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Abstract—We propose a dynamical model for cascading failures in single-commodity network flows. In the proposed model, the

network state consists of flows and activation status of the links. Network dynamics is determined by a, possibly state-dependent and

adversarial, disturbance process that reduces flow capacity on the links, and routing policies at the nodes that have access to the

network state, but are oblivious to the presence of disturbance. Under the proposed dynamics, a link becomes irreversibly inactive

either due to overload condition on itself or on all of its immediate downstream links. The coupling between link activation and flow

dynamics implies that links to become inactive successively are not necessarily adjacent to each other, and hence the pattern of

cascading failure under our model is qualitatively different than standard cascade models. The magnitude of a disturbance process is

defined as the sum of cumulative capacity reductions across time and links of the network, and the margin of resilience of the network is

defined as the infimum over the magnitude of all disturbance processes under which the links at the origin node become inactive. We

propose an algorithm to compute an upper bound on the margin of resilience for the setting where the routing policy only has access to

information about the local state of the network. For the limiting case when the routing policies update their action as fast as network

dynamics, we identify sufficient conditions on network parameters under which the upper bound is tight under an appropriate routing

policy. Our analysis relies on making connections between network parameters and monotonicity in network state evolution under

proposed dynamics.

Index Terms—Network problems, routing protocols, reliability, availability, and serviceability, infrastructure protection, control theory

Ç

1 INTRODUCTION

RESILIENCE is becoming a key consideration in the design
and operation of many critical infrastructure systems

such as transportation, power, water, gas, and data net-
works. Due to their increasing scale and interconnectedness,
these systems tend to exhibit complex behaviors that pose
several new challenges in their design and operation. In
particular, while exhibiting good performance in terms of
both efficiency and robustness to fluctuations in nominal
operating conditions, such systems can be fragile to unex-
pected local disruptions that may give rise to cascading fail-
ures with potentially systemic effects. The problem is
further exacerbated by the fact that local actions aimed at
mitigating disruptions can increase vulnerability of the
other parts of the system.

Models for cascading phenomena in infrastructure net-
works have been proposed in the statistical physics litera-
ture and studied mainly through numerical simulations,
e.g., see [1], [2], [3], [4], [5]. Simpler models, based on per-
colation and other interacting particle systems describing

the activation status of nodes and links as dependent on
the activation status of their neighbors in the network,
have lend themselves to more analytical studies, [6], [7],
[8]. While largely used to model the spread of epidemics
and rumors in social and economic networks, cascading
failures in financial networks and in wireless networks
[9], [10], [11], [12], the applicability of the latter models to
the design and control of actual physical networks is
severely limited because of their simplistic description of
the causal relationship between failures of successive
nodes and links. In particular, an inherent characteristic of
such percolation- and interacting particles-based models is
that the successive nodes and links to fail are constrained
to be adjacent to each other, which is typically not the
case in infrastructure networks (see, e.g., [13]). There is
extensive work on studying cascading failures in power
networks using physics-based models, e.g., see [14] for a
recent overview. Recently, some of these models have
also been analyzed from a control perspective, e.g., see
[15], [16].

This paper is concerned with dynamical model for cas-
cading failures in single-commodity flow networks, and
with the characterization of maximally resilient routing
policies. The modeling framework is inspired by trans-
portation and data networks. When considering dynam-
ical models for cascading failures in physical
infrastructure networks, there are several possibilities for
time scale separation between link inactivation dynamics
under overload, flow dynamics and reaction time of rout-
ing (control) policies that can simplify the analysis. The
rate of information propagation among geographically
distributed routing policies relative to the dynamics can
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add further complexity. In this paper, we focus our anal-
ysis on the limiting case when the rate of information
propagation is slow (i.e., routing policies are distributed),
and the link inactivation and flow dynamics under rout-
ing policies evolve at the same and much faster time
scale. Our ability to analyze the dynamical model relies
on identifying conditions under which the network state
evolves monotonically. Irreversibility in link inactivation
in our model naturally implies monotonicity in the link
activation status. However, monotonicity in the link
flows requires additional restrictions on the routing pol-
icy. We study these restrictions under flow monotonicity
and link monotonicity which refer to the sensitivity of the
action of a distributed routing policy with respect to
changes in inflow (due to changes in the upstream part
of the network) and activation status of outgoing links,
respectively.

The contributions of the paper are as follows. First, we
propose a dynamical model for cascading failures in net-
work flows and formally state the problem of designing
maximally resilient routing policies. Second, we propose
a backward propagation algorithm (BPA) for computing
an upper bound on the margin of resilience and to moti-
vate the design of a maximally resilient routing policy.
Third, we introduce the properties of flow and link mono-
tonicity for distributed routing policies, and show that
these are sufficient conditions for the upper bound to be
tight. Finally, we identify sufficient conditions on network
parameters under which these monotonicity conditions
are satisfied.

The paper is organized as follows. In Section 2, we pres-
ent our dynamical model for cascading failures in network
flow under routing policies. Section 3 contains main results
of this paper in terms of upper bound computation, mono-
tonicity conditions on the routing policies and sufficient
conditions on network parameters to guarantee these
monotonicity properties. The proofs of the main results are
collected in Section 4. Section 5 provides concluding
remarks.

Before proceeding, we define some preliminary notations
to be used throughout the paper. Let R be the set of real
numbers, Rþ :¼ fx 2 R : x � 0g be the set of nonnegative
real numbers, and N be the set of natural numbers. When A
is a finite set, jAj will denote the cardinality of A, RA

(respectively, RA
þ) will stay for the space of real-valued

(nonnegative-real-valued) vectors whose components are

indexed by elements of A. For x 2 RA and y 2 RB, x0 stands
for the transpose of x, and x � y means that xi � yi for all
i 2 A \ B. When A ¼ B, x0y stands for the dot product of x
and y. The all-one and all-zero vectors will be denoted by 1
and 0, respectively, their size being clear from the context.
A directed multigraph is the pair ðV; EÞ of a finite set V of
nodes, and of a multiset E of links consisting of ordered
pairs of nodes (i.e., we allow for parallel links between a
pair of nodes). If e ¼ ðv; wÞ 2 E is a link, where v; w 2 V, we
shall write se ¼ v and te ¼ w for its tail and head node,
respectively. The sets of outgoing and incoming links of a

node v 2 V will be denoted by Eþ
v :¼ fe 2 E : se ¼ vg and

E�
v :¼ fe 2 E : te ¼ vg, respectively. For x 2 R, we shall use

the notation ½x�þ to meanmaxf0; xg.

2 DYNAMICAL MODEL FOR NETWORK FLOWS AND

PROBLEM FORMULATION

In this section, we propose a dynamical model for cascading
failure in network flows under distributed routing policies.
We model network flows as finite weighted directed multi-
graphs N ¼ ðV; E; CÞ, where V and E stand for the sets of

nodes and links, respectively, and C 2 RE is the vector of link
capacities, all assumed to be strictly positive.We refer to nodes
with no incoming links as origin nodes and to those with no
outgoing links as destination nodes. The set of destination
nodes is denoted by D. Nodes which are neither origin nor
destination are referred to as intermediate nodes and are
assumed to lie on a path from some origin to some destination.

Let an external inflow �o � 0 be associated to every ori-
gin node o 2 V, and, by convention, put �v ¼ 0 for every
other node v. Then, the max-flow min-cut theorem, e.g., see
[17], implies that a necessary and sufficient condition for the
existence of a feasible equilibrium flow is that the capacity
of every cut in the network is larger than the aggregate
inflow associated to the non-destination side of the cut.

Here, a feasible equilibrium flow refers to a vector f 2 RE
þ

satisfying capacity constraints fe < Ce on every link e 2 E,
and mass conservation at every non-destination node, i.e,
�v þ

P
e2E�v fe ¼

P
e2Eþv fe for all v 2 V n D. On the other

hand, a cut refers to a subset of non-destination nodes
U � V n D, with CU :¼

P
e2E:se2U;te2VnU Ce standing for its

capacity and �U :¼
P

v2U �v for the associated aggregate

external inflow. Then, the necessary and sufficient condition
for the existence of a feasible equilibrium flow is

max
U

�U � CUf g < 0; (1)

with the index U running over all possible cuts.
We now describe network flow dynamics, evolving in

discrete time. Let N ¼ ðV; E; CÞ be a network as above, with
inflows �o at the origin nodes satisfying condition (1). At
every time t ¼ 0; 1; . . ., the state of the system is described
by a tuple ðVðtÞ; EðtÞ; fðtÞ; CðtÞÞ where: VðtÞ � V n D and
EðtÞ � E are the subsets of active non-destination nodes,

and links, respectively; fðtÞ 2 RE
þ is the vector of link flows;

and CðtÞ 2 RE , with 0 � CeðtÞ � Ce, is the vector of residual
link capacities. The initial condition ðVð0Þ; Eð0Þ; Cð0Þ; fð0ÞÞ
is such that Vð0Þ ¼ V n D, Eð0Þ ¼ E, i.e., all non-destination
nodes and all links start active, Cð0Þ ¼ C, and fð0Þ is a feasi-
ble equilibrium flow forN .

