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Abstract

Strong resilience properties of dynamical flow networks areanalyzed for distributed routing policies.

The latter are characterized by the property that the way theinflow at a non-destination node gets split

among its outgoing links is allowed to depend only on local information on the current congestion

levels on such outgoing links. The strong resilience of the network is measured as the maximum sum

of adversarial link-wise flow capacity reductions that the network can sustain while maintaining the

asymptotic total inflow at destination node equal to the inflow at the origin. Assuming that a dynamical

flow network is acyclic and has a single origin-destination pair, a class of distributed routing policies

that are locally responsive to local information is shown toyield the maximum possible strong resilience

under such local information constraints. The maximal strong resilience achievable on a given dynamical

flow network is shown to be equal to its minimum node residual capacity. The latter is defined as

the minimum, among all the non-destination nodes, of the sum, over all the links outgoing from the

node, of the differences between the maximum flow capacity and the limit flow of the unperturbed

network. Finally, a simple convex optimization problem is formulated to solve for the most resilient initial

equilibrium flow, and the use of tolls to induce such an initial equilibrium flow in transportation networks

is discussed. We also present illustrative simulations to discuss the connection between cascading failures

and the resilience properties of the network.
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I. INTRODUCTION

Robustness of routing policies for flow networks is a centralproblem which is gaining

increased attention with a growing awareness to safeguard critical infrastructure networks against

natural and man-induced disruptions. Information constraints limit the efficiency and resilience of

such routing policies, and the possibility of cascaded failures through the network adds serious

challenges to this problem. The difficulty is further magnified by the presence of dynamical

effects [2].

This paper considers the framework ofdynamical flow networksintroduced in our companion

paper [3], where the network is modeled by a system of ordinary differential equations derived

from mass conservation laws on directed acyclic graphs witha single origin-destination pair

and a constant inflow at the origin. The rate of change of the particle density on each link of

the network equals the difference between theinflow and theoutflowof that link. The latter is

modeled to depend on the current particle density on that link through aflow function. We focus

on distributed routing policieswhereby the proportion of incoming flow routed to the outgoing

links of a node is allowed to depend only onlocal information, consisting of the current particle

densities on the outgoing links of the same node. We call the dynamical flow networkfully

transferring if the outflow at the destination node asymptotically approaches the inflow at the

origin node. Our primary objective in this paper is to analyze the robustness of distributed routing

policies in terms of the network’sstrong resilience, which is defined as the minimum sum of

link-wise magnitude of disturbances making the perturbed dynamical flow network not fully

transferring.

We prove that the maximum possible strong resilience is yielded by a class oflocally respon-

sive distributed routing policies, introduced in the companionpaper [3]. Moreover, we show

that the strong resilience of a dynamical flow network with such locally responsive distributed

routing policies equals theminimum node residual capacity. The latter is defined as the minimum,

among all the non-destination nodes, of the sum of the difference between the maximum flow

capacity and the limit flow of the unperturbed network, on allthe links outgoing from the node.

Using idea from [4], one can show that, when the information constraints on the routing policies
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are relaxed, i.e., the routing policies can access the congestion level over the whole network,

then the strong resilience of the network is equal to the network residual capacity. The latter

is defined as the difference between the min-cut capacity of the network and rate of arrival at

the origin node. Since the minimum node residual capacity isin general less than the network

residual capacity, this shows that the information constraints on the routing policies reduce the

strong resilience of the network. This is in stark contrast to our result on weak resilience in

[3], where we showed that the weak resilience is unaffected by local information constraints

on the routing policies. We also formulate a simple convex optimization problem to solve for

the most strongly resilient limit flow, and discuss the use oftolls to induce such a limit flow

in transportation networks. These results are derived under the condition when the link-wise

flow functions are strictly increasing and the links have unbounded capacity for flow densities.

We also present illustrative simulations discussing cascading failures that arise when the links

have finite capacities on flows as well as densities. It is noteworthy that, we not only describe

cascading failures within a dynamical flow network framework and formalize their effect by

establishing the connection to our notions of network resilience, but also highlight the role of

distributed routing policies in averting such failures.

Stability analysis of network flow control policies under various routing policies is carried out

in [5], [6], [7]. A detailed comparison between the settingsof these papers and our dynamical flow

network setting is included in the companion paper [3]. Thispaper also studies the connection

between the robustness properties of the network and its equilibrium flow. The role of equilibrium

in the efficiency of a system, especially in economic settings involving multiple agents, has

attracted a lot of attention, e.g., see [8]. One of the most celebrated notions to measure the

inefficiency of an equilibrium is theprice of anarchy[9]. In a transportation setting, the price

of anarchy of a given network state quantifies the extent to which the average delay faced by

a driver at that state exceeds the least possible average delay over all network states. In this

paper, we propose a robustness-based metric for measuring inefficiency of equilibrium states of

dynamical flow networks. Finally, cascaded failure for complex networks has attracted a great

deal of attention recently, e.g., see [10], [11] where the authors propose various models to explain

this phenomenon.

