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The Performance of Serial Turbo Codes
Does Not Concentrate

Federica Garin, Giacomo Como, and Fabio Fagnani

Abstract—Minimum distances and maximum likelihood error
probabilities of serial turbo codes with uniform interleaver are an-
alyzed. It is shown that, for a fraction of interleavers approaching
one as the block-length grows large, the minimum distance of se-
rial turbo codes grows as a positive power of their block-length,
while their error probability decreases exponentially fast in some
positive power of their block-length, on sufficiently good memory-
less channels. Such a typical code behavior contrasts the perfor-
mance of the average serial turbo code, whose error probability is
dominated by an asymptotically negligible fraction of poorly per-
forming interleavers, and decays only as a negative power of the
block-length. The analysis proposed in this paper relies on precise
bounds of the minimum distance of the typical serial turbo code,
whose scaling law is shown to depend both on the free distance
of its outer constituent encoder, which determines the exponent of
its sub-linear growth in the block-length, and on the effective free
distance of its inner constituent encoder. The latter is defined as
the smallest weight of codewords obtained when the input word of
the inner encoder has weight two, and appears as a linear scaling
factor for the minimum distance of the typical serial turbo code.
Hence, despite the lack of concentration of the maximum likeli-
hood error probability around its expected value, the main de-
sign parameters suggested by the average-code analysis turn out to
characterize also the performance of the typical serial turbo code.
By showing for the first time that the typical serial turbo code’s
minimum distance scales linearly in the effective free distance of
the inner constituent encoder, the presented results generalize, and
improve upon, the probabilistic bounds of Kahale and Urbanke,
as well as the deterministic upper bound of Bazzi, Mahdian, and
Spielman, where only the dependence on the outer encoder’s free
distance was proved.

Index Terms—Error probability, minimum distance, serially
concatenated codes, turbo codes, typical code analysis.

I. INTRODUCTION

S ERIALLY concatenated convolutional codes with random
interleaver, briefly serial turbo codes, were introduced in

[5], together with an analytical explanation of the simulation re-
sults. The authors based their analysis on the so-called uniform
interleaver, a conceptual tool first introduced in [6] in order to
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explain the performance of Berrou et al.’s parallel turbo codes
[8]. In a nutshell, the idea consists in fixing the outer and the
inner constituent encoders, and in studying the maximum like-
lihood (ML) error probability averaged over all possible inter-
leavers. The main result in [5] is an upper bound to the average
error probability which decays to zero as a negative power of
the interleaver length. The exponent of such power law decay,
usually referred to as the interleaver gain, was shown to depend
only on the free distance of the outer encoder, which turns out to
be the main design parameter of serial turbo codes. The effect
of the inner constituent encoder was analyzed by considering
the limit performance in the high signal-to-noise ratio (SNR)
regime. The fundamental design parameter characterizing the
performance in this regime is the effective free distance of the
inner encoder, defined as the smallest weight of codewords ob-
tained when the input word of the inner encoder has weight two.
These ideas have been rigorously formalized first in [24] and
then, in a more general setting, in [22], where also a lower bound
is proved differing from the upper bound only by a multiplica-
tive constant, thus showing that the bound is tight for the average
serial turbo code.

In fact, the average code analysis has been the main tool used
in the literature to study the performance of turbo and turbo-like
codes in the ‘waterfall’ SNR region, see, e.g., [14], [10], [34],
[1], [27], [23] for a (nonexhaustive) list of examples of papers
on the average error probability of serial turbo-like ensembles,
including recent work. The effectiveness of the design based on
the average performance might lead one to believe that there
is a concentration phenomenon, i.e., almost all codes perform
closely to the average one. In this paper, we shall prove that this
is not the case, as the typical serial turbo code performs much
better than the average one. Nevertheless, as explained in the
sequel, the typical serial turbo code analysis shows the relevance
of the same design parameters highlighted by the average code
analysis, namely, the free distance of the outer encoder and the
effective free distance of the inner encoder.

A notable exception to the aforementioned literature based on
the average turbo code analysis is provided by the early manu-
script [26], whose focus is on the probability distribution of the
minimum distance of parallel and serial turbo code ensembles,
rather than on the ML error probability of the average turbo
code. A related line of research has focused on deterministic
bounds on the minimum distance, initiated by Breiling [9] for
parallel turbo codes, and developed in the serial case in [4] and
[32]. A side research effort has also concerned algorithms for
numerical computation of minimum distance, see in particular
[20].

It is shown in [26] that, with high probability, the minimum
distance of serial turbo codes grows like , where is

0018-9448/$31.00 © 2012 IEEE



GARIN et al.: THE PERFORMANCE OF SERIAL TURBO CODES 2571

the block-length, and is the free distance of the outer con-
stituent encoder, and the scaling is up to some unspecified con-
stants which depend both on the inner and on the outer en-
coders, but not on the block-length. This result implies that, for
almost all choices of the interleaver, serial turbo codes have ML
error probability decreasing to zero exponentially in a positive
power of the block-length, thus showing that, due to the pres-
ence of an asymptotically vanishing fraction of bad codes, the
average-code analysis provides too conservative a prediction of
the behavior of the typical serial turbo code.

In fact, analogous phenomena have long been known to occur
for other code ensembles, and this has motivated a considerable
research effort in the analysis of the distance spectra of such
ensembles. Early results for random and linear code ensembles
at low rates, as well as low-density parity-check (LDPC) code
ensembles appear already in Gallager’s thesis [19, Ch. 3], while
more recent rigorous results are reported, e.g., in [3] and [28, Ch.
6] for binary random and linear code ensembles, [29] and [28,
Ch. 11] for binary LDPC code ensembles, [7], [12], and [13]
for code ensembles over groups for nonbinary input channels.
For a related stream of literature based on the application of
nonrigorous but powerful techniques of statistical physics to the
analysis of LDPC codes, see, e.g., [30], [18], [31], [35], and [28,
Ch. 21]. It is worth mentioning that, in contrast to the ML error
probability, other parameters of these code ensembles, such as
the weight-enumerating coefficients, may concentrate in some
cases, see, e.g., [3] for random and linear code ensembles and
[33] for regular LDPC code ensembles.

However, despite the lack of concentration of the serial turbo
code ensemble’s performance, the results in [26] show that the
scaling law of the typical serial turbo code’s minimum distance
is characterized by the outer encoder’s free distance, , which
is the same main design parameter suggested by the average
code analysis [5], [24], [22]. On the other hand, no design pa-
rameter of the inner encoder emerges from the analysis proposed
by [26], [4].