Given its current state ðVðtÞ; EðtÞ; fðtÞ; CðtÞÞ at time
t ¼ 0; 1; 2; . . ., the network evolves as follows. All currently
active links which become overloaded, i.e., whose current
flow exceeds the current residual capacity, along with all
those whose head node is currently inactive, become irre-
versibly inactive, i.e.,

Eðtþ 1Þ ¼ EðtÞ n fe 2 EðtÞ : feðtÞ
� CeðtÞg n fe 2 EðtÞ : teðtÞ =2 VðtÞg :

(2)

All currently active nodes v that have no active outgoing
link become irreversibly inactive, i.e.,

Vðtþ 1Þ ¼ VðtÞ n fv 2 VðtÞ : Eþ
v ðtÞ ¼ ;g : (3)
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At every currently active node v 2 VðtÞ, a routing policy
determines how to split the current inflow �vðtÞ :¼ �v þP

e2E�v ðtÞ feðtÞ among the set Eþ
v ðtÞ of its currently active out-

going links, so that

feðtþ 1Þ ¼ Ge Eþ
v ðtÞ; �vðtÞ

� �
; e 2 Eþ

v ðtÞ : (4)

Finally, the residual capacity vector is reduced by a distur-
bance dðtÞ 2 RE

þ so that

Ceðtþ 1Þ ¼ CeðtÞ � deðtþ 1Þ ; e 2 EðtÞ: (5)

The sequence ðdð1Þ; dð2Þ; . . .Þ � RE
þ of incremental flow

capacity reductions is meant to represent an external, possi-
bly adversarial and network state dependent, process that,
without any loss of generality, will be assumed to satisfy

DðtÞ :¼
X
1�s�t

dðsÞ � C ; 8t � 1 : (6)

Observe that, in writing (4), we have assumed that the
routing at node v is determined only by the local observa-
tion of the current inflow �vðtÞ and the currently active set

of outgoing links Eþ
v ðtÞ. In particular, the routing policies

have no information about the residual link capacities, or
equivalently about the disturbance process. The formal defi-
nition of distributed oblivious routing policies is as follows.

Definition 1. Given a network N ¼ ðV; E; CÞ, a distributed
oblivious routing policy G is a family of functions

GvðJ ; � Þ : Rþ ! RJ
þ ; v 2 V n D ; ; 6¼ J � Eþ

v ;

such that, for every m � 0,
P

e2J Gv
eðJ ;mÞ ¼ m, and, for all

K � J � Eþ
v ,

GvðJ ;mÞ � GvðK;mÞ: (7)

In reading (7), recall our notation established at the end
of Section 1 that, for x 2 RA and y 2 RB, x � ymeans xi � yi
for all i 2 A \ B. Definition 1 implicitly implies that

Gv
eðJ ;mÞ ¼ 0 for all e 2 Eþ

v n J . Moreover, we will assume
throughout that the initial equilibrium flow fð0Þ is consis-
tent with the given distributed oblivious routing policy, i.e.,

Gv
eðEþ

v ; �vð0ÞÞ ¼ feð0Þ for all e 2 Eþ
v , v 2 V n D. In other

words, the initial equilibrium flow is specified by the rout-
ing policy and, as long as there is no perturbation, i.e.,
dðtÞ ¼ 0, the network state does not change. The term oblivi-
ous in distributed routing policies is meant to emphasize
that routing policies have no information about the distur-
bance process. Hereafter, unless explicitly stated otherwise,
we shall refer to a routing policy satisfying Definition 1 sim-
ply as a distributed routing policy. Equation (7) implies
that, at every node, for a fixed inflow, shrinking of the set of
active links results in increase in flow assigned to each of
the remaining active outgoing links. We shall refer to (7) as
the link monotonicity property. While (7) represents a natural
condition for distributed routing policies, the maximally
resilient routing policies designed in this paper have been
found to satisfy it. Alternately, one could regard the results
in this paper to be optimal within this class of distributed
routing policies. We provide additional comments on this
aspect in Remark 7.

Remark 1. Condition (7) is satisfied by any routing policy at
a node v if jEþ

v j � 2.

A simple example of a distributed routing policy is the
proportional policy: for every ; 6¼ J � Eþ

v , v 2 V n D, m � 0:

Gv
eðJ ;mÞ ¼ Ce=

P
j2J Cj

� �
m if e 2 J ;

0 if e =2 J :

(
(8)

The model in (2), (3), (4), (5) has several salient features
worth emphasizing. First, note that the transition from
active to inactive status of a link is irreversible. Second, note
that a link could become inactive either because it is over-
loaded or because its downstream node becomes inactive.
The mismatch between flow and residual capacity of a link,
which gives rise to overload condition, depends on the dis-
turbance process and the action of a distributed routing pol-
icy. Therefore, the links to fail successively are not
necessarily adjacent to each other. Finally, note that in our
model, the routing policy updates its action at the same
time scale as flow and link inactivation dynamics. An impli-
cation of this is that the flow vector f may not be an equilib-
rium flow at all time instants because of violation of flow
conservation at some nodes. It is possible to extend (2), (3),
(4), (5) to model scenarios representing a combination of
centralized and non-oblivious routing, link recovery after
finite time and long range coupling between failure of links.
However, the analysis presented in this paper is restricted
to the model in (2), (3), (4), (5).

The following example illustrates cascading failure
under the dynamics in (2), (3), (4), (5).

Example 1. Consider the graph topology depicted in Fig. 1,
where the flow capacities are given by C1 ¼ 4 C2 ¼ 4,
C3 ¼ 1:5, C4 ¼ 2:5, C5 ¼ 1, C6 ¼ 1, C7 ¼ 1 and C8 ¼ 1. Let
the arrival rate at the origin be � ¼ 4. We consider pro-
portional routing policies, specified in (8), at all the
nodes, under which the initial flow on all links is given
by f1ð0Þ ¼ 2, f2ð0Þ ¼ 2, f3ð0Þ ¼ 3=4, f4ð0Þ ¼ 5=4, f5ð0Þ ¼
3=8, f6ð0Þ ¼ 3=8, f7ð0Þ ¼ 5=8 and f8ð0Þ ¼ 5=8. Consider
the network dynamics under a disturbance process for
which d3ð1Þ ¼ 0:75, d3ðtÞ ¼ 0 for all t � 2 and diðtÞ 	 0 for
all i 2 f1; . . . ; 8g n f3g. Since C3ð1Þ ¼ 1:5� 0:75 ¼ 0:75 ¼
f3ð1Þ, e3 =2 Eð2Þ. Therefore, f4ð3Þ ¼ 2, f7ð4Þ ¼ 1 and
f8ð4Þ ¼ 1. Since C7ð4Þ ¼ C8ð4Þ ¼ 1, e7 =2 Eð5Þ and e8 =2
Eð5Þ. By continuing along these lines, the order of links to
become inactivate is e3; e7 ¼ e8; e4; e1; e2. In particular, the
link to fail after e3 is e7, demonstrating non-adjacency in
successive link failures under our proposed network
dynamics.

Fig. 1. A simple graph for the illustration of cascading failure under the
proposed network dynamics.
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Remark 2. The model in (2), (3), (4), (5) is to be contrasted
with the dynamical flow network formulation in our pre-
vious work [18], [19] where every link has infinite buffer
capacity, and hence there are no cascading effects under
link overload. These features are relaxed in our subse-
quent work [20], where the links are modeled to have
finite buffer capacity, and the control policy at every
node implements routing as well as flow control under
information about the densities and the disturbances on
the links incoming and outgoing from that node. Such a
framework allows for backward propagation effects,
which were proven to increase the resilience of the net-
work with respect to the framework in [18], [19]. Such
control policies were also shown to exhibit graceful col-
lapse, i.e., when the inflow to the network exceeds its
capacity, then all the critical links saturate simulta-
neously. In this paper, we constrain the actions of the
control policies to only routing, and under no informa-
tion about the disturbance. We emphasize that, although
the routing policies have no explicit information about
disturbance on the links, they have information about its
effect on the activation status on the local links. On the
other hand, due to cascade effects, the change in the acti-
vation status of a link may not be exclusively due to dis-
turbance on that link.

2.1 Problem Formulation

In this paper, the performance criterion of interest is the
ability of a network to transfer flow from the origin nodes to
the destination nodes, under a wide range of disturbance
processes. We formalize this notion as follows.

Definition 2. Let N be a network, � a vector of inflows at the ori-
gin nodes, G a distributed routing policy, and ðdðtÞÞt�1 a dis-

turbance process. Then, the associated network flow dynamics
in (2), (3), (4), (5) is said to be transferring if

lim
t!þ1

X
d2D

X
e2E�

d

feðtÞ ¼
X
v

�v ; (9)

where the summation in v is over the origin nodes.

Observe that, since fð0Þ is assumed to be a feasible
equilibrium flow, one has that, at time 0, the aggregate
outflow from, and inflow to, the network match, i.e.,P

d2D
P

e2E�
d
feð0Þ ¼ �. Definition 2 requires that, for a

network N and a distributed routing policy G to be
transferring under a disturbance process ðdðtÞÞt�1, aggre-

gate inflow to, and outflow from the network also match
asymptotically. For disturbance processes that are active
only over finite time, (9) can be rephrased to require the
inflow and the outflow to match at all times with the
possible exception of a finite transient. We shall use this
latter formulation in Section 3, where the setup allows to
focus only on finite time disturbance processes without
loss of generality.

The magnitude of a disturbance process d is defined as
(see (6)):

DðdÞ :¼
X
e2E

~eð1Þ:

Definition 3. Let N be a network, � a vector of inflows at the ori-
gin nodes, and G a distributed routing policy. The margin of
resilience of the network, denoted as RðN ; �;GÞ, is defined as
the infimum of the magnitude of disturbance processes under
which the associated dynamics is not transferring, i.e.,

RðN ; �;GÞ :¼ inf
d
fDðdÞ j network flow dynamics in

ð2Þ; ð3Þ; ð4Þ; ð5Þ for N ; �;G; d is not transferringg:

We are now ready to formally state the problem. Our
objective in this paper is to (i) compute the margin of resil-
ience under distributed routing policies; and (ii) identify
maximally resilient distributed routing policies. Formally,
we consider the following optimization problem:

R
ðN ; �Þ ¼ sup
G

RðN ; �;GÞ; (10)

where the supremum is over the class of distributed routing
policies. A distributed routing policy G is called maximally
resilient ifRðN ; �;GÞ ¼ R
ðN ; �Þ.

