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Abstract

The problem of reliably transmitting a real-valued random vector through a digital noisy channel is
relevant for the design of distributed estimation and control techniques over networked systems. One
important example consists in the remote state estimation under communication constraints. In this case,
the coding consists of an encoder –which maps the real vector into a sequence of channel inputs– and a
decoder –which sequentially updates the estimation of the transmitted data as more and more channel
outputs are observed. The encoder performs both source and channel coding of the data. Assuming that
no channel feedback is available at the transmitter, this paper studies the rates of convergence to zero of
the mean squared error. Two coding strategies are analyzed: the first one has exponential convergence
rate but it is expensive in terms of encoder/decoder computational complexity, while the second one
has a convenient computational complexity, but sub-exponential convergence rate. General bounds are
obtained describing the convergence properties of these classes of methods.

1 Introduction

Reliable transmission of information among the nodes of a network is known to be a relevant problem in
information engineering. It is indeed fundamental both when the network is designed for pure information
transmission, as well as in scenarios in which the network is deputed to accomplish some specific tasks
requiring information exchange. Important examples include: networks of processors performing parallel
and distributed computation [2, 34] or load balancing [9, 10, 24]; wireless sensor networks, in which the final
goal is estimation and decision making from distributed measurements [15, 17, 38, 11]; sensors/actuators
networks, such as mobile multi-agent networks, in which the final goal is control [16, 25, 23, 26]. Distributed
algorithms to accomplish synchronization, estimation or localization tasks necessarily need to exchange
quantities among the agents which are often real valued. Assuming that transmission links are digital, a
fundamental problem is thus to transmit a continuous quantity, namely a real number or, possibly, a vector,
through a digital noisy channel up to a certain degree of precision.

This paper is concerned with the problem of efficiently transmitting a finite-dimensional Euclidean-
space-valued state through a noisy digital channel. We shall focus on anytime coding algorithms, namely
algorithms which can be stopped anytime while providing estimations of increasing quality. These algorithms
are particularly suitable for applications in problems of distributed control.

As especially pointed out in a series of works by Sahai and Mitter [29, 30, 31], there is a specific feature
distinguishing the problem of information transmission for control from the problem of pure information
transmission. This is related to the different sensitivity to delay typically occurring in the two scenarios.
Indeed, while the presence of sensible delays can often be tolerated in the communication performance
evaluation, it typically has disastrous effects in control applications. Here, the important question is not only
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where information is available, but also when. For this reason, while in the standard digital communication
framework data are requested to be available at the receiver only at the end of the transmission (block coding),
transmission systems for control applications need to be able to produce a reasonable partial information
transmission also in case the process is stopped before the end. Consequently, it is desirable to design
coding/decoding schemes which are able to provide an estimate whose precision increases with time.

On the other hand, the computational complexity of the transmission schemes is a central issue. In
fact, sensors in distributed networks are usually very simple devices with limited computational abilities
and severe energy constraints. Applicable transmission systems should be designed performing a number of
operations which remains bounded in time. Hence, an analysis of the tradeoffs between performance and
complexity of the transmission schemes is required.

In many problems of information transmission, there is the possibility to take advantage of the feed-
back information naturally available to the transmitter. Feedback can be helpful in enlarging the achievable
capacity regions, improving the trade-off between performance and latency, as well as in reducing the com-
putational complexity. In many cases, however, feedback information is incomplete, difficult to be used or, as
for instance in the wireless network scenario, there are situations in which the transmitter needs to broadcast
his information to many different receivers and hence feedback strategies to acknowledge the receipt of past
transmissions could be unfeasible. For these reasons, in the present paper we shall restrict to the case in
which there is no feedback information.

A fundamental characteristic of digital communication for control applications concerns the nature of in-
formation bits. In the traditional communication theory, bits are usually assumed to be equally valuable, and
they are consequently given the same priority by the transmission-system designer. While such an assump-
tion is typically justified by the source-channel separation principle, such a principle does not generally hold
when delay is a primary concern. For instance, it is known that separate source-channel coding is suboptimal
in terms of the joint source-channel error exponent [6, 7]. In fact, in problems of information transmission
for control or estimation, different bits typically require significantly different treatment. This motivates the
study of unequal error protection codes [22]: we refer to the recent work [4] for some information-theoretical
aspects of unequal error protection and further references on the subject. While modern low-complexity
codes [21, 27], based on random sparse graphical models and iterative decoding algorithms, are typically
analyzed and designed for standard information transmission problems, one of the challenges posed by in-
formation transmission for control applications is to come up with design paradigms providing the required
unequal error protection at low computational costs.

In this paper we propose two classes of coding strategies for the anytime transmission of real-valued
random vectors through a digital noisy channel. In both cases the coding scheme consists of an encoder
mapping the real vector into a sequence of bits and of a decoder sequentially refining the estimate of the vector
as more and more channel outputs are observed. The first strategy is characterized by good performance
in terms of the convergence of the mean squared error, but it is expensive in terms of encoder/decoder
computational complexity. On the other hand, the second class of strategies has a convenient computational
complexity, but worse convergence rate.

In order to keep the use of information-theoretical techniques at a minimum, we shall confine our expo-
sition to the binary erasure channel (BEC), where a bit is either transmitted correctly or erased with some
probability ǫ.1 While this channel allows for an elementary treatment, it is of its own interest in many sce-
narios. For instance, it well models the situation of mobile agents which, depending on their current position,
may or may not be in the range of transmission of the other agents, as well as a communication network
-like the internet- in which information packets are either correctly received or lost in the transmission.

The rest of this paper is organized as follows. Sect.2 formally states the problem. In Sect.3 we briefly
address the case of noiseless digital channels, for which our problem reduces to that of efficient vector quan-
tization. In Sect.4, we find some information-theoretic limits of the coding schemes: an upper bound on the
best error exponent achievable is presented in Sect.4.1, while, in Sect.4.2, random linear convolutional codes
are shown to achieve exponential error rates at the cost of computational complexity growing quadratically
in time. In Sect.5, trade-offs between performance and computational complexity are investigated. First, a
simple linear-time encodable/decodable repetition scheme is analyzed in Sect.5.1. Then, the main result is
presented in Sect.5.2, showing that finite-window coding schemes are able to achieve only sub-exponential
error decays. Finally, some Monte Carlo simulations of finite-window coding schemes with linear complexity
are reported in Sect.5.3.

1It will be pointed out how the results can be extended to general discrete memoryless channels.
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2 Problem formulation

This section provides a formal description of the problem. Let X ⊆ R
d be a non-empty subset where the

random vector to be transmitted is known to take values, equipped with an a-priori probability density f(x).
We shall assume in the sequel that X is a bounded set, which, with no loss of generality, can be identified
with [0, 1]d. The case when X is unbounded can be treated in an analogous way, but some more technicalities
are needed. The communication channel is assumed to have binary input alphabet Y = {0, 1} and a finite
output alphabet Z which is assumed to contain Y, namely we assume that Y ⊆ Z. We will consider in detail
the binary erasure channel (BEC) in which Z = {0, 1, ?}, where ? stays for the erasure event. The channel
is described by two probability distributions on Z, denoted by p(z|0), and p(z|1), where z ∈ Z, and to be
interpreted as the probability distribution of the output, assuming that the input has been equal to 0 or 1,
respectively. In the case of the BEC we have that

p(?|0) = p(?|1) = ǫ , p(0|0) = p(1|1) = 1 − ǫ , p(1|0) = p(0|1) = 0 .

We assume, for the sake of simplicity, that at every time instant t, we can transmit a bit through the
channel, and, moreover, that the channel is memoryless, namely, the output values of repeated transmissions
are independent among each other.

The coding scheme Our transmission scheme consists of an encoder

E : X → YN ,

and of a decoder
D : ZN → XN .

The overall sequence of maps is described by the following scheme

X E
- YN

Channel
- ZN

D
- XN .