The main contribution of the present paper consists in
showing that the scaling law of the performance of the typical
serial turbo code does depend also on the inner constituent
encoder’s effective free distance, to be denoted by . We shall
prove (see Theorem 1) that, with high probability, the minimum
distance of serial turbo codes scales like

up to some constants which depend on the outer encoder only.
This result generalizes and improves upon the aforementioned
probabilistic bounds of [26, Th. 2]. We shall also prove (see The-
orem 2) a deterministic upper bound on the minimum distance
of serial turbo codes, which shows an analogous dependence
on the inner and outer encoder’s parameters. This result gener-
alizes and improves upon some of the bounds of [4], with the
main improvement consisting in highlighting the dependence
of the bound on the inner encoder’s parameters. Also, it im-
proves asymptotically on the best known deterministic bound
for minimum distance of serial turbo codes, presented in [32].
Finally, by means of code-expurgation techniques, these results

will allow us to show (see Theorem 3) that the ML error proba-
bility of the typical turbo code decreases exponentially fast in a
positive power of the block-length.

The analysis performed in this paper involves, on the one
hand, precise bounds on the cumulative distribution function
(CDF) of the serial turbo code’s minimum distance, whose
proofs heavily rely on the combinatorial ideas developed in
[26]. On the other hand, our proof of the deterministic upper
bound makes use of some of the techniques devised in [4].
For all the probabilistic bounds, we shall present completely
self-contained proofs. Our choice is in the interest of readability,
both since the manuscript [26] has not been published yet, and
because our results do not follow from the statements in [26]
but rather involve some suitable modification of the arguments
therein. Moreover, we shall consider a family of constituent
encoders which is more general than the one defined in [26],
where only systematic recursive convolutional encoders of rate

were used.
The remainder of the paper is organized as follows. In

Section II we introduce in a formal way the serially concate-
nated codes. Section III gathers some fundamental bounds on
the weight-enumerating coefficients of convolutional codes
which will be used throughout the paper. Section IV contains all
the main results on minimum distances of serial codes. Finally,
in Section V we prove our main results on the typical behavior
of minimum distance and ML error probability and a number
of related results. The most technical proofs are deferred to
Appendix I, while Appendix II contains some extensions.

Before proceeding, we establish the following notational
convention, to be used throughout the paper. When dealing
with quantities depending on many parameters, such as

, we shall implicitly assume that all the param-
eters are depending on , but we shall avoid cumbersome
notation . Hence, a statement such as ‘as grows
large, if and , then ’
means that if , satisfy and
vanishes, as grows large, then converges
to 0. When we say ‘ is constant’ we mean it does not de-
pend on . We shall also write to mean

.

II. PROBLEM SETTING

In this section we establish some notation on convolutional
encoders, and introduce the serial turbo code ensemble. Since
we do not want to put a priori limitations on the rate of
constituent encoders and/or their structure (e.g., systematic
encoders), we shall consider below general convolutional
encoders.

A. Convolutional Encoders

In this section, we recall a few definitions and properties
of convolutional encoders that are essential for this paper. We
refer the reader to [16] and [25] for classical results on con-
volutional encoders, and to [17], [15], [22] for more details
on those properties which are useful in the study of turbo-like
concatenations.
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Fig. 1. Section of the trellis associated to a convolutional encoder. At time � � �, the state is ���� � . Then, in response to an input ���� � , an output
���� � ����� ������ � is produced, and the state is updated as ��� � �� � ����� ������ � .

Denote by the set of nonnegative integers, and consider a
map

i.e., maps an input word which is an infinite sequence of vec-
tors1 having bits each into an output word which is an infinite
sequence of vectors having bits each. We say that the map is
a convolutional encoder if it admits a linear finite state-space re-
alization. This means that the relationship between the input and
the output words (codewords) can be described by a linear dy-
namical system with finite memory. More precisely, there exist
a state space and matrices , , , of suitable
dimensions and with binary entries, such that if and
only if there exists a (unique) state sequence such
that and, for all

(1)

We shall say that is the state sequence associated with .
The state realization is usually pictorially represented as a

labeled graph, called trellis. To construct the trellis, for each
, draw points, corresponding to elements of the state

space ; then draw an edge from state at time to state at
time , with input label and output label if
and only if and (see Fig. 1).

The minimal realization (i.e., the one having the smallest )
of a given convolutional code is unique (up to a change of basis
for the state space), and has the observability and controllability
properties which are essential for defining the terminated en-
coders (see below) and for proving Lemma 1. In this paper we
shall always assume that we are using a minimal realization, in
a fixed choice of coordinates for the state space, and we shall
refer to it as the trellis of the encoder.

A convolutional encoder is said to be recursive if, for every
input word with Hamming weight2 , the cor-
responding codeword has infinite Hamming weight. The
encoder is said to be noncatastrophic if every codeword

1Throughout this paper, vectors are column vectors.
2Throughout this paper, Hamming weight is to be intended bit-wise, i.e., the

number of ones in the word, and not the number of nonzero vectors.

having finite Hamming weight comes from an input word
which also has finite Hamming weight. The free distance and
the effective free distance of are defined, respectively, as

(2)

(3)

Given , we define the support3 of as
The block-termination of a convo-

lutional encoder after trellis steps is defined as follows.
Fix , consider an input word with for all

, and let be the associated state sequence. Notice that
the state sequence and the output word may not
be supported in the same interval. Indeed, it can happen that

and . However, thanks to the controllability
of the minimal realization (see, e.g., [36] or [17]) there exists an
integer (called constraint length and not depending
on the particular nor on ), and an input word coinciding
with on and supported inside such
that the associated state sequence has and thus
also the corresponding output word is supported in

. Moreover, the pole placement theorem (see, e.g., [36]) en-
sures that it is always possible to choose the terminating inputs

to be a linear state-feedback, i.e., to
have the form for all ,
for a suitable which depends only on the encoder ,
not on nor on . In this paper, we shall assume that, given a
convolutional encoder , a matrix has been chosen allowing
one to construct the terminating inputs. Then, the block termi-
nation of after trellis steps is defined as the map

which associates to an input word

the output word

3Notice that the size of the support is the number of nonzero vectors in the
sequence �. Hence, � ��		���� � 
 ���when 	 � �, while the equality need
not hold true in general for 	 
 �.
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Fig. 2. A serially concatenated encoding scheme.

TABLE I
THE RELEVANT PARAMETERS OF THE CONSTITUENT

ENCODERS OF THE SERIAL SCHEME IN FIG. 2

such that

where is the aforementioned terminating
input obtained as a linear state-feedback. Such a choice of the
terminating input immediately implies that is a -linear
block encoder.