3 MAIN RESULTS

In this section, we present our main results addressing
problem (10). From now on, we will be restricted to net-
works N ¼ ðV; E; CÞ with a single origin destination pair.
We will identify the node set V with the integer set
f0; 1; . . . ; ng, with 0 and n associated with the unique origin
and destination nodes, respectively. Moreover, let � > 0 be
the constant inflow at the unique origin node. While exten-
sions to multiple destinations are straightforward, exten-
sions to multiple origin nodes is not trivial. We start by
giving simple bounds on the margin of resilience.

3.1 Simple Bounds

It is straightforward to obtain the following upper and
lower bounds on the margin of resilience, valid for every
routing policy G

min
e2E

Ce � feð0Þf g � RðN ; �;GÞ � min
U

CU � � ; (11)

where the minimization in the upper bound is over all the
cuts in N . The lower bound in (11) is due to the fact that at
least one link needs to become inactive to ensure non trans-
ferring of the network, possibly under cascading failure,
and mine2E Ce � feð0Þf g, which is the minimum among all
link residual capacities, corresponds to the disturbance pro-
cess with minimum magnitude that can cause a link to
become inactive. The upper bound in (11), which is usually
referred to as the network residual capacity, is obtained by
noting that the network is non-transferring under a distur-
bance process that removes residual capacity at t ¼ 1 from
the links that constitute a min cut of N . As it may be
expected, the gap between the upper and lower bounds can
be arbitrarily large in general networks. As an illustration,
in Example 1, the minimum link residual capacity is 3=18,
corresponding to links e7 and e8, and the network residual
capacity is 4, corresponding to, e.g., the cut f1; 2g. However
the example also constructs a disturbance process of magni-
tude 0:75 under which the network is not transferring
(under proportional routing policy).
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We now describe a recursive procedure to compute a
sharper upper bound. The quantity computed by this proce-
dure can be intuitively related to the margin of resilience
when there is a clear time-scale separation between the flow
dynamics (fastest), speed of control action (intermediate)
and the link inactivation dynamics (slowest), and the rout-
ing policy is centralized but oblivious to disturbance. In our
current setup, it will provide an upper bound. Let XðJ ; �Þ
be the set of equilibrium flow vectors when the inflow at the
origin node is � and the set of active links is J � E, i.e.,
XðJ ; �Þ is the set of f 2 RJ

þ satisfying fe < Ce on every link

e 2 J ,
P

e2Eþ
0
\J fe ¼ � and

P
e2Eþv \J fe ¼

P
e2E�v \J fe for all

v 2 V n fng. Let SðJ ; �Þ correspond to the margin of resil-
ience when the network starts with active link set J � E.
The computation of SðE; �Þ, which corresponds to margin of
resilience of interest, is based on values of SðJ ; �Þ for all
J � E as follows. Starting with sets J � E of size one, i.e.,
jJ j ¼ 1, and then increasing in size, perform the following
recursion: if XðJ ; �Þ ¼ ;, then SðJ ; �Þ ¼ 0, else

SðJ ; �Þ :¼ max
x2XðJ ;�Þ

min
e2J

ðCe � xe þ S J n feg; �ð ÞÞ: (12)

In (12), Ce � xe is the difference between the original capac-
ity of link e and the flow on it under control action x by a
(centralized) routing policy. Therefore, it represents the
minimum disturbance on link e that will make it inactive.
Since S J n feg; �ð Þ represents the margin of resilience once
link e is removed, the whole term inside the minimum in
(12) is the magnitude of the smallest disturbance required
to make the network with J links to become non-transfer-
ring staring with removal of link e. The minimization in (12)
over all e 2 J searches for the initial link e whose inactiva-
tion will minimize the disturbance required to make the net-
work non-transferring. The outer maximization over the
feasible action set of the (centralized) routing policy maxi-
mizes the magnitude of the worst-case disturbance process
that will make the network non-transferring. The next
results states the the output of the iterations in (12) is indeed
an upper bound on the margin of resilience under any dis-
tributed routing policy.

Proposition 1. LetN ¼ ðV; E; CÞ be a network with � > 0 a con-
stant total inflow at the origin node. Then, for any distributed
routing policy, there exists a disturbance process ðdðtÞÞt�1

with DðdÞ � SðE; �Þ under which the associated network flow
dynamics (2), (3), (4), (5) is not transferring.

Remark 3.

i) It is easy to prove that SðE; �Þ is a tighter upper
bound than the one in (11).

ii) The computation of SðE; �Þ involves recursion

over all sets J in 2E . However, for each e 2 J � E
and � � 0, the term inside the minimization in
(12) is affine in x 2 XðJ ; �Þ. Hence, computing
SðJ ; �Þ is a convex optimization problem.

For Example 1, by simulations, we find that SðE; �Þ �
1:75, which is less than 4, the value corresponding to the
upper bound in (11). However, it is still greater than 0:75,
the magnitude of disturbance in Example 1, under which

the network is not transferring. This conservatism is
because the recursions in (12) implicitly assume centralized
routing, and do not take into account the possibility of link
inactivation due to the inactivation of the corresponding
head node. In Section 3.3, we propose an algorithm, the
Backward Propagation Algorithm (BPA), that addresses
these limitations to provide a tighter upper bound, and we
identify conditions under which this upper bound is prov-
ably tight. The BPA is designed for network topologies sat-
isfying the following acyclicity assumption.

Assumption 1. ðV; EÞ contains no cycles.

A consequence of Assumption 1, the oblivious prop-
erty of routing policies and the finiteness of V and E is
that, we can assume without loss of generality that, for
every e 2 E, there exists at most one te � 0 such that
deðteÞ > 0, and that dðtÞ ¼ 0 after some finite time. There-
fore, it is sufficient to restrict our attention to disturbance
processes d that are non-zero only for a finite time, and
hence there exists a finite time after which ðVðtÞ; EðtÞ;
fðtÞ; CðtÞÞ comes to a steady state under any such distur-
bance process d. Let T denote that finite termination time.
In this case, Definition 2 simplifies as: network flow
dynamics is transferring if �nðT Þ ¼ �.

The formulation and analysis of the BPA implicitly relies
on the following simple result showing an equivalence
between a network being transferring and its origin node
being active all the time.

Proposition 2. LetN be a network satisfying Assumption 1 with
� a constant inflow at the origin node, G a routing policy, and
ðdðtÞÞt�1 a disturbance process. Then, the associated network

flow dynamics (2), (3), (4), (5) is transferring if and only if
0 2 VðT Þ. Moreover, �nðT Þ 2 f0; �g.

Remark 4. The analyses of conventional models for cascad-
ing failure focus primarily on the connectivity of the
residual graph ðVðT Þ; EðT ÞÞ. For the setting of this paper,
the proof of Proposition 2 can be used to easily show that
there exists a directed path from 0 to n in ðVðT Þ; EðT ÞÞ if
and only if the associated network flow dynamics is
transferring.

3.2 Simple Settings

Before describing the BPA, we present results for the maxi-
mal margin of resilience and the maximally resilient routing
policy in simple settings. We use these calculations merely
to motivate the key steps in the construction of BPA, and
refer to Theorems 1 and 2 for their rigorous justification.

Let N 1 denote the flow network illustrated in Fig. 2a,
with E1 ¼ fe1; e2g, maximum link flow capacities Ci,
i ¼ 1; 2. The routing policy at node 0 is completely specified
by any vector x 2 XðE1; �Þ. Considering all the possible out-
comes of the disturbance process, the margin of resilience is
given by:

Rð�;N 1; xÞ ¼ min
�
½C1 � x1�þ þ ½C2 � ��þ; ½C2 � x2�þ

þ ½C1 � ��þ; ½C1 � x1�þ þ ½C2 � x2�þ
�

¼ min
�
½C1 � x1�þ þ ½C2 � ��þ; ½C2 � x2�þ

þ ½C1 � ��þg;

(13)
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where first term inside the min in the right hand side of (13)
corresponds to the inactivation of link e1 at t ¼ 2 under

dð1Þ ¼ ½C1 � x1�þ 0
� 	0

followed by inactivation of e2 at t ¼ 3

under dð2Þ ¼ 0 ½C2 � ��þ
� 	0

, the second term corresponds to

inactivation of e2 at t ¼ 2 followed by inactivation of e1 at
t ¼ 3, and the third term corresponds to the simultaneous
inactivation of links e1 and e2 at t ¼ 2 under dð1Þ ¼
½C1 � x1�þ ½C2 � x2�þ
� 	0

. Therefore, the maximum possible

margin of resilience, and the corresponding maximally
resilient routing policy are, respectively, given by
R
ðN 1; �Þ¼maxx2XðE1;�ÞRðN 1; �; xÞ and x
 ¼ argmaxx2XðE1;�Þ
RðN 1; �; xÞ, which, using simple algebra, can be computed
as (see Fig. 3a for an illustration):

R
ðN 1; �Þ ¼

C1 þ C2 � 3�=2 if � 2 0;C½ �;
C=2þ �C � � if � 2 C; �C

� 	
;

ðC1 þ C2Þ=2� �=2 if � 2 �C;C1 þ C2

� 	
;

0 if � � C1 þ C2 ;

8>><
>>:

(14)

where C :¼ min C1; C2f g and �C :¼ max C1; C2f g, and (see
Fig. 3b for an illustration)

x

1ð�Þ ¼

�=2 if � 2 0;C½ �
C1=2þ �� C1 þ C2ð Þ=2ð Þ1C1>C2

if � 2 C; �C
� 	

�=2þ C1 � C2ð Þ=2 if � 2 �C;C1 þ C2

� 	
:

8<
:

(15)

Fig. 3b illustrates that proportional routing policies
(e.g., see (8)) where the proportionality constants are
independent of the arrival rate are in general not maxi-
mally resilient. For N 1, comparing (13) and (12), we see
that R
ðN 1; �Þ ¼ SðE1; �Þ.

