows from (5), and the fact that N(t) grows unbounded
almost surely, that the belief Xa(t) does not converge almost surely.

On the other hand, observe that, since
∑

k>n 2−k|W (k)| ≤ 2−n, the series

Xa :=
∑

k≥1

2−kW (k)

is sample-wise converging. It follows that, as t grows large, the time-reversed process

←−
Xa(t) :=

∑

1≤k≤N(t)

2−kW (k)

converges to Xa, with probability one, and, a fortiori, in distribution. Notice that, for all positive integer
k, the binary k-tuples {W (1), . . . ,W (k)} and {W (k), . . . ,W (1)} are uniformly distributed over {0, 1}k,
and independent from the Poisson arrival process N(t). It turns out that, for all t ≥ 0, the random

variable
←−
X a(t) has the same distribution as Xa(t). Therefore, Xa(t) converges in distribution to Xa as t

grows large. Moreover, it is a standard fact (see e.g. [41, pag.92]) that Xa is uniformly distributed over
the interval [0, 1]. Hence, the probability distribution of Xa(t) is asymptotically uniform on [0, 1].

The analysis can in fact be extended to any trust parameter θis = θis′ = θ ∈ (0, 1). In this case, one
gets that

Xa(t) = θ
∑

1≤k≤N(t)

(1 − θ)N(t)−kW (k)
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t=0 t

u=0u=U1uu=t

Figure 3: Duality between the voter model with zealots and the coalescing random walks process with
absorbing states. The network topology is a line with five regular agents and two stubborn agents placed
in the two extremities. The time index for the opinion dynamics, t, runs from left to right, whereas the
time index for the coalescing random walks process, u, runs from right to left. Both dotted and solid
arrows represent meeting instances. Fixing a time horizon t > 0, in order to trace the beliefs X(t),
one has to follow coalescing random walks starting at u = 0 in the different nodes of the network, and
jumping from a state to another one in correspondence to the solid arrows. The particles are represented
by bullets at times of their jumps. Clusters of coalesced particles are represented by bullets of increasing
size.

converges in distribution to the asymptotic belief

Xa := θ(1− θ)−1
∑

k≥1

(1 − θ)kW (k) . (6)

As explained in [18, Sect. 2.6], for every value of θ in (1/2, 1), the probability law of Xa is singular,
and in fact supported on a Cantor set. In contrast, for almost all values of θ ∈ (0, 1/2), the probability
law of Xa is absolutely continuous with respect to Lebesgue’s measure.3 The extreme case θ = 1 falls
within the framework of Sect. 2.2. On the other hand, observe that, regardless of the fine structure of
the probability law of the asymptotic belief Xa, i.e., on whether it is absolutely continuous or singular,
it is not hard to characterize its moments for all values of θ ∈ (0, 1]. In fact, it follows from (6), that the
expected value of Xa is given by

E[Xa] = θ(1− θ)−1
∑

k≥1

(1 − θ)kE[W (k)] = θ
∑

k≥0

(1 − θ)k 1

2
=

1

2
,

and, using the mutual independence of the W (k)’s, the variance of Xa is given by

Var[Xa] = θ2(1 − θ)−2
∑

k≥1

(1− θ)2k Var[W (k)] = θ2
∑

k≥0

(1− θ)2k 1

4
=

θ

4(2− θ)
.

2.2 Voter model with zealots Let us consider the case when θav = 1 for all (a, v) ∈ E . In this

case, whenever an edge (a, v) ∈
−→
E is activated, the regular agent a adopts agent v’s current opinion as

such, completely disregarding her own current opinion.

This opinion dynamics, known as the voter model, was introduced independently by Clifford and
Sudbury [11], and Holley and Liggett [25]. It has been extensively studied in the framework of interacting
particle systems [29, 30]. While most of the research focus has been on the case when the graph is an
infinite lattice, the voter model on finite graphs, and without stubborn agents, was considered, e.g., in
[13, 15], [3, Ch. 14], and [19, Ch. 6.9]: in this case, consensus is achieved in some finite random time,
whose distribution depends on the graph topology only.

In some recent works of Mobilia and others [33, 34, 35] a variant with one or more stubborn agents
(there referred to as zealots) has been proposed and analyzed mainly through simulations. We wish to

3See [40]. In fact, explicit counterexamples of values of θ ∈ (0, 1/2) for which the asymptotic measure is singular are

known. For example, Erdös [20, 21] showed that, if θ = (3 −
√

5)/2, then the probability law of Xa is singular.
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emphasize that the voter model with zealots can be recovered as a special case of our model, and hence
our general results, to be proven in the next sections, apply to it as well. However, we prefer to discuss
this case here in some detail, since proofs are much more intuitive, and allow one to anticipate some of
the general results.

The main tool in the analysis of the voter model is the dual process, which runs backward in time
and allows one to identify the source of the opinion of each agent at any time instant. Specifically, let
us focus on the belief of a regular agent a at time t > 0. Then, in order to trace Xa(t), one has to look
at the last meeting instance of agent a that occurred no later than time t. If such a meeting instance
occurred at some time t − U1 ∈ [0, t] and the agent met was v ∈ V , then the belief of agent a at time t
coincides with the one of agent v at time t−U1, i.e., Xa(t) = Xv(t−U1). The next step is to look at the
last meeting instance of agent v occurred no later than time t− U1; if such an instance occurred at time
t− U2 ∈ [0, t− U1], and the agent met was w, then Xa(t) = Xv(t− U1) = Xw(t− U2). Clearly, one can
iterate this argument, going backward in time, until reaching time 0. In this way, one implicitly defines a
random walk Va(u) on V , which starting at Va(0) = a and stays put there until time U1, when it jumps to
node v and stays put there in the time interval [U1, U2), then jumps at time U2 to node w, and so on. It
is not hard to see that, thanks to the fact that the meeting instances are independent Poisson processes,
the random walk Va(u) has transition rate matrix R (recall that R is the matrix of edge activation rates
R = [rav]a∈A, v∈V), and it halts when it hits some state s ∈ S. In particular, this shows that

L(Xa(t)) = L(XVa(t)(0)) .

More generally, if one is interested in the joint probability distribution of the belief vector X(t), then one
needs to consider n − |S| random walks, {Va(t) : a ∈ A} starting one from each node a ∈ A, and run
simultaneously on V (see Figure 3). These random walks move independently with transition rate matrix
R, until the first time that they either meet, or they hit the set S: in the former case, they stick together
and continue moving on V as a single particle, with transition rate matrix R; in the second case, they
halt. This process is known as the coalescing random walk process with absorbing set S. Then, one gets
that

L({Xa(t) : a ∈ A}) = L({XVa(t)(0) : a ∈ A}) . (7)

Equation (7) establishes a duality between the voter model with zealots and the coalescing random walks
process with absorbing states. In particular, Assumptions 2.1 and 2.2 imply that, with probability one,
each Va(u) will hit the set S in some finite random time T a

S , so that in particular the vector {Va(u) : a ∈ A}
converges in distribution to an asymptotic SA-valued random vector {Va(T a

S ) : a ∈ A}. It then follows
from (7) that X(t) converges in distribution to an asymptotic belief vector X whose entries are given by
Xs = xs for every stubborn agent s ∈ S, and Xa = xVa(T a

S
) for every regular agent a ∈ A.

3. Convergence in distribution and ergodicity of the beliefs This section is devoted to study-
ing the convergence properties of the random belief vector X(t) for the general update model described
in Sect. 2. Figure 4 reports the typical sample-path behavior of the agents’ beliefs for a simple social
network with population size n = 4, and line graph topology, in which the two stubborn agents are
positioned in the extremes and hold beliefs x0 < x3. As shown in Fig. 4(b), the beliefs of the two regular
agents, X1(t), and X2(t), oscillate in the interval [x0, x3], in an apparently chaotic way. On the other
hand, the time averages of the two regular agents’ beliefs rapidly approach a limit value, of 2x0/3 +x3/3
for agent 1, and x0/3 + 2x3/3 for agent 2.

As we shall see below, such behavior is rather general. In our model of social network with at least
two stubborn agents having non-coincident constant beliefs, the regular agent beliefs almost surely fail
to converge: we have seen this in the special cases of Sect. 2.1, while a general result in this sense will be
stated as Theorem 3.2. On the other hand, we shall prove that, regardless of the initial regular agents’
beliefs, the belief vector X(t) is convergent in distribution to a random asymptotic belief vector X (see
Theorem 3.1), and in fact it is an ergodic process (see Corollary 3.1).

In order to prove Theorem 3.1, we shall rewrite X(t) in the form of an iterated affine function system
[18], as explained below. We shall then consider the so-called time-reversed belief process. This is a
stochastic process whose marginal probability distribution, at any time t ≥ 0, coincides with the one of
the actual belief process, X(t). In contrast to X(t), the time-reversed belief process is in general not
Markov, whereas it can be shown to converge to a random asymptotic belief vector with probability one.
From this, we recover convergence in distribution of the actual belief vector X(t).
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Figure 4: Typical sample-path behavior of the beliefs, and their ergodic averages for a social network with
population size n = 4. The topology is a line graph, displayed in (a). The stubborn agents corresponds
to the two extremes of the line, S = {0, 3}, while their constant opinions are x0 = 0, and x3 = 1. The
regular agent set is A = {1, 2}. The confidence parameters, and the interaction rates are chosen to be
θav = 1/2, and rav = 1/3, for all a = 1, 2, and v = a ± 1. In picture (b), the trajectories of the actual
beliefs Xv(t), for v = 0, 1, 2, 3, are reported, whereas picture (c) reports the trajectories of their ergodic

averages {Zv(t) := t−1
∫ t

0
Xv(u)du}.

Formally, for any time instant t ≥ 0, let us introduce the projected belief vector Y (t) ∈ RA, where
Ya(t) = Xa(t) for all a ∈ A. Let IA ∈ RA×A be the identity matrix, and for a ∈ A, let ea ∈ RA be the
vector whose entries are all zero, but for the a-th which equals 1. Similarly, for a, a′ ∈ A, let eaa′ ∈ RA×A

be the matrix whose entries are all 0, but for the (a, a′)-th which equals 1. For every positive integer k,
consider the random matrix A(k) ∈ RA×A, and the random vector B(k) ∈ RA, defined by

A(k) = IA + θaa′(eaa′ − eaa) B(k) = 0 ,

if the k-th activated edge is (a, a′) ∈
−→
E , with a, a′ ∈ A, and

A(k) = IA − θaseaa B(k) = eaθasxs ,

if the k-th activated edge is (a, s) ∈
−→
E , with a ∈ A, and s ∈ S. Define the matrix product

−→
A (k, l) := A(l)A(l − 1) . . . A(k + 1)A(k) , 1 ≤ k ≤ l ,

with the convention that
−→
A (k, l) = IA for k > l. Then, one has for all t ≥ 0,

Y (t) =
−→
A (1, N(t))Y (0) +

∑

1≤k≤N(t)

−→
A (k + 1, N(t))B(k) , (8)

where we recall that N(t) is the total number of agents’ meetings up to time t. Now, define the time-
reversed belief process

←−
Y (t) :=

←−
A (1, N(t))Y (0) +

∑

1≤k≤N(t)

←−
A (1, k − 1)B(k) , (9)

where
←−
A (k, l) := A(k)A(k + 1) . . . A(l − 1)A(l) , k ≤ l ,

with the convention that
←−
A (k, l) = IA for k > l. The following is our first, but fundamental, observation:

Lemma 3.1 For all t ≥ 0, Y (t) and
←−
Y (t) have the same probability distribution.