B. Serially Concatenated Convolutional Encoders With
Random Interleaver

We start from two convolutional encoders

Let and be their corresponding constraint lengths and let
be a positive integer such that divides . Let

be such that

and let

Consider the block terminations of and after and
trellis steps, respectively

Finally let be a permutation of length and denote by
the same symbol the corresponding linear
isomorphism. The serially concatenated encoder considered in
this paper is the composition

depicted in Fig. 2. We shall refer to as the outer encoder, to
as the inner encoder, and to as the interleaver. Table I

summarizes the parameters of and that will be used along
this paper.

Throughout this paper we shall make the following assump-
tions on the constituent encoders.

Assumption 1: The outer encoder
is noncatastrophic, and its free distance is even and satisfies

.

Assumption 2: The inner encoder is
noncatastrophic and recursive, has scalar input (i.e., ) and
is proper rational [i.e., the matrix of its minimal state space
representation (1) is invertible].

Among such assumptions, the ones which are truly needed
in order to obtain the claimed asymptotic behavior of minimum
distance and error probability are the following: noncatas-
trophicity of both encoders, and recursiveness of .
The other assumptions have been introduced for simplicity:
they allow one to avoid cumbersome notation and definitions,
to have simpler proofs, and to easily underline the role of
(the effective free distance) as the main design parameter for
the inner encoder. In Appendix II we shall briefly comment
on which results can be obtained in the most general case,
with a particular focus on the case of odd , while we refer
the interested reader to the first author’s Ph.D. thesis [21] for
further detail.

In the rest of this paper, we shall investigate the performance
of the above-described serially concatenated coding schemes,
assuming that the interleaver is a random element uniformly
distributed on the group of permutations of symbols. This
is the classical “uniform interleaver” ensemble of [6] and [5].
Since the interleaver is random, the minimum distance

is a random variable itself. Similarly, assuming transmission
over a binary-input output-symmetric memoryless channel with
ML decoding, the word error probability of the serial turbo code
is a random variable, to be denoted by

While the focus of most of the literature (see, e.g.,[5] and [22])
has been on the error probability of the average serial turbo code,

, in this paper we shall be concerned with the min-
imum distance and error probability of the typical serial turbo
code, namely with the high-probability behavior of and the
distribution of , as goes to infinity.

III. WEIGHT-ENUMERATING COEFFICIENTS

OF THE CONSTITUENT ENCODERS

This section deals with the input-output weight-enumerating
coefficients of the constituent encoders. We define the error
events and the weight-enumerating coefficients, we recall some
properties of convolutional encoders related with the weight of
codewords, and we state the bounds on the weight-enumerating
coefficients of outer and inner encoder, which will be used in
the following sections. The proofs of such bounds, many of
which rely on variations of the arguments developed in [26],
are deferred to Appendix I-A.

Consider a convolutional encoder .
We say that an input word is an error event if there
exist such that has support and
such that the corresponding state sequence has support equal
to the discrete interval . Notice that this
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Fig. 3. An error event with active window �� � � �.

implies that and that the corresponding codeword
has support . The length of the

error event is defined as and the discrete interval
is called the active window. See Fig. 3 for a pictorial

representation.
Every finitely supported input sequence such that has

also finite support, can be obtained as the summation of a finite
number of error events with non overlapping active windows.
The following useful result was proved in [15, Lemma 20].

Lemma 1: Given a noncatastrophic convolutional encoder,
there exists a constant such that any of its error events with
output Hamming weight has length not greater than .

Let be the constraint length of and consider the block
termination of length , . An error event
for is any input word such that

is an error event for (where is the usual linear terminating
extension of ). Such an error event is said to be regular if its
active window lies inside (the termination
is 0). Otherwise, the error event is called terminating. It is clear
that any input word for can be written as the sum of a finite
number of regular error events plus, possibly, a terminating one,
all having disjoint active windows.

Consider and to
be the outer and inner encoder of the turbo encoder described in
the previous section (notice that we are considering ). We
shall denote by and the constants defined in Lemma 1 for

and , respectively.
For the outer encoder, we define the weight-enumerating

coefficient to be the number of input words of whose
corresponding codewords have weight . For it, we need only
the following simple upper bound, which holds true for all
noncatastrophic terminated convolutional encoders, and is
mainly a restatement of [26, Lemma 3]. Its proof is provided in
Appendix I-A1.

Lemma 2: If is noncatastrophic, then the following in-
equalities hold true.

(a) If , then

(b) If denotes the number of different error events for
starting at and producing output weight , then

As for the inner encoder, we shall need a weight-enumer-
ating coefficient which considers both input and output weight.
Define to be the number of input words of with
input weight and output weight not greater than . Another
weight-enumerating coefficient which will play a key role is

, defined as the number of input words of with input
weight and output weight not greater than , consisting of ex-
actly regular error events.

Because of the assumption of recursiveness, the inner en-
coder’s output has infinite Hamming weight whenever the
input word has weight 1. In contrast, it is well known that
there exists an input word of Hamming weight 2 which pro-
duces a codeword with finite weight (see, e.g., [22, Prop. 3.6]
for a proof). Having assumed that has scalar input ( ),
the codewords corresponding to weight-2 input words have the
following useful property. Let be the smallest possible rel-
ative distance between the positions of the nonzero entries of
a weight-2 input word such that has finite Hamming
weight. Let be the weight-2 input word with a one in position 0
and a one in position , and let be the corresponding
output word. Then, it is easy to see that, if is a weight-2 input
word, then has finite weight if and only if the positions of
the two nonzero entries of are at a distance multiple of , say

for . Moreover, under the assumption that is proper
rational, such an output word is made of consecutive disjoint
copies of and thus it has Hamming weight .
In particular, this means that . The case when the
inner encoder has nonscalar input or is not proper rational is dis-
cussed in Appendix II.

Recursiveness of ensures that any error event for has
input weight 2 or larger. When considering , however, one
has to be slightly more careful: regular error events have indeed
weight at least 2, while this is not necessarily true for a termi-
nating event which could have weight 1, the remaining weight
being in the extended part and not counted in the weight of .

The bounds we shall give rely on the input-weight limita-
tion of error events imposed by recursiveness. Notice in par-
ticular that, for every even , the input words contributing to

will exclusively be composed of regular error events
each having input weight equal to 2.
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For the weight-enumerating coefficients of , we have the
two bounds stated below. The following lemma is proved in
Appendix I-A2. While its part (b) follows from minor changes
to the arguments in [26, Lemma 1], its part (a) is a key novel
contribution, since it explicitly captures the dependence of the
leading term on the inner encoder’s effective free distance . In
fact, part (a) of the following lemma will turn out to be a funda-
mental ingredient in the next section, when showing the linear
scaling of in . In contrast, the bound of [26, Lemma 1]
depends on a term, therein denoted by , which can be traced
back to equal , and cannot be chosen inversely propor-
tional to : therefore, [26, Lemma 1] does not allow one to
prove the linear scaling of on .