More precisely, the decoder is defined by a family of maps

Dt : Zt → X ,

so that, for any (zs)
∞
s=1 ∈ ZN, the value at time t of D((zs)

∞
s=1) is Dt((zs)

t
s=1). In other words, if πt : YN → Yt

is the projection of a sequence in YN into its first t symbols, then, for any x ∈ X , the string πt(E(x)) =
(ys)

t
s=1 = (y1, . . . , yt) ∈ Yt is transmitted along the channel and the output (zs)

t
s=1 = (z1, . . . , zt) ∈ Zt is

then received by the decoder Dt which provides an estimate of x at time t

x̂t = Dt((ys)
t
s=1) .

This is described by the following scheme

X Et
- Yt Channel

- Zt Dt
- X

x - (ys)
t
s=1

- (zs)
t
s=1

- x̂t

(1)

where Et := πt ◦ E .

Performance evaluation In order to evaluate the performance of a scheme, we define the mean squared
error (mean with respect to both the randomness of x ∈ X and with respect to the possible randomness of
the communication channel) at time t by

∆t := (E||x − x̂t||2)1/2 . (2)

In this paper we want to understand how fast ∆t decreases as t tends to infinity. In this paper we shall analyze
different encoding and decoding strategies and we shall compare them by analyzing their performance in
terms of convergence rate of ∆t and their complexity of the encoding and decoding algorithms as functions
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of t. All the coding strategies which will be analyzed in the present paper are characterized by mean squared
error ∆t converging to zero and such that2

lim inf
t→∞

[

− 1

tα
log ∆t

]

≥ β , (3)

for some constants β > 0 and 0 < α ≤ 1. When (3) holds the coding strategy will be said to achieve a
degree of convergence α and a rate of convergence β. When α = 1 we shall simply say that we have an
exponential convergence and that β is the exponential convergence rate. In the sequel, various strategies will
be compared in terms of the parameters α and β that can be achieved, and such parameters will be related
to the required computational complexity.

2.1 Application to state estimation under communication constraints

The problem illustrated in the previous paragraph is related to the state estimation problem under com-
munication constraints (see [20, 19, 32, 33, 28]). Assume we are given a discrete time stochastic linear
system

x(t+ 1) = Ax(t) + v(t) x(0) = x0 (4)

where x0 ∈ R
n is a random vector with zero mean, v(t) ∈ R

n is a zero-mean white noise, x(t) ∈ R
n is the

state sequence and A ∈ R
n×n.

Suppose that a remotely positioned receiver is required to estimate the state of the system, but it can
receive information from it only through a binary erasure channel. We then need to design a family of
encoders Et and of decoders Dt. At each time t ≥ 0, the encoder Et takes x(0), . . . , x(t) as input, and
returns the symbol yt ∈ {0, 1}, which is in turn fed as an input to the channel. The receiver observes the
channel output symbols z0, . . . , zt, from which the decoder Dt has to obtain an estimate x̂(t) of the current
state. We distinguish two cases:

1. Assume that the variance of v(t) is big with respect to the variance of x(0) or that we are interested
in the steady state performance. In this case it is the asymptotic value of E[||x(t) − x̂(t)||2] the most
relevant parameter to be considered in designing the encoders Et and the decoders Dt.

2. Assume that the variance of v(t) is small with respect to the variance of x(0) and that we are interested
in the transient behavior. In this case the prominent role is taken by the speed of convergence of
E[||x(t)− x̂(t)||2] towards its asymptotic value and hence the role of the noise v(t) is negligible. If this
is the case, it makes sense to assume that v(t) = 0.

The results presented in this paper are relevant for the second scenario. In fact, since we can assume
that v(t) = 0, the only source of uncertainty is due to the initial condition x0 and so the encoder/decoder
task reduces to obtain good estimates of x0 at the receiver side. Indeed, in order to obtain a good estimate
x̂(t) of x(t), the decoder has to obtain the best possible estimate x̂(0|t) of the initial condition x(0) from the
received data y0, . . . , yt, and then it can define

x̂(t) := Atx̂(0|t) .

In this way we have
x(t) − x̂(t) = At(x(0) − x̂(0|t)) ,

so that the problem reduces to finding the best way of coding x(0) in such a way that expansion of At is
well dominated by the contraction of x(0) − x̂(0|t).

3 Quantized encoding schemes

In this paper we shall propose and compare different coding strategies. All of them are based on a preliminary
quantization of the real vector x into an infinite binary sequence. More precisely we shall first consider a
map

S : X → YN .

2Throughout the paper log denotes the logarithm in base 2, while ln denotes the natural logarithm.
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This map is called a quantizer. There are many ways to design efficient quantizers. Below we shall propose
a particularly simple and natural one and we shall stick to it in the following. In this paper, indeed, the
focus is rather on the construction of the encoding scheme starting from the sequence S(x) which will be
considered fully available at the transmitter.

The construction of S(x) works as follows. First, by considering the binary expansion of each component
of x, we can find a sequence of binary vectors b1, b2, . . . ∈ {0, 1}d such that

x =

∞
∑

i=1

bi2
−i (5)

Then we define3 S(x) := (bT1 , b
T
2 , . . .) ∈ {0, 1}N namely as the infinite binary sequence obtained by concate-

nating the finite binary vectors bTi . We shall call the map S a dyadic quantizer and S(x) a dyadic expansion
of x. It is clear that the formula (5) can be used also for defining the inverse S−1 of S.

Let now St := πt ◦ S, where πt is the truncation operator defined above. We define a right inverse S−1
t

of St as follows. Given a finite binary sequence w = (w1, . . . , wt) ∈ {0, 1}t, first we expand it to a sequence
w̄ ∈ {0, 1}N by adding infinitely many zeroes. Then from this sequence we define S−1

t (w) := S−1(w̄).
Notice that, if we have two infinite sequences w′ = (w′

1, w
′
2, . . .) and w′′ = (w′′

1 , w
′′
2 , . . .) in {0, 1}N are

such that w′
1 = w′′

1 , . . . , w
′
t = w′′

t , then

||S−1(w′) − S−1(w′′)|| ≤ 2d1/22−t/d . (6)

From this we can argue that
||x− S−1

t ◦ St(x)|| ≤ 2d1/22−t/d ,

which implies that
(E||x − S−1

t ◦ St(x)||2)1/2 ≤ 2d1/22−t/d .

Classical results in quantization theory show that the optimal quantizer has exponential rate of convergence
1/d.

Theorem 1 (Theorem 6.2 pag.78 in [14]). Suppose that E||x||2+δ < +∞ for some δ > 0. Then, there
exists C > 0 such that, for all t ≥ 0 and Qt : X → X with |Qt(X )| ≤ 2t,

(E||x−Qt(x)||2)1/2 ≥ C2−t/d (7)

We now show how an encoder/decoder scheme can be built starting from the quantizer S and the family
of inverses S−1

t .
Consider a sequence of integers m1,m2, . . . ∈ N such that mt−1 ≤ mt ≤ t for all t and a family of maps

Et : Ymt → Y , D̃t : Zt → Ymt . (8)

We can define the map Ẽ : YN → YN by putting the value of Ẽ((ws)
∞
s=1) at time t equal to Et(w1, . . . , wmt).

We also put Ẽt := πt ◦ Ẽ . Notice that, since Ẽt((ws)
∞
s=1)) depends on w1, . . . , wmt only, then Ẽt is actually a

map from Ymt to Yt. Finally encoders and decoders are defined by Et := Ẽt ◦ Smt and Dt := S−1
mt

◦ D̃t. The
overall sequence of maps is described by the following scheme

X Smt
- Ymt

Ẽt
- Yt Channel

- Zt D̃t
- Ymt

S−1
mt

- X

x - (ws)
mt
s=1

- (ys)
t
s=1

- (zs)
t
s=1

- (ŵs(t))
mt
s=1

- x̂t

(9)

More specifically, in this scheme we first use a quantizer to transform x into a string of bits (w1, w2, . . . , wmt)
and then we use a block encoder. The received data are decoded by a block decoder providing an estimated
version (ŵ1(t), ŵ2(t), . . . , ŵmt(t)) of (w1, w2, . . . , wmt) (whose components in general depend on t) which is
translated to an estimate x̂t of x.