The contributions of this paper are as follows: (i) we formulate the notion of strong resilience

of a dynamical flow network, and show that the class of locallyresponsive routing policies yield
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the maximum strong resilience under local information constraint; (ii) we formulate a simple

convex optimization problem to solve for the most robust equilibrium flow, and discuss the use

of tolls in implementing such an equilibrium in transportation networks; and (iii) we present

illustrative simulations to discuss cascading failures indynamical flow networks and their effect

on network resilience.

The rest of the paper is organized as follows. In Section II, we briefly summarize the dynamical

flow network framework and the postulate the notion of strongresilience. In Section III, we

state the main result on the strong resilience, and provide discussions on the results. Section IV

discusses the problem of selection of the most strongly resilient equilibrium flow of the network

and the use of tolls to induce such an equilibrium in transportation networks. In Section V, we

report illustrative numerical simulation results, discussing the effect of cascading failures on the

resilience of the network. We conclude in Section VI with remarks on future research directions

and state proofs of the main results in the appendices A and B.

Before proceeding, we define some preliminary notation to beused throughout the paper. Let

R be the set of real numbers,R+ := {x ∈ R : x ≥ 0} be the set of nonnegative real numbers.

Let A andB be finite sets. Then,|A| will denote the cardinality ofA, RA (respectively,RA
+)

the space of real-valued (nonnegative-real-valued) vectors whose components are indexed by

elements ofA, andRA×B the space of matrices whose real entries indexed by pairs of elements

in A × B. The transpose of a matrixM ∈ RA×B, will be denoted byMT ∈ RB×A, while 1

the all-one vector, whose size will be clear from the context. Let cl(X ) be the closure of a set

X ⊆ RA. A directed multigraph is the pair(V, E) of a finite setV of nodes, and of a multiset

E of links consisting of ordered pairs of nodes (i.e., we allowfor parallel links). Given a a

multigraph (V, E), for every nodev ∈ V, we shall denote byE+
v ⊆ E , and E−

v ⊆ E , the set

of its outgoing and incoming links, respectively. Moreover, we shall use the shorthand notation

Rv := RE+
v

+ for the set of nonnegative-real-valued vectors whose entries are indexed by elements

of E+
v , Sv := {p ∈ Rv :

∑

e∈E+
v

pe = 1} for the simplex of probability vectors overE+
v , and

R := RE
+ for the set of nonnegative-real-valued vectors whose entries are indexed by the links

in E .
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II. DYNAMICAL FLOW NETWORKS

The notion of dynamical flow network was introduced in the companion paper [3]. In order

to render the present paper self-contained, we introduce here the concepts and notation which

are most relevant.

We start with the following definition of a flow network.

Definition 1 (Flow network):A flow networkN = (T , µ) is the pair of atopology, described

by a finite directed multigraphT = (V, E), whereV is the node set andE is the link multiset,

and a family offlow functionsµ := {µe : R+ → R+}e∈E describing the functional dependence

fe = µe(ρe) of the flow on the density of particles on every linke ∈ E . The flow capacityof a

link e ∈ E is

fmax
e := sup

ρe≥0
µe(ρe) . (1)

We shall use the notationFv := ×e∈E+
v
[0, fmax

e ) for the set of admissible flow vectors on

outgoing links from nodev, andF := ×e∈E [0, f
max
e ) for the set of admissible flow vectors for

the network. We shall writef := {fe : e ∈ E} ∈ F , and ρ := {ρe : e ∈ E} ∈ R, for the

vectors of flows and of densities, respectively, on the different links. The notationf v := {fe :

e ∈ E+
v } ∈ Fv, andρv := {ρe : e ∈ E+

v } ∈ Rv will stand for the vectors of flows and densities,

respectively, on the outgoing links of a nodev. We shall compactly denote byf = µ(ρ) and

f v = µv(ρv) the functional relationships between density and flow vectors.

Throughout this paper, we shall restrict ourselves to flow networks satisfying the following

assumptions.

Assumption 1:The topologyT contains no cycles, has a unique origin (i.e., a nodev ∈ V

such thatE−
v is empty), and a unique destination (i.e., a nodev ∈ V such thatE+

v is empty).

Moreover, there exists a path inT to the destination node from every other node inV.

Assumption 2:For every linke ∈ E , the mapµe : R+ → R+ is continuously differentiable,

strictly increasing, such thatµe(0) = 0, andfmax
e < +∞.

In particular, Assumption 1 implies that (see, e.g., [12]) one can identify (in a possibly non-

unique way) the node setV with the integer set{0, 1, . . . , n}, wheren := |V| − 1, in such a

way that

E−
v ⊆

⋃

0≤u<v
E+

u , ∀v = 0, . . . , n . (2)
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In particular, (2) implies that0 is the origin node, andn the destination node in the network

topologyT . An origin-destination cut(see, e.g., [13]) ofT is a partition ofV into U andV \U

such that0 ∈ U and n ∈ V \ U . Let E+
U = {(u, v) ∈ E : u ∈ U , v ∈ V \ U} be the set of all

the links pointing from some node inU to some node inV \ U . Themin-cut capacityof a flow

networkN is defined as

C(N ) := min
U

∑

e∈E+

U

fmax
e , (3)

where the minimization runs over all the origin-destination cuts ofT . Throughout this paper,

we shall assume a constant inflowλ0 ≥ 0 at the origin node. Let us define the set ofadmissible

equilibrium flowsassociated toλ0 as

F∗(λ0) :=

{

f ∗ ∈ F :
∑

e∈E+

0

f ∗
e = λ0,

∑

e∈E+
v

f ∗
e =

∑

e∈E−
v

f ∗
e , ∀ 0 < v < n

}

.