Lemma 3: Let Assumption 2 be satisfied. Then, the following
inequalities hold true.

(a) If is even, then

(b) If , then

if even

if odd

where is a constant only depending on the inner convolutional
encoder.

The following result is essentially a restatement of [26,
Lemma 2], with the dependence on made explicit, and is
proved in Appendix I-A3.

Lemma 4: Let Assumption 2 be satisfied. If is even and

then

IV. MINIMUM DISTANCE OF THE TYPICAL

SERIAL TURBO CODE

In this section, we state and prove our main results on the
minimum distance of the typical serial turbo code. Our results
will indicate that, if is even, then the minimum distance
scales as with high probability, where

First, we shall provide precise upper and lower bounds of the
CDF of . These bounds, stated in Theorem 1, improve upon
some of those in [26]. Then, we shall prove a deterministic upper
bound on . Such a bound, stated in Theorem 2, generalizes
and improves upon some of the results of [4]. As explained in
the Introduction, the most novel contribution of both Theorems

1 and 2 with respect to the existing literature consists in high-
lighting the role of the effective free distance of the inner en-
coder, , as a linear scaling parameter for .

We start by observing that a standard application of the union
bound gives the useful bound (see [26, Lemma 6])

(4)
The limitation is due to the remark that any termi-
nating or regular error event of with output weight has
input weight bounded from above by (and here we are
considering ).

Now, using the bounds on the weight-enumerating coeffi-
cients established in the previous section, we obtain the fol-
lowing result on minimum distances, which is a refinement of
[26, Th. 2.a].

Proposition 1: Let Assumptions 1 and 2 be satisfied. Assume
that , as grows large. Then, there exists
such that

for all , where .

Proof: Define , and observe that the
assumption implies that

(5)

as grows large. Now consider (4), and split the summation
therein in three parts:

(6)

where

and is defined similarly to , considering terms
with even . Then, in order to obtain bounds on the
weight-enumerating coefficients, we use the upper bounds from
Lemmas 2 and 3, as well as the simple bound

We obtain that, for some suitable positive constants
(depending on the constituent convolutional

encoders only)

(7)
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(8)

where

(9)

where . It follows from (5) that

(10)

(11)

(12)

for sufficiently large . From (7) and (11), it follows that

(13)

Equation (10) implies that the series in right-hand side (RHS)
of both (8) and (9) are convergent, and dominated by twice their
first term. From this remark, together with (11) and (12), it fol-
lows that

(14)

(15)

The claim follows by combining (6), (13), (14), and (15).

It is possible to obtain also a lower bound for the CDF of the
minimum distance, showing that, asymptotically in the block-
length, the upper bound in Proposition 1 is tight. This lower
bound, stated below as Proposition 2 is a novel result. Its proof
combines techniques similar to those of [26, Th. 2.b] with the
inclusion-exclusion principle [2, p. 124].

First of all, we fix an error event for the outer convolutional
encoder , having active window for some , and
with an output such that . Note that

. Consider . For a nonnegative integer
, define as the codeword obtained by shifting for trellis

steps, so that the active window is ; clearly, if
, then and have nonoverlapping supports.

Now consider the terminated encoder , and, with a slight
abuse of notation, let denote its codewords corresponding to
the above constructed codewords of . Define the set of indices

, so that if
and both belong to , and , then clearly

. For and , define the event

Clearly, for any , implies , so that

The following lemma provides an expression for and
shows that, asymptotically, the events are ‘almost’ pair-
wise independent. Its proof, deferred to Appendix I-B1 closely
parallels the arguments of part of the proof of [26, Th. 2.a]. The
main difference with respect to [26, Th. 2.a] is in the defini-
tion of the event , which in our case has the additional
restriction that has regular events. Our defi-
nition does not significantly modify the proof of this result, but
turns out to be a key point in order to show the role of in
Proposition 2.

Lemma 5: Let Assumptions 1 and 2 be satisfied. Then, for all
,

(16)

We shall obtain our lower bound by considering the proba-
bility of the union event and using the inclusion-ex-
clusion principle.

Proposition 2: Let Assumptions 1 and 2 be satisfied. Assume
that , and , as grows large. Then, there
exists such that, for all ,

where .

Proof: Let us define , and

Then, using the inclusion-exclusion principle we obtain

(17)
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We give a lower bound for the first summation using Lemma 5,
Lemma 4, and (26). Also, recall that . We get

(18)

with the last inequality following from the fact that

thanks to the assumption , and from

which hold true for sufficiently large .
Now, we find an upper bound for the second summation in

(17) using Lemma 5, Lemma 3, and (26), as follows:

where

Notice that

as grows large, so that

Since by assumption, one has that , so
that

for sufficiently large . Together with (17) and (18), the fore-
going implies the claim.

We may combine Propositions 1 and 2, in the following.

Theorem 1: Let Assumptions 1 and 2 be satisfied. Then, for
every positive sequence such that , there
exists a finite such that

for all , where and are positive constants de-
pending on the outer encoder only.

Theorem 1 provides some fundamental insight into the effect
of the constituent convolutional encoders on the minimum dis-
tance of the typical serial turbo code. On the one hand, it shows
that the minimum distance of the typical serial turbo code grows

as a positive power of the block-length. In fact, it implies that the
probability that the minimum distance grows any slower
than vanishes as grows large. The exponent of this power
law growth, , depends only on the free distance of the outer en-
coder, , in an increasing way. This is in line with the results
of [26]. On the other hand, it shows that the minimum distance
of the typical turbo code scales linearly in the effective free dis-
tance of the inner encoder, . While the effect of on the av-
erage error probability of serial turbo codes has been studied in
[5] and [22], up to our knowledge no results have previously
appeared in the literature relating to the minimum distance.
Such a scaling effect of on is particularly relevant for
moderate block-lengths.

The result stated later provides a deterministic upper bound
on the minimum distance , showing an analogous depen-
dence on the parameters and .