3Here and throughout the paper for a column vector v ∈ R
d, vT will denote its transposed row vector.
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4 Information-theoretical limits

In the previous section it has been shown that quantizers attain exponential convergence (α = 1) with
rate β = 1/d on noiseless binary channels. In this section it will be shown that exponential convergence is
achievable on the BEC without feedback, at the cost of introducing non-trivial coding schemes (Ẽt, D̃t).

First, in Sect.4.1 we shall prove a simple upper bound on the achievable exponential convergence rate β.
Such a bound will show that, even with perfect feedback, no rates β larger than some β(ε, d) (see (13)) are
achievable in the estimation of a d-dimensional random vector through a BEC with erasure probability ε.
The quantity β(ε, d) will be shown to be strictly smaller than the normalized channel capacity.

Then, in Sect.4.2, it will be shown that exponential convergence rates β larger than or equal to some
quantity β(ε, d) (see (29)) are indeed achievable on the BEC without feedback. The proposed schemes, based
on random binary-linear convolutional codes, have computational complexity of the encoder quadratic in t,
and decoder complexity O(t3).4

The results presented in Sect.4.2 constitute a refinement for the BEC of those proved in [31] for general
memoryless discrete channels using non-linear convolutional codes. Indeed, the schemes proposed in [31]
yield exponential convergence with encoder and decoder complexity growing exponentially in t. Also, we
show that the use of binary-linear convolutional codes allows to achieve rates β larger than those achieved
by non-linear convolutional codes for a whole range of values of ε and d.

Remark 1. Notice that a computational complexity growing linearly in t poses in principle no limitation on
the reachable precision of x̂, since it is natural to assume that a computing unit can perform a number of
operations which grows linearly in time with a rate which depends on its computational power. If, on the
other hand, we have a computational complexity growing more than linearly in t, then the algorithm will
necessarily stop when the number of required operations will exceed the number of operations which the
computing unit is able to do. This fact poses a limit on the reachable precision on x̂.

4.1 A lower bound on the estimation error

From Sect.3 we know that it is not possible to obtain a convergence degree α greater than 1 and a convergence
rate β larger than 1/d. In this section we shall present a tighter upper bound on the convergence of ∆t on
the BEC with erasure probability ε.

Consider the general scheme (1). The error pattern associated to the output sequence (zt) ∈ ZN is the
sequence (ξt) ∈ {c, ?}N componentwise defined by ξt = c if zt ∈ {0, 1} and ξt = c if zt =?. Observe that
the error pattern (ξt)t∈N is a random variable independent from the random vector x, as well as from the
encoder E and the decoder D. This property will allow us to present for the BEC almost elementary proofs
of results holding true also for more general channels. In particular, for j ≤ t, let

λt
j :=

∑

j≤s≤t

1{ξs=c} (10)

be the random variable describing the number of non-erased outputs observed between time j and t. Clearly,

P(λt
j = l) =

(

t− j + 1

l

)

ǫt−l(1 − ǫ)l , l = 0, . . . , t− j + 1 . (11)

The simple observation above allows to prove the following result.

Theorem 2. Assume transmission over the BEC with erasure probability ε ∈ [0, 1]. Then, the estimation
error of any coding scheme as in (1) satisfies

∆t ≥ C 2−tβ(d,ε) , (12)

for all t ≥ 0, where

β(d, ε) := −1

2
log

(

ǫ+ (1 − ǫ)2−2/d
)

(13)

and C is a constant depending only on the probability density of the random vector x.

4Here and throughout the paper, for two sequences (at)t∈N and (bt)t∈N, both the notations at = O(bt) and bt = Θ(at) will
mean that at ≤ Kbt for some constant K, while at = o(bt) will mean that limt at/bt = 0.
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Proof Conditioned on the infinite error pattern (ξs)s∈N, the channel reduces to a deterministic map, so
that the composition of all the maps in (1) becomes a quantizer from X to itself with a range of cardinality

2λt
1 . From this fact and from Theorem 1, we can deduce that

E
[

||x− x̂t||2|λt
1 = l

]

≥ C22−2l/d .

It follows that
E

[

||x− x̂t||2
]

=
∑t

l=0 E
[

||x− x̂t||2|λt
1 = l

]

P(λt
1 = l)

≥ C2
∑t

l=0 2−2l/d
(

t
l

)

ǫt−l(1 − ǫ)l

= C2
(

ǫ+ (1 − ǫ)2−2/d
)t

(14)

From this inequality the thesis follows.

Remark 2. The Shannon capacity of the BEC (measured in bits per channel use) equals 1 − ε, which is the
average number of non-erased bits per channel use. It can be directly verified that5

β(d, ε) <
1

d
(1 − ε) , ∀ε ∈]0, 1[ . (15)

The inequality (15) shows that the estimation error of any coding scheme after t uses of a digital noisy
channel is exponentially larger than that of a quantizer whose image has cardinality t times the capacity
of the original channel. In other words, (15) shows that the Shannon capacity is not sufficient in order to
characterize the achievable exponential rates of the estimation error on a noisy channel. Indeed, a closer
look at (14) reveals that the second summation is asymptotically dominated by the term corresponding to
l = l∗t := ⌊t 1−ε

21/dε+1−ε
⌋, while the average number of unerased bits is given by E[λt

1] = (1 − ε)t. Hence, the

exponential rate is dominated by atypical channel realizations, namely by the events {λt
1 = l∗t } of probability

exponentially vanishing in t. In fact, using finer information-theoretic arguments, Theorem 2 can be extended
to general discrete memoryless channels, providing an upper bound β on the achievable error rate which can
be written as a function of the sphere-packing exponent of the channel [13, pag.158]. Such a bound turns
out to be strictly smaller than the Shannon capacity of the channel, whenever the sphere-packing exponent
is finite at rates below capacity. The insufficiency of channel capacity for control/estimation problems with
communication constraints and mean squared error distortion criteria6 has already been observed in [29]. On
the other hand, as we have seen in Sect.3, this is not the case for noiseless digital channels: in fact for such
channels the Shannon capacity has been proven to be a sufficient measure in more general control/estimation
problems [32].

It is not hard to see that (12) continues to hold true even if the encoder has access to noiseless (even
non-causal) output feedback.7 A fortiori, (12) holds in the case of partial or noisy feedback, which is the
typical situation occurring in the network scenarios outlined in Sect.1. In the case of perfect causal output
feedback, the bound (12) can be achieved using the coding scheme which repeats the transmission of the
most significant bit of the dyadic expansion until it is correctly received. However, if the feedback is noisy,
partial, or not available (as in the applications outlined in Sect.1), then the answer is not a priori clear.
In Sect.4.2 we shall present schemes achieving exponential error rates at the cost of higher computational
complexity, while in Sect.5.1 we shall propose some simple schemes which are not able to achieve exponential
error rates, but have a lower computational complexity.

4.2 A coding scheme with exponential error rates

We shall now propose an encoding/decoding scheme achieving exponential convergence rates over the BEC,
and requiring quadratic computational complexity at the encoder and cubic complexity at the decoder.
We shall use random coding arguments employing anytime linear codes over the binary field Z2. These

5See also Fig.1.
6Or any other finite moment of the estimation error.
7In fact, it is tempting to conjecture that a tighter bound could possibly be proven for the exponent in the absence of

feedback. It has been shown in [30] that the anytime reliability function of the BEC with feedback significantly exceeds the
one without feedback. However, the proof of the upper bound on the exponent without feedback in [30] strongly relies on the
causality of the coding scheme, an assumption which is not justified in our setting since the whole dyadic expansion of the
random vector is assumed to be available at the transmitter at the beginning of the communication process.
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arguments were first developed in the context of convolutional codes [36, 37, 12], and recently applied in
the framework of anytime reliability [29, 31]. For the reader’s convenience, and since those results have not
appeared anywhere else in this form, we shall present self-contained proofs. The coding strategy we shall
propose is very close in spirit to those in [29, Th.5.1] and [31, Th.5.1], the main difference being that we
use linear convolutional codes instead of general random convolutional codes. Our choice has the double
advantage of lowering the memory and complexity requirements for the encoder and the decoder (see Remark
4), and improving the achievable error rate for a significant range of values of ε (see Theorem 4 and Remark
3).