Then, it follows from the max-flow min-cut theorem (see, e.g., [13]), thatF∗(λ0) 6= ∅ whenever

λ0 < C(N ). That is, the min-cut capacity equals the maximum flow that can pass from the

origin to the destination while satisfying capacity constraints on the links, and conservation of

mass at the intermediate nodes.

We now recall the notion of a distributed routing policy from[3].

Definition 2 (Distributed routing policy):A distributed routing policyfor a flow networkN

is a family of functionsG := {Gv : Rv → Sv}0≤v<n describing the ratio in which the particle

flow incoming in each non-destination nodev gets split among its outgoing link setE+
v , as a

function of the observed current particle densityρv on the outgoing links themselves.

The salient feature of Definition 2 is that the routing policyGv(ρv) depends only on thelocal

information on the particle densityρv on the setE+
v of outgoing links of the non-destination

nodev.

We are now ready to define dynamical flow networks and their transfer efficiency.

Definition 3 (Dynamical flow network and its transfer efficiency): A dynamical flow network

associated to a flow networkN satisfying Assumption 1, a distributed routing policyG, and an

inflow λ0 ≥ 0, is the dynamical system

d

dt
ρe(t) = λv(t)G

v
e(ρ

v(t)) − fe(t) , ∀ 0 ≤ v < n , ∀ e ∈ E+
v , (4)
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where

fe(t) := µe(ρe(t)) , λv(t) :=







λ0 if v = 0
∑

e∈E−
v

fe(t) if 0 < v ≤ n.
(5)

Given some flow vector̂f ∈ F , the dynamical flow network (4) is said to befully transferring

with respect tof̂ if the solution of (4) with initial conditionρ(0) = µ−1(f̂) satisfies

lim
t→+∞

λn(t) = λ0 . (6)

Definition 3 states that a dynamical flow network is fully transferring when the outflow is

asymptotically equal to the inflow, i.e., there is no throughput loss asymptotically. Observe that

a fully transferring dynamical flow network does not necessarily imply that the link-wise flows

necessarily converge to an equilibrium, for it might in principle have a persistently oscillatory or

more complex behavior. Nevertheless, it will prove useful to introduce the notions of equilibrium

and limit flow as follows.

Definition 4 (Equilibrium and limit flow of a dynamical flow network): An equilibrium flow

for the dynamical flow network (4) is a vectorf ∗ ∈ F∗(λ0) such that

λ∗
vG

v
e(ρ

v) = f ∗
e , ∀e ∈ E+

v , ∀0 ≤ v < n , (7)

whereρv
e := µ−1

e (f ∗
e ), andλ∗

v = λ0 for v = 0 andλ∗
v =

∑

e∈E−
v

f ∗
e for 0 < v < n.

A limit flow for the dynamical flow network (4) is a vectorf ∗ ∈ cl(F) such that the solution of

(4) with initial conditionρ(0) = µ−1(f ◦) satisfies

lim
t→+∞

f(t) = f ∗ . (8)

The set of all initial flowsf ◦ ∈ F such that (8) is satisfied will be referred to as thebasin of

attraction of f ∗, and denoted byB(f ∗).

Remark 1:Observe that an equilibrium flowf ∗ ∈ F∗(λ0) is always a limit flow, since the

solution of the dynamical flow network (4) with initial flowf ◦ = f ∗ stays put for allt ≥ 0,

and hence it is trivially convergent tof ∗. On the other hand, if a limit flowf ∗ ∈ cl(F) satisfies

all the capacity constraints with strict inequality, i.e.,if f ∗ ∈ F , then necessarilyf ∗ ∈ F∗(λ0)

is also an equilibrium flow for (4), i.e., it satisfies mass conservation equations at all the non-

destination nodes. In particular, if a dynamical flow network admits an equilibrium flowf ∗, then
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it is necessarily fully transferring with respect tof ∗, as well as with respect to all the initial

flows f ◦ ∈ B(f ∗).

In contrast, if f ∗ ∈ cl(F) \ F , i.e., if at least one of the capacity constraints is satisfied

with equality, thenf ∗ is not an equilibrium flow for (4). In fact, in this case one hasthat
∑

e∈E+
v

f ∗
e ≤ λ∗

v with possibly strict inequality for some non-destination node0 ≤ v < n. Hence,

the dynamical flow network might still be non fully transferring. Finally, observe that a limit

flow f ∗ ∈ cl(F) (and,a fortiori, an equilibrium flow) may not exist for general flow networks

N , and distributed routing policiesG.