Theorem 2: Let Assumptions 1 and 2 be satisfied. Then, for
all

and for every realization of the interleaver , the minimum
distance satisfies

(19)

It is worth comparing the upper bound (19) with the high
probability scaling implied by Theorem 1. On the one
hand, the dependence on of the RHS of (19) involves an ad-
ditional factor . On the other hand, the RHS of (19) shows
a linear dependence on , though multiplied by a factor ,
which depends itself on the inner encoder, and is therefore re-
lated to itself. It is important to highlight the fact that, in
contrast to Theorem 1, Theorem 2 holds for every choice of the
interleaver, and not only with high probability with respect to its
random choice. In fact, it may be conjectured that such greater
strength of the statement could be the main reason for the addi-
tional factors in the upper bound (19).

Theorem 2, whose proof is deferred to Appendix I-B2, may
be thought of as a generalization of [4, Th. 2]. There, only the
case when the outer encoder is a repetition code was considered,
while we extend it to general serial turbo codes. Moreover, our
modification of [4, Th. 2] unveils the fundamental role played
by the inner encoder’s parameters and .

Indeed, [4] considers serial turbo codes as well, in an even
more general setting with growing memory, but the result they
obtain [4, Th. 3], when specialized to the constant-memory case,
gives a bound which is asymptotically weaker than Theorem 2.
In fact, [4, Th. 3] gives

for some positive constant , and where is the dimension
of the state space of the outer encoder. It is easy to show that

and thus that

In fact, we can always construct a nonzero outer codeword of
weight at most , as follows. Take a nonzero input
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at time zero, and then drive the state back to zero by applying
the termination procedure: the corresponding codeword is sup-
ported in and thus has weight at most .

The result we obtain in Theorem 2 is also asymptotically
tighter than the currently best known bound for serial turbo
codes, presented in [32], which, as grows large, grows as fast
as .

V. ERROR PROBABILITY OF THE TYPICAL SERIAL TURBO CODE

In this section, we discuss implications of the previous re-
sults to the analysis of the error probability of the typical serial
turbo code. For the sake of concreteness—even if the results can
be easily generalized to binary-input output-symmetric mem-
oryless channels—we shall assume the channel to be the bi-
nary-input additive white Gaussian noise channel: when

is transmitted, the output of the channel is ,
where and is an independent Gaussian random
variable . The SNR is

As already mentioned, the focus of most of the previous liter-
ature on the analysis and design of serial turbo codes has been on
the error probability of the average code, for which it is known
[5], [22] that

for some constants whose dependence on in the high
SNR regime can be made explicit.

However, the error probability of the average serial turbo code
turns out to be much larger than that of the typical serial turbo
code. Indeed, the former is dominated by an asymptotically neg-
ligible fraction of poorly performing codes. In the sequel, we
shall use so-called expurgation techniques in order to show that
the error probability of the typical serial turbo code decays faster
than , for all .

For every and , we consider the event

It follows from Theorem 1 that

(20)

The following proposition gives an upper bound on the average
word error probability of the serial turbo ensemble, conditioned
on the event .

Proposition 3: Let Assumptions 1 and 2 be satisfied. Then,
there exists some finite such that, if the SNR satisfies

, then, for all there exist some finite constants
and such that

for all .

Proof: The main tool for this proof is the classical union-
Bhattacharyya bound, introduced for the average error proba-
bility in serial ensembles in [5]. Here we use a modified version
of it, where we consider the ensemble expurgated from the codes
with low minimum distance

(21)
where .

To prove this bound, first notice that

where denotes the indicator function of the event . The
union-Bhattacharyya bound (see, e.g., [5] or [24]) gives

where by we denote the number of codewords with
weight of the serial code obtained from the given ensemble
when the interleaver is sampled. Then (21) is obtained as
follows:

where the last equality is obtained by applying the expression
[24, Eq. (7.1)]. The limitations come from the
fact that, by definition of and by Lemma 1, if these inequali-
ties are not satisfied then .

By Theorem 1, approaches 1, as grows large. So,
for some , , for large enough . Now we
need bounds for the weight-enumerating coefficients of the con-
stituent encoders.

We start by considering the terms with . For
the outer encoder, having , we can apply
Lemma 2 to find a bound for . For the inner encoder we
use the simple bound and then, thanks to

, we can apply Lemma 3. Hence, we can
find a positive such that

Then, observe that the function has maximum
value , so that
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Moreover, for some , so

Hence, as , we can find a constant such that

For the remaining terms, having , we use
the following trivial upper bounds on the weight-enumerating
coefficients:

from which we have

Now notice that, under the assumption ,
one has

for some positive constant which depends only on
. Finally, putting all terms together, we have

proved that there exists some constant such that

Assuming that , the series is convergent, and equal to
. As we do not aim at optimizing con-

stants, we can further assume that , so that the
claim easily follows with .

It is worth pointing out that the constant in Proposition 3 is
independent from the SNR , provided that this is large enough.

From Proposition 3 and Theorem 2, we can obtain the fol-
lowing result, characterizing the asymptotic decay rate of the
error probability of the typical serial turbo code.

Theorem 3: Let Assumptions 1 and 2 be satisfied. Then, there
exists some finite such that, if the SNR satisfies

, then for all there exist some finite and
such that

for all .
Proof: By applying Markov’s inequality to the random

variable conditioned on the event , one gets

(22)

Now, consider the event

From Proposition 3 and (22) with , one
gets that

Let us denote the complement of the event by . Then, it
follows from (20) that

(23)

where the last inequality holds with , for suffi-
ciently large .

On the other hand, using

(24)

where is the bit error probability of uncoded
transmission (see, e.g., [15] for a proof), and using Theorem 2,
one gets that

(25)

for every realization of the random interleaver . Then, the
claim is an immediate consequence of (23) and (25).

We conclude this section by observing that both Theorems 1
and 3 only imply weak probabilistic convergence results, since
the CDFs of and decrease slowly in . Indeed,
one may prove [11] that, while converging in distribution to ,
both the growth rate of the minimum distance, i.e.

and the decay rate of the error probability, i.e.

densely cover the interval with probability one, where
.

VI. CONCLUSION

In this paper we have studied the behavior of the minimum
distance and ML error probability of serial turbo codes with uni-
form interleaver. We have shown that the minimum distance of
the typical serial turbo code grows as a positive power of the
block-length, whose exponent is an increasing function of the
free distance of the outer encoder, and scales linearly with the
effective free distance of the inner constituent encoder. Such
scaling law has been proven by means of a detailed study of
the probability distribution of the minimum distance, and of a
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deterministic upper bound. As a consequence, we have charac-
terized the decay rate of the ML error probability of the typical
turbo code, which turns out to be exponential in some positive
power of the block-length.

This contrasts the asymptotic behavior of the ML error proba-
bility of the average serial turbo code, which is known to decay
only as a negative power of the block-length. In spite of such
lack of concentration of the typical code performance around
the average code performance, our results confirm the centrality
of the two main design parameters for serial turbo codes sug-
gested by the average-code analysis, namely the free distance
of the outer encoder, and the effective free distance of the inner
encoder.