4.2.1 A random causal linear coding scheme

In this section we shall identify the binary set Y = {0, 1} with the binary field Z2 of the integers modulo 2.
Fix a rate 0 < R < 1 and any t let mt := ⌊Rt⌋. Consider a random, doubly infinite, binary matrix

φ ∈ Z
N×N

2 distributed as follows: φij = 0 for all j > Ri (namely for all j ≥ mi + 1), while {φij}1≤j≤Ri

is a family of mutually independent random with identical uniform distribution over Z2. As customary in
random coding arguments, we shall assume the random matrix φ to be independent from the source vector x
as well as from the channel, and known a priori both at the transmitting and receiving ends. Let us naturally
identify the random matrix φ with the corresponding random Z2-linear operator Ẽ : Z

N
2 → Z

N
2 . Consider the

truncated encoder
Ẽt : Z

mt
2 → Z

t
2 , Ẽt ((ws)

mt
s=1) := πt(φw) , (16)

where w ∈ Z
N
2 is such that πmtw = (ws)

mt
s=1. Observe that the definition (16) is consistent, since it is

independent on the choice of w. Now, let S : X → Z
N
2 be a dyadic quantizer defined as in (5), and define,

as usual, the encoding scheme E : X → Z
N
2 as the composition E = Ẽ ◦ S.

4.2.2 Maximum a posteriori decoding

Let ws, ys, zs, ŵs(t) be the sequences introduced in (9) and let ξs be the error pattern associated with zs as
defined in Sect.4.1. When an error pattern is fixed, the channel becomes a deterministic map. A maximum
a posteriori decoder D̃t for Ẽt is any map such that, for any fixed error pattern,

Channel
[

Ẽt((ŵs(t))
mt
s=1)

]

= (zs)
t
s=1 = Channel

[

Ẽt((ws)
mt
s=1)

]

. (17)

In other words, a maximum a posteriori decoder produces an estimate which is one of the possible encoder
inputs which are mapped by the encoder and the channel into (zs)

t
s=1. If we let (ŷs)

t
s=1 := Ẽt((ŵs(t))

mt
s=1),

then condition (18) is equivalent to impose that ŷs = ys for all s such that zs 6=?.
In order to express condition (17) more formally, we need to introduce for any fixed error pattern the set

Ξt := {s : 1 ≤ s ≤ t : zs 6=?} = {s : 1 ≤ s ≤ t : ξs 6=?} ,

which is the set of non-erased positions up to time t, and the canonical projection πΞt : Z
t
2 → Z

Ξt
2 . Condition

(17) is equivalent to the following

πΞt

[

ẼtD̃t((zs)
t
s=1)

]

= πΞt

[

(zs)
t
s=1

]

. (18)

Finally, the overall decoder is defined as the composition Dt := S−1
mt

◦ D̃t.

4.2.3 Performance analysis

Assume now that D̃t is a maximum a posteriori decoder as in Sect.4.2.2. Then, the decoded block (ŵs(t))
mt
s=1 =

D̃t((zs)
t
s=1) ∈ Z

mt
2 is uniquely defined, and correct, whenever the linear map πΞt Ẽt : Z

mt
2 → Z

Ξt
2 is injective.

However, our analysis requires more detailed information regarding the location of the uncorrectly decoded
information bits when injectivity is lost. To this end, let {δ1, δ2, . . . , δmt} be the canonical basis of Z

mt
2 , and,

for 0 ≤ j ≤ mt, consider the subspace8

Kj := span(δj+1, . . . , δmt) ⊆ Z
mt
2 .

8We shall use the standard convention span(∅) := {0}.
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Define the events
Aj := {ker(πΞt Ẽt) ⊆ Kj} , 0 ≤ j ≤ mt , (19)

Bj := Aj−1 \Aj , 1 ≤ j ≤ mt . (20)

Observe that Aj ⊆ Aj−1, and that A0 coincides with the whole sample space Ω. Hence, for every t ∈ N, the
sample space admits the partition

Ω =
⋃

1≤j≤mt

Bj

⋃

Amt . (21)

Notice now that, from (18) we can deduce that

πΞt Ẽt((ŵs(t))
mt
s=1) = πΞt Ẽt((ws)

mt
s=1)

and so (ws − ŵs(t))
mt
s=1 ∈ kerπΞt Ẽt. Therefore, if Aj holds true, then (ŵs(t))

j
s=1 = (ws)

j
s=1, i.e. the first j

bits of the quantization of x are correctly decoded. Hence, we immediately get from (6) that, if Aj holds
true, then

||x̂t − x||2 ≤ 4d2−2j/d , 0 ≤ j ≤ mt . (22)

The following result characterizes the average mean squared error of the random coding scheme (E ,D)
over the BEC. Here the average has to be considered with respect to the randomness of the vector x, the
channel, as well as the matrix φ. For ε ∈ [0, 1] and d ∈ N, define

β′(d, ε, R) := min{ 1
dR,

1
2 min

0≤η≤1
D(η||1 − ε) + ⌊η −R⌋+} , (23)

where D(x||y) := x log x
y + (1 − x) log 1−x

1−y denotes the binary Kullback-Leiber distance9 and where ⌊x⌋+ :=

max{0, x}.

Theorem 3. Assume transmission over the BEC. Then, for all 0 < R < 1, the average estimation error of
the above-described random coding scheme satisfies

E[||x̂t − x||2] ≤ Ct2−2tβ′(d,ε,R) (24)

for all t ∈ N. where C > 0 is a constant depending only on d, R and ǫ.

Proof Using (21) and (22), we obtain

E
[

||x̂t − x||2
]

=
mt
∑

j=1

E
[

||x̂t − x||2|Bj

]

P(Bj) + E
[

||x̂t − x||2|Amt

]

P(Amt)

≤
mt
∑

j=1

P(Bj)4d2
−2(j−1)/d + 4d2−2mt/d .

(25)

In order to estimate P(Bj), first we claim that the event Bj implies that the column πΞt Ẽtδj belongs to

the subspace πΞt ẼtKj, namely

Bj ⊆ {πΞt Ẽtδj ∈ πΞt ẼtKj}
Indeed, if πΞt Ẽtv = 0 for some v ∈ Z

mt
2 , then Aj−1 implies that vi = 0 for all i < j, while Aj

10 implies that
vj 6= 0.

Fix now an error pattern ξs and let λt
⌈j/R⌉ be defined in (10). Observe that Ẽtδj is a random variable

uniformly distributed over the subspace Hj := span(δ⌈j/R⌉, . . . , δt) ⊆ Z
t
2, and independent from the error

pattern. It follows that πΞt Ẽtδj takes any value in πΞtHj with probability 2−λt
⌈j/R⌉ . Since |πΞt ẼtKj| ≤

|Kj | = 2mt−j , we have that, for every k = 0, . . . , t− ⌈j/R⌉+ 1,

P(Bj |λt
⌈j/R⌉ = k) ≤ P(πΞt Ẽtδj ∈ πΞt ẼtKj |λt

⌈j/R⌉ = k) ≤ min{1, |Kj|2−k} = 2−⌊j+k−mt⌋+ .