Proof. Notice that {(A(k), B(k)) : k ∈ N} is a sequence of independent and identically distributed
random variables, independent from the process N(t). This, in particular, implies that, the l-tuple
{(A(k), B(k)) : 1 ≤ k ≤ l} has the same distribution as the l-tuple {(A(l−k+1), B(l−k+1)) : 1 ≤ k ≤ l},
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for all l ∈ N. From this, and the identities (8) and (9), it follows that the belief vector Y (t) has the same

distribution as
←−
Y (t), for all t ≥ 0.

The second fundamental result is that, in contrast to the actual regular agents’ belief vector Y (t), the

time-reversed belief process
←−
Y (t) converges almost surely, as formalized in the next lemma.

Lemma 3.2 Let Assumptions 2.1 and 2.2 hold. Then, for every value of the stubborn agents’ beliefs
{xs} ∈ RS , there exists an RA-valued random variable Y , such that,

P

(

lim
t→+∞

←−
Y (t) = Y

)

= 1 ,

for every initial distribution L(Y (0)) of the regular agents’ beliefs.

Proof. Observe that the expected entries of A(k), and B(k), are given by

E[Aaa′(k)] =
Haa′

r
, E[Aaa(k)] := 1−

1

r

∑

v∈V

Hav , E[Ba(k)] =
1

r

∑

s∈S

Hasxs ,

for all a 6= a′ ∈ A. In particular, it follows from Assumption 2.1 that E[A(k)] is a strictly substochastic
matrix, with no invariant subset, i.e., such that if y is a non-negative vector supported in some J ⊆ A,
then

∑

j

∑

a E[Aja(k)]ya <
∑

j yj . Hence, its spectrum is contained in the disk centered in 0 of radius
ρ, where ρ ∈ (0, 1) is the largest eigenvalue of E[A(k)]. Then, using the Jordan canonical decomposition,
one can show that

∣

∣

∣

∣

∣

∣
E

[←−
A (1, k)

]∣

∣

∣

∣

∣

∣

∞
≤ Ckn−1ρk , ∀k ≥ 0 ,

where C is a constant depending on E[A(1)] only. Now, upon observing that the
←−
A (1, k) has non-negative

entries, and using the inequality E[max{Z,W}] ≤ E[Z] + E[W ] valid for all nonnegative-valued random
variables W and Z, one gets that

E

[
∣

∣

∣

∣

∣

∣

←−
A (1, k)

∣

∣

∣

∣

∣

∣

1

]

= E

[

max
a′

∑

a

←−
Aaa′(1, k)

]

≤
∑

a,a′ E

[←−
Aa,a′(1, k)

]

≤ n
∣

∣

∣

∣

∣

∣
E

[←−
A (1, k)

]∣

∣

∣

∣

∣

∣

∞

≤ Cnkn−1ρk .

(10)

It follows that

inf
k∈N

1

k
E

[

log ||
←−
A (1, k)||1

]

≤ inf
k∈N

1

k
log E

[

||
←−
A (1, k)||1

]

≤ lim
k→+∞

log(Cnkn−1ρk)

k
= log ρ

< 0 ,

(11)

Then, it follows from [18, Th. 2.1] that the series

Y :=
∑

k≥1

←−
A (1, j − 1)B(j)

is convergent with probability one. Since, with probability one, lim
t→+∞

N(t) = +∞, one has that

lim
t→+∞

←−
Y (t) = lim

t→+∞

←−
A (1, N(t))Y (0) +

∑

1≤j≤N(t)

←−
A (1, j − 1)B(j)

= lim
k→∞

←−
A (1, k)Y (0) +

∑

1≤j≤k

←−
A (1, j − 1)B(j)

= Y ,

with probability one. This completes the proof.

Lemma 3.1 and Lemma 3.2 allow one to prove convergence in distribution of X(t) to a random belief
vector X , as stated in the following result.
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Theorem 3.1 Let Assumptions 2.1 and 2.2 hold. Then, for every value of the stubborn agents’ beliefs
{xs : s ∈ S}, there exists an RV -valued random variable X, such that, for every initial distribution
L(X(0)) satisfying P(Xs(0) = xs) = 1 for every s ∈ S, and

lim
t→+∞

E[ϕ(X(t))] = E[ϕ(X)] ,

for all bounded and continuous test functions ϕ : RV → R. Moreover, the probability law of the asymptotic
belief vector X is invariant for the system, i.e., if L(X(0)) = L(X), then L(X(t)) = L(X) for all t ≥ 0.

Proof. It follows from Lemma 3.2
←−
Y (t) converges to Y with probability one, and a fortiori in dis-

tribution. By Lemma 3.2,
←−
Y (t) and Y (t) are identically distributed. Therefore, Y (t) converges to Y in

distribution, and the first part of the claim follows by defining Xa = Ya for all a ∈ A, and Xs = xs

for all s ∈ S. For the second part of the claim, it is sufficient to observe that the distribution of

Y =
∑

k≥1

←−
A (1, k − 1)B(k) is the same as the one of Y ′ := A(0)Y + B(0), where A(0), and B(0), are

independent copies of A(1), and B(1), respectively.

Remark 3.1 In fact, a more detailed proof of Lemma 3.2 (based on the estimate (10), and using directly
Markov’s inequality, without appealing to [18, Th. 2.1]) would have shown that

lim
t→+∞

W1 (L(X(t)),L(X))1/t ≤ ρ ,

where W1 denotes the so-called order-1 Wasserstein distance. The latter is a metric between probability
measures on RV which metrizes weak convergence, and has been made popular by optimal transportation
theory: we refer to [45] for definition, and an extensive survey of its properties.

Now, we observe that, if α is the unique probability distribution on A such that E[A(k)]α = ρα, and
Eα[TS ] is the expected time to hit the stubborn agents set S for the continuous-time random walk V (t),
with transition rates Hav defined in (2), and initial state distribution α, then

(1− ρ)−1 = Eα[TS ]

(see [3, Ch. 3, Sect. 6.5]). This shows that, as already observed in the voter model with zealots of Sect. 2.2,
the speed of convergence of the beliefs’ distribution to the asymptotic belief vector is related to the hitting
time TS of the random walk V (t) on the stubborn agents’ set S. In the following section, we shall see
that also the probability law of the asymptotic beliefs, L(X), can be related to properties of the random
walk V (t), and specifically to the probability distribution of V (TS).

Using standard ergodic theorems for Markov chains, an immediate implication of Theorem 3.1 is the
following corollary, which shows that time averages of any continuous bounded function of agent beliefs
are given by their expectation over the limiting distribution. Choosing the relevant function properly,
this enables us to express the empirical averages of and correlations across agent beliefs in terms of
expectations over the limiting distribution, highlighting the ergodicity of agent beliefs.

Corollary 3.1 For all initial distributions X(0) ∈ RV , with probability one,

lim
t→+∞

1

t

∫ t

0

ϕ(X(u))du = E[ϕ(X)] ,

for all continuous and bounded test functions ϕ : RV → R.

Proof. Consider the joint discrete-time process {Zk := (X(Tk), Uk) : k ∈ N}, where Uk := Tk−Tk−1,
and Tk is the time of the k-th belief update (with the convention that T0 = 0). Since {Uk : k ∈ N} is an
independent identically distributed sequence of exponential random variables with rate r, independent
from X(Tk), Theorem 3.1 implies that Zk converges in distribution to Z := (X,U), where X is as in
Theorem 3.1, U is an independent random variable with exponential distribution of rate r. It follows
from [10] that the process {Zk} s ergodic. Hence, for every test function ϕ continuous and bounded over
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RV ,
1
k

∫ Tk

0 ϕ(X(u))du = 1
k

∑

1≤j≤k

ϕ(X(T−
j ))Uj

k→+∞
−→ E[ϕ(X)U ]

= E[ϕ(X)]E[U ]

= rE[ϕ(X)] ,

with probability one. Moreover, one has

1

k
Tk =

1

k

∑

1≤j≤k

(Tk − Tk−1)
k→+∞
−→ E[T ] = r .

Hence,

1

TN(t)

∫ TN(t)

0

ϕ(X(u))du =
N(t)−1

∫ TN(t)

0 ϕ(X(u))du

N(t)−1TN(t)

t→+∞
−→ E[ϕ(X)]

with probability one, and the claim follows from the observation that, as t grows large, t−1(t − TN(t))
converges to zero almost surely.

Motivated by Corollary 3.1, for any agent v ∈ V , we refer to the random variable Xv as the ergodic
belief of agent v.

Theorem 3.1, and Corollary 3.1, respectively, show that the beliefs of all the agents converge in
distribution, and that their empirical averages converge almost surely, to a random asymptotic belief
vector X . In contrast, the following theorem shows that the asymptotic belief of a regular agent which is
connected to at least two stubborn agents with different beliefs is a non-degenerate random variable. As
a consequence, the belief of every such regular agent keeps on oscillating with probability one. Moreover,
the theorem shows that, with probability one, the difference between any pair of distinct regular agents
which are influenced by more than one stubborn agent does not converge to zero, so that disagreement
between them persists in time. For a ∈ A, let Xa = {xs : s ∈ S} denote the set of stubborn agents’ belief
values influencing agent a.

Theorem 3.2 Let Assumptions 2.1 and 2.2 hold, and let a ∈ A be such that |Xa| ≥ 2. Then, the
asymptotic belief Xa is a non-degenerate random variable. Furthermore, if a, a′ ∈ A, with a′ 6= a are
such that |Xa ∩ Xa′ | ≥ 2, then P(Xa 6= Xa′) > 0.

Proof. With no loss of generality, since the distribution of the asymptotic belief vector X does not
depend on the probability law of the initial beliefs of the regular agents, we can assume that such a law
is the asymptotic one, i.e., that L(X(0)) = L(X). Then, Theorem 3.1 implies that

L(X(t)) = L(X) , ∀t ≥ 0 . (12)

Let a ∈ A be such that Xa is degenerate. Then, almost surely, Xa(t) = xa for almost all t, for some
constant xa. Then, as we shall show below, all the out-neighbors of a will have their beliefs constantly
equal to xa with probability one. Iterating the argument until reaching the set Sa, one eventually finds
that xs = xa for all s ∈ S, so that |Xa| = 1. This proves the first part of the claim. For the second part,
assume that Xa = Xa′ almost surely for some a 6= a′. Then, one can prove that, with probability one,
every out-neighbor of a and a′ agrees with a and a′ at any time. Iterating the argument until reaching
the set Sa ∪ Sa′ , one eventually finds that |Xs ∪ Xs′ | = 1.