In the results that we have presented, we have considered
the assumptions that the constituent convolutional encoders are
noncatastrophic, that the outer encoder’s free distance is even
and greater than 2, and that the inner encoder is recursive, proper
rational and with scalar input. As discussed in Appendix II, only
some of these assumptions are indeed essential in order to obtain
the claimed asymptotic scaling of the typical minimum distance
and ML error probability (noncatastrophicity of both encoders,
outer encoder’s free distance greater than 2, inner encoder’s re-
cursiveness), while the other assumptions were introduced in
order to simplify the discussion.

APPENDIX I
PROOFS

In the present appendix, we provide the proofs of some of the
statements of Sections III and IV. Throughout, we shall make re-
peated use of the following well-known combinatorial bounds.
For positive integers , one has

(26)

(27)

For reals , one has

(28)

while, for

(29)

Throughout this section, whenever we find it useful, we shall
write input and output words of the terminated encoders (finite
strings of bits) as polynomials in the indeterminate with bi-
nary coefficients, where the powers of will simply be place-
holders, indicating the position where the bits occur. This is a
very common notation for convolutional encoders, where the
powers of denote the number of trellis steps and the coeffi-
cients are vectors of a suitable number of bits, but here we shall
rather use it for the terminated encoders, and powers of will
count the number of bits, not of vector labels (this distinction is
important for the outer codewords in the proof of Theorem 2,
while for the input words of the inner encoder the assumption

implies a one-to-one correspondence between bits and
trellis steps).

A) Proofs of the Results Presented in Section III: Our proof
techniques are based on ideas from [26]. We retrace here the
proofs in all detail, both since [26] has not appeared yet, and in
order to be able to underline the role of the effective free distance
of the inner encoder, .

2) Proof of Lemma 2: This is essentially a restatement of
[26, Lemma 3]. We start by introducing some notation:

• Let and denote, respectively, the number of
input words to having output weight and consisting
exclusively of regular error events, or containing a termi-
nating error event. We thus have

• Let be the number of input words to con-
sisting of regular error events whose output weights are

, respectively. Similarly, let be the
number of input words to consisting of regular
error events having output weights, in order, ,
and a final terminating one of weight .

Assume that . Then, one has that

Indeed, we are considering error events, with lengths at most
, respectively, so that the sum of their lengths is

bounded by . Thus, the number of distinct choices for the
bits in the input word inside the active windows of such error
events are at most . The only remaining freedom is in the
choice of the starting points of the error events, and the number
of possibilities is clearly bounded from above by .

Hence, one has

(30)

where we are using assumption that . Similarly,

because the th event, being terminating and having length at
most , starts in a position between and on
the trellis. Therefore
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(31)

Summing up (30) and (31) we get statement (a) of Lemma 2. The
tighter bound of statement (b) of Lemma 2 is easily obtained
from the observation that input words with output weight
necessarily consist of just one error event starting in the interval

.

3) Proof of Lemma 3: Our arguments closely parallel those
of [26, Lemma 1]. The main novelty consists in proving separate
bounds for the leading term [statement (a)], and the other ones
[statement (b)]. While the proof of part (b) is essentially the
same as the one of [26, Lemma 1], with different handling of
some of the constants involved, the proof of part (a) is novel,
and fundamental in showing the correct scaling in .

Similarly to what we have done before, we need to introduce
several auxiliary weight-enumerating coefficients for :

• Let (respectively, ) denote the number of
input words for having input weight and output
weight not larger than , and consisting exclusively of
regular error events (respectively, containing a terminating
error event).

• Let (respectively, ) denote the number of
input words for having input weight , output weight
not larger than , and consisting of regular events (re-
spectively, regular error events plus a terminating
one).

• Fix two vectors of integers and
with and . Let

(respectively, ) denote the number of nput words
to such that: the output has weight not larger than , and
contains regular error events (respectively, regular
error events plus a terminating one); for all the
th error event starts in position and has input weight

.
In order to prove statement (a), we notice that, for any input

word with error events and input weight , recursiveness
of forces input weight 2 for each error event. So the input
words contributing to can be written as

with (so that the error events have disjoint
active windows). We also have the restriction ,
but we can obtain an upper bound on the number of such words
by imposing a weaker condition.

Notice that

The restriction thus implies that

(32)

Observe that there are choices for positive integers

satisfying (32). Finally, there are at most
choices for the starting positions of the error
events. Summing up, and using (26), we obtain

This yields statement (a) of Lemma 3.
In order to prove statement (b) of Lemma 3, we start by con-

sidering the case when is even. We first show that

(33)

where . Notice indeed that is smaller
than the number of binary words of length with exactly

ones, because it is possible to exhibit an injective map
between the words we want to count and such words. Given
an input word (of length ) producing error events having
input weights , fixed starting points , and

, map it into a word of length in
the following way: remove all the zeros outside the active win-
dows of the error events, and furthermore remove the bit cor-
responding to the starting point of each error event (which is
surely a one). The word obtained in such a way has surely length

, then add dummy zeros at the end to get a word of length
; the number of ones is . This map is injective since

the starting points of the error events are fixed and known. This
proves (33).

Now, consider the decomposition

where, once again, the constraint comes from the recur-
siveness of . Using (33), we obtain the bound
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where the second inequality follows from (26) and (27), and the
third one from (28).

Finally, we have to consider weight-enumerating coefficients
of type . For them, we have

Everything is similar to the regular case, except for the addi-
tional condition . This comes from the remark
that the terminating event has clearly output weight smaller than

, hence of length smaller than . Being a terminating event, it
cannot start before . Moreover, the recursiveness im-
poses for the regular events, while for the terminating
event only is required.

With the same proof as for the bound (33) on , we
have also

so that

where the third inequality above follows from (26) and (27), the
forth one from (29), and the fifth one from (28). Now, statement
(b) of Lemma 3 follows from the fact that

(34)

The case of odd requires slightly more care. We start with
the analysis of . Input words contributing to this

term are made of events with input weight 2 and one
event with input weight 3, i.e.

All the error events have disjoint support, which implies
the weaker condition that and

. The overall output weight is ,
and this implies the weaker condition and

. There are:
• choices for such ;

• choices for ;

• no more than choices for
, where the factor comes

from the choice of the position where to put the error
event of weight 3 in between the other events.

Summarizing

(35)

where the second inequality follows from (26), and the last in-
equality follows from (28) and (29).