Remark 2:Standard definitions in the literature are typically limited to static flow networks

describing the particle flow at equilibrium via conservation of mass. In fact, they usually consist

(see e.g., [13]) in the specification of a topologyT , a vector of flow capacitiesfmax ∈ R, and

an admissible equilibrium flow vectorf ∗ ∈ F∗(λ0) for λ0 < C(N ) (or, often,f ∗ ∈ cl(F∗(λ0))

for λ0 ≤ C(N )).

In contrast, in our model we focus on the off-equilibrium particle dynamics on a flow network

N , induced by a distributed routing policyG. Existence of an equilibrium of the dynamical flow

network (4) depends on the topologyT , the structural form of the flow functionsµ and of

the distributed routing policyG, as well as on the inflowλ0. A necessary condition for that is

λ0 < C(N ). In contrast, simple, locally verifiable, sufficient conditions onG for the existence of

an equilibrium flow might be hard to find for complex flow networks. However, in some cases, it

is reasonable to assume the distributed routing policyG to be the outcome of a slow time-scale

evolutionary dynamics with global feedback which can naturally lead to an equilibrium flow

f ∗ ∈ F∗(λ0). This has been shown, e.g., in our related work [4] on transportation networks,

where the emergence of Wardrop equilibria is proven using tools from singular perturbation

theory and evolutionary dynamics. Multiple time-scale dynamics leading to Wardrop equilibria

has been studied in [14] for communication networks.

While, as discussed in Remark 2, finding simple, locally verifiable, sufficient conditions on the

distributed routing policyG for the existence of an equilibrium flow of the associated dynamical

flow network (4) is typically nontrivial, a large class of distributed routing policies was proven to

yield existence and uniqueness of a globally attractive limit flow f ∗ ∈ cl(F), as revised below.

Definition 5 (Locally responsive distributed routing policy): A locally responsivedistributed
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routing policy for a flow network topologyT = (V, E) with node setV = {0, 1, . . . , n} is a

family of continuously differentiable distributed routing functionsG = {Gv : Rv → Sv}v∈V such

that, for every non-destination node0 ≤ v < n:

(a)
∂

∂ρe

Gv
j (ρ

v) ≥ 0 , ∀j, e ∈ E+
v , j 6= e , ρv ∈ Rv ;

(b) for every nonempty proper subsetJ ( E+
v , there exists a continuously differentiable

mapGJ : RJ → SJ , whereRJ := RJ
+ , andSJ := {p ∈ RJ :

∑

j∈J pj = 1} is the

simplex of probability vectors overJ , such that, for everyρJ ∈ RJ , if

ρv
e → +∞ , ∀e ∈ E+

v \ J , ρj → ρJ
j , ∀j ∈ J ,

then

Gv
e(ρ

v) → 0, ∀e ∈ E+
v \ J , Gv

j (ρ) → GJ
j (ρJ ), ∀j ∈ J .

Let us restate the result proven in [3, Theorem 1].

Theorem 1 (Existence of a globally attractive limit flow under locally responsive routing policies):

Let N be a flow network satisfying Assumptions 1 and 2,λ0 ≥ 0 a constant inflow, andG a

locally responsive distributed routing policy. Then, there exists a unique limit flowf ∗ ∈ cl(F)

such thatB(f ∗) = F . Moreover, iff ∗
e = fmax

e for somee ∈ E+
v , and0 ≤ v < n, thenf ∗

e = fmax
e ,

for everye ∈ E+
v .

We shall use the above result in the form of the following corollary, which is an immediate

consequence of Theorem 1 and Remarks 1 and 2.

Corollary 1: Let N be a flow network satisfying Assumptions 1 and 2,λ0 ≥ 0 a constant

inflow, andG a locally responsive distributed routing policy. If the limit flow f ∗ belongs toF ,

thenf ∗ ∈ F∗(λ0) is a globally attractive equilibrium flow for the dynamical network flow (4),

and, consequently, (4) is fully transferring with respect to f ∗.

Example 1 (Locally responsive distributed routing policy): Let N be a flow network satisfy-

ing Assumptions 1 and 2, and0 ≤ λ0 < C(N ) a constant incoming flow. Forf * = µ(ρ*) ∈

F∗(λ0), andη > 0, define the distributed routing policyG by

Gv
e(ρ) =

f *
e exp(−η(ρe − ρ*

e))
∑

j∈E+
v

f *
j exp(−η(ρj − ρ*

j))
, ∀e ∈ E+

v , ∀0 ≤ v < n . (9)

Then,G can be easily verified to be locally responsive, andf ∗ to be the globally attractive limit

flow of the associated dynamical flow network (4).
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III. STRONG RESILIENCE OF DYNAMICAL FLOW NETWORKS

In this section, we shall introduce the notion of strong resilience of a dynamical flow network,

and show that locally responsive policies are maximally robust among the class of distributed

routing policies. We shall also provide an explicit simple characterization of the maximal strong

resilience of a dynamical flow network with respect to a givenlimit flow.