9With the standard convention 0 log 0 = 0.
10For an event A, A denotes its complement.
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From (11) it follows that

P(Bj) =
t−⌈j/R⌉+1

∑

k=0

P (Bj |λt
⌈j/R⌉ = k)P(λt

⌈j/R⌉ = k)

≤
t−⌈j/R⌉+1

∑

k=0

2−⌊j+k−mt⌋+
(

t−⌈j/R⌉+1
k

)

εt−⌈j/R⌉+1−k(1 − ε)k

≤
t−⌈j/R⌉+1

∑

k=0

2−⌊j+k−mt⌋+2−(t−⌈j/R⌉+1)D( k
t−⌈j/R⌉+1

||1−ε)

≤ t2
−(t−j/R) min

0≤η≤1
D(η||1−ε)+⌊η−R⌋+}

(26)

where the second inequality follows from standard estimations of the binomial coefficient (see e.g. [8]).
Finally, (24) follows by substituting (26) into (25).

Standard probabilistic arguments allow to prove the following corollary of Theorem 3, characterizing the
exponential error rate of a typical realization of the random coding scheme (E ,D). Observe that the mean
square error of the coding scheme is given by

(

E
[

||x̂t − x||2|φ
])1/2

,

which is a function of φ, and hence it is itself a random variable.

Corollary 1. Assume transmission over the BEC with erasure probability ε. Then, for all 0 < R < 1,

lim inf
t

[

−1

t
log E[||x− x̂t||2|φ]

]

≥ 2β′(d, ε, R) , (27)

with probability one.

Proof Fix some η > 0 and consider the events

Aη,n :=
{

E[||x − x̂t||2|φ] ≥ 2−2t(β′(d,ε,R)−η)
}

for n ∈ N. By applying Markov’s inequality and Theorem 3, we get

P[Aη,n] ≤ 22t(β′(d,ε,R)−η)
E[||x − x̂t||2] ≤ K2−2tη ,

so that the series
∑

t∈N
P[Aη,n] is convergent and the Borel-Cantelli lemma implies that, with probability

one, Aη,t occurs only for finitely many values of t ∈ N. Therefore, with probability one,

lim inf
t

[

−1

t
log E[||x− x̂t||2|φ]

]

≥ 2(β′(d, ε, R) − η) ,

and (27) follows by the arbitrariness of η > 0.

It is possible to derive another lower bound on the typical-case exponential error rate achieved by the
random scheme (E ,D), which turns out to be tighter than that provided by Corollary 1 for certain values of
R and ε. For every 0 ≤ R ≤ 1 define11

γ(R) := min{x ∈ [0, 1] : H(x) ≥ 1 −R} ,

β′′(d, ε, R) := min

{

1

d
R,

1

2
min

γ(R)≤η≤1
{H(η) − 1 +R− η log ε}

}

.

The following result is proved in Appendix A.

Theorem 4. Assume transmission over the BEC with erasure probability ε. Then, for all 0 < R < 1,

lim inf
t

[

−1

t
log E[||x − x̂t||2|φ]

]

≥ 2β′′(d, ε, R) , (28)

with probability one.

11Throughout, for x ∈ [0, 1], we shall use the notation H(x) := −x log x − (1 − x) log(1 − x) for the binary entropy of x with
the standard convention 0 log 0 = 1.
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Figure 1: Upper and lower bounds to the achievable estimation error exponent achievable on the BEC for
d = 1.

It then follows from Corollary 1 and Theorem 4 that the exponent

β(d, ε) := max
0≤R≤1

max{β′(d, ε, R), β′′(d, ε, R)} , (29)

is achievable by random causal linear codes. In Fig.1 the upper and lower bounds to the error exponent, i.e.
β(d, ε) and β(d, ε), are plotted as functions of the erasure probability ε, in the case d = 1.

Remark 3. It is not difficult to see that

lim
ε↓0

max
0≤R≤1

{β′(d, ε, R)} =
1

d+ 2
, lim

ε↓0
max

0≤R≤1
{β′′(d, ε, R)} =

1

d
.

Hence, Theorem 4 becomes particularly relevant for small erasure probabilities, showing that the noiseless
error exponent 1/d (see Sect.3) is recovered in the limit of vanishing noise: this does not follow from the
average-code analysis of Theorem 2. Using arguments as in [37], Theorem 4 for random linear convolutional
codes can be extended to the class of discrete memoryless channels which are symmetric with respect to
the action of the additive group of some finite field, showing the achievability of the exponential error rate
min

{

1
dR,

1
2Ex(R)

}

, where Ex(R) is the expurgated exponent of the channel [13].

4.3 Computational complexity of the scheme

Observe that the number nt of binary operations required in order to compute the channel input yt =
Ẽt((ws)

mt
s=1), equals the number of non-zero entries of the t-th row of the infinite random matrix φ. By the

way φ has been defined, nt is a binomial random variable of parameters mt and 1/2. Hence, the number
of binary operations required by the encoder up to time t, χt :=

∑

s≤t ns, has binomial distribution of

parameters 1
2mt(mt +1) and 1/2. Therefore, the worst-case encoding complexity (worst case with respect to

the realization of φ) grows like 1
2R

2t2, while the strong law of large numbers implies that the typical encoder
complexity χt is such that χt/

1
4R

2t2 converges to 1 with probability one. Thus, the encoder complexity
(both worst-case and typical-case) is quadratic in t. Further, observe that the memory requirements of the
encoder are quadratic in t for it is necessary to store mtt binary values in order to memorize the finite
truncation Et of the encoder E .

In order to evaluate the decoder’s computational complexity, observe that D̃t is required to solve the
Z2-linear system

πΞt Ẽt((ws)
mt
s=1) = πΞt(zs)

t
s=1 . (30)
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at each time step t. This can be performed using Gaussian elimination techniques in order to reduce the
matrix πΞt Ẽt to a lower-diagonal form. Notice that a sequential implementation is possible, i.e. the part of
πΞt Ẽt which has been reduced in lower triangular form at time t does not require to be further processed in
future times s > t. Since Gaussian elimination techniques require O(t3) operations, we can conclude that
the decoder complexity is at most O(t3). On the other hand, it might be possible to find algorithms for
solving a linear system like (30) with number of operations o(t3): see [35, pagg.247-248] for the analogous
problem for linear systems over the reals. However, the system (30) cannot be solved using fewer operations
than those required to verify that a given string v ∈ Z

mt
2 is a solution. Using arguments similar to those

outlined above, it is possible to show that, with probability one, this requires Θ(t2) binary operations. In
summary, the complexity of maximum a posteriori decoding of linear convolutional codes on the BEC is at
most O(t3) and at least Θ(t2).

Remark 4. It is possible to extend Theorem 3 to arbitrary discrete memoryless channels, using a random
coset approach possibly followed by a quantization as in [13, pagg.206-209] showing that the error rate
β′(d, ε, R) := min

{

1
dR,

1
2Er(R)

}

is achievable, where Er(R) is the random coding exponent of the chan-
nel [13]. On arbitrary discrete memoryless channels, linear (or coset) convolutional codes maintain linear
encoding complexity, but their maximum a posteriori decoding is known to be an NP-hard problem [1].

The error rate β′(d, ε, R) := min
{

1
dR,

1
2Er(R)

}

can be shown to be achievable, on general discrete
memoryless channels, by using random non-linear convolutional codes as in [12, 29, 31]. However, observe
that non-linear convolutional codes require exponential memory for the encoder, while their maximum a
posteriori decoding is also an NP-hard problem. Moreover, at our knowledge, no result analogous to Theorem
4 is known to hold for non-linear random convolutional codes.

5 Low-complexity coding schemes

In this section, tradeoffs between computational complexity and performance of the coding schemes are
investigated. First, in Sect.5.1, a simple linear-time encodable/decodable scheme is analyzed, showing that
the estimation error converges to zero sub-exponentially fast with degree α = 1/2. Then, in Sect.5.2, lower
bounds on the estimation error are obtained: it is shown that encoding schemes with finite memory (finite-
state automata), have estimation error bounded away from zero, while finite-window linear-time encodable
encoders cannot achieve a convergence degree larger than 1/2. Finally, in Sect.5.3, Monte Carlo simulations
of finite-window coding schemes with iterative decoding are presented, showing that, while not improving
the convergence degree 1/2, they can provide better convergence rates.