One can reason as follows in order to see that, if v is an out-neighbor of a, and Xa is degenerate, then
Xv(t) = Xa for all t. Fix some scalars xa, ζ > 0, ε > 0, and, for every time instant t ≥ 0, consider the
events

Ct := {Xa(t) = xa} , Dt := {|Xv(t)− xa| ≥ ζ} , Et := Ct ∩Dt ,

E′
t := { agent v is never active in (t, t+ ε)} ,

E′′
t := {edge (a, v) is activated at some time u ∈ (t, t+ ε)} ,

Ft := {|Xa(u)− xa| ≥ θavζ , for some time u ∈ (t, t+ ε)} .
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Observe that Et ∩ E′
t ∩ E

′′
t implies Ft. Moreover, Et, E

′
t, and E′′

t are mutually independent, and if
rav > 0 is the activation rate of edge (a, v), and rv =

∑

v′ rvv′ ≥ 0 is the meeting rate of agent v, then
P(E′

t) = e−rvε, and P(E′′
t ) = 1− e−raε, respectively. It follows that

P(Ft) ≥ P(E′
t ∩E

′′
t ∩ Et) = αP(Et) , α := e−rvε(1 − e−raε) . (13)

Let Q+ be the set on non-negative rationals, define C :=
⋂

t∈Q+ Ct, D :=
⋃

t∈Q+ Dt, and observe that,
since Ft implies Cc, the complementary event of C, one has P(Ft) ≤ 1 − P(C) for every t ≥ 0. The
foregoing, combined with (13), gives

P(Et) ≤ α
−1(1 − P(C)) , ∀t ≥ 0 . (14)

On the other hand, since the event C ∩ D implies that Et occurs for some nonnegative rational t, the
union bound gives

P(C ∩D) ≤ P

(

⋃

t∈Q+
Et

)

≤
∑

t∈Q+

P(Et) . (15)

Then, (12) implies P(Xa(t) = xa) = 1 for all t ≥ 0, and then C has probability one since it is a countable
intersection of events of probability one. Then, it follows from (14) that P(Et) = 0 for all t ≥ 0, and thus
(15) implies that P(D) ≤ 1− P(C) + P(C ∩D) = 0.

In order to prove that, if Xa = Xa′ almost surely, then Xv(t) = Xa(t) for all t ≥ 0, and every out-
neighbor v of either a or a′, one can argue in a very similar fashion. Assume without loss of generality
that v is an out-neighbor of a. Fix some ε > 0, ζ > 0, and, for t ≥ 0, consider the events

Gt := {Xa(t) = Xa′(t)} , Ht := {|Xv(t)−Xa(t)| ≥ ζ} , Lt := Gt ∩Ht ,

E′′′
t := {agent a′ is never active in (t, t+ ε)} ,

Mt := {|Xa(u)−Xa′(u)| ≥ θavζ , for some time u ∈ (t, t+ ε)}

G :=
⋂

t∈Q+ Gt , H :=
⋃

t∈Q+ Ht .

Arguing as before, one finds that E′
t∩E

′′
t ∩E

′′′
t ∩Lt implies Mt, and that E′

t, E
′′
t , and E′′′

t are conditionally
independent given Lt, with conditioned probabilities P(E′

t|Lt) = e−rvε, P(E′′
t |Lt) = 1 − e−raε, and

P(E′′′
t |Lt) = 1− e−r

a′ε, respectively, so that

P(Mt ∩ Lt) ≥ P(E′
t ∩E

′′
t ∩ E

′′′
t ∩ Lt) = βP(Lt) , (16)

where β := e−rvε(1 − e−raε)(1 − e−r
a′ε). Moreover, since Mt implies Gc, for all t ≥ 0, one has that

P(Lt ∩Mt) ≤ P(Mt) ≤ 1 − P(G), which, together with (16), implies that P(Lt) ≤ β−1(1 − P(G)) for
all t ≥ 0. Arguing as before, one finds that P(G) = 1, so that P(Lt) = 0 for all t ≥ 0, and thus
P(H) = P(G ∩H) = 0. Then, from the arbitrariness of ζ > 0, it follows that Xv(t) = Xa(t) for all t ≥ 0.

Theorem 3.1 and Theorem 3.2 are two of the central results of our paper. Even though beliefs converge
in distribution, the presence of stubborn agents with different beliefs ensures that almost surely they fail
to converge. Moreover there will not be a consensus of beliefs in this society. Both of these are a
consequence of the fact that each regular agent is continuously being influenced –directly or indirectly–
by stubborn agents with different beliefs.

4. Empirical averages and correlations of agent beliefs In this section, we provide a charac-
terization of the empirical averages and correlations of agent beliefs {Xv(t) : v ∈ V}, i.e., of the almost
surely constant limits

lim
t→+∞

1

t

∫ t

0

Xv(u)du, lim
t→+∞

1

t

∫ t

0

Xv(u)Xv′(u)du.

By Corollary 3.1, these limits are given by the first two moments of the ergodic beliefs, i.e., E[Xv] and
E[XvXv′ ], respectively, independently of the distribution of initial regular agents’ beliefs.

We next provide explicit characterizations of these limits in terms of hitting probabilities of a pair of

coupled random walks on
−→
G = (V ,

−→
E ).4 Specifically, we consider a coupling (V (t), V ′(t)) of continuous-

time random walks on V , such that both V (t), and V ′(t), have marginal state transition rates Hav, as

4Note that the set of states for such a random walk corresponds to the set of agents, therefore we use the terms “state”

and “agent” interchangeably in the sequel.
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(a) (b) (c)

Figure 5: In (a), a network topology consisting of a line with three regular agents and two stubborn
agents placed in the extremes. In (b), the corresponding graph product G�. The latter has 25 nodes, four
of which are absorbing states. The coupled random walk (V (t), V ′(t)) moves on G�, its two components
jumping independently to neighbor states, unless they are either on the diagonal, or one of them is in S:
in the former case, there is some chance that the two components jump as a unique one, thus inducing
a direct connection along the diagonal; in the latter case, the only component that can keep moving is
the one which has not hit S, while the one who hit S is bound to remain constant from that point on.

In (c), the product graph G� is reported for the extreme case when θe = 1 for all e ∈
→

E . In this case,
the coupled random walks (V (t), V ′(t)) are coalescing: once they meet, they stick together, moving as a
single particle, and never separating from each other. This reflects the fact that there are no outgoing
edges from the diagonal set.

defined in (2). In fact, one may interpret (V (t), V ′(t)) as a random walk on the Cartesian power graph
G�, whose node set is the product V × V , and where there is an edge from (v, v′) to (w,w′), if and only

if either (v, w) ∈
−→
E and v′ = w′, or v = w and (v′, w′) ∈

−→
E , or v = v′ and w = w′ (See Figure 5). The

transition rates of the coupled random walks (V (t), V ′(t)) are given by

K(v,v′)(w,w′) :=







































Hvw if v 6= v′ , v 6= w , v′ = w′

Hv′w′ if v 6= v′ , v = w , v′ 6= w′

0 if v 6= v′ , w 6= v , w′ 6= v
θvwHvw if v = v′ , w = w′

(1− θvw)Hvw if v = v′ , v′ = w′

(1− θvw′)Hvw′ if v = v′ , v = w
0 if v = v′ , w 6= w′ , w 6= v , w′ 6= v′ .

(17)

The first three lines of (17) state that, conditioned on (V (t), V ′(t)) being on a pair of non-coincident nodes
(v, v′), each of the two components, V (t) (respectively, V ′(t)), jumps to a neighbor node w, with transition
rate Hvw (respectively, to a neighbor node w′ with transition rate Hv′w′), whereas the probability that
both components jump at the same time is zero. On the other hand, the last four lines of (17) state
that, once the two components have met, i.e., conditioned on V (t) = V ′(t) = v, they have some chance
to stick together and jump as a single particle to a neighbor node w, with rate θvwHvw, while each of
the components V (t) (respectively, V ′(t)) has still some chance to jump alone to a neighbor node w with
rate (1− θvw)Hvw (resp., to w′ with rate (1− θvw′)Hvw′). In the extreme case when θvw = 1 for all v, w,
the last three lines of the righthand side of (17) equal 0, and in fact one recovers the expression for the
transition rates of two coalescing random walks: once V (t) and V ′(t) have met, they stick together and
move as a single particle, never separating from each other.

We use the notation TS and T ′
S to denote the hitting times of the random walks V (t), and respectively

V ′(t), to the set of stubborn agents S, i.e.,

TS := inf{t ≥ 0 : V (t) ∈ S} , T ′
S := inf{t ≥ 0 : V ′(t) ∈ S} .

Further, for all v, v′ ∈ V , we define the hitting probability distributions γv over S, and ηvv′

over S2, whose
entries are respectively given by

γv
s := Pv(V (TS) = s) , s ∈ S ,

ηvv′

ss′ := Pvv′(V (TS) = s, V ′(T ′
S) = s′) , s, s′ ∈ S .

(18)
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The following lemma characterizes {γv
s : v ∈ V} and {ηvv′

ss′ : v, v′ ∈ V} as solutions of harmonic
equations on A and A2, with boundary conditions on S and V2 \ A2.

Lemma 4.1 For all s, s′ ∈ S, one has that
∑

v Hav(γ
v
s − γ

a
s ) = 0 , ∀a ∈ A ,

γs
s = 1 , γs

s′ = 0 , ∀s′ ∈ S \ {s} ,
(19)

∑

v,v′ K(a,a′)(v,v′)

(

ηvv′

ss′ − ηaa′

ss′

)

= 0 , ∀a, a′ ∈ A ,

ηvv′

ss′ = γv
sγ

v′

s′ , ∀(v, v′) ∈ V2 \ A2 .
(20)

Proof. Observe that the second line of (19) is trivial since, if V (0) = s, then TS = 0, and thus
γs

s′ = Ps(V (TS) = s′) = Ps(V (0) = s′) is 1 if s′ = s and 0 otherwise. On the other hand, the first
line of (19) follows by conditioning on the first state v ∈ V hit by a random walk V (t) started from
V (0) = a ∈ A: the probability γa

s that such a walk hits some s before any other s′ ∈ S equals the sum
over all neighbors v of a of the probability γv

s that a walk started from v hits some s before any other
s′ ∈ S, times the probability that the first neighbor hit by the random walk started in a is actually v,
which is proportional to Hav.

As far as the first line of (20) is concerned, it follows from conditioning on the first pair of vertices
(v, v′) hit by the joint random walk (V (t), V ′(t)), arguing as before. To see why the second line of (20)
holds, first assume v′ ∈ S (the alternative case when v ∈ S follows from a symmetric argument): in this
case, necessarily V ′(T ′

S) = V ′(0) = s′, so that ηvv′

ss′ = 0 if v′ 6= s′, while, if v = s′, one has

ηvv′

ss′ = P(V (TS) = s, V ′(T ′
S) = s′) = P(V (TS)) = γv

s ,

thus concluding the proof.

The next theorem provides a fundamental characterization of the expected values and correlations of
ergodic beliefs in terms of the hitting probabilities of the coupled random walks V (t) and V ′(t).

Theorem 4.1 For all v, v′ ∈ V,

E[Xv] =
∑

s
γv

sxs , E[XvXv′ ] =
∑

s,s′
ηvv′

ss′ xsxs′ .

Proof. With no loss of generality, since the distribution of the asymptotic belief vector X does not
depend on the probability law of the initial beliefs of the regular agents, we can assume that such a law
is the asymptotic one, i.e., that L(X(0)) = L(X). Then, Theorem 3.1 implies that

d

dt
E [ϕ(X(t)] = 0 , ∀t ≥ 0 , (21)

for all continuous bounded test function ϕ : RV → R.

In order to show the first part of the claim, we consider the Laplace equation with boundary conditions
∑

v Hav(hv − ha) = 0 , ∀a ∈ A ,

hs = xs , ∀s ∈ S .
(22)

It is a standard fact (see e.g. [3, Ch. 2, Lemma 27]) that the system of equations (22) admits a unique
solution {hv : v ∈ V}, and, thanks to (19), it is easy to verify that (22) is satisfied by hv :=

∑

s γ
v
sxs.