We shall consider persistent perturbations of the dynamical flow network (4) that reduce the

flow functions on the links, as per the following:

Definition 6 (Admissible perturbation):An admissible perturbationof a flow networkN =

(T , µ), satisfying Assumptions 1 and 2, is a flow network̃N = (T , µ̃), with the same topology

T , and a family of perturbed flow functions̃µ := {µ̃e : R+ → R+}e∈E , such that, for every

e ∈ E , µ̃e satisfies Assumption 2, as well as

µ̃e(ρe) ≤ µe(ρe) , ∀ρe ≥ 0 .

We accordingly letf̃max
e := sup{µ̃e(ρ̃e) : ρ̃e ≥ 0}. The magnitudeof an admissible perturbation

is defined as

δ :=
∑

e∈E
δe , δe := sup {µe(ρe) − µ̃e(ρe) : ρe ≥ 0} . (10)

Given a dynamical flow network as in Definition 3, and an admissible perturbation as in

Definition 6, we shall consider theperturbed dynamical flow network

d

dt
ρ̃e(t) = λ̃v(t)G

v
e(ρ̃

v(t)) − f̃e(t) , ∀ 0 ≤ v < n , ∀ e ∈ E+
v , (11)

where

f̃e(t) := µ̃e(ρ̃e(t)) , λ̃v(t) :=







∑

e∈E−
v

f̃e(t) if 0 < v < n

λ0 if v = 0 .
(12)

We are now ready to define the notion of strong resilience of a dynamical flow network as in

Definition 3 with respect to a limit flowf ∗.

Definition 7 (Strong resilience of a dynamical flow network):Let N be a flow network satis-

fying Assumptions 1 and 2,λ0 ≥ 0 be a constant inflow at the origin, andG a distributed routing

policy. Assume that the corresponding dynamical flow network has a limit flowf ∗ ∈ cl(F). The

strong resilienceγ1(f
∗,G) is equal to the infimum magnitude of all the admissible perturbations

for which the perturbed dynamical flow network (11) is not fully transferring with respect to

some initial flowf ◦ ∈ B(f ∗).
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Fig. 1. The network topology used in Example 2.

Note that the notion of strong resilience formalized in Definition 7 is with respect to the worst-

case scenario. Accordingly, one can provide an adversarialinterpretation to the perturbations as

in [3]. Our first result is an upper bound on the strong resilience of a dynamical flow network

driven by an arbitrary distributed routing policy. In orderto state such result, for a flow network

N , and a flow vectorf * ∈ cl(F), define theminimum node residual capacityas

R(N , f *) := min
0≤v<n

{

∑

e∈E+
v

(

fmax
e − f *

e

)

}

. (13)

Theorem 2 (Upper bound on the strong resilience):Let N be a flow network satisfying As-

sumptions 1 and 2,λ0 ≥ 0 a constant inflow, andG any distributed routing policy. Assume that

the associated dynamical flow network has a limit flowf ∗ ∈ F∗(λ0). Then,

γ1(f
* ,G) ≤ R(N , f ∗) .

Proof: See Appendix A.

The proof of Theorem 2 essentially depends only on Assumption 1 on the acyclicity of the

network topology. However, in order to show that the upper bound in Theorem 2 is tight for

locally responsive policies, we have to rely highly on Properties (a) and (b) of Definition 5. The

following example illustrates the necessity of these properties.

Example 2:Consider the topology illustrated in Figure 1, withλ0 = 2, flow functions given

by

µe(ρe) = fmax
e (1 − exp(−aeρe)) (14)

with a1 = a2 = a3 = a4 = 1 andfmax
e1

= fmax
e2

= 2, fmax
e3

= fmax
e4

= 0.75. First consider the case

whenG0
e1

(ρ0) = 1−G0
e2

(ρ0) ≡ 0.75, andG1
e3

(ρ1) = 1−G1
e4

(ρ1) ≡ 0.5. One can verify that the
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associated dynamical flow network has a unique equilibrium flow f ∗ with f *
e1

= 1.5, f *
e2

= 0.5,

and f *
e3

= f *
e3

= 0.25. Now, consider an admissible perturbation such thatµ̃e1
= 0.7µe1

and

µ̃ek
= µek

for k = 2, 3, 4. The magnitude of such perturbation isδ = δe1
= 0.6. It is easy to see

that in this caselimt→∞ f̃e1
(t) = 1.4 = f̃max

e1
which is less than1.5, which is the flow routed to

it. Therefore,limt→∞ λ̃2(t) = 1.9 < λ0, and hence the network is not fully transferring.

Now, consider the same (unperturbed) flow network as before,but with distributed routing

policies such that

G0
e1

(ρ0) = 1 − G0
e2

(ρ0) = 2e−0.031ρ1/(2e−0.031ρ1 + e0.7196ρ2) , G1
e3

(ρ1) = 1 − G1
e4

(ρ1) ≡ 0.5 .

One can verify that the associated dynamical flow network again admits the samef ∗ as before as

an equilibrium flow. Let us consider the same admissible perturbation as before. One can verify

that, for the corresponding perturbed dynamical flow network, limt→∞ f̃e1
(t) = 0.4 < f̃max

e1
= 1.4

and limt→∞ f̃e2
(t) = 1.6 < f̃max

e2
= 2. However, with an asymptotic arrival rate of1.6 at node

1, we have thatlimt→∞ f̃e3
(t) = 0.75 = f̃max

e3
and limt→∞ f̃e4

(t) = 0.75 = f̃max
e4

. Therefore,

limt→∞ λ̃2(t) = 1.9 < λ0, and hence the network is not fully transferring.