5.1 A repetition coding scheme

We shall propose a simple repetition-coded scheme characterized by encoding and decoding complexity
growing linearly in t. It will be shown that the convergence degree achievable in this case is α = 1/2, with

convergence rate β =
√

1
d log ε−1.

Let St : [0, 1]d → {0, 1}t be the truncation of the dyadic quantizer S : [0, 1]d → {0, 1}N introduced in
Sect.3, and let S−1

t : {0, 1}t → [0, 1]d be one of its right inverses. If a coding scheme with E = S were simply
used, namely if we send through the channel the bits directly coming from the quantizer and decode the
erasures in an arbitrary way, then the estimation error ∆t would not converge to 0 as t→ ∞. Indeed, with
probability ǫ the first bit of S(x) would be lost with no possibility of recovering it. As we have already seen in
Sect.4, it is necessary to introduce redundancy in order to cope with channel erasures. The simplest way to
do that consists in using repetition schemes. Of course, since the different bits of the binary expansion S(x)
require different levels of protection, they need to be repeated with a frequency monotonically decreasing in
their significance.

Fix a positive real number q and the sequence of positive integers

τ0 = 0 , τk = ⌈q⌉ + ⌈2q⌉ + · · · + ⌈kq⌉ , ∀ k > 0 .

Consider the encoder Ẽ : {0, 1}N → {0, 1}N informally described by

Ẽ((ws)
∞
s=1) = (w1, w2, . . . , w⌈q⌉, w1, w2, . . . , w⌈2q⌉, w1, w2, . . . , w⌈3q⌉, . . . . . .) .
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More precisely, notice that, for any t ∈ N, there exist unique m ∈ N and j ∈ {1, 2, . . . , ⌈mq⌉} such that
t = τm−1 + j. Denote these numbers by m(t) and j(t). Then,

Ẽ((ws)s∈N) :=
(

wj(t)

)

t∈N
. (31)

Notice that this encoder fits in the scheme (9) by taking mt = ⌈qm(t)⌉. We construct the decoders D̃t :
{0, 1, ?}t → {0, 1}mt as follows. If (ŵj(t))

mt

j=1 = D̃t((zs)
t
s=1), then

ŵj(t) =

{

zs if ∃s ≤ t such that j(s) = j and zs 6= ?
? otherwise .

In the computation of x̂t the symbols ? can be transformed arbitrarily to 0 or to 1. Notice that this
decoding scheme has complexity growing linearly in t. Indeed, it admits the following natural recursive
implementation. Assume that (ŵj(t))

mt

j=1 has already be computed and that we receive zt+1. Then, we

compute (ŵj(t+ 1))
mt+1

j=1 as

ŵj(t+ 1) =

{

zt+1 if j = j(t+ 1) and zt+1 6=?
ŵj(t) otherwise .

(32)

Proposition 1. Consider the repetition coding scheme defined by (32) and (32) on the BEC with erasure

probability ε and assume that q > d log ǫ−1

2 . Then the mean squared error of satisfies

∆t ≤ C2− log ǫ−1
√

t
2q . (33)

where C > 0 is a constant depending only on q, ε and d.

Proof Let us fix some t ∈ N. Define υj := |{1 ≤ τ ≤ t | j(τ) = j}| , and observe that P(ŵj(t) 6= wj) = ǫυj .
Introduce the following event

Aj = {ŵ1(t) = w1, . . . , ŵj(t) = wj , ŵj+1(t) 6= wj+1} .

for j = 0, 1, . . . ,mt. Notice that these events are disjoint and P

(

⋃⌈qm⌉
j=0 Aj

)

= 1 . Moreover, observe that,

for all j = 0, 1, . . . , ⌈qm⌉,

P(At
j) =

j
∏

i=1

P(ŵi(t) = wj)P(ŵj+1(t) 6= wj+1) =

j
∏

i=1

(1 − ǫυ
t
i )ǫυ

t
j+1 ≤ ǫυ

t
j+1 . (34)

Notice that, under the constraints posed by the event At
j we have that the first j bits of S(x) and of

S(x̂t) coincide. Hence, by (6), we have that

E[||x− x̂t||2 | At
j ] ≤ 4d2−2j/d .

From this it follows that

∆2
t =

⌈qm⌉
∑

j=0

E
[

||x− x̂t||2 |Aj

]

P(Aj) ≤ 4d

⌈qm⌉
∑

j=0

2−2j/dǫυj+1 . (35)

We need now to estimate the value of υj . For simplicity we assume that t = τm. In this case we have that
υj = m+ 1 − min{h | ⌈qh⌉ ≥ j}. Observe now that, from the fact that for any positive real x we have that
j ≤ ⌈x⌉ if and only if j < x+ 1, we can argue that

min{h | ⌈qh⌉ ≥ j} = min{h | qh+ 1 > j} = min{h | h > (j − 1)/q} =
⌊

1
q (j − 1)

⌋

+ 1 .

This implies that, for j = 0, 1, . . . , ⌈qm⌉, we have that υj = m−
⌊

j−1
q

⌋

. Applying this argument to (35) and

considering that for j = ⌈qm⌉ + 1 we have that υj = 0, we obtain

∆2
t ≤ 4d





⌈qm⌉−1
∑

j=0

2−2j/dǫm−⌊j/q⌋ + 2−2⌈qm⌉/d



 ≤ 4d





⌈qm⌉−1
∑

j=0

2−2j/dǫm−j/q + 2−2qm/d
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Now we take any q > d log ǫ−1

2 . Then we have that ǫ−1/q2−2/d < 1 and so

∆2
t ≤ 4d

[

1

1 − ǫ−1/q2−2/d
+ 1

]

ǫm

Observe finally that

t = τm =

m
∑

j=1

⌈qj⌉ ≤
m

∑

j=1

(qj + 1) =
q

2
m2 +

q + 2

2
m

This implies that m ≥
√

2t
q − q+2

2q , so that the claim follows.

Notice that the constant C in the previous proposition tends to infinity as q tends d log ǫ−1

2 . Theorem 1
implies that repetition coding schemes allow to achieve

α = 1/2 , β =

√

log ǫ−1

d
.

In the next subsection we shall see that, using repetition encoding schemes as the one above such a perfor-
mance can not be beated.

5.2 Bounds on the performance of low-complexity coding schemes

We now consider a more general class of encoders encompassing the previous example. As our main result,
we shall show that, in any case, with such bounded complexity schemes, exponential decay of error can
never be achieved. We shall first consider finite-state automata encoders and then finite-window encoders.
As above we assume that S : [0, 1]d → {0, 1} is the dyadic quantizer introduced in Sect.3 and we consider
encoders Ẽ : {0, 1}N → {0, 1}N.

5.2.1 Finite-state automata encoders

Encoders which can be implemented as finite state automata yield very poor performance. In fact, the mean
square error ∆t in this case does not converge to 0 as t → +∞. Indeed, assume we are given a finite state
alphabet Z and two maps

ξ : Z × {0, 1} → Z , ρ : Z × {0, 1} → {0, 1}
Fix moreover an initial state z∗ ∈ Z. To the quadruple (Z, ξ, ρ, z∗) we can naturally associate an encoder Ẽ :
given (ws)

∞
s=1 ∈ {0, 1}N, then we can define (ys)

∞
s=1 = Ẽ((ws)

∞
s=1) recursively by

{

zt+1 = ξ(zt, wt) z0 = z∗

yt = ρ(zt, wt)

Notice that the state updating map ξ together with the initial condition z0 = z∗ yield a sequence of maps
ξ(t) : {0, 1}t → Z such that zt+1 = ξ(t)(w1, . . . wt). If we choose t = t0 in such a way that 2t0 > |Z|, the
map ξ(t0) is, for sure, not injective. Hence, there exist two different input truncated sequences (w′

1, . . . , w
′
t0)

and (w′′
1 , . . . , w

′′
t0) such that ξ(t0)(w′

1, . . . , w
′
t0) = ξ(t0)(w′′

1 , . . . , w
′′
t0). Consider the event A = {wk = w′

k, zk =
? for k = 1, . . . , t0}. Clearly, conditioned to A, the decoder, for any t ≥ t0, will decode incorrectly at least
one information bit in the first t0 position with positive probability independent from t. Hence,

∆2
t ≥ E

[

||x− x̂t||2 |A
]

P(A) ≥ 2−2t0/d
P(A) > 0 .