The remaining regular terms are bounded exactly as in the
case when is even

(36)

We now pass to studying the terms . Differently from

the even case, we shall consider the main term

separately. Input words contributing to con-
sist of regular error events, each with input weight
2, and one terminating event with input weight 1, with

. We represent such input words as

and we observe that the following conditions hold:

Thus, we get
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(37)

The remaining terms are bounded as in the even case

(38)

By bounding the addends of the RHS of (34) as in (35), (36),
(37), and (38), one finds that the leading terms are in fact the
ones on the RHS of (35) and of (37), and statement (b) follows.

4) Proof of Lemma 4: We shall use ideas similar to those
of [26, Lemma 2]. We consider a subclass of input words con-
tributing to the term , exactly those which can be
written as

with

It is evident that they have input weight and consist of
disjoint error events. The only property which remains to be
verified is whether they produce output weight not exceeding

. In fact, the th error event has input word

so that the output has weight

Thus, the total output weight can be bounded from above as

Observe that, for every choice of the two -tuples
and , one obtains distinct

input words. It follows that

(39)

Recall that, by assumption, and is even.
Hence

The final bound follows by applying (39) and (26).

E) Proofs of the Results Presented in Section IV:
Throughout this subsection, we shall use the words ,
and the set of indices defined in Section IV.

6) Proof of Lemma 5: This proof closely follows part of
the proof of [26, Th. 2.b].

The first statement is immediate, let us prove the second one.
Let

Given a multi-index

where , define the event

Clearly

where the summation index runs over all .
Then, notice that

(40)

Also notice that

(41)

Indeed, after having fixed the positions where maps the
ones of , we need to find how many choices for the po-

sitions of the ones of will produce an output weight less
than or equal to , out of the ways to choose posi-
tions among . The number of such favorable choices
is bounded by the number of favorable choices that we would
have if we could choose among all positions, including the
unavailable positions already assigned to , i.e., ,
which proves (41).

Equations (40) and (41), together with (16), give

Therefore

where the summation index runs over the set . Finally,
observe that

From this, the claim immediately follows.

7) Proof of Theorem 2: The key idea, introduced in [4],
consists in turning the problem of finding codewords of small
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weight into the problem of finding a generalized cycle on a hy-
pergraph. We describe here the construction of the suitable hy-
pergraph, adapting the construction from [4] to our setting, and
then we state the lemma on hypergraphs given in [4], which
completes the proof. The aim is to show that, for any interleaver,
it is possible to find a suitable subset of the codewords , say

, with cardinality growing at most as logarithmi-
cally with , and such that the outer codeword
produces a codeword of the serial code having
weight positive and smaller than , for some
constant .

Let be the ring of integers modulo . Define a map
by associating to an index a vector

in the following way: if

with an increasing sequence, then .
By the pigeonhole principle, clearly there exists with

such that for all .
This means that, for every , all the th ones in

words , with , are permuted by to positions whose
relative distance is a multiple of . Thus, applying to any pair
of such ones gives an output weight which is proportional to the
distance between the two ones. The goal is to find a nonempty
subset of indices , such that its cardinality is even
and grows at most logarithmically with , and such that, for
all , the ones being the th one of words
with form pairs in such a way that after the permutation
the distance within ones of the same pair grows at most as .
This will allow us to construct an outer codeword
which gives a codeword of the serial scheme,
whose weight grows at most as a constant times .

In order to find the set , consider the set
and divide it in intervals ,

each of length at most ; is a parameter depending on
that will be properly chosen later in this proof.
Define a hypergraph in the following way. Take

a -partite vertex set being the union of disjoint copies
of . The set of hyperedges has cardinality

and is -regular in the sense that , i.e., every hy-
peredge contains exactly one vertex from each of the copies
of . Any hyperedge in corresponds to an index , and
is defined as where, denoting as
above

with and increasing sequence, the index is such that
.

Define the degree of a vertex in the hypergraph as the number
of hyperedges that contain that vertex. The following lemma
holds:

Lemma 6 [4, Lemma 3]: Given a -partite, -regular hy-
pergraph with vertices in each part, if ,
then there exists a nonempty subset , with ,
such that in the induced subhypergraph every vertex has
even degree (possibly zero).

We shall show here that this lemma implies Theorem 2. In the
above construction of the hypergraph , we choose

This ensures that is an integer satisfying

so that we can apply Lemma 6 and find the subset .
By construction of the hypergraph, there is a bijection be-

tween hyperedges and indices in ; let be the
indices corresponding to the hyperedges in , so that any hy-
peredge corresponds to some word , . Let

, and observe that is clearly a nonzero code-
word of the outer code. Hence, is a nonzero
codeword of the serial turbo code.

By construction, is composed of pairs of ones.
Each pair has both ones lying in a same interval and at a
distance multiple of . Hence

Finally use the bound on which is the key contribution of
Lemma 6: .

Our choice of gives

and

which concludes the proof.

APPENDIX II
GENERALIZATIONS

Parts of Assumptions 1 and 2 were stated for the sake of sim-
plicity, and are in fact not essential for the validity of the results
presented. In this appendix, we shortly discuss how such as-
sumptions can be weakened, pointing out the role they played in
the proofs and stating the results that can be obtained in greater
generality, while we refer the interested reader to [21] for more
details and proofs.

The following formulation is the one truly needed in order
to obtain the claimed asymptotic behavior of the minimum dis-
tance and the error probability:

Assumption 3: The outer encoder
is noncatastrophic, and its free distance satisfies .
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Assumption 4: The inner encoder
is noncatastrophic and recursive.

Noncatastrophicity of both constituent encoders and recur-
siveness of the inner encoder are needed in order to ensure the
properties of the weight-enumerating coefficients (Lemmas 2
and 3), and to give the limitations on the input weights (due to
Lemma 1 and to the absence of input-weight-1 inner codewords)
in the summations in the proofs of Propositions 1 and 3.

The assumption is needed in order to ensure that
, and is essential in order to have minimum distance

growing with high probability as some positive power of . In-
deed, when (and thus ), Theorem 2 still holds
true, and states that, for any choice of the interleavers sequence,
the minimum distance grows at most logarithmically with .
Moreover, a slight modification of the proof of Proposition 2
(see [21, Sect. 4.5.1]) allows one to prove that, when

for some positive constant , which implies that

where is the bit error probability of uncoded
transmission.