In both the cases,R(N , f ∗) = 1 and a disturbance of magnitude0.6 is enough to ensure

that the perturbed dynamical flow network is not fully transferring. However, note that in the

second case, unlike the first case, the routing policy at node0 responds to variations in the local

flow densities by sending more flow to linke2, but it is overly responsive in the sense that it

sends more flow downstream than the cumulative flow capacity of the links outgoing from node

1. However, by Definition 2, a distributed routing policy is not allowed any information about

any other link other than the current flow densities of its outgoing links. This illustrates one

of the challenges in designing distributed routing policies which yieldR(N , f ∗) as the strong

resilience. Observe that this distributed routing policy is not locally responsive, sinceG0 used

in the first case, does not satisfy Property (b) of Definition 5and, in the second case, it does

not satisfy Properties (a) and (b).

We now state the main technical result of this paper, showingthat, provided that the distributed

routing function is locally responsive, the strong resilience coincides with the minimal residual

node capacity.

Theorem 3 (Strong resilience for locally responsive policies): Let N be a flow network sat-

isfying Assumptions 1 and 2,λ0 ≥ 0 a constant inflow, andG a locally responsive distributed
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n
0

v*
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v *

Fig. 2. Comparison between a node-cut and a min-cut of a flow network.

routing policy. Letf ∗ ∈ cl(F) be the globally attractive limit flow of the associated dynamical

flow network (4). Then,

γ1(f
∗,G) = R(N , f *) .

Proof: See Appendix B.

For a given flow networkN , a constant inflowλ0, Theorem 2 and Theorem 3 imply that,

among all distributed routing policies such that the dynamical flow network has a given limit

flow f ∗ ∈ cl(F), locally responsive policies (for which such limit flow is unique and globally

attractive by Theorem 1) have the maximum strong resilience. Moreover, such maximal strong

resilience coincides with the minimum node residual capacity R(N , f ∗), and hence it depends

both on the flow networkN , and on the limit flowf ∗.

A few remarks are in order. First, it is worth comparing the maximal strong resilience of a

dynamical flow network with its weak resilience. The latter was studied in [3] and there shown

(see Definition 6, Proposition 1, and Theorem 2 therein) to coincide with the min-cut capacity

of the flow network,C(N ). Clearly, the former cannot exceed the latter, as can be alsodirectly

verified from the definitions (13) and (3): for this, it is sufficient to consider (see Figure 2)

U∗ ∈ argmin
U origin-destination cut

{

∑

e∈E+

U

fmax
e

}

, v∗ := max{u ∈ U∗} ,
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Fig. 3. (a) A parallel link topology. (b) A topology to illustrate arbitrarily largeC(N ) − R(N , f∗).

and observe that, sinceE+
v∗ ⊆ E+

U∗, and
∑

e∈E+

U∗
f *

e = λ0 by conservation of mass, one has

R(N , f ∗) ≤
∑

e∈E+

v∗

(fmax
e − f *

e ) ≤
∑

e∈E+

U∗

(fmax
e − f *

e ) =
∑

e∈E+

U∗

fmax
e − λ0 = C(N ) − λ0 .

We provide below two examples to illustrate the difference between the two quantities.

Example 3:For parallel link topologies, an example of which is illustrated in Figure 3 (a),

one has that

R(N , f ∗) =
∑

e∈E

fmax
e − λ0 = C(N ) − λ0 .

Example 4:Consider the topology shown in Figure 3 (b) withλ0 = 1, f * = [ǫ, 1− ǫ, ǫ, 1− ǫ]

andfmax
e = [1/ǫ, 1, 1/ǫ, 1] for someǫ ∈ (0, 1). In this case, we have thatC(N ) = 1 + 1/ǫ and

R(N , f *) = ǫ. Therefore,

C(N ) − R(N , f *) = 1 + 1/ǫ − ǫ ,

and henceC(N ) − R(N , f *) grows unbounded asǫ vanishes.

We conclude this section with the following observation. Using arguments along the lines of

those employed in [4], it is not hard to show thatC(N ) − λ0 provides an upper bound on the

strong resilience even if the locality constraint on the information used by the routing policies is

removed, i.e., if one allowsGv to depend on the full vector of current densitiesρ, rather than on

the local density vectorρv only. Indeed, one might exhibit routing policies which are functions

of the global density informationρ, for which the strong resilience is exactlyC(N )− λ0 using

ideas developed in the paper [4]. Hence, one may interpret the gapC(N ) − λ0 − R(N , f *)

as the strong resilience loss due to the locality constrainton the information available to the
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distributed routing policies. One could use Example 4 to again demonstrate arbitrarily large such

loss due to the locality constraint on the information available to the routing policies. In fact, it

is possible to consider intermediate levels of informationavailable to the routing policies, which

interpolate between the one-hop information of our currentmodeling of the network, and the

global information described above. These results on the strong resilience are in stark contrast

to our result on weak resilience in [3], where we showed that the weak resilience is unaffected

by local information constraints on the routing policies.