Now, (21) with the specific choice of the test function ϕ(x) = xa yields

0 =
d

dt
E[Xa(t)] =

∑

v

ravθav (E[Xv(t)]− E[Xa(t)]) =
∑

v

Hav (E[Xv]− E[Xa]) ,

for every a ∈ A. On the other hand, E[Xs(t)] = xs for all s ∈ S. Hence, the expected asymptotic
beliefs vector {E[Xv] : v ∈ V} solves (22), and the first part of the claim follows by the aforementioned
uniqueness of solutions.
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In order to prove the second part of the claim, we proceed in a similar fashion. First, observe that
thanks to (20), the vector {hvv′ :=

∑

s,s′ ηvv′

ss′ xsxs′} is the unique solution of the Laplace equation with
boundary conditions

∑

v,v′ K(a,a′)(v,v′)(h(v,v′) − h(a,a′)) = 0 , ∀a, a′ ∈ A ,

h(v,v′) = E[Xv]E[Xv′ ] , ∀(v, v′) ∈ V2 \ A2 .
(23)

Then, for all a 6= a′ ∈ A, (21) applied to the test function ϕ(x) = xaxa′ implies that

0 =
d

dt
E[Xa(t)Xa′(t)]

=
∑

v ravθav (E[Xv(t)Xa′(t)]− E[Xa(t)Xa′(t)])

+
∑

v′ ra′v′θa′v′ (E[Xa(t)Xv′(t)]− E[Xa(t)Xa′(t)])

=
∑

v,v′ K(a,a′)(v,v′) (E[XvXv′ ]− E[XaXa′ ]) ,

while (21) applied to ϕ(x) = x2
a gives

d

dt
E[X2

a(t)] =
∑

v ravE

[

((1− θav)Xa + θavXv)
2 −X2

a

]

=
∑

v ravθav

(

θavE[X2
v ] + 2(1− θav)E[XaXv]− (2 − θav)E[X2

a ]
)

=
∑

v Hav(1− θav)
(

E[XaXv]− E[X2
a ]

)

+
∑

v′ Hav′(1 − θav′)
(

E[XaXv′ ]− E[X2
a ]

)

+
∑

v Havθav

(

E[X2
v ]− E[X2

a ]
)

=
∑

v,v′ K(a,a′)(v,v′) (E[XvXv′ ]− E[XaXa′ ]) .

On the other hand, it is easy to see that E[XvXv′ ] = E[Xv]E[Xv′ ] for all (v, v′) ∈ V2 \ A2, thus proving
that E[XvXv′ ] solves (23). Hence, the second part of the claim follows by the uniqueness of solutions of
(23).

Remark 4.1 As a consequence of Theorem 4.1, one gets that, if Xa = {x∗}, then Xa = x∗, and, by
Corollary 3.1, Xa(t) converges to x∗ with probability one. This can be thought of as a sort of complement
to Theorem 3.2.

5. Reversible social networks From now on, we restrict to considering social networks whose
transition probability matrix P satisfies an additional assumption of reversibility. Recall from Sect. 2
that the stochastic matrix P was defined only on A× V , and not on S × V .

Assumption 5.1 The restriction of P to A × A is irreducible and reversible, i.e., there exist positive
values π̃a, for a ∈ A, such that

π̃aPaa′ = π̃a′Pa′a , a, a′ ∈ A . (24)

The irreducibility assumption will be satisfied when the graph
−→
G restricted to the regular agent set

A is strongly connected. In fact, the irreducibility assumption causes no significant loss of generality, as
one can always separately study the different communicating classes in the network. On the other hand,
the reversibility assumption is more stringent, as it entails a sort of reciprocity between the intensity of
influence of a regular agent on another, and vice versa. In particular, it implies that if (a, a′) ∈ E , then
also (a′, a) ∈ E , so that the restriction of the di-graph G to A is in fact undirected.

We shall refer to social networks whose transition probability matrix P satisfies Assumption 5.1 as
reversible (social) networks. Observe that, whenever Assumption 5.1 is satisfied, the vector {π̃a : a ∈ A}
is uniquely defined up to a multiplicative constant: to see this, fix the value π̃a on some a, then (24)
fixes the entries π̃a′ for a′ in the out-neighborhood of a, and the irreducibility assumption allows one to
iterate the argument until covering the whole A. Now, it is possible to extend P on S × V as follows:
Put Pss′ := 0 for all s, s′ ∈ S, and

π̃s :=
∑

a∈A

π̃aPas , Psa := Pasπ̃a/π̃s , s ∈ S, a ∈ A . (25)
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In particular, Psa does not depend on the particular choice of π̃, and, extended in this way, P becomes an
irreducible and reversible stochastic matrix of dimension V × V .5 Furthermore, the probability measure
π on V , defined by

πv :=
(

∑

v′
π̃v′

)−1

π̃v , (26)

is its unique invariant distribution. The measure of the stubborn agents’ set under such a distribution is
given by,

π(S) =
∑

s
πs =

(

∑

v
π̃v

)−1 ∑

a,s
π̃aPas (27)

Observe that (24) and (25) imply that Pvv′ > 0 if and only if Pvv′ > 0. It is then natural to associate
to any social network satisfying Assumption 5.1 an undirected graph G = (V , E), in which {v, v′} ∈ E
if and only of Pvv′ > 0. From now on, we refer to this undirected graph G, rather than to the directed

graph
−→
G considered so far. Clearly, a given undirected graph G may be associated to many reversible

social networks.

Example 5.1 Let us consider the canonical construction of a social network from a given undirected
graph G = (V , E), explained in Example 2.1. Extend P by putting Psv = 1/ds, for all s ∈ S, and v ∈ V
such that {s, v} ∈ E, and Psv = 0, for all s ∈ S, and v ∈ V such that {s, v} /∈ E. Then, Assumption 5.1
can be checked to hold, with the invariant measure given by

πv = dv/(nd) ,

where dv is the degree of node v in G and

d := n−1
∑

v

dv

is the average degree of G. Observe that, in this construction,

π(S) =
(

∑

v
dv

)−1 ∑

s
ds

is the fraction of edges incident to the stubborn agents, or, in other words, the relative size of the boundary
of S in G.

5.1 Explicit computations for some reversible networks We present now a few examples of
explicit computations of the ergodic average beliefs and variances for reversible social networks, obtained
using the construction in Example 2.1.

Example 5.2 (Tree) Let us consider the case when G = (V , E) is a tree. Let the stubborn agent set S
consist of only two elements, s0 and s1, with beliefs x0, and x1, respectively.

If Sa = {s0} (respectively, Sa = {s1}), then Remark 4.1 implies that E[Xa] = x0 (resp., E[Xa] = x1),
and Var[Xa] = 0. Instead, if Sa = {s0, s1}, then one has

E[Xa] :=
d(a, s0)x1 + d(a, s1)x0

d(a, s0) + d(a, s1)
,

where d(a, v) denotes the distance in G, between (i.e., the length of the shortest path connecting) nodes
a and v. Hence, the ergodic average beliefs are linear interpolations of the beliefs of the stubborn agents.
Moreover, if the confidence parameters are θe = 1 for all e, then the ergodic variance of agent a’ belief is
given by

Var[Xa] :=
d(a, s0)d(a, s1)

(d(a, s0) + d(a, s1))2
(x0 − x1)

2 .

The two equations above show that the belief of each regular agent keeps on oscillating ergodically around
a value which depends on the relative distance of the agent from the two stubborn agents. The amplitude
of such oscillations is maximal for central nodes, i.e., those which are approximately equally distant from
both stubborn agents. This can be given the intuitive explanation that, the closer a regular agent is to

5This is not the only possible extension that makes P irreducible and reversible, as one may allow, e.g., for non-zero

valued Pss′ . However, our subsequent analysis is valid for all such extensions, while tightness of the estimates may vary

with the choice of such an extension.
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Figure 6: In the left-most figure, expected ergodic beliefs and variances in a social network with a line
graph topology with n = 5, and stubborn agents positioned in the two extremities. The expected ergodic
beliefs are linear interpolations of the two stubborn agents’ beliefs, while their variances follow a parabolic
profile with maximum in the central agent, and zero variance for the two stubborn agents s0, and s1. In
the right-most figure, expected ergodic beliefs in a social network with a tree-like topology, represented
by different levels of gray. The solution is obtained by linearly interpolating between the two stubborn
agents’ beliefs, x0 (white), and x1 (black), on the vertices lying on the path between s0 and s1, and
then extended by putting it constant on each of the connected components of the subgraph obtained by
removing the edges of such path.

a stubborn agent s with respect to the other stubborn agent s′, the more frequent her, possibly indirect,
interactions are with agent s and the less frequent her interactions are with s′, and hence the stronger the
influence is from s rather than from s′. Moreover, the more equidistant a regular agent a is from s0, and
s1, the higher the uncertainty is on whether, in the recent past, agent a has been influenced by either s0,
or s1.

On its left-hand side, Figure 6 reports the expected ergodic beliefs and their variances for a social
network with population size n = 5, line (a special case of tree-like) topology: the two stubborn agents are
positioned in the extremities, and plotted in white, and black, respectively, while regular agents are plotted
in different shades of gray corresponding to their relative distance from the extremities, and hence to their
expected ergodic belief. In the right-hand side of Figure 6, a more complex tree-like topology is reported,
again with two stubborn agents colored in white, and black respectively, and with regular agents colored
by different shades of gray corresponding to their relative vicinity to the two stubborn agents. Figure 7
reports two social networks with star topology (another special case of tree). In both cases there are two
stubborn agents, colored in white, and black, respectively. In the left-most picture, the white stubborn
agent occupies the center, so that all the rest of the population will eventually adopt his belief, and is
therefore colored in white. In the right-most picture, none of the stubborn agents occupies the center, and
hence all the regular agents, hence colored in gray, are equally influenced by the two stubborn agents.

Example 5.3 (Barbell) For even n ≥ 6, consider a barbell-like topology consisting of two complete
graphs with vertex sets V0, and V1, both of size n/2, and an extra edge {a0, a1} with a0 ∈ A0, and
a1 ∈ A1 (see Figure 8). Let S = {s0, s1} with s0 6= a0 ∈ V0 and s1 6= a1 ∈ V1. Then, the expected ergodic
beliefs satisfy

E[Xa] =























4
n+8xs0 + n+4

n+8xs1 if a = a1

n+4
n+8xs0 + 4

n+8xs1 if a = a0

2
n+8xs0 + n+6

n+8xs1 if a ∈ A1 \ {a1}

n+6
n+8xs0 + 2

n+8xs1 if a ∈ A0 \ {a0} .

In particular, observe that, as n grows large, E[Xa] converges to xs0 for all a ∈ A0, and E[Xa] converges
to xs1 for all a ∈ A1. Hence, the network polarizes around the opinions of the two stubborn agents.