The assumptions that the inner encoder has scalar input
( ) and is proper rational ( is invertible) have been con-
sidered in order to simplify the analysis of the codewords of
made of error events with input weight 2 (proofs of Lemma 3
and Theorem 2), and to have clean expressions of the constants
depending on . Indeed, under such assumptions, an input word
with weight two produces a finite-weight output word if an only
if the two ones are separated by zeros, and the output
weight is , because the word is made of shifted copies of
the same error event, with nonoverlapping support. When is
not proper rational, the aforementioned error events have over-
lapping support, so that the weight is smaller than : this al-
lows one to prove bounds on the one side, while for the other
side it is necessary to introduce another parameter of the inner
encoder, for which the opposite inequality holds true. When
has nonscalar input ( ), we have to look separately at pairs
of ones being in different components of the entry vector, so that
we need to define parameters and corresponding weights

, one for each component ; moreover, we need
to take into account also possible pairs of ones where the second
one is not in the same component as the first one (which turn out
to have an asymptotically negligible role). For more details, see
[21, Sect. 4.5.2 and 4.5.3].

Removing the assumptions that has scalar input ( )
and is proper rational ( is invertible) does not change any of
the asymptotic results when grows large: except for the value
of the constants and their dependence on , all the statements
of this paper remain true under Assumptions 1 and 4.

Removing the assumption that is even requires some more
effort, because of the key role that was played by words where
an outer codeword with weight (or multiples of it) was pro-
ducing inner codewords composed of error events each with
input weight two. In the remainder of this section, we consider
the case of odd , and for simplicity we focus again on the sim-

pler case where the inner encoder satisfies Assumption 2, while
we replace Assumption 1 with the following.

Assumption 5: The outer encoder
is noncatastrophic, and its free distance is odd and satisfies

.
We shall state and prove the main results (the asymptotic typ-

ical behavior of and , while we shall refer the
reader to [21] for details on some results we shall only quickly
mention.

Notice that, under Assumptions 5 and 2, Lemmas 2 and 3 hold
true without any modification. However, Proposition 1 needs
to be modified, because the dominant term in the summations
is not the same, due to the ceilings and floors of the fractions
in the exponents. The following Proposition holds true, where
for simplicity we do not look at the explicit dependence of the
constants on and on other parameters of the inner encoder
such as the output weight of terminated error events with input
weight 1 or of regular error events with input weight 3.

Proposition 4: Let Assumptions 5 and 2 be satisfied. As-
sume that as grows large. Then, there exists

and , depending on the constituent con-
volutional encoders only, such that, for all

Before giving the proof, we underline the fact that, differently
from Proposition 1, we have two terms in this upper bound, and
either one can be the dominant one, depending on how fast
grows with : defining

(notice that ), if the dominant term is the first
one, while otherwise it is the second one.

Proof: From (4), we use Lemmas 2 and 3 to find bounds on
the weight-enumerating coefficients of the constituent encoders,
and we get

(42)

for some depending on the constituent convolutional
encoders only. For even , the asymptotically dominant term
in the summation was the one with . Here, for odd ,
we have different dominant terms: the ones with and
with dominate if , and otherwise the
dominant term is the one with . To prove this, we
consider separately the terms with odd and even in (42). For
the odd terms, using and the fact that

for odd , we get

(43)
For even , we need to split once more the summation in two
parts. A first summation will contain the terms with multiple
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of , for which ; notice that such terms have
. All the other terms will have

Hence

(44)

Similarly to the proof of Proposition 1, we can use the assump-
tion to conclude that, for sufficiently large , the
series in (43) and (44) are convergent and each one is bounded
by twice its first term.

Similarly to what was done for the even case with Propo-
sition 2, a lower bound can be found, which ensures that the
upper bound given in Proposition 4 is tight for ;
this is useful in order to find such that
the growth rate and the decay rate

densely cover the in-
terval with probability one, but we shall not discuss such
issue here.

For even , Proposition 1 (or equivalently the upper bound
in Theorem 1) was completed by Theorem 2: the two results
together imply that the growth rate
converges in probability to . For odd , it is indeed possible
to prove a deterministic upper bound, analogous to Theorem
2, by a slight modification of the construction of the bipartite
graph from the hypergraph in the proof of Theorem 2 (see the
proof of [4, Th. 2] for repeat-accumulate codes, or see [21]).
Unfortunately, such a bound is of the form

where

However, as suggested in [26], it is still possible to prove that
is the actual growth rate of , using a second-order

method, as shown below.

Theorem 4: Let Assumptions 5 and 2 be satisfied. If
as grows large, then there exist positive constants ,

, and , such that

for all .

Proof: Let the outer codewords , and the set of indices
be the same as in Section IV and in Appendix I-B. We define

events quite similar to the ’s involved in the proof of Propo-
sition 2, but here we consider pairs of codewords ’s. More
precisely, for , we define

where

, , and

Now, let be the indicator of the event , and define
the random variable

Clearly

A standard argument, which follows from Chebyshev’s in-
equality and is known as ‘second-order method’ [2, Th. 4.3.1],
gives

so that

(45)

where, for

and

The following steps allow one to find bounds for and .
First, notice that is the same for all pairs , so
that . Then, notice that the union
in the definition of is a disjoint union, so that
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Moreover

and the set can be conveniently described in the following
equivalent way (which was already used in the proof of Lemma
4):

from which it is clear that

Thus we have the following explicit formula:

(46)
Then we consider . We use a similar proof as for Lemma

5, i.e., we condition on the events .
If are all distinct, then

(47)

so that as grows large.
When one of the indices is repeated, say , we have

that

(48)

and the same bound holds true when .
Finally, it’s clear that for all such

that and .
The above bounds allow one to prove that the RHS of (45)

tends to one. In fact, we can split the summation into the fol-
lowing terms:

where

Remember that and grow linearly with , and that
grows unbounded by assumption. On the other hand,

without loss of generality one may assume that vanishes,
since the deterministic upper bound guarantees that

for any choice of the interleavers sequence. Then,
using (46), (47), (48), and the bound (26) for the binomial coef-
ficients, it is easy to conclude that, as grows large

for some positive constants .
Similarly to Section V, we shall now show how the above

results on the minimum distance imply results on the word error
probability. We will use here the same notation

A first result is that Proposition 3 holds true also when As-
sumption 5 replaces Assumption 1: the only modification in the
proof is that now converges to 1 thanks to Proposition 4
instead of Theorem 1.

The following theorem is the analogous of Theorem 3 for odd
.

Theorem 5: Let Assumptions 5 and 2 be satisfied. Then,
there exists some finite such that, if the SNR satisfies

, then for all there exist some finite
and such that, for all

Proof: Similarly to the proof of Theorem 3, the upper
bound follows from Proposition 3 and from Proposition 4
(which is the analogous for odd of Proposition 1)

The lower bound is obtained again using (24), but here the
role of Theorem 2 is replaced by Theorem 4

Finally, notice that, for , as
grows large.
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