IV. ROBUST EQUILIBRIUM SELECTION

In this section, for a given flow networkN satisfying Assumptions 1 and 2, a constant inflow

λ0 ∈ [0, C(N )), and locally responsive distributed routing policies withlimit flow f ∗, we shall

address the issue of optimizing the strong resilience of theassociated dynamical flow network,

R(N , f ∗) with respect tof ∗. First, in Section IV-A, we shall address the issue of maximizing

R(f ∗) := R(N , f ∗) over all admissible equilibrium flow vectorsf ∗ ∈ F∗(λ0), i.e., with the only

constraints given by the link capacities and the conservation of mass. Then, in Section IV-B we

shall focus on the transportation network case, and addressthe problem of optimizingR(f ∗)

indirectly, assuming thatf ∗ satisfies the additional constraint of being an equilibriuminfluenced

by some static tolls. In Section IV-C, we shall evaluate the gap between the maximum ofR(f ∗)

over allf ∗, and a generic equilibriumf ∗, and interpret it as the robustness price of anarchy with

respect tof ∗. We then distinguish betweenR(f ∗) and the commonly used metric of average

delay associated tof ∗, and then propose a convex optimization problem to solve forf ∗ that

takes into account average delay as well as strong resilience.

A. Robust equilibrium selection as an optimization problem

The robust initial equilibrium condition selection problem can be posed as an optimization

problem as follows:

R∗ := sup
f∗∈F∗(λ0)

R(f ∗) , (15)

where we recall thatF∗(λ0) is the set of admissible equilibrium flow vectors corresponding

to the inflow λ0 ∈ [0, C(N )). Equation (13) implies thatR(f *) is the minimum of a set of

functions linear inf * , and hence is concave inf * . Since the closure of the constraint setF∗(λ0)

March 19, 2011 DRAFT



16

is a polytope, we get that the optimization problem stated in(15) is equivalent to a simple convex

optimization problem. However, note that the objective function, R(f *) is non-smooth and one

needs to use sub-gradient techniques, e.g., see [15], for finding the optimal solution.

B. Using tolls for equilibrium implementation in transportation networks

We now study the use of static tolls to influence the decisionsof the drivers in order to get a

desired emergent equilibrium condition for (unperturbed)transportation networks. The static tolls

affect the driver decisions over a slower time scale at whichthe drivers update their preferences

for global paths through the network. These global decisions are complemented by thefast-scale

node-wise route choice decisions characterized by Definition 2 and 5. The details of the analysis

of the transportation network with such two time-scale driver decisions can be found in our

companion paper [4]. In particular, we show that when the time scales are sufficiently separated

apart, then the network densities converge to a neighborhood of Wardrop equilibrium. In this

section, in order to highlight the relationship between static tolls and the resultant equilibrium

point, we assume that the fast scale dynamics equilibrates quickly and focus only on the slow

scale dynamics.

We briefly describe the congestion game framework for transportation networks to formalize

the equilibrium corresponding to the slow scale driver decision dynamics. LetΥ ∈ R be the

link-wise vector of tolls, withΥe denoting the toll on linke. Assuming thatΥ is rescaled in

such a way that one unit of toll corresponds to a unit amount ofdelay, the utility of a driver

associated with linke when the flow on it isfe is − (Te(fe) + Υe), whereTe(fe) is the delay

on link e when the flow on it isfe. In order to formally describe the functionsTe(fe), we shall

assume that each flow functionµe satisfies Assumption 2, and additionally is strictly concave

and satisfiesµ′
e(0) < +∞. Observe that the flow function described in Example 14 satisfies

these additional assumptions. Since the flow on a link is the product of speed and density on

that link, one can define the link-wise delay functionsTe(fe) by

Te(fe) :=



















+∞ if fe ≥ fmax
e ,

µ−1
e (fe)/fe if fe ∈ (0, fmax

e ),

1/µ′
e(0) if fe = 0,

∀e ∈ E . (16)

Let P be the set of distinctpaths from node0 to noden. The utility associated with a path
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p ∈ P is −
∑

e∈p (Te (fe) + Υe). Let T (f) = {Te(fe) : e ∈ E} be the vector of link-wise delay

functions. We are now ready to define atoll-inducedequilibrium.

Definition 8 (Toll-induced equilibrium):For a givenΥ ∈ R, a toll-induced equilibrium is a

vectorf *(Υ) ∈ F∗ that satisfies the following for allp ∈ P:

fe > 0 ∀e ∈ p =⇒
∑

e∈p

(Te (fe) + Υe) ≤
∑

e∈q

(Te (fe) + Υe) ∀q ∈ P.

Note that,f *(0) corresponds to a Wardrop equilibrium, e.g., see [16], [17],where0 is a vector

all of whose entries are zero. For brevity in notation, we shall denote the Wardrop equilibrium.

The following result guarantees the existence and uniqueness of a toll-induced equilibrium.