Let N 2 denote the flow network illustrated in Fig. 2b,
with maximum link flow capacities Ci, i ¼ 1; 2; 3. Following
the dynamics in (2), (3), (4), (5), link e3 can become inactivate
because of saturation of link e3 or because of inactivation of

node te3 ¼ 1. Accordingly, the maximum margin of resil-

ience is the minimum of ½C3 � ��þ and the maximum mar-
gin of resilience of the sub-network rooted at node 1 when
the inflow at node 1 is �. From our analysis of N 1, the latter
is equal to R
ðN 1; �Þ, and hence the maximally resilient
routing policy at node 1 is the same as in (15). An illustra-
tion of R
ðN 2; �Þ is given in Fig. 3c. In this case, SðE; �Þ
from (12) is in general not equal to R
ðN 2; �Þ. This is
because (12) does not take into account the possibility of e3
becoming inactive due to inactivation of node 1.

Before proceeding with our next example, we define fea-
sible flow vectors over active local links at node v. This will
be the set of feasible control actions for the routing policy at

node v. For J � Eþ
v , r 2 R

Eþv
þ , v 2 V n fng and m � 0, let

X vðJ ; r;mÞ :¼
�
x 2 RJ

þ : r � x � C; 10x ¼ m
�
: (16)

(16) is a local version of the set XðJ ; �Þ used in (12) with two
exceptions. First, (16) is defined for a generic inflow m, since
the inflow at v is time-varying. Second, as will become clear
in the construction of BPA, the presence of element-wise
lower bound r allows one to impose the link monotonicity
property defined in (7).

Let N 3 denote the flow network illustrated in Fig. 2c,
with maximum link flow capacities Ci, i ¼ 1; 2; 3. Let
SðJ ; r; �Þ be the margin of resilience when the set of active

links at node v is J � Eþ
v , and when the action of routing

policy is constrained to be element-wise greater than r. For

all e 2 Eþ
v , Sðe; r; �Þ ¼ 0 if � < re or � � Ce, and Sðe; r; �Þ ¼

Ce � � otherwise. For jJ j � 2 in N 3, one can write the fol-
lowing recursion:

SðJ ; r; �Þ ¼ max
x2X0ðJ ;r;mÞ

min
e2J

�
Ce � xe þ SðJ n feg; x; �Þ

�
: (17)

Inside the minimization in (17), the term Ce � xe is the dif-
ference between the capacity of link e when the flow on it is

Fig. 2. Illustrative simple network topologies.

Fig. 3. Illustrations of (a)R
ðN 1; �Þ and (b) x
1ð�Þ for C1 ¼ 10 and C2 ¼ 14; and (c)R
ðN 2; �Þ for C3 ¼ 20, C1 ¼ 10 and C2 ¼ 14.
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xe, and hence represents the minimal disturbance required
to make link e inactive under routing action x. The term
SðJ n feg; x; �Þ is the magnitude of disturbance that is suffi-
cient to make the network non-transferring after link e has
become inactive, under the constraint that the flows on links
in J n feg can not be element-wise less than the flow x on
them when e was active. The margin of resilience for N 3 is
then SðE; 0; �Þ. The ability of (17) to incorporate link mono-
tonicity constraints yields a sharper upper bound in com-
parison to (12).

The recursion in (17) can be used to derive margin of
resilience for a network with arbitrary number of links
between nodes 0 and 1 in Fig. 2c. However, in order to han-
dle networks with arbitrary number of links between nodes
1 and 2 in Fig. 2b, we need to include the effect of inactiva-
tion of downstream nodes into (17). This is the basis of the
Backward Propagation Algorithm, which we describe next.

3.3 The Backward Propagation Algorithm (BPA)

We now describe the backward propagation algorithm to
compute a tighter upper bound on the margin of resilience
in comparison to Proposition 1. The same algorithm will
also motivate the design of BPA routing which will be
proven to be maximally resilient under certain sufficient
conditions.

Assumption 1 implies that one can find a (not necessarily
unique) topological ordering of the node set V ¼ f0; . . . ; ng
(see, e.g., [21]). We shall assume to have fixed one such

ordering in such a way that E�
v �

S
0�u<vEþ

u for all

v ¼ 1; . . . ; n. We recall that the depth of a graph ðV; EÞ satisfy-
ing Assumption 1 is the length of the longest directed path
in ðV; EÞ.

Algorithm 1. The Backward Propagation Algorithm
(BPA)

1:SðEþ
n ; r;mÞ :¼ þ1 for all r 2 R

Eþn
þ and m � 0 {destination node}

2: for v ¼ n� 1; n� 2; . . . ; 0 do {construct a series of intermedi-
ate functions for every node starting with n� 1, and going
backward up to the origin}

3: for all r 2 R
Eþv
þ and m � 0,

Sð;; r;mÞ ¼ 0

SðJ ; r;mÞ :¼ 0 if XvðJ ; r;mÞ ¼ ;; 8 ; 6¼ J � Eþ
v ;

SeðmÞ ¼ Sðe; r;mÞ :¼ min
�
Ce � m; SðEþ

te
; 0;mÞ

�
8 e 2 Eþ

v : (18)

4: iteratively compute SðJ ; r;mÞ for J � Eþ
v of increasing

size, starting with sets of size 2:

SðJ ; r;mÞ :¼ max
x2XvðJ ;r;mÞ

min
e2J

�
SeðxeÞ þ S

�
J n feg; x;m

��
(19)

5: end for

Note that r appears only in the constraint set in the right
hand side of (19). The fundamental difference between the
recursions in (19) and (17) is in the first term inside the mini-
mization in (19). This term represents the minimum magni-
tude of disturbance required to make a link inactive. While
it was sufficient to consider the disturbance on link e for

this purpose in N 3, for general networks, (18) implies that
the minimal disturbance could correspond to making the
downstream node inactive. Therefore, the recursive compu-
tations at node v depend on the outcome of the computa-
tions done for nodes downstream to v. The Backward
Propagation Algorithm (BPA) derives its name from the
central feature of the algorithm, where an intermediate

node collects SðEþ
v ; r;mÞ functions from its downstream

nodes, performs updates with respect to local network
parameters, and transmits it to upstream nodes. As such,
the BPA can be executed in a distributed fashion.

Complementary to the maximization in (19) is the set of
corresponding maximizers:

g J ; r;mð Þ :¼ argmax
x2XvðJ ;r;mÞ

min
e2J

�
SeðxeÞ þ S J n feg; x;mð Þ

�
:

(20)

A simple implication of (20) which is used heavily in the
paper is:

z 2 g J ; r;mð Þ ) z � r: (21)

3.4 Upper Bound on the Margin of Resilience

The quantity SðEþ
0 ; 0; �Þ computed by BPA is next shown to

be an upper bound on the margin of resilience under any
distributed routing policy. For brevity in notation, we let

S
ðN ; �Þ :¼ SðEþ
0 ; 0; �Þ.

Theorem 1. Let N be a network satisfying Assumption 1 and
with � a constant inflow at the origin node. Then, for any dis-
tributed routing policy G, there exists a disturbance process
ðdðtÞÞt�1 with DðdÞ � S
ðN ; �Þ under which the associated

network flow dynamics (2), (3), (4), (5) is not transferring.

Remark 5.

i) Theorem 1 implies that RðN ; �;GÞ � S
ðN ; �Þ for
all distributed routing policies G, and hence
R
ðN ; �Þ � S
ðN ; �Þ.

ii) While the statement of Theorem 1 merely sug-
gests the existence of a worst-case disturbance
process, its proof in Section 4.4 explicitly con-
structs one such disturbance process. Therefore,
in scenarios when the upper bound in Theorem 1
is tight, this constructive procedure can also be
used to identify the most vulnerable links of the
network for adversarial setting.

iii) The computational complexity of BPA has trade-
offs in comparison to (12). On one hand, while
the recursion in (12) involves all elements in 2E ,

BPA involves all elements only in [v2
Eþv , which

is much smaller in comparison, especially when
jVj is large. On the other hand, (12) involves
computation only for a fixed �, whereas BPA
involves computations, in general, for all
m 2 ½0; �� and r 2 X vðJ ; 0;mÞ. Moreover, whereas
each recursion in (12) is a convex optimization
problem (see Remark 3 (ii)), BPA does not enjoy
this property in general. This is because, under
(18), the expression inside the minimization in
(19) is in general not affine in x, e.g., see Fig. 3c
for an illustration.
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3.5 BPA Routing and Lower Bound on the Margin of
Resilience

In this section, we develop lower bounds for R
ðN ; �Þ. This
will be done by analyzing a specific distributed routing pol-
icy, called BPA-routing, whose construction is inspired by
the Backward propagation algorithm. BPA routing is a rout-
ing policy that satisfies the following for all v 2 V n fng,
m � 0:

r
 :¼ GvðEþ
v ;mÞ 2 g Eþ

v ; 0;m
� �

;

Gv J ;mð Þ 2 g J ; r
;mð Þ; J � Eþ
v :

(22)

BPA routing derives its name from the fact that it relies on
the function gðJ ; r;mÞ from (20), which is directly related to
the central computation in the BPA. However, note that the
lower bound r
 in (22) is independent of J and m, and is
always equal to the action of the routing policy under the
same inflow m, when all local links are active, and with no
lower bound constraint. Following (21), GvðJ ;mÞ �
GvðEþ

v ;mÞ for all J � Eþ
v and m � 0. The following lemma

formally states conditions under which BPA routing satis-
fies the link monotonicity condition in (7).