5.2.2 Finite-window encoders

Finite-window encoders are encoders of the form

Ẽ((ws)
mt
s=1)t = ft((ws)s∈Θt) (36)

where Θt ⊆ N has finite cardinality |Θt| = nt, and where ft : {0, 1}Θt → {0, 1}. With each finite-window
encoder it is possible to associate, for every j, t ∈ N, the quantity

ωj(t) :=

t
∑

s=1

1Θs(j)
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counting the number of channel inputs up to time t, which have been affected by wj . Notice that

χt :=
∑

j∈N

ωj(t) =
∑

s≤t

ns .

The quantity χt can be thought of as measuring the complexity of the encoder Ẽ . Indeed, if the maps ft are
Z2-linear, then χt coincides with the number of binary operations implemented by the encoder up to time t.

The following is our main result, relating the mean square error ∆t to the complexity parameter χt.

Theorem 5. For any transmission scheme for the BEC, with erasure probability ǫ, consisting of a finite
window encoder of the form (36) with complexity function χt, it holds

∆t ≥ C 2−
√

1
d χtlog ǫ−1

, (37)

where C > 0 is a constant depending only on d, the erasure probability ε and the density function f of the
random vector x.

Proof Assume that, at time t, all the ωj(t) channel inputs affected by the j-th bit wj have been erased.
Then, there is clearly no way for the decoder to reliably recover wj from the channel output. This gives the
following lower bound to the squared estimation error, independent of the way the decoders are chosen

∆2
t ≥ C1 sup

j∈N

{

2−2j/d εωj(t)
}

,

for some constant C1 > 0 only depending on d and f . It will be convenient to consider the looser bounds

∆2
t ≥ C1 sup

1≤j≤s

{

2−2jεωj(t)
}

≥ C1ψs(ω1(t), . . . , ωs(t)) , ∀ s ∈ N ,

where ψs : (R+)s → R is defined as follows

ψs(ω1, . . . , ωs) :=
1

s

s
∑

j=1

2−2j/d εωj .

Hence, for every possible s,
∆2

t ≥ C1 inf
ω∈Ms

ψs(ω1, . . . , ωs) (38)

where Ms :=
{

ω1, . . . , ωs ∈ (R+)s | ∑

j ωj = χt

}

. Since the function ψs is strictly convex, it admits a

unique minimum on the convex compact set Ms. Using Lagrange multipliers we can characterize the unique
stationary point of ψs(ω1, . . . , ωs) on the hyperplane Ms

ω∗
j = ς − ρj , ∀j ≤ s ,

where ρ := ln 4
d ln ε−1 = 2

d log ǫ−1 > 0, and ς = χt

s + ρ s+1
2 . We have that ω∗ ∈Ms if and only if ω∗

s ≥ 0 which is
equivalent to

s ≤ 1

2

(

1 +

√

1 +
8χt

ρ

)

.

A possible choice is provided by s∗ =
⌊

√

2χt/ρ
⌋

. We thus obtain

∆2
t ≥ C1 inf

ω∈Ms∗

ψs∗(ω1, . . . , ωs) = ψs∗(ω∗
1 , . . . , ω

∗
s) = C1e

−ς ln ǫ−1

. (39)

We can estimate ζ∗ as follows

ς∗ = χt
—

q

2χt
ρ

� + ρ

—

q

2χt
ρ

�

+1

2 ≤ χt
q

2χt
ρ −1

+ ρ
2

(√

2χt

ρ + 1
)

=
√
ρ 2χt−ρ/2√

2χt−
√

ρ
≤ ρ

(√

2χt

ρ + 2
√

2−1
2
√

2−2

)

,

the last equality following from the assumption χt ≥ ρ. Inserting this last estimation inside (39), the claim
follows.
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Remark 5. In the case of the repetition encoders treated in Sect.5.1, we have that χt = t. If we compare
(37) with (33), considering the fact that ς can be picked arbitrarily close to 0, we have thus established that
among the repetition schemes (χt = t), the example treated in Sect.5.1 is optimal from the point of view of
the asymptotic performance.

Remark 6. The bound (37) implies that, for the estimation error ∆t to decrease to zero exponentially fast in
t, then χt needs to grow quadratically in t. Hence, in order to obtain exponential convergence of the error,
it is necessary that 1

tχt, i.e. the average number of bits of the dyadic expansion S(x) the channel inputs
depend on, grows linearly in t. Indeed, observe that the random linear codes proposed in Sect.4.2 have
exactly this property. However, observe that this does not imply that linear-time encodable schemes cannot
attain exponential error decays in any case, for this might be achieved, for instance, by encoders obtained
as concatenation of finite-window with finite-state automata schemes.

5.3 Simulation results for finite-window coding schemes

We shall now present Monte Carlo simulation results for some finite-window Z2-linear coding schemes with
low-complexity iterative decoding. These schemes are based on ideas similar to those of digital fountain
codes (see [18][21, Ch.50]). The latter are widely used in many applications, such as data storage, or reliable
transmission on broadcast channels with erasures. The main additional challenge posed by our application
consists in providing unequal error protection to the source bits.

We propose the following random construction for finite-window encoders fitting in the framework of
Sect.5.2.2. As usual, assume that we have a dyadic quantizer S which maps the vector x into an infinite
string of bits (ws)

∞
s=1. We imagine that at each time t the encoder produces a bit yt which is the (modulo-2)

sum of a random number of randomly chosen ws, namely

yt =
∑

s∈Θt

ws .

where Θt is a random subset of N. We assume that the cardinality of Θt is bounded, namely |Θt| ≤ nmax.
More precisely, fix nmax ∈ N, and a probability distribution µ( · ) on {1, . . . , nmax}. Randomly generate

a sequence (nt)t∈N of independent random variables distributed accordingly to µ( · ). Let (νt( · ))t∈N be a
sequence of probability distributions over N, with νt( · ) possibly depending on (ns)s≤t. Then, for all t ≥ 1,
we let

Θt := {θ1,t, θ2,t, . . . , θnt,t}
where θi,t are independent random variables unformly distributed according to νt( · ). Notice that in this
way we have that |Θt| ≤ nt ≤ nmax and so the encoder complexity is linear in t.

For the decoding, a sequential implementation of the peeling algorithm is used, this being the standard
decoding technique for digital fountain codes [18][21, Ch.50]. Such an algorithm works on an iteratively
updated infinite hypergraph12 Gt = (Vt,Ht) as explained below. At t = 0, G0 is initialized with vertex
set V0 = N and empty hyperedge set H0 = ∅. The estimates (ŵs(0))s∈N

of the dyadic expansion S(x)
are in turn initialized arbitrarily in {0, 1}N. At each time t ≥ 1, first update Vt = Vt−1, Ht = Ht−1, and
ŵs(t) = ŵs(t+ 1) for all s ∈ N. Then:

• if zt =?, then quit; if zt 6=?, update Ht = Ht ∪ {Bt}, where Bt := Θt ∩ Vt;

• if |Bt| > 1, then quit; otherwise if Bt = {v} for some v ∈ Vt, set ŵv(t) = zt+
∑

j∈Θt\{v} ŵj(t), eliminate
v from Vt as well as from all the hyperedges h ∈ Ht containing it;

• if |h| 6= 1 for all h ∈ Ht, quit; otherwise, if there is some h = {v} ∈ Ht, repeat the previous step.