Example 5.4 (Abelian Cayley graph) Let us denote by Zm the integers modulo m. Put V = Zd
m, and

let Θ ⊆ V \ {0} be a subset generating V and such that if x ∈ Θ, then also −x ∈ Θ. The Abelian Cayley
graph associated with Θ is the graph G = (V , E) where {v, w} ∈ E iff v − w ∈ Θ. Notice that Abelian
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Figure 7: Two social network with a special case of tree-like topology, known as star graph, and two
stubborn agents. In social network depicted in left-most figure one of the stubborn agents, s0, occupies
the center, while the other one, s1, occupies one of the leaves. There, all regular agents’ ergodic beliefs
coincide with the belief x0 of s0, represented in white. In social network depicted in right-most figure,
none of the stubborn agents, occupy the center. There, all regular agents’ ergodic beliefs coincide with
the arithmetic average (represented in gray) of x0 (white), and x1 (black).
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Figure 8: A social network with population size n = 12, a barbell-like topology, and two stubborn agents.
In each of the two halves of the graph the expected average beliefs concentrate around the beliefs of the
stubborn agent in the respective half.
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Figure 9: Two social networks with cycle and 2-dimensional toroidal topology, respectively.
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Cayley graphs are always undirected and regular, with dv = |Θ| for any v ∈ V. Denote by ei ∈ V the
vector of all 0’s but the i-th component equal to 1. If Θ = {±e1, . . . ,±ed}, the corresponding G is the
classical d-dimensional torus of size n = md. In particular, for d = 1, this is a cycle, while, for d = 2,
this is the torus (see Figure 9).

Let the stubborn agent set consist of only two elements: S := {s0, s1}. Then the following formula
holds (see [3, Ch. 2, Corollary 10]):

γv
s0

= Pv(Ts1 < Ts0) =
Evs0 − Evs1 + Es1s0

Es0s1 + Es1s0

(28)

where Evw := Ev[Tw] denotes the expected time it takes to a random walk started at v to hit for the first
time w. On the other hand, mean hitting times Evw can be expressed in terms of the Green function of
the graph, which is defined as the unique matrix Z ∈ RV×V such that

Z1 = 0 , (I − P )Z = I − n−111T ,

where 1 stands for the all-1 vector. The relation with the hitting times is given by:

Evw = n−1(Zww − Zvw) . (29)

Let P be the stochastic matrix corresponding to the simple random walk on G. It is a standard fact
that P is irreducible and its unique invariant probability is the uniform one. There is an orthonormal
basis of eigenvectors for P good for any Θ: if l = (l1, . . . ld) ∈ V define φl ∈ RV by

φl(k) = m−d/2 exp

(

2πi

m
l · k

)

, k = (k1, . . . , kd) ∈ V ,

(where l · k =
∑

i liki). The corresponding eigenvalues can be expressed as follows

λl =
1

|Θ+|

∑

k∈Θ+

cos

(

2π

m
l · k

)

where Θ+ is any subset of Θ such that for all x ∈ Θ, |{x,−x} ∩Θ+| = 1. Hence,

Zvw = m−d
∑

l 6=0

exp
[

2πi
m l · (v − w)

]

1− 1
|Θ+|

∑

k∈Θ+

cos
[

2π
m l · k

] (30)

From (28), (29), and the fact that Es0s1 = Es1s0 by symmetry, one obtains

γa
s1

=
1

2
+

m−d
∑

l 6=0

exp
[

2πi
m l · (a− s1)

]

− exp
[

2πi
m l · (a− s0)

]

1− 1
|Θ+|

∑

k∈Θ+

cos
[

2π
m l · k

]

2m−d
∑

l 6=0

1− cos
[

2π
m l · (s0 − s1)

]

1− 1
|Θ+|

∑

k∈Θ+

cos
[

2π
m l · k

]

(31)

6. Approximately equal influence in highly fluid social networks In this section, we present
estimates for the ergodic belief expectations and variances as a function of the underlying social network.
Our estimates will prove to be particularly relevant for large-scale social networks satisfying the following
condition.

Definition 6.1 Given a reversible social network, let P denote its transition probability matrix, extended
as in (25), and π denote its stationary distribution defined as in (26). Define π∗ := minv πv, and let

τ := inf

{

t ≥ 0 :
∑

w

|Pv(V (t) = w)− Pv′(V (t) = w)| ≤
2

e
, ∀v, v′ ∈ V

}

. (32)

denote the (variational distance) mixing time of the continuous-time random walk V (t) with transition
rate matrix P . We say that a sequence6 of social networks of increasing population size n is highly fluid
if it satisfies

τπ(S) = o(1) , nπ∗ = Θ(1) , as n→ +∞ , (33)

where π(S) is the size of the stubborn agents’ set, defined in (27).

6With a slight abuse of notation, in the following we shall sometimes refer to a sequence of social networks of increasing

population size n simply as a social network.
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Our estimates will show that for large-scale highly fluid social networks, the ergodic beliefs of most of
the regular agents in the population can be approximated (at least in their first and second moments) by
a ‘virtual’ random belief Z, whose distribution is given by

P(Z = xs) = γs , γs :=
∑

v
πvγ

v
s , s ∈ S . (34)

We refer to the probability distribution {γs : s ∈ S} as the stationary stubborn agent distribution.
Observe that γs = Pπ(V (TS) = s) coincides with probability that the random walk V (t), started from
the stationary distribution π, hits the stubborn agent s before any other stubborn agent s′ ∈ S. In fact,
as we shall clarify below, one may interpret γs as a relative measure of the influence of the stubborn
agent s on the society compared to the rest of the stubborn agents s′ ∈ S.

More precisely, let us denote the expected value and variance of the virtual belief Z by

E[Z] :=
∑

s
γsxs , σ2

Z :=
∑

s
γs (xs − E[Z])

2
. (35)

Let σ2
v denote the variance of the ergodic belief of agent v,

σ2
v := E[X2

v ]− E[Xv]
2 .

We also use the notation ∆∗ to denote the maximum difference between stubborn agents’ beliefs, i.e.,

∆∗ := max {xs − xs′ : s, s′ ∈ S} . (36)

The next theorem presents the main result of this section.

Theorem 6.1 Let Assumptions 2.1, 2.2, and 5.1 hold, and assume that π(S) ≤ 1/4. Then, for all ε > 0,

1

n

∣

∣

∣

{

v :
∣

∣

∣
E[Xv]− E[Z]

∣

∣

∣
≥ ∆∗ε

}∣

∣

∣
≤ ψ(ε)

τπ(S)

nπ∗
, (37)

with ψ(ε) := 16
ε log(2e2/ε). Furthermore, if the trust parameters satisfy θav = 1 for all (a, v) ∈

−→
E , then

1

n

∣

∣

∣

{

v :
∣

∣

∣
σ2

v − σ
2
Z

∣

∣

∣
≥ ∆2

∗ε
}
∣

∣

∣
≤ ψ(ε)

τπ(S)

nπ∗
. (38)

This theorem implies that in large-scale highly fluid social networks, as the population size n grows
large, the expected values and variances of ergodic beliefs of regular agents concentrate around fixed
values corresponding to the expected virtual belief E[Z], and, respectively, its variance σ2

Z . We refer to
this as an approximately equal influence of the stubborn agents on the rest of the society—meaning that
their influence on most of the agents in the society is approximately the same. Indeed, it amounts to
approximately equal (at least in their first two moments) marginals of the agents’ ergodic beliefs. This
shows that in highly fluid social networks, most of the regular agents feel the presence of the stubborn
agents in approximately the same way.

Intuitively, if the set S and the mixing time τ are both small, then the influence of the stubborn agents
will be felt by most of the regular agents much later then the time it takes them to influence each other.
Hence, their beliefs’ empirical averages and variances will converge to values very close to each other.
Theorem 6.1 is proved in Sect. 6.2. Its proof relies on the characterization of the mean ergodic beliefs
in terms of the hitting probabilities of the random walk V (t). The definition of highly fluid network
implies that the (expected) time it takes V (t) to hit S, when started from most of the nodes of G, is
much larger than the mixing time τ . Hence, before hitting S, V (t) looses memory of where it started
from, and approaches S almost as if started from the stationary distribution π.

Before proving Theorem 6.1, we present some examples of highly fluid social networks in Sect. 6.1.

6.1 Examples of large-scale highly fluid social networks We now present some examples of
family of social networks that are highly fluid in the limit of large population size n. All the examples
will follow the canonical social network construction of Example 2.1, starting from an undirected graph
G. Before proceeding, let us recall that the invariant measure of the stubborn agents set π(S) is given by

π(S) =
∑

s
ds/(nd̄) , (39)
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and observe that π∗n ≤ 1, with equality if and only if π is the uniform measure over V . Hence, one has
π∗n = 1 for regular graphs, while, for general undirected graphs (π∗n)−1 ≤ d, where d is the average
degree of the graph.

We start with an example of a social network which is not highly fluid.

Example 6.1 (Barbell) For even n ≥ 6, consider the barbell-like topology introduced in Example 5.3.
The mixing time of this network can be estimated in terms of the conductance Φ∗ of the graph, which
is defined as the minimum over all subsets V ′ ⊆ V with 0 <

∑

v∈V′ dv ≤ nd/2, of the ratio between the
number of edges connecting V ′ with its complement, and the sum of the degrees of the nodes in V. It is
not hard to see that such a minimum is achieved by V ′ = V0, so that

Φ∗ =
1

n
2 (n

2 − 1) + 1
≤

4

(n+ 1)2
.

Using [28, Theorem 7.3], it then follows that

τ ≥
1

4Φ∗
≥

(n+ 1)2

16
.

Since dv ≥ n/2 − 1 for all v, it follows that the barbell-like network is never highly fluid provided that
|S| ≥ 1. In fact, we have already seen in Example 5.3 that the expected ergodic beliefs polarize in this
case.

Let us now consider a standard deterministic family of symmetric graphs.

Example 6.2 (d-dimensional tori) Let us consider the case of a d-dimensional torus of size n = md,
introduced in Example 5.4. Since this is a regular graph, one has π∗n = 1. Moreover, it was proved
by Cox [15] that, as n grows large, τ ∼ Cdn

2/d, for some constant Cd depending on the dimension d
only. Then, τπ(S) ∼ |S|n2/d−1. Hence, if |S| = o(n), then the social network with toroidal topology is
highly fluid.7 In contrast, for the one-dimensional torus (i.e., a ring) of size n, both Eπ[TS ] ∼ n2 and
τC2 ∼ n2; in fact, using the explicit calculations of Example 5.2, that the expected asymptotic opinions
do not concentrate in this case. Finally, the two-dimensional torus is not highly fluid, hence Theorem 6.1
is not sufficient to prove that the empirical beliefs concentrate around E[Z]. Nevertheless, one could use
the explicit expression (31) and Fourier analysis in order to show that the condition |S| = o(n1/2) would
suffice for that.

An intuition for this behavior can be obtained by thinking of a limit continuous model. First recall that
the expected ergodic beliefs vector solves the Laplace equation on G with boundary conditions assigned on
the stubborn agent set S. Now, consider the Laplace equation on a d-dimensional manifold with boundary
conditions on a certain subset. Then, in order for the problem to be well-posed, one needs that the such
a subset has dimension d − 1. Similarly, one needs |S| = Θ(n(d−1)/d) = Θ(md−1) in order to guarantee
that the expected ergodic beliefs vector is not almost constant in the limit of large n.

We now present four examples of random graph sequences which have been the object of extensive
research. Following a common terminology, we say that some property of such graphs holds with high
probability, if the probability that it holds approaches one in the limit of large population size n.