Lemma 1. Let N be a network satisfying Assumption 1 with

jEþ
v j � 3 for all v 2 V n fng. Then BPA routing defined in

(22) and (20) satisfies (7), and hence is a distributed routing
policy as per Definition 1.

Proof. The only non-trivial case to prove is that, for every

j 2 J � Eþ
v , m � 0, BPA routing satisfies:

GvðEþ
v ;mÞ � GvðEþ

v n fjg;mÞ:

This is straightforward since (21) implies GvðEþ
v n fjg;

mÞ � r
 ¼ GvðEþ
v ;mÞ. tu

In general, BPA routing is not readily maximally resil-
ient for general networks. This is because if a non-desti-
nation node v has multiple incoming links, then
inactivation of v results in inactivation of all the incoming
links. However, the BPA algorithm does not take into
account such correlations between link inactivations and
hence the upper bound in Theorem 1 is conservative for
networks which are not trees. While it is possible to mod-
ify BPA algorithm to reduce this conservatism, this comes
with additional computational complexity and additional
difficulty in formulating the corresponding maximally
resilient routing policy. Therefore, we make the following
directed tree assumption in this paper for deriving lower
bound on the margin of resilience.

Assumption 2. V n fng; E n E�
n

� �
is a directed tree.1

We emphasize that Assumption 2 puts a tree-like
assumption on the original graph minus the destination
node n, and the set of links E�

n incoming to the destination
node. In particular, under Assumption 2, the destination
node n is allowed to have multiple incoming links. For
example, the graph topology illustrated in Fig. 1 satisfies
Assumption 2. However, with a slight abuse of

terminology, we refer to N satisfying Assumption 2 as a
tree. Note that, N satisfying Assumption 2 is a tree rooted
at the unique origin node.

Remark 6. For a network satisfying Assumption 2, if � is
less than the min cut capacity, then fð0Þ under BPA rout-
ing is an equilibrium flow. Recall that the max flow min
cut theorem implies that this is also a necessary condition
for the existence of an equilibrium flow.

BPA routing is maximally resilient on flow networks
which are trees and symmetric. Recall that a weighted rooted
tree of depth one is called symmetric if all the links outgoing
from the root node have equal weights. A weighted rooted
tree of depth greater than one is called symmetric if all the
sub-trees rooted at the children2 nodes are symmetric, and
identical to each other.

Proposition 3. Let N be a symmetric network satisfying
Assumption 2 with � > 0 a constant inflow at the origin node
and BPA routing policy. Then, the associated network flow
dynamics (2), (3), (4), (5) is transferring for every disturbance
process ðdðtÞÞt�1 with DðdÞ < S
ðN ; �Þ.

The tree assumption is not sufficient for BPA routing to
match the upper bound S
ðN ; �Þ given by the BPA for net-
works which are not symmetric, as illustrated in the follow-
ing example.

Example 2. Consider the graph topology from Fig. 1, with
� ¼ 2, C1 ¼ 2:5, C2 ¼ 0:17, C3 ¼ 0:6, C4 ¼ 2, C5 ¼ 2,
C6 ¼ 2, C7 ¼ 0:6 and C8 ¼ 1:5.

The plot of x

3ðmÞ :¼ Ge3ðE

þ
1 ð0Þ;mÞ vs. m under BPA

routing for these values is given in Fig. 4, which shows
that x


3ðmÞ is decreasing in m over ½1:9; 2�. Also, for these

values, S
ðN ; �Þ ¼ 0:3. Consider a disturbance process
such that d2ð1Þ ¼ 0:07, d3ð1Þ ¼ 0:2, dið1Þ ¼ 0 for i 2
f1; . . . ; 8g n f2; 3g and dðtÞ 	 0 for all t � 2. The magni-
tude of such a disturbance process is 0:27, which is
strictly less than S
ðN ; �Þ ¼ 0:3. We now describe how
such a disturbance process makes the associated network
flow dynamics (2), (3), (4), (5) not transferring.

Fig. 4. Plot of x
3ðmÞ :¼ Ge3 ðE
þ
1 ð0Þ;mÞ versus m.

1. Recall that ðV; EÞ is a directed tree if the undirected graph under-
lying ðV; EÞ is a tree.

2. In a directed tree ðV; EÞ, u 2 V is called a children node of v 2 V if
E�
u \ Eþ

v 6¼ ;.
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Under BPA routing, fð0Þ is such that: 2� f2ð0Þ ¼
f1ð0Þ ¼ 1:9. Fig. 4 then implies that 1:9� f4ð0Þ ¼
f3ð0Þ ¼ 0:4. Since C2ð1Þ ¼ 0:1 ¼ f2ð1Þ and C3ð1Þ ¼ 0:4 ¼ f3ð1Þ,
fe2; e3g =2 Eð2Þ. Hence f1ð3Þ ¼ 2 and f4ð4Þ ¼ 2 ¼ C4. This
implies that e4 =2 Eð5Þ, and hence e1 =2 Eð7Þ, which leads to
the dynamics being not-transferring.

On the other hand, it is easy to see that the dynam-
ics would be transferring under this disturbance pro-
cess if the routing policy at node 1 is such that
f3ð0Þ < 0:4, and f3ð0Þ ¼ x


3ð2Þ ¼ 0:35 (see Fig. 4) in par-
ticular. This would correspond to the routing policy at
node 1 anticipating its inflow in advance, which is not
feasible under the oblivious and distributed setting for
routing policies.

Example 2 suggests that the non-monotonicity in the
control action of BPA routing, and hence in the evolution
of flows on the links, under point-wise (with respect to
inflow) optimization could lead to its sub optimality.
This motivates consideration of the following additional
constraint.

Definition 4. A distributed routing policy G is called flow-mono-

tone at node v 2 V n fng if, for every J � Eþ
v :

0 � m1 � m2 ¼) GvðJ ;m1Þ � GvðJ ;m2Þ; (23)

Under a flow-monotone routing policy, if the inflow at a
node increases, then the flow assigned to every active out-
going link from that node does not decrease. A routing pol-
icy which is flow monotone over all v 2 V n f0; ng, is said to
be flow monotone over N . We exclude the origin node
because the inflow � at the origin node is fixed.

Remark 7. Note that, unlike the link monotonicity condition
in (7), we did not include the flow monotonicity condi-
tion in (23) as part of the definition of distributed routing
policies. This is because, while Example 2 illustrates that
BPA routing is not necessarily flow monotone, we have
not been able to find an example where link monotonic-
ity is violated by BPA routing with r
 ¼ 0 in (22). How-
ever, a mathematical proof to support this observation is
lacking at this point.

Under a flow monotone distributed routing policy, the
network dynamics can be easily shown to possess the fol-
lowing simple property (which we state without proof),
which simplifies the analysis considerably.

Lemma 2. Let N be a network with jEþ
v j � 3 for all v 2 V n fng

and satisfying Assumption 2, � > 0 a constant inflow at the
origin node and BPA routing policy that is flow monotone.
Then,

t1 � t2 ¼) feðt1Þ � feðt2Þ 8 e 2 Eðt2Þ:

The following is a key result, which, along with Theo-
rem 1, identifies conditions under which BPA routing is
maximally resilient.

Theorem 2. LetN be a network with jEþ
v j � 3 for all v 2 V n fng

and satisfying Assumption 2, � > 0 a constant inflow at the
origin node and BPA routing policy that is flow monotone.

Then, the associated network flow dynamics (2), (3), (4), (5) is
transferring for every disturbance process ðdðtÞÞt�1 with

DðdÞ < S
ðN ; �Þ.

Since BPA routing is completely specified by network
parameters ðV; E; CÞ, flow monotonicity is a condition on
the network parameters. BPA routing is flow monotone at v

trivially if jEþ
v j ¼ 1. One could perform extensive (offline)

numerical tests to check flow-monotonicity of BPA routing
over a given flow network N . However, it is possible to
identify a few flow networks over which BPA routing is
provably flow-monotone. In order to characterize such net-
works in Proposition 4 and Remark 8 below, we need the
concept of d-expansion of a network: given N , its d-

expanded version N d is obtained by creating multiple cop-
ies of the destination node in N , one for each incoming link.
For example, the network in Fig. 5a is d-expanded version
of the network in Fig. 2a. It is easy to recover the original
flow network from its d-expanded version.

Proposition 4. LetN be a network satisfying Assumption 2 with
� > 0 a constant inflow at the origin node. Then, BPA routing
is flow-monotone at v 2 V if the the sub-tree in the d-expanded

version N d rooted at v is either (a), or (b) with Ce2 � Ce1 or
(c) with Ce1 ¼ Ce2 in Fig. 5.

Remark 8. Let �N d denote the set of d-expanded versions of
“simple” flow networks over which BPA routing is
known to be flow monotone, either from explicit analysis
as in Proposition 4, or through extensive simulations.