The above-described algorithm requires an order of χt =
∑

s≤t ns operations up to time t, hence it has linear
complexity in t. It is suboptimal with respect to the maximum a posteriori decoding analyzed in Sect.4.2,
as it may fail to correctly estimate the first j bits of the dyadic expansion S(x) even when that would be
possible using the maximum a posteriori decoder introduced in Sect.4.2.2.

12The term hypergraph [3, pag.7] refers to a pair (V ,H), where V is a discrete set and H is a subset of P(V), the power set
of V .
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Figure 2: Monte Carlo simulations of finite-window coding schemes on the BEC, with erasure probability
ε = 0.5. The performance of three coding schemes are compared: these schemes were randomly generated
accordingly to (40) and (41) with nmax = 1, 2, 4 respectively. In (a) the mean squared error ∆t is plotted as
a function of the time t in log-linear scale. In (b) − 1√

t
log ∆t is plotted as a function of t, together with the

corresponding upper bounds
√

χt log ε−1 provided by Theorem 5. The number of samples used is 200000.

In Fig.2 we report Monte Carlo simulations of three finite-windows encoding schemes, with nmax = 1, 2, 4
respectively. The degree distribution µ( · ) was chosen to be the truncated solyton one [21, pag.592]

µ(1) :=
1

nmax
, µ(n) :=

1

n(n− 1)
∀ 2 ≤ n ≤ nmax . (40)

The distributions νt have been selected as follows. We let

ρ =
2

d log ε−1
, st := ⌊

√

2χtρ−1⌋ , ςt =
χt

st
+ ρ

st + 1

2
,

where χt =
∑

s≤t ns. Then we have chosen

νt(j) :=

{

η(ςt − ρj) if j ≤ st

0 if j > st ,
(41)

Such a choice was suggested by the optimization problem in the right-hand side of (38).
It is clear from Fig.2(a) that the three schemes have subexponential error decay and that increasing the

degree allows to obtain better convergence rates. Fig.2(b) shows that the convergence degree is α = 1/2, as
expected from the theory, while it is possible to recognize the different values of β of the three schemes, in
the asymptotic limit of − 1√

t
log ∆t.

It should be underlined as the choices of the distributions µ and νt were not optimized, but rather
suggested by the literature on digital fountain codes and by Theorem 5, respectively. A theoretical analysis
of the behavior of finite-window schemes, hopefully providing hints on the design of µ and νt, is left as a
topic for future research.

6 Conclusions

The problem of anytime reliable transmission of a real-valued random vector through a digital noisy channel
has been addressed. Upper and lower bounds on the highest exponential rate achievable for the mean squared
error have been obtained assuming transmission over the BEC. Moreover, a lower bound on the performance
achievable by low-complexity coding schemes have been derived. This bound shows that if we want that
the mean squared error decreases exponentially fast in the number of channel uses, than we need to adopt
an encoder in which the channel input depends on a number of bits of the vector expansion which grows
linearly. Finally, simulation results for linear-complexity coding/decoding schemes have been proposed.
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Many of the questions raised in this paper have been left open. Among them, a particularly relevant issue
is the analysis and design of linear-complexity coding schemes achieving exponential error rates. Another
problem consists in tightening the upper bound on the achievable error exponent proved in Theorem 2,
by better exploiting the absence of feedback. Current work includes extension of the theory to distributed
estimation/computation problems over networks of agents communicating through noisy digital channels.

A Proof of Theorem 4

We shall now prove Theorem 4 by means of so-called code-expurgation arguments. The Hamming weight
of a binary string y ∈ Z

t
2 will be denoted by wH(y) := |{1 ≤ j ≤ t : yj = 1}|. For t ∈ N, 0 ≤ j ≤ mt, and

h ≥ 0, let us consider the number of binary strings y whose first non-zero bit is the (j + 1)-th and such that
Ẽty has weight h. Since φ is random, the aforementioned is a random variable, which will be denoted by

Υt
j(h) :=

∣

∣

∣

{

y ∈ Kj \Kj+1 : wH(Ẽty) = h
}∣

∣

∣
, h ≥ 0 ,

where we recall that Kj := span(δj+1, . . . , δmt) ≤ Z
mt
2 .

Observe that the causality of φ implies that, if y ∈ Kj, then Ẽty belongs to Lj := span (δs| ⌈(j + 1)/R⌉ ≤ s ≤ t) ≤
Z

t
2. Further, since φδj+1 is uniformly distributed over Lj , and since the columns of φ are independent, we

have that, if y ∈ Kj \Kj+1, then Ẽty is a random variable uniformly distributed over Lj . It follows that

E[Υt
j(h)] =

∑

y∈Kj\Kj+1

P(wH(Ẽty) = h)

= |Kj \Kj+1|
(

lj
h

)

|Lj |−1

≤ 2lj(H(η)−1+R) ,

where lj := (t− ⌈(j + 1)/R⌉+ 1) and η := h/l.
For every λ, ϕ > 0, by using the union bound and Markov’s inequality, we can estimate the probability

of the event

Ft :=

(1−λ)Rt
⋃

j=1

ljγ(R+ϕ)
⋃

h=0

{Υt
j(h) ≥ 1}

as follows:
P (Ft) ≤

∑

j,h

E[Υt
j(h)] ≤ t22−tλϕ .

Then, the series
∑

n∈N
P(Fn) is convergent, and the Borel-Cantelli lemma implies that, with probability one,

Fn occurs finitely many times, i.e. there exists t0 ∈ N such that

Υt
j(h) = 0 , ∀h < ljγ(R+ ϕ) .

for all t ≥ t0 and 1 ≤ j ≤ (1 − λ)Rt. An analogous argument shows that with probability one

Υt
j(h) ≤ 2lj(H(η)−1+R+ϕ)) , ∀ ljγ(R+ ϕ) ≤ h ≤ lj ,

for sufficiently large t.
We are now ready to prove Theorem 4. For this, fix λ, ϕ ∈ (0, 1), and consider the event Ht :=

⋃⌊(1−λ)Rt⌋
j=1 Gj

t , where

Gj
t :=

ljγ(R+ϕ)
⋃

h=0

{

Υt
j(h) ≥ 1

}

lj
⋃

h=ljγ(R+ϕ)

{

Υt
j(h) ≤ 2(t−⌈j/R⌉)(H(η)−1+R+η))

}

.

Then, for j = 1, . . . , ⌊(1 − λ)Rt⌋, the union bound for the event Bj defined in (20) yields the estimation

P(Bj |Ht) ≤
lj

∑

h=0

εh
E

[

Υt
j(h)|Ht

]

≤
lj

∑

h=ljγ(R+ϕ)

εh2lj(H(η)−1+R+η)) .
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Hence, (21) and (22) imply that

E[||x− x̂t||2|Ht] =
⌊(1−λ)Rt⌋

∑

j=1

E[||x − x̂t||2|Ht ∩Bj ]P(Bj |Ht) + E[||x− x̂t||21A⌊R(1−λ)t⌋
|Ht)

≤
⌊(1−λ)Rt⌋

∑

j=1

16d2−2j/d
lj
∑

h=ljγ(R+ϕ)

εh2lj(H(η)−1+R+ϕ)) + 16d2−2⌊(1−λ)Rt⌋/d

≤ K ′t22−t(2β′′(d,ε,R)−ϕ) +K ′′t2−2(1−λ)Rt ,

for some constants K ′,K ′′ > 0. Since, with probability one, there exists t0 ∈ N such that Ht occurs for all
t ≥ t0, for all such t we have

E[||x− x̂t||2|φ] ≤ K ′t22−t(2β′′(d,ε,R)−ϕ) +K ′′t2−2(1−λ)Rt/d .

It follows that

lim inf
t

−1

t
log E[||x− x̂t||2|φ] ≥ min

{

2β′′(d, ε, R) − ϕ, 2
d (1 − λ)R

}

with probability one, and the claim of Theorem 4 follows from the arbitrariness of ϕ, λ > 0.
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