Example 6.3 (Connected Erdös-Renyi) Consider the Erdös-Renyi random graph G = ER(n, p), i.e.,
the random undirected graph with n vertices, in which each pair of distinct vertices is an edge with
probability p, independently from the others. We focus on the regime p = cn−1 logn, with c > 1, where
the Erdös-Renyi graph is known to be connected with high probability [19, Thm. 2.8.2]. In this regime,
results by Cooper and Frieze [14] ensure that, with high probability, τ = O(log n), and that there exists a
positive constant δ such that δc logn ≤ dv ≤ 4c logn for each node v [19, Lemma 6.5.2]. In particular, it
follows that, with high probability, (π∗n)−1 ≤ 4/δ. Hence, using (39), one finds that the resulting social
network is highly fluid, provided that |S| = o(n/ logn), as n grows large.

7In fact, using Fourier analysis, one may show that |S| = o(n1/d−1) suffices.
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Example 6.4 (Fixed degree distribution) Consider a random graph G = FD(n, λ), with n vertices,
whose degree dv are independent and identically distributed random variables with P(dv = k) = λk, for
k ∈ N. We assume that λ1 = λ2 = 0, that λ2k > 0 for some k ≥ 2, and that the first two moments
d :=

∑

k λkk, and
∑

k λkk
2 are finite. Then, the probability of the event En := {

∑

v dv is even} converges
to 1/2 as n grows large, and we may assume that G = FD(n, λ) is generated by randomly matching the
vertices. Results in [19, Ch. 6.3] show that τ = O(log n). Therefore, using (39), one finds that the
resulting social network is highly fluid with high probability provided that

∑

s ds = o
(

n
log n

)

.

Example 6.5 (Preferential attachment) The preferential attachment model was introduced by
Barabasi and Albert [8] to model real-world networks which typically exhibit a power law degree dis-
tribution. We follow [19, Ch. 4] and consider the random graph G = PA(n,m) with n vertices, gen-
erated by starting with two vertices connected by m parallel edges, and then subsequently adding a new
vertex and connecting it to m of the existing nodes with probability proportional to their current de-
gree. As shown in [19, Th. 4.1.4], the degree distribution converges in probability to the power law
P(dv = k) = λk = 2m(m + 1)/k(k + 1)(k + 2), and the graph is connected with high probability [19,
Th. 4.6.1]. In particular, it follows that, with high probability, the average degree d remains bounded,
while the second moment of the degree distribution diverges an n grows large. On the other hand, results
by Mihail et al. [32] (see also [19, Th. 6.4.2]) imply that the mixing time τ = O(log n). Therefore, thanks
to (39), the resulting social network is highly fluid with high probability if

∑

s∈S ds = o
(

n
log n

)

.

Example 6.6 (Watts & Strogatz’s small world) Watts and Strogatz [46], and then Newman and
Watts [37] proposed simple models of random graphs to explain the empirical evidence that most social
networks contain a large number of triangles and have a small diameter (the latter has become known
as the small-world phenomenon). We consider Newman and Watts’ model, which is a random graph
G = NW(n, k, p), with n vertices, obtained starting from a Cayley graph on the ring Zn with generator
{−k,−k + 1, . . . ,−1, 1, . . . , k − 1, k}, and adding to it a Poisson number of shortcuts with mean pkn,
and attaching them to randomly chosen vertices. In this case, the average degree remains bounded with
high probability as n grows large, while results by Durrett [19, Th. 6.6.1] show that the mixing time
τ = O(log3 n). This, and (39) imply that (33) holds provided that

∑

s∈S ds = o
(

n
log3 n

)

.

6.2 Proof of Theorem 6.1 In order to prove Theorem 6.1, we shall obtain estimates on the hitting
probabilities of the random walk. We start by stating a standard result on the distance of transition
probability distribution of a random walk from its stationary distribution. For a random walk V (t) on
set V , let qv(t) be its probability distribution at time t ≥ 0 when started from some v ∈ V8, i.e.,

qv
v′(t) := Pv(V (t) = v′) , v, v′ ∈ V .

Proposition 6.1 [3, Ch. 4,Lemma 5] Let V (t) be a random walk on set V. For all t ≥ 0, we have

max
v,v′

∣

∣

∣

∣

∣

∣
qv(t)− qv′

(t)
∣

∣

∣

∣

∣

∣

TV
≤ exp(1 − t/τ) ,

where τ is the mixing time of the random walk V (t) [cf. Eq. (32)].

The following result, whose proof is an application of Proposition 6.1, provides a useful estimate on
the total variation distance between the hitting probability distribution γv over S and the stationary
stubborn agent distribution γ.

Lemma 6.1 Let Assumptions 2.1, and 2.2 hold. Then, for all t ≥ 0, and v ∈ V,

||γv − γ||TV ≤ pv(t) + exp(−t/τ + 1) , (40)

where pv(t) := Pv (TS ≤ t).

8We use here the same notation for the generic random walk as the random walk induced by a social network for

convenience.
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Proof. Observe that, with no loss of generality, we may assume
∑

v′ Hvv′ = 1 for all v, since having
different rates

∑

v′ Hvv′ does not alter the values of the hitting probability distributions γv. Then, notice
that (40) is trivial when v ∈ S, for in that case pv(t) = 1.

On the other hand, for every a ∈ A, v ∈ V , and s ∈ S, let us define

γ̃a
s := Pa (V (TS) = s, TS > t) , ρa

s := Pa(V (TS) = s|TS ≤ t) .

q̃a
v := Pa(V (t) = v, TS > t) , χa

s :=
∑

v

(qa
v − q̃

a
v )γs

v/pa .

Clearly, ρa is a probability measure over S, and the same is true for χa, since χa
v ≥ 0, and

∑

s
χa

s =
∑

v
Pa(V (t) = v|TS ≤ t)

∑

s
γs

v = 1 .

On the other hand, neither γ̃a nor q̃a are generally probability measures over V . Let T̃S := inf{t′ ≥ t :
V (t) ∈ S}. For s ∈ S, one has

γa
s − pa(t)ρa

s = Pa (V (TS) = s, TS > t)

=
∑

v Pa (V (TS) = s, V (t) = v, TS > t)

=
∑

v Pa

(

V (T̃S) = s, V (t) = v, TS > t
)

=
∑

v q̃
a
vPa

(

V (T̃S) = s|V (t) = v, TS > t
)

=
∑

v q̃
a
vγ

v
s

=
∑

v q
a
v (t)γv

s − pa(t)χa
s ,

the last equality following from the strong Markov property of V (t). Hence,

||γa −
∑

v q
a
v (t)γv||TV = pa(t)||ρa − χa||TV ≤ pa(t) .

Using (34), one has that

||
∑

v q
a
v (t)γv − γ||TV = 1

2

∑

s |
∑

v q
a
v (t)γv

s − γs|

= 1
2

∑

s |
∑

v γ
v
s (qa

v (t)− πv)|

≤ 1
2

∑

v

∑

s γ
v
s |q

a
v (t)− πv|

= 1
2

∑

v |q
a
v (t)− πv|

= ||qa(t)− π||TV .

By applying the triangle inequality, the two estimates above, and Proposition 6.1, one shows that

||γa − γ||TV ≤ ||γa −
∑

v q
a
v (t)γv||TV + ||

∑

v q
a
v (t)γv − γ||TV

≤ pa(t) + ||qa(t)− π||TV

≤ pa(t) + exp(−t/τ + 1) ,

thus proving the claim.

Lemma 6.2, stated below, is the main technical result of this section. Its proof relies on the “approxi-
mate exponentiality” of the hitting time TS . This is the property that the probability law of TS is close
to the exponential distribution with expectation Eπ [TS ] when the initial distribution is the stationary
one, and the mixing time τ is small with respect to the expected hitting time Eπ[TS ]. In particular, we
make use of the following result, due to Aldous and Brown:

Proposition 6.2 ([3, Ch. 3,Prop. 23]) Let V (t) be a continuous-time reversible random walk on V with
irreducible transition probability matrix P , and stationary distribution π. Let τ2 be its relaxation time,
i.e., the inverse of the spectral gap of P . Then, for all S ⊂ V,

sup
t≥0
|Pπ(TS > t)− exp(−t/Eπ[TS ])| ≤ τ2/Eπ[TS ] .
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Lemma 6.2 Let Assumptions 2.1, 2.2, and 5.1 hold. Then, for all ε > 0,

1

n

∣

∣

{

v ∈ V : ||γv − γ||TV ≥ ε
}
∣

∣ ≤
2 log(2e2/ε)

ε

τ

nπ∗Eπ [TS ]
. (41)

Proof. From Lemma 6.1, and Proposition 6.2, it follows that, for all t ≥ 0,

∑

v

πvpv(t) =
∑

v

πvPv (TS ≤ t) ≤ 1− exp

(

−
t

Eπ[TS ]

)

+
τ2

Eπ[TS ]
≤

t+ τ2
Eπ [TS ]

,

where the last step follows from the inequality ex ≤ 1 + x. Hence, Markov’s inequality implies that

1

n
|{v : pv(t) ≥ ε/2}| ≤

2

ε

∑

v

1

n
pv(t) ≤

2

εnπ∗

∑

v

πvpv(t) ≤
2

εnπ∗

t+ τ2
Eπ [TS ]

. (42)

Now, by applying (40) and (42) with t = τ log(2e/ε), and using the inequality τ2 ≤ τ , one gets

1

n
|{v : ||γv − γ||TV ≥ ε}| ≤

1

n

∣

∣

∣

{

v : ||qv(t)− π||TV ≥
ε

2

}∣

∣

∣
≤

2 log(2e2/ε)τ

εnπ∗Eπ [TS ]
,

which proves the claim.

Lemma 6.2 is particularly relevant when τ is much smaller than Eπ [TS ]. Indeed, in this case, it shows
that, for all but a negligible fraction of initial states v ∈ V , the hitting probability distribution γv will
be close to the stationary stubborn agent distribution γ. The intuition behind this result is simple: if
the chain V (t) mixes much before hitting the stubborn agents set S, then it will hit some s before any
other s′ ∈ S with probability close to γs, independently of the initial state. While the expected hitting
time Eπ [TS ] may be computable in certain cases, it is often easier to estimate it in terms of the invariant
measure of the stubborn agent set, π(S), e.g., using the following result:

Proposition 6.3 [4, Proposition 7.13] For all S ⊆ V, Eπ[TS ] ≥ 1
2π(S) −

3
2 .

Lemma 6.2 and Proposition 6.3 immediately imply the following result:

Lemma 6.3 Let Assumptions 2.1, 2.2, and 5.1 hold, and assume that π(S) ≤ 1/4. Then, for all ε > 0,

1

n
|{v : ||γv − γ||TV ≥ ε}| ≤ ψ(ε)

τπ(S)

nπ∗
,

with ψ(ε) := 16
ε log(2e2/ε).

Proof of Theorem 6.1:

Let ys := xs + ∆∗/2 − max{xs′ : s′ ∈ S} for all s ∈ S. Clearly |ys| ≤ ∆∗/2. Then, it follows from
Theorem 4.1 that

∣

∣

∣
E[Xv]− E[Z]

∣

∣

∣
=

∣

∣

∑

s
γv

sxs −
∑

s
γsxs

∣

∣

∣
=

∣

∣

∑

s
γv

s ys −
∑

s
γsys

∣

∣

∣
≤ ∆∗||γ

v − γ||TV ,

so that (37) immediately follows from Lemma 6.3.