One can use �N d as a basis to form arbitrarily large net-
works over which BPA routing is flow monotone, using

an iterative procedure as follows. Initialize N d to be an

element of �N d. At each iteration, execute the following

concatenation step. Take any destination node in N d, say
v, with a single incoming link E�

v ¼ feg and a member
�N d

i from �N d whose origin node is v0;i. If ½Ce � m�þ �
SðEþ

v0;i
; 0;mÞ for all m 2 ½0; Ce�, then concatenate �N d

i to N d

at v, i.e., v ¼ v0;i and the the sub-network downstream of

v is �N d
i . BPA routing on the flow network obtained at the

end of every iteration of this procedure is guaranteed to
be flow monotone, because (18) implies that SeðmÞ is

equal to ½Ce � m�þ even in the concatenated network.
Flow monotonicity of BPA routing over a given net-

work N is maintained even after replacing any link, say

e ¼ ðu; vÞ, in N d (at any iteration) with a non-branching
chain e1; . . . ; ek such that se1 ¼ u, tem ¼ v and

mini2f1;;mgCei ¼ Ce.

Fig. 5. d-expanded flow networks that induce flow-monotonicity of BPA
routing at the root node v0.
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One can also devise a procedure which is counter-
part to the expansion procedure described above to
check if the d-expanded version of a given network N d

can be decomposed into elements of �N d, in which case

the BPA routing over N d is flow monotone. As one

keeps enriching the basis �N d, these procedures allow
to construct or to verify large networks over which
BPA routing is flow monotone, and hence maximally
resilient by Theorem 2.

4 PROOFS OF THE MAIN RESULTS

In this section, we provide proofs of the main results pre-
sented in Section 3. Some of the proofs rely on certain
analytical properties of SðJ ; r;mÞ defined in (19), which
we state first.

4.1 Technical Lemma

Lemma 3. Consider two networks N 1 ¼ ðV; E1; C1Þ and N 2 ¼
ðV; E2; C2Þ, each satisfying Assumption 1. Let S1 and S2 be
the functions computed by the Backward Propagation Algo-

rithm for N 1 and N 2 respectively. For any v 2 V n fng, let J
be any subset of links outgoing from v and common to N 1 and

N 2. Then,

0 � m2 � m1; 0 � r2 � r1; E1 � E2 and C1 � C2

¼)S1ðK; r1;m1Þ � S2ðJ ; r2;m2Þ;

where K :¼ fe 2 J j S1
e ðr1eÞ > 0g.

Proof.We split the lemma as follows:

(1) S1ðK; r1;m1Þ ¼ S1ðJ ; r1;m1Þ;
(2) S1ðJ ; r1;m1Þ � S2ðJ ; r1;m1Þ;
(3) S2ðJ ; r1;m1Þ � S2ðJ ; r1;m2Þ; and
(4) S2ðJ ; r1;m2Þ � S2ðJ ; r2;m2Þ.

Out of these, (iv) is trivial, and hencewe omit its proof.We
prove (i)-(iii) by double induction, on the number of
nodes nþ 1 and the cardinality of J . It is immediate to
verify that the claim holds true for n ¼ 1 and jJ j ¼ 1,

since with J ¼ feg, Siðe; r;mÞ ¼ Si
eðmÞ ¼ ½Ci

e � m�þ for all
r, i ¼ 1; 2. Assume that the claim is true for jVj ¼ nþ 1
and for jJ j � k. Consider a J of cardinality kþ 1. (19)

and (20) imply that, for all z 2 gðK [ fjg; r1;m1Þ, j 2 J n K:

S1ðK [ fjg; r1;m1Þ � S1
j ðzjÞ þ S1ðK; z;m1Þ

� S1ðK; r1;m1Þ;
(24)

where the second inequality follows from the fact that

z � r1 implies 0 � S1
j ðzjÞ � S1

j ðr1j Þ ¼ 0, and using (iv)

from induction. On the other hand, consider y 2
Xnþ1ðJ ; r1;m1Þ such that ye ¼ r1e for all e 2 K and yj ¼
m1 �

P
e2K r1e � r1j , where the inequality follows from the

feasibility of y. For such a y, (19) implies that there exists
i 2 K [ fjg such that

S1ðK [ fjg; r1;m1Þ � S1
i ðyiÞ þ S1ðK [ fjg n fig; y;m1Þ: (25)

Consider (25) under two cases. (a) i ¼ j. In this case, since

S1
j ðyjÞ¼ 0, (25) gives S1ðK [ fjg; r1;m1Þ�S1ðK [ fjgnfjg;

y;m1Þ ¼ S1ðK; r1;m1Þ, where the last equality follows

from the fact that the components of r1 and y along K are

the same. (b) i 6¼ j. In this case, recalling that ye ¼ r1e for
all e 2 K, and applying (i) from induction to the second
term in (25), we get that

S1ðK [ fjg; r1;m1Þ � S1
i

�
r1i
�
þ S1ðK n fig; y;m1Þ

¼ S1
i

�
r1i
�
þ S1ðK n fig; r1;m1Þ:

(26)

For every z 2 gðK; r1;m1Þ, we have

S1
i

�
r1i
�
þ S1ðK n fig; r1;m1Þ
� S1

i ðziÞ þ S1ðK n fig; z;m1Þ
� S1ðK; r1;m1Þ;

(27)

where the first inequality follows from z � r1 and (iv)
from induction. Combining (26) and (27), we arrive at the
same conclusion as case (a), i.e.,

S1ðK [ fjg; r1;m1Þ � S1ðK; r1;m1Þ: (28)

Combining (24) and (28), we establish (i) when jJ n Kj ¼
1. The proof for arbitrary jJ n Kj follows from repetitive
application of this procedure.

The proof for (ii) easily follows from induction since,
for every x, and e 2 J ,

S1
e ðxeÞ þ S1ðJ n feg; x;m1Þ � S2

e ðxeÞ þ S2ðJ n feg; x;m1Þ:

In order to prove (iii), using the fact that S2
e ðmÞ is non-

increasing in m and S2ðJ n feg; r;mÞ non-increasing in r

from induction, one gets that, for all r1 such that

10r1 � m2,

max
x�r1

10x�m2

min
e2J

�
S2
e ðxeÞ þ S2ðJ n feg; x;m2Þ

�

¼ max
x�r1

10x¼m2

min
e2J

S2
e ðxeÞ þ S2ðJ n feg; x;m2Þ

� �

¼ S2ðJ ; r1;m2Þ :

Specifically, to see why the first equality above holds
true, let the maximum in the rightmost side be achieved
in some x � r1 such that 10x � m2, and let u 2 ½0; 1� be
such that ð1� uÞ10xþ u10r1 ¼ m2 (such u exists since

10x � m2 and 10r1 � m2). Then, y :¼ ð1� uÞxþ ur1 satisfies

x � y � r1, 10y ¼ m2, and S2
e ðyeÞ þ S2ðJ n feg; y;m2Þ �

S2
e ðxeÞ þ S2ðJ n feg; x;m2Þ for all e. Then, for m1 � m2,

S2ðJ ; r1;m1Þ ¼ max
x�r1

10x¼m1

min
e2J

S2
e ðxeÞ þ S2ðJ n feg; x;m1Þ

� �

� max
x�r1

10x�m2

min
e2J

�
S2
e ðxeÞ þ S2ðJ n feg; x;m2Þ

�

¼ S2ðJ ; r1;m2Þ :

This concludes the proof for jVj ¼ nþ 1 and jJ j �
kþ 1. A similar argument allows one to extend the valid-
ity of the result to jVj ¼ nþ 2 with jJ j ¼ 1. The lemma
then follows by induction. tu
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4.2 Proof of Proposition 1

We first show that, for any � � 0, K � J � E,

SðK; �Þ � SðJ ; �Þ: (29)

It suffices to show that SðJ n feg; �Þ � SðJ ; �Þ for all e 2 J .
It is trivially true for jJ j ¼ 1. Assume it to be true for all
jJ j � k for some k � 1. (12) implies that, for all x 2 XðJ ; �Þ:

SðJ ; �Þ � min
j2J

�
Cj � xj þ SðJ n fjg; �Þ

�
¼ min

�
Ce � xe þ SðJ nfeg; �Þ; min

j2J nfeg

�
Cj � xj þ SðJ nfjg; �Þ

��
� min

�
SðJ n feg; �Þ; min

j2J nfeg

�
Cj � xj þ SðJ n fjg; �Þ

��
� min

�
SðJ n feg; �Þ; min

j2J nfeg

�
Cj � xj þ SðJ n fj; eg; �Þ

��
;

(30)

where the second inequality follows from the fact that
xe � Ce, whereas the third inequality follows from
the inductive argument on J n fig. For

x 2 argmaxz2XðJ nfeg;�Þ minj2J nfeg
�
Cj � zj þ SðJ n fj; eg; �Þ

�
we get SðJ n feg; �Þ ¼ minj2J nfeg

�
Cj � xj þ SðJ n fj; eg; �Þ,

which when used in (30), finishes the proof for jJ j ¼ kþ 1.
By induction, (29) is then true for all J � E.

We now prove the proposition by induction on jJ j.
When J ¼ feg, (12) implies that SðJ ; �Þ � ½Ce � ��þ. It is

easy to see that under a disturbance process deð1Þ ¼ ½Ce �
��þ and deðtÞ ¼ 0 for all t � 1, the associated network
dynamics will be non-transferring. Assume that the propo-
sition is true for all J � E with jJ j � k for some k � 1. Let

Eð0Þ ¼ J , with jJ j ¼ kþ 1. Pick e 2 argminj2J Cj � fjð0Þþ
�

SðJ n fjg; �ÞÞ. Therefore,

SðJ ; �Þ � Ce � feð0Þ þ SðJ n feg; �Þ: (31)

Consider a disturbance process such that deð1Þ ¼ Ce � feð0Þ
and djð1Þ ¼ 0 for all j 2 J n feg. Under this disturbance,
link e becomes inactive, followed by a possible cascading
failure. Let the network state come to a steady state after a
finite time T 1. Since, jEðT 1Þj � k, one can use induction to
extend d after T 1 to ensure that the network dynamics is not
transferring. By induction, the total magnitude of d is then
upper bounded as DðdÞ � deð1Þ þ SðEðT 1Þ; �Þ. Since EðT 1Þ z
J , using (29), this can be further upper bounded as
DðdÞ � deð1Þ þ SðJ n feg; �Þ ¼ Ce � feð0Þ þ SðJ n feg; �Þ,
which combined with (31) implies that DðdÞ � SðJ ; �Þ.

4.3 Proof of Proposition 2

If 0 =2 VðT Þ, then the flow across links outgoing from every
cut U in ðVðT Þ; EðT ÞÞ, and VðT Þ n fng in particular, is zero
at T . This implies that �nðT Þ ¼ 0. This also proves that
�nðT Þ 2 f0; �g.

If 0 2 VðT Þ, then J :¼ EðT Þ \ Eþ
0 is non-empty, andP

e2J feðT Þ ¼ �. Let U ¼ 0 [ fv 2 VðT Þ : ð0; vÞ 2 J g. It is

clear that U � VðT Þ, and that U is in fact a cut in
ðVðT Þ; EðT ÞÞ. Since fðT Þ is an equilibrium flow, the total
flow across the links outgoing from U is �. One can continue
along these lines to claim that the flow across links outgoing
from any cut in ðVðT Þ; EðT ÞÞ, and VðT Þ n fng in particular,
is equal to �. That is, �nðT Þ ¼ �.

4.4 Proof of Theorem 1

Theorem 1 is a corollary of the following lemma, where we
allow the possibility that ðVð0Þ; Eð0ÞÞ 6¼ ðV; EÞ.

Lemma 4. Consider a node v in a network N with initial condi-
tion ðVð0Þ; Eð0ÞÞ � ðV; EÞ, satisfying Assumption 1, with a
constant inflow m � 0, and operating under a distributed rout-

ing policy satisfying GvðEþ
v ð0Þ;mÞ � r for some r 2 R

Eþv
þ .

Then, for any h 2 N, there exists a finite T v � h, and a distur-

bance process ðdvðtÞÞt�h satisfying DðdvÞ � SðEþ
v ð0Þ; r;mÞ,

under which v =2 VðT vÞ:

Proof. It is sufficient to prove the lemma for h ¼ 1. For brev-

ity in notation, we let fðtÞ :¼ GvðEþ
v ðtÞ;mÞ be the action of

the control policy at t � 0. By assumption and the link
monotonicity property of routing policy in (7),
fðt2Þ � fðt1Þ � r for all t2 � t1 � 0. We follow the con-
vention that, unless specified otherwise, dveðtÞ ¼ 0 for all
e 2 E and t � 1.

The proof is by double induction, on the number of
nodes nþ 1 and the cardinality of jEþ

v ð0Þj. The proof is

easy to verify when n ¼ 1 and jEþ
v ð0Þj ¼ 1, since in that

case, with Eþ
v ð0Þ ¼ feg, SeðmÞ ¼ ½Ce � m�þ, and therefore,

one can apply dveð1Þ ¼ ½Ce � m�þ, under which v =2 Vð2Þ
and DðdvÞ ¼ ½Ce � m�þ. Assume the lemma to be true for
arbitrary acyclic networks with nþ 1 nodes and

jEþ
v ð0Þj � k for some k � 1.
For jEþ

v ð0Þj ¼ kþ 1, pick e in argminj2Eþv ð0Þð½Cj �
fjð0Þ�þ þ S Eþ

v ð0Þ n fjg; y;m
� �

Þ. Consider a disturbance

process dv such that dveð1Þ ¼ ½Ce � feð0Þ�þ, in which case

SðEþ
v ð0Þ; r;mÞ � ½Ce � ye�þ þ SðEþ

v ð0Þ n feg; fð0Þ;mÞ:
(32)

Let the times at which links fail simultaneously be
2 ¼ t1 � � � � � tm. Let StðJ ; r;mÞ denote the functions
computed by the BPA in (19) for the residual graph

ðVðtÞ; EðtÞ; CðtÞÞ at t � 0. By convention, we set S0 	 S.

Since links in Eþ
v ðti�1Þ n Eþ

v ðtiÞ fail simultaneously at ti,

S
ti�1
j ðfjðti � 1ÞÞ ¼ 0 for all j 2 Eþ

v ðti�1Þ n Eþ
v ðtiÞ. There-

fore, using Lemma 3, for all i 2 f2; . . . ;mg:

StiðEþ
v ðtiÞ; fðtiÞ;mÞ � StiðEþ

v ðtiÞ; fðti � 1Þ;mÞ
� Sti�1ðEþ

v ðtiÞ; fðti � 1Þ;mÞ
¼ Sti�1ðEþ

v ðti � 1Þ; fðti � 1Þ;mÞ
� Sti�1ðEþ

v ðti�1Þ; fðti�1Þ;mÞ;

(33)

where we have used the fact that fðtiÞ � fðti � 1Þ ¼
fðti�1Þ and Eðti � 1Þ � Eðti�1Þ. Using the same argu-

ments, since S1
e ðf1ð1ÞÞ ¼ 0, we have that

St1
�
Eþ
v ðt1Þ; fðt1Þ;m

�
� S1

�
Eþ
v ð1Þ; fð1Þ;m

�
¼ S1

�
Eþ
v ð0Þ n feg; fð1Þ;m

�
� S

�
Eþ
v ð0Þ n feg; r;m

�
: (34)

Combining (33) and (34), we get that

Stm
�
Eþ
v ðtmÞ; fðtmÞ;m

�
� S

�
Eþ
v ð0Þ n feg; r;m

�
: (35)
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Using induction on the residual graph at t ¼ tm, where

jEþ
v ðtmÞj < jEþ

v ð0Þj, one can construct a disturbance pro-

cess ð~dvðtÞÞt�tm
such that v =2 VðT Þ, and

Dð~dvÞ � Stm
�
Eþ
v ðtmÞ; fðtmÞ;m

�
: (36)

Augmenting dv with ~dv, i.e., ðdvðtÞÞt�tm
¼ ð~dvðtÞÞt�tm

, and
applying (32), (35) and (36), we get that

DðdvÞ ¼ ½Ce � feð0Þ�þ þ Dð~dvÞ � SðEþ
v ð0Þ; fð0Þ;mÞ

� SðEþ
v ð0Þ; r;mÞ;

which proves the lemma for acyclic networks with nþ 1

nodes and jEþ
v ð0Þj ¼ kþ 1. The proof can be easily

extended to acyclic networks with nþ 2 nodes and

jEþ
v ð0Þj ¼ k, after which the lemma follows from

induction. tu

Theorem 1 follows by combining Lemma 4 for v ¼ 0,
h ¼ 1, m ¼ �, r ¼ 0 and ðVð0Þ; Eð0ÞÞ ¼ ðV; EÞ with Proposi-
tion 2.

4.5 Proof of Proposition 3 and Theorem 2

Proposition 3 follows from Theorem 2 by recalling that, for
symmetric flow networks that are directed trees, BPA rout-
ing satisfies flow monotonicity. Theorem 2 follows from the
following lemmas. The following simple property of the
functions SðJ ; r;mÞ computed in (19) will be useful in the
proofs in this section. We recall the definition of gðJ ; r;mÞ
from (20).

Lemma 5. For any x 2 gðJ ; r;mÞ, J � Eþ
v , r 2 R

Eþv
þ ,

v 2 V n fng and m � 0,

SðJ ; r;mÞ �
X
e2K

SeðxeÞ þ SðJ n K; x;mÞ 8K � J :

Proof. The lemma is trivially true from (19) and (20) for
jKj ¼ 1. Assume it to be true for all K � J with jKj � k
for some k � 1. Consider the case jKj ¼ kþ 1. Induction
implies that, for any j 2 K:

SðJ ; r;mÞ �
X

e2Knfjg
SeðxeÞ þ SðJ [ fjg n K; x;mÞ: (37)

Applying induction to the second term in (37), for every
z 2 gðJ [ fjg n K; x;mÞwe get

SðJ [ fjg n K; x;mÞ � SjðzjÞ þ SðJ n K; z;mÞ: (38)

z 2 gðJ [ fjg n K; x; mÞ implies z � x, which in turn
implies SjðzjÞ � SjðxjÞ and SðJ n K; z;mÞ � SðJ n K; x;mÞ
by Lemma 3. Combining this with (37) and (38) establishes
the lemma for jKj ¼ kþ 1, and hence for all K � J by
induction. tu

For the next lemma, we again allow the possibility that
ðVð0Þ; Eð0ÞÞ 6¼ ðV; EÞ.

Lemma 6. Consider a node v 2 V n fng with jEþ
v j � 3 in a flow

network N with initial condition ðVð0Þ; Eð0ÞÞ � ðV; EÞ, satis-
fying Assumption 2, and operating under BPA routing. Let the
inflow �vðtÞ be non-decreasing and satisfy maxt�0�vðtÞ ¼

m � 0. If �vðtÞ 	 m , or if BPA routing at v is flow monotone,
then v 2 VðT Þ under any disturbance process dv satisfying

DðdvÞ < SðEþ
v ð0Þ; r
;mÞ, with r
 ¼ GvðEþ

v ;mÞ.