On the other hand, in order to show (38), first recall that, if θe = 1 for all e ∈
−→
E , then Eq. (17) provides

the transition rates of coalescing random walks. In particular, if V (0) = V ′(0), then V (TS) = V ′(T ′
S), so

that ηvv
ss′ = γv

s if s = s′, and ηvv
ss′ = 0 otherwise. Then, it follows from Theorem 4.1 that

σ2
v = E[X2

v ]− E[Xv]2

=
∑

s,s′ ηvv
ss′xsxs′ − (

∑

s γ
v
sxs)

2

=
∑

s γ
v
sx

2
s − (

∑

s γ
v
sxs)

2

= 1
2

∑

s

∑

s′ γv
sγ

v
s′(xs − xs′ )2 .

Similarly, σ2
Z = 1

2

∑

s,s′ γsγs′(xs − xs′ )2, so that
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|σ2
v − σ

2
Z | ≤

1
2

∑

s,s′ |γv
s γ

v
s′ − γsγs′ | (xs − xs′ )2

≤ 1
2

∑

s,s′ |γv
s γ

v
s′ − γsγs′ |∆2

∗

≤ 1
2

∑

s,s′ (γv
s |γ

v
s′ − γs′ |+ γv

s′ |γv
s − γs|)∆2

∗

= ||γv − γ||TV ∆2
∗ ,

and (38) follows again from a direct application of Lemma 6.3.

7. Opinion oscillations and disagreement We have seen in the previous section that in highly
fluid social networks a condition of approximately equal influence is achieved, with the expected values
and variances of the ergodic opinions of almost all the agents close to those of the virtual belief. It
is worth stressing how the condition of approximately equal influence may significantly differ from an
approximate consensus. In fact, the former only involves the (the first and second moments of) the
marginal distributions of the agents’ ergodic beliefs, and does not have any implication for their joint
probability law. A chaotic distribution in which the agents’ ergodic beliefs are all mutually independent
would be compatible with the condition of approximately equal influence, as well as an approximate
consensus condition, which would require the ergodic beliefs of most of the agents to be close to each
other with high probability. In this section, under additional assumptions, we show that the ergodic belief
distribution in highly fluid social networks is closer to a chaotic distribution than to an approximate
consensus. For the sake of simplicity, throughout this section, we restrict our attention to the voter
model.

Assumption 7.1 For every e ∈
−→
E , θe = 1.

We start by introducing two quantities measuring the amplitude of the aggregate population’s oscilla-
tions and the average disagreement among the agents. Specifically, let us consider the ergodic aggregate
belief of the system, X := n−1

∑

v Xv, and let

σ2
X

:= E

[

(

X − E[X ]
)2

]

(43)

be its variance. Also, define the mean squared disagreement as

∆2 :=
1

2n2

∑

v,v′

E

[

(Xv −Xv′)2
]

, (44)

the reason for the factor 1/2 being mere notational convenience. Observe that, if the ergodic distribution
of the agents’ beliefs is chaotic (i.e., it is the product of its marginals), then X is the arithmetic average
of independent random variables with finite variance, and thus σ2

X
= o(1). On the other hand, an

approximate consensus condition, with the ergodic beliefs of most of the agents close to each other with
high probability, would imply that ∆2 = o(1).

In this section, we focus on highly fluid social networks satisfying the following:

Definition 7.1 Given a family of reversible social networks of increasing population size, we say that
there is a significant presence of stubborn agents if

π(S)

π(D)
= ω(τ2) , n→ +∞ , (45)

where τ2 is the relaxation time, i.e., the inverse of the spectral gap, and

π(D) :=
∑

a
π2

a

is the invariant measure of the diagonal set D := {(a, a) : a ∈ A}.

In order to obtain some intuition on Definition 7.1, one should think of the ratio π(S)/π(D) as a
measure of the relative intensity of the interactions of the regular agents with the stubborn agents
(quantified by π(S)), as compared to the intensity of the interactions between typical pairs of regular
agents (quantified by π(D)). If such a ratio grows fast enough (precisely, Definition 7.1 requires it to
grow faster than the relaxation time of the network, but in fact, one may expect that in many cases such
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ratio going to infinity should suffice), then one may expect that the ergodic beliefs of a typical pair of
regular agents in the network should be directly influenced by the stubborn agents’ beliefs, without a
significant coupling between themselves. Hence, in a social network with a significant presence of stubborn
agents, the ergodic beliefs of most of the regular agents’ pairs are expected to be weakly coupled, so that
the variance of the ergodic aggregate belief should vanish in the large population limit. Indeed, this is
formalized in the following:

Theorem 7.1 For any family of highly fluid social networks, satisfying Assumptions 2.1, 2.2, 5.1, and
7.1, with a significant presence of stubborn agents, it holds

σ2
X

= o(1) , ∆2 = σ2
Z + o(1) , as n→ +∞ .

Theorem 7.1 shows that in highly fluid social network with a significant presence of stubborn agents, the
amplitude of the ergodic oscillations of the aggregate belief vanishes, while the mean square disagreement
is asymptotically equivalent to the variance of the virtual belief, in the limit of large population size.
Hence, under these conditions the ergodic belief distribution achieved in this setting is close to a chaotic
distribution.

An immediate consequence of Theorem 7.1 is that, if σ2
Z is bounded away from zero in the large

population limit, then so is the mean squared disagreement. Observe that the condition σ2
Z = o(1) is

equivalent to the fact that the probability measure
∑

s γsδxs
(where γs is defined in (34), and δx stands

for the Dirac’s measure centered in some x ∈ R) concentrates in one single point. We can think of this as
the as the presence of a dominating stubborn agents’ belief. Hence, we may say that Theorem 7.1 implies
that, on highly fluid social networks with a significant presence of stubborn agents, none of whose beliefs
is dominating, a significant disagreement persists in the large population limit.

7.1 Examples of highly fluid social networks with significant presence of stubborn agents

Observe that, for the canonical construction of a social network from an indirected graph G, as described
in Example 2.1, one has

π(D) =
∑

a

π2
a ≤

∑

v

π2
v =

∑

v

d2
v

(nd)2
=

d2

(d)2
n−1 ,

where d is the average degree, and d2 := n−1
∑

v d
2
v is the average squared degree, of G. Notice that the

ratio
d2

(d)2
= 1 +

1

n

∑

v

(

dv

d
− 1

)2

is minimal for regular graphs, where it equals 1, and grows with the normalized variance of the degree
distribution. In particular, for a family of social networks with bounded first and second moment of the
degree distribution, π(D) = O(n−1), so that, in order to have a significant presence of stubborn agents,
its is sufficient that nπ(S) = (d)−1

∑

s ds grows faster than the relaxation time τ2.

Let us return to the five examples of Sect. 6.1.

Example 7.1 (d-dimensional tori) Let us consider the case of a d-dimensional torus of size n, intro-
duced in Example 5.4, and discussed in Example 7.1. Then, d2 = 2d, and τ2 ≤ τ = O(n2/d) for d ≥ 2.
Thus, if d > 4, and |S| grows faster than n2/d, and slower than n1−2/d, then the associated social network
is highly fluid and with a significant presence of stubborn agents.

Example 7.2 (Connected Erdös-Renyi) Consider the Erdös-Renyi random graph G = ER(n, p), in
the regime p = cn−1 log n, with c > 1, as in Example 6.3. Then, with high probability, d2/(d)2 = O(1),
while τ2 ≤ τ = O(log n). It follows that the associated social network is highly fluid and with a significant
presence of stubborn agents provided that |S| grows faster than logn, and slower than n/ logn.

Example 7.3 (Fixed degree distribution) Consider G = FD(n, λ), as in Example 6.4. Then, with
high probability, since the expected square degree is bounded, one has π(D) = O(n−1), while τ2 ≤ τ =
O(log n). It follows that the associated social network is highly fluid and with a significant presence of
stubborn agents provided that

∑

s ds grows faster than logn, and slower than n/ logn.
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Example 7.4 (Preferential attachment) Consider the preferential attachment model of Example 6.5.
Then, with high probability, τ2 ≤ τ = O(log n), while, according to [19, pag. 180], π(D) ≤ n−1 logn. It
follows that the associated social network is highly fluid and with a significant presence of stubborn agents
provided that

∑

s ds grows faster than log2 n, and slower than n/ logn.

Example 7.5 (Watts & Strogatz’s small world) For the small-world model of Example 6.6, one has
that both the average degree and the average square degree are bounded, so that π(D) = O(n1), while
τ2 ≤ τ = O(log3 n), with high probability. This implies that (33) holds provided that

∑

s∈S ds grows faster

than log3 n and slower than n/log3 n.

7.2 Proof of Theorem 7.1 The following result is a consequence of Theorem 6.1:

Lemma 7.1 For any family of highly fluid social networks, satisfying Assumptions 2.1, 2.2, 5.1, and 7.1,

∆2 + σ2
X

= σ2
Z + o(1) , as n→ +∞ . (46)

Proof. Observe that

∆2 = 1
2n2

∑

v,v′ E

[

(Xv −Xv′)
2
]

= 1
2n2

∑

v,v′

(

E
[

X2
v

]

+ E
[

X2
v′

]

− 2E [XvXv′ ]
)

= 1
2n2

∑

v,v′

(

E
[

X2
v

]

+ E
[

X2
v′

]

− E [Xv]
2 − E [Xv′ ]

2

+E [Xv]
2
+ E [Xv′ ]

2 − 2E[Xv]E[Xv′ ]

+2E[Xv]E[Xv′ ]− 2E[XvXv′ ]
)

= 1
2n2

∑

v,v′

(

σ2
v + σ2

v′ + (E[Xv]− E[Xv′ ])2 − 2 Cov(Xv, Xv′)
)

= n−1
∑

v σ
2
v + 1

2n
−2

∑

v,v′(E[Xv]− E[Xv′ ])2 − n−2
∑

v,v′ Cov(Xv, Xv′) .

(47)

Similarly, one gets that

σ2
X

= E
[

(n−1
∑

v Xv)
2
]

−
(

E
[

n−1
∑

v Xv

])2

= n−2
∑

v,v′ (E[XvXv′ ]− E[Xv]E[Xv′ ])

= n−2
∑

v,v′ Cov(Xv, Xv′) .

(48)

It follows from Theorem 6.1 that

n−2
∑

v,v′
(E[Xv]− E[Xv′ ])2 = o(1) , n−1

∑

v
σ2

v = σ2
Z + o(1) . (49)

Then the claim follows from (47), (48), and (49).

Corollary 7.1 implies that, the sum of the mean squared disagreement ∆2 and the variance of the
ergodic aggregate belief , σ2

X
, remains bounded away from 0 in the limit of large population size, provided

that there is no dominating stubborn agents’ belief. In fact, we now show that σ2
X

vanishes in the large
population limit of highly social networks with significant presence of stubborn agents.

To argue that, some considerations are in order on the coupled random walk (V (t), V ′(t)) of transition
rates K(v,v′),(w,w′) defined in (17). Recall that, under Assumption 7.1, such rates reduce to the ones of
a pair of coalescing random walks which stick together once they meet, and never separate from each
other. It is then of particular interest to consider the diagonal set

D := {(a, a) : a ∈ A} ⊆ V × V ,

and the boundary set
B := (S × V) ∪ (V × S) .

Let C := B ∪ D. Let TD, TB, TC denote the hitting times of the random walk on the sets D, B, and C,
respectively. We shall study the probability

pD := Pπ(TD < TB) ,

that, when started from the stationary distribution, V (t) and V ′(t) meet before any of them hits the
stubborn agents’ set. In particular, one has the following result:
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Lemma 7.2 For every social network satisfying Assumptions 2.1, 2.2, 5.1, and 7.1,

σ2
X
≤

∆2
∗

2(nπ∗)2
pD .