Proof. Let Eþ
v ¼ fe1; e2; e3g and f


i :¼ Gv
ei
ðEþ

v ð0Þ;mÞ for all

ei 2 Eþ
v ð0Þ. We consider three possible scenarios for

jEþ
v ð0Þj separately. We prove by backward induction on v

in f0; . . . ; n� 1g. First consider v ¼ n� 1. When Eþ
v ð0Þ ¼

fe1g, (18) implies that Se1ðmÞ ¼ C1 � m � C1 � �vðtÞ.
Therefore, for all t � 0, ~e1ðtÞ � ~e1ðT Þ � DðdvÞ <
Se1ðmÞ ¼ C1 � m � C1 � �vðtÞ. That is, fe1ðtÞ ¼ �vðtÞ <
C1 �~e1ðtÞ ¼ C1ðtÞ for all t � 0, and hence v 2 VðT Þ.

When Eþ
v ð0Þ ¼ fe1; e2g, let t1 :¼ minft � 0 j Eþ

v ðtÞ 6¼
Eþ
v ð0Þg. To avoid triviality, assume t1 < 1, and let

K :¼ Eþ
v ð0Þ n Eþ

v ðt1Þ be the set of links to become inactive

simultaneously at t1. Then, necessarily ~eðt1Þ � ½Ce �
feðt1Þ�þ � ½Ce � f
e �

þ for all e 2 K, where the second
inequality follows from flowmonotonicity. Therefore,X

e2K
~eðT Þ �

X
e2K

~eðt1Þ �
X
e2K

½Ce � f
e �
þ: (39)

Let ~dK be such that ~dKe ðtÞ 	 0 for all e 2 K and
~dKe ðtÞ 	 dveðtÞ for all e 2 Eþ

v ðt1Þ. Therefore,

DðdvÞ ¼ Dð~dKÞ þ
X
e2K

~eðT Þ: (40)

Combining (39) with Lemma 4, where we note that

f
 :¼ GvðEþ
v ð0Þ;mÞ 2 gðEþ

v ð0Þ; r
;mÞ (from (22)), we get

SðEþ
v ð0Þ; r
;mÞ �

X
e2K

~eðT Þ þ SðEþ
v ðt1Þ; f
;mÞ: (41)

Combining (41) and (40) with DðdvÞ < SðEþ
v ð0Þ; r
;mÞ,

we get

Dð~dKÞ < SðEþ
v ðt1Þ; f
;mÞ: (42)

If jEþ
v ðt1Þj ¼ 0, then (42) is a contradiction, and if

jEþ
v ðt1Þj ¼ 1, the proof is then completed by using the

jEþ
v ð0Þj ¼ 1 case since SðEþ

v ðt1Þ; f
;mÞ ¼ SðEþ
v ðt1Þ; 0;mÞ.

For Eþ
v ð0Þ ¼ fe1; e2; e3g, one follows the same argu-

ment as before to arrive at (42). If jEþ
v ðt1Þj � 1, then we

use the same arguments as before. If jEþ
v ðt1Þj ¼ 2, then

necessarily Eþ
v ð0Þ ¼ Eþ

v , in which case f
 ¼ r
. Therefore,

one can continue with the jEþ
v ð0Þj ¼ 2 case to complete

the proof. This proves the lemma for v ¼ n� 1.
Assume that the lemma is true for all v � ‘ for some

‘ � 1. Let v ¼ ‘� 1. We recall Lemma 2 for monotonicity
of fiðtÞ. As for v ¼ n� 1, we consider three cases depend-

ing on the value of jEþ
v ð0Þj and provide proof using

similar arguments. We provide a few details only for

Eþ
v ð0Þ ¼ Eþ

v ¼ fe1; e2; e3g. Lemma 2 implies that

fiðtÞ � f

i ¼ Gv

i ðEþ
v ;mÞ for all i ¼ 1; 2; 3. Let dv ¼

P3
i¼0 d

v
i ,

where, for i ¼ 1; 2; 3, dvi is the component of dv on links
consisting of ei and the sub-tree rooted at tei , and dv0 is

the component on the rest of the links in the network. Let
~iðtÞ, i ¼ 0; 1; 2; 3, be defined accordingly. Let t1 :¼
minft � 0 j Eþ

v ðtÞ 6¼ Eþ
v g. To avoid triviality, assume t1 <

1, and let K :¼ Eþ
v n Eþ

v ðt1Þ be the set of links to become
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inactive simultaneously at t1. Then, necessarily
~eðt1Þ � Seðfeðt1ÞÞ � Seðf


e Þ for all e 2 K, where the sec-
ond inequality follows from Lemma 3. Following similar
arguments as before, we arrive at (42), after which we
use the relevant case depending on the value of

jEþ
v ðt1Þj � 2. This establishes the proof for v ¼ ‘� 1, and

hence by backward induction for all v 2 f0; . . . ; n� 1g. tu

Theorem 2 is obtained from Lemma 6 by substituting

v ¼ 0, ðVð0Þ; Eð0ÞÞ ¼ ðV; EÞ, �vðtÞ 	 �, and noting that SðEþ
0 ;

r
; �Þ ¼ SðEþ
0 ; 0; �Þ ¼ S
ðN ; �Þ.

4.6 Proof of Proposition 4

The BPA routing for case (a) is explicitly computed in (15),
which readily implies flow-monotonicity. The proof for case
(c) follows from the constructs used in the proof of case (b).
Therefore, we provide details only for case (b).

For brevity in notation, let yðmÞ 	 Gv0ðEþ
v0
;mÞ be the flow

under BPA routing. For brevity in notation, and since the
lower bound constraints imposed by r are redundant in this
case, we drop the dependence of Sð:; r; :Þ on r. Following
Fig. 3b, the general relationship between Se1ðmÞ and

SðEþ
v1
;mÞ can be written as:

Se1ðmÞ ¼
SðEþ

v1
;mÞ if m 2 ½�m1; �m2�;

C1 � m½ �þ if m 2 ½0; �m1� [ ½�m2; C1� ;



(43)

where �m1 ¼ 2 C3 þ C4 � C1ð Þ, �m2 ¼ 2C1 � ðC3 þ C4Þ and one

can write an expression for SðEþ
v1
;mÞ similar to (14). We

prove flow-monotonicity by showing that d
dm yðmÞ � 0. Let

Gi ¼ supfm : SeiðmÞ > 0g for i ¼ 1; 2 be the effective flow

capacity of link ei. When yðmÞ is on the boundary of the fea-

sible set X v0ðE
þ
v0
;mÞ, without loss of generality, assume that

y1ðmÞ ¼ ½m� G2�þ and y2ðmÞ ¼ minfm;G2g, which is trivially
flow-monotone. When yðmÞ is in the interior of the feasible
set, y2 satisfies Se2ðy2Þ þ Se1ðmÞ ¼ Se1ðm� y2Þ þ Se2ðmÞ.
Therefore, by the implicit function theorem,3 we have that

d

dm
y2ðmÞ ¼

S0
e2
ðmÞ þ S0

e1
ðm� y2Þ � S0

e1
ðmÞ

S0
e2
ðy2Þ þ S0

e1
ðm� y2Þ

; (44)

where S0
ei
ðyÞ 	 d

dy SeiðyÞ, i ¼ 1; 2. The strictly decreasing
property of Sei , i ¼ 1; 2 from Lemma 3 implies that the

denominator of (44) is negative for all m 2 0;G1 þ G2ð Þ. (14)
and (43) imply that S0

e1
ðm� y2Þ � S0

e1
ðmÞ � 1=2 if m < C1

and equal to zero if m > C1. This combined with

Se2ðmÞ 	 ½C2 � m�þ and the assumption that C2 � C1 implies

that the numerator of (44) is non positive for all

m < G1 þ G2. Hence, d
dm y2ðmÞ � 0. The proof for d

dm y1ðmÞ � 0

follows along similar lines.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a dynamical model for cascading
failures in single-commodity network flows, where the net-
work dynamics is governed by a deterministic and possibly
adversarial disturbance process which incrementally
reduces flow capacity on the links, and distributed oblivious
routing policies that have information only about the local
inflow and active status of outgoing links, and in particular
no information about the disturbance process. The salient
feature of this model is to couple the flow dynamics with
the link and node inactivation dynamics. An immediate out-
come of this coupling is that, links and nodes to fail succes-
sively are not necessarily adjacent to each other. We
quantified margin of resilience to be the minimum cumula-
tive capacity reductions across time and links of the net-
work, under which the network looses its transferring
property. We presented an algorithm that provides an
upper bound on the margin of resilience for directed acyclic
graphs between a single origin-destination pair. The same
algorithm motivates a routing policy which provably
matches the upper bound for networks which are tree like,
have out-degree at most 3, and induce monotonicity in the
flow dynamics.

In future, we plan to extend our analysis to networks
with general graph topologies, multi-commodity flows,
non-oblivious routing policies with possibly multi hop
information, stochastic disturbance processes, reversible
link activation dynamics under finite time link recovery,
and exogenous coupling between failure and recovery of
distant links due to coupling between the given network
and other exogeneous networks. We also plan to investigate
computationally efficient, and possibly distributed, algo-
rithms for (approximate) computation of the margin of resil-
ience. Finally, we plan to develop distributed robust control
strategies suitable for physics of other physical infrastruc-
ture networks such as power, gas, water and supply chains.
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