Proof. Let us consider another pair of random walks on V , Ṽ (t) and Ṽ ′(t), such that Ṽ (t) = V (t),
and Ṽ ′(t) = V ′(t), for all t ≤ TC. If TC = TD, then, for t ≥ TC, Ṽ (t) and Ṽ ′(t) continue to move on V
with transition rates Pvv′ , independent of each other, and independent from V (t) and V ′(t). Otherwise, if
TC = TS , then, for all t ≥ TC , Ṽ ′(t) = V ′(t), while Ṽ (t) continues to move on V with transition rates Pvv′ ,
independently from V (t), and V ′(t). In the symmetric case when TC = T ′

S , for all t ≥ TC , Ṽ (t) = V (t),
while Ṽ ′(t) continues to move on V with transition rates Pvv′ , independently from V (t), and V ′(t). In
particular, (Ṽ (t), Ṽ ′(t)) is a pair of independent random walks on V both with transition rates Pvv′ .

Observe that, if TC = TB, then either TC = TS , or TC = T ′
S . In both cases, it is not hard to verify

that Ṽ (T̃S) = V (TS), and Ṽ ′(T̃ ′
S) = V ′(T ′

S). Now, if V (TS) = s, and V ′(T ′
S) = s′, for some s 6= s′, then

necessarily V (t) and V ′(t) have not coalesced before hitting B, i.e., TC = TB, and hence Ṽ (T̃S) = V (TS),
and Ṽ ′(T̃ ′

S) = V ′(T ′
S). Let ζvv′

a := Pvv′(V (TD) = V ′(TD) = a|TD < TB), and pvv′ := Pv,v′(TD < TB). It
follows that, if s 6= s′, then

γv
sγ

v′

s′ − ηvv′

ss′ = Pvv′

(

Ṽ (T̃S) = s, Ṽ ′(T̃ ′
S) = s′

)

− Pvv′ (V (TS) = s, V ′(T ′
S) = s′)

= Pvv′

(

Ṽ (T̃S) = s, Ṽ ′(T̃ ′
S) = s′

)

−Pvv′

(

Ṽ (T̃S) = V (TS) = s, Ṽ ′(T̃ ′
S) = V ′(T ′

S) = s′
)

= Pvv′

(

TC = TD, Ṽ (T̃S) = s, Ṽ ′(T ′
S) = s′, (V (TS), V ′(T ′

S)) 6= (s, s′)
)

= Pvv′

(

TC = TD, Ṽ (T̃S) = s, Ṽ ′(T ′
S) = s′

)

=
∑

a pvv′ζvv′

a γa
s γ

a
s′ .

On the other hand,

ηvv′

ss − γ
v
sγ

v′

s = Pvv′ (V (TS) = V ′(T ′
S) = s)− Pvv′

(

Ṽ (T̃S) = Ṽ ′(T̃ ′
S) = s

)

= Pvv′ (V (TS) = V ′(T ′
S) = s, TC = TD)

−Pvv′

(

Ṽ (T̃S) = Ṽ ′(T̃ ′
S) = s, TC = TD

)

+Pvv′ (V (TS) = V ′(T ′
S) = s, TC = TB)

−Pvv′

(

Ṽ (T̃S) = Ṽ ′(T̃ ′
S) = s, TC = TB

)

= Pvv′

(

TC = TD, V (TS) = V ′(T ′
S) = s, (Ṽ (T̃S), Ṽ ′(T̃ ′

S)) 6= (s, s)
)

=
∑

a pvv′ζvv′

a (γa
s − γ

a
sγ

a
s ) .

It follows that

Cov (Xv, Xv′) =
∑

s,s′

(

ηvv′

ss′ − γv
sγ

v′

s′

)

xsxs′

= pvv′

∑

a ζ
vv′

a

(

∑

s γ
i
sx

2
s −

∑

s,s′ γa
s γ

a
s′xsxs′

)

= pvv′

∑

a ζ
vv′

a σ2
a

≤ pvv′

∑

a ζ
vv′

a
1
2∆2

∗

≤ pvv′
1
2∆2

∗ .

Finally, one has that
σ2

X
= n−2

∑

v,v′ Cov (Xv, Xv′)

≤ 1
2∆2

∗

∑

v,v′ πvπv′

1

n2πvπv′

pvv′

≤ 1
2∆2

∗(nπ∗)
−2

∑

v,v′ πvπv′pvv′

= 1
2∆2

∗(nπ∗)
−2pD ,
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which completes the proof.

The probability pD can in turn be upper-bounded using the approximate exponentiality of the hitting
times.

Lemma 7.3 For coalescing random walks with a reversible irreducible transition probability matrix P ,

pD ≤
Eπ[TS ]

Eπ [TD]
log

eEπ[TD]

Eπ [TS ]
+

τ2
Eπ[TD]

+
τ2

Eπ[TS ]
.

Proof. For every t ≥ 0, one has that

pD = Pπ(TD < TB)

≤ Pπ({TD ≤ t} ∪ {TB > t})

≤ Pπ(TD ≤ t) + Pπ(TB > t)

≤ Pπ(TD ≤ t) + Pπ(TS > t)

≤ 1− e−t/Eπ[TD ] + e−t/Eπ[TS ] +
τ2

Eπ [TD]
+

τ2
Eπ [TS ]

≤
t

Eπ[TD]
+ e−t/Eπ[TS ] +

τ2
Eπ[TD]

+
τ2

Eπ[TS ]
,

the forth inequality following from, Proposition 6.2, the last one from the inequality e−1 ≤ 1− x. With
the optimal choice t = Eπ[TS ] log (Eπ [TD]/Eπ[TS ]), the foregoing gives the claim.

In order to apply Lemma 7.3, one needs an upper bound on the ratio Eπ[TS ]/Eπ[TD]. In the absence of
more precise information about these expected hitting times, one can estimate Eπ[TD] from below using
Proposition 6.3. On the other hand the following general upper bound on Eπ[TS ] can be applied.

Proposition 7.1 [3, Ch. 3, Prop. 21] Let V (t) be a continuous-time reversible random walk on V with
irreducible transition probability matrix P , and stationary distribution π. Then,

Eπ[TS ] ≤
1− π(S)

π(S)
τ2

Combining Lemmas 7.4 and 7.3 with Propositions 6.3 and 7.1, one obtains the following:

Lemma 7.4 Consider a social network satisfying Assumptions 2.1, 2.2, 5.1, and 7.1. Assume that π(S) ≤
1/4, and 8π(D)τ2 ≤ π(S). Then,

σ2
X
≤

∆2
∗

2(nπ∗)2

(

8π(D)τ2
π(S)

log
eπ(S)

8π(D)τ2
+ 8τ2π(S) + 8τ2π(D)

)

Proof. From Proposition 6.3, and the assumption π(S) ≤ 1/4, one gets

(Eπ[TS ])−1 ≤
2π(S)

1− 3π(S)
≤ 8π(S) . (50)

Moreover, one has π(D) ≤ π(S)/(8τ2) ≤ π(S)/8 ≤ 32, and, arguing as above, (Eπ [TD])−1 ≤ 8π(D). From
this inequality, and Proposition 7.1, one finds that

Eπ[TS ]

Eπ[TD]
≤

8τ2π(D)

π(S)
≤ 1 . (51)

Then, Lemmas 7.4 and 7.3, together with (50) and (51), imply that

σ2
X
≤

∆2
∗

2(nπ∗)2
pD ≤

∆2
∗

2(nπ∗)2

(

8π(D)τ2
π(S)

log
eπ(S)

8π(D)τ2
+ 8τ2π(S) + 8τ2π(D)

)

,

thus proving the claim.

Now, it is easily seen, using Lemma 7.4, that σ2
X

= o(1) in the large population limit of a family of
highly fluid social networks with a significant presence of stubborn agents. From this, and Lemma 7.1,
one gets that ∆2 = σ2

Z + o(1), and Theorem 7.1 follows.
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8. Conclusion In this paper, we have studied a possible mechanism explaining persistent disagree-
ment and opinion fluctuations in social networks. We have considered a stochastic gossip model of
continuous opinion dynamics, combined with the assumption that there are some stubborn agents in the
network who never change their opinions. We have shown that the presence of these stubborn agents leads
to persistent oscillations and disagreements among the rest of the society: the beliefs of regular agents do
not converge almost surely, and keep on oscillating according to an ergodic distribution. First and second
moments of the ergodic beliefs distribution can be characterized in terms of the hitting probabilities of
a random walk on the network, while the correlation between the ergodic beliefs of any pair of regular
agents can be characterized in terms of the hitting probabilities of a pair of coupled random walks. We
have shown that in highly fluid, reversible social networks, whose associated random walks have mixing
times which are sufficiently smaller than the inverse of the stubborn agents’ set size, the vectors of the
expected ergodic beliefs and of the ergodic variances are almost constant, so that the stubborn agents
have approximately the same influence on the society. Finally, we have also shown that in highly fluid
social networks in which there is a significant presence of stubborn agents, the variance of the ergodic
aggregate belief of the system vanishes in the limit of large population size, and the ergodic distribution
of the agents beliefs approaches an approximately chaotic condition. This implies that, if the influence of
any of the stubborn agents’ opinions does not dominate the influence of the rest, then the mean square
disagreement does not vanish in the large population size. We conjecture that, in highly fluid social net-
works without a significant presence of stubborn agents, i.e., with π(S) and π(D) of the same asymptotic
order, an intermediate condition between approximate consensus and chaotic ergodic belief distribution
should emerge in the large population limit.
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[36] A. Nedić and A. Ozdaglar, Distributed subgradient methods for multi-agent optimization, IEEE
Transactions on Automatic Control 54 (2009), no. 1, 48–61.

[37] M.E.J. Newman and D.J. Watts, Renormalization group analysis of the small-world network model,
Physics Letters A 263 (1999), 341–346.

[38] R. Olfati-Saber and R.M. Murray, Consensus problems in networks of agents with switching topology
and time-delays, IEEE Transactions on Automatic Control 49 (2004), no. 9, 1520–1533.

[39] A. Olshevsky and J.N. Tsitsiklis, Convergence speed in distributed consensus and averaging, forth-
coming in SIAM Journal on Control and Optimization, 2008.

[40] Y. Peres and B. Solomyak, Absolute continuity of bernoulli convolutions, a simple proof, Mathematics
Research Letters 3 (1996), 231–239.

[41] M.M. Rao and R.J. Swift, Probability theory with applications, Springer, 2006.



Acemoglu, Como, Fagnani, and Ozdaglar: Opinion fluctuations and disagreement
Mathematics of Operations Research 00(0), pp. xxx–xxx, c©20xx INFORMS 33

[42] L. Smith and P. Sorensen, Pathological outcomes of observational learning, Econometrica 68 (2000),
no. 2, 371–398.

[43] J.N. Tsitsiklis, Problems in decentralized decision making and computation, Ph.D. thesis, Dept. of
Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 1984.

[44] J.N. Tsitsiklis, D.P. Bertsekas, and M. Athans, Distributed asynchronous deterministic and stochastic
gradient optimization algorithms, IEEE Transactions on Automatic Control 31 (1986), no. 9, 803–
812.

[45] C. Villani, Optimal transport: old and new, Springer-Verlag Berlin-Heidelberg, 2009.

[46] D.J. Watts and S.H. Strogatz, Collective dynamics of ‘small-world’ networks, Nature 393 (1998),
440–442.