Proposition 1 (Existence and uniqueness of toll-induced equilibrium): Let N be a flow net-

work satisfying Assumptions 1 and 2 andλ0 ∈ [0, C(N )) a constant inflow. Assume additionally

that the flow functionµe is strictly concave and satisfiesµ′
e(0) < +∞ for every link e ∈ E .

Then, for every toll vectorΥ ∈ R, there exists a unique toll-induced equilibriumf ∗(Υ) ∈ F∗.

Proof: It follows from Assumption 2, strict concavity and the assumption µ′
e(0) < +∞

on the flow functions that, for alle ∈ E , the delay functionTe(fe), as defined by (16), is

continuous, strictly increasing, and is such thatTe(0) > 0. The Proposition then follows by

applying Theorems 2.4 and 2.5 from [18].

In this subsection, to illustrate the proof of concept, we will focus on equilibrium flowsf ∗ each

of whose components is strictly positive and less than the flow capacities of the corresponding

links. LetA ∈ {0, 1}P×E be the path-link incidence matrix, i.e., for alle ∈ E andp ∈ P, Ap,e = 1

if e ∈ p and zero otherwise. The results for a genericf ∗ ∈ F∗ follow along similar lines.

Definition 8 implies that forf ∗(Υ) ∈ R, with f ∗
e (Υ) > 0 for all e ∈ E , to be the toll-induced

equilibrium corresponding to the toll vectorΥ ∈ R is equivalent toA (T (f ∗(Υ)) + Υ) = ν1,

for someν > 0. We shall use this fact in the next result, where we compute tolls to get a desired

equilibrium.

Proposition 2 (Tolls for desired equilibrium):Let N be a flow network satisfying Assump-

tions 1 and 2 andλ0 ∈ [0, C(N )) a constant inflow. Assume additionally that the flow function

µe is strictly concave and satisfiesµ′
e(0) < +∞ for every link e ∈ E . Assume that the Wardrop

equilibrium fW is such thatfW
e > 0 for all e ∈ E . Let f * ∈ F∗, with f ∗

e ∈ (0, fmax
e ) for all
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e ∈ E , be the desired toll-induced equilibrium flow vector. DefineΥ(f) ∈ R by

Υ(f) =

(

max
e∈E

Te(fe)

Te(fW
e )

)

T (fW) − T (f) . (17)

Thenf ∗ is the desired toll-induced equilibrium associated to the toll vector Υ(f ∗).

Proof: SincefW is the Wardrop equilibrium, corresponding to the toll vector Υ = 0, we

have that

AT (fW) = ν11, (18)

for someν1 > 0. For f * to be the toll-induced equilibrium associated to the toll vector Υ ∈ R,

one needs to findν2 > 0 such that

A
(

T (f *) + Υ
)

= ν21. (19)

Using (18) and simple algebra, one can verify that (19) is satisfied with Υ(f *) as defined in

(17) andν2 = ν1 ·
(

maxe∈E
Te(f∗

e )
Te(fW

e )

)

.

Remark 3:The toll vector yielding a desired equilibrium operating condition is not unique.

In fact, any toll of the formΥ(f *) = cT (fW) − T (f *), with c ≥ max{Te(f
*
e )/Te(f

W
e ) : e ∈ E}

would inducef * as the toll-induced equilibrium. Proposition 2 gives just one such toll vector.

C. The robustness price of anarchy

Conventionally, transportation networks have been viewedas static flow networks, where a

given equilibrium traffic flow is an outcome of driver’s selfish behavior in response to the delays

associated with various paths and the incentive mechanismsin place. The price of anarchy [9]

has been suggested as a metric to measure how sub-optimal a given equilibrium is with respect

to the societal optimal equilibrium, where the societal optimality is related to the average delay

faced by a driver. In the context of robustness analysis of transportation networks, it is natural

to consider societal optimality from the robustness point of view, thereby motivating a notion

of the robustness price of anarchy. Formally, for af * ∈ F∗(λ0), define the robustness price of

anarchy asP
(

f *
)

:= R∗ − R
(

f *
)

. It is worth noting that, for a parallel topology, we have

that R∗ = R
(

f *
)

=
∑

e∈E fmax
e − λ0 for all f * . That is, the strong resilience is independent of

the equilibrium operating condition and hence, for a parallel topology,P
(

f *
)

≡ 0. However,

for a general topology and a general equilibrium, this quantity is non-zero. This can be easily

justified, for example, for robustness price of anarchy withrespect to the Wardrop equilibrium:
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a Wardrop equilibrium is determined by the delay functionsTe(fe) as well as the topology of

the network, whereas the maximizer ofR(f ∗) depends only on the topology and the link-wise

flow capacities of the network, as implied by the optimization problem in (15). In fact, as the

following example illustrates, for a non-parallel topology, the robustness price of anarchy with

respect to Wardrop equilibrium can be arbitrarily large.

Example 5 (Arbitrarily large robustness price of anarchy with respect to Wardrop equilibrium):

Consider the network topology shown in Figure 1. Let the link-wise flow functions be given by

Equation (14). The delay function is then given byTe(0) = (aef
max
e )−1, Te(fe) = − 1

aefe
log(1−

fe/f
max
e ) for fe ∈ (0, fmax

e ) and Te(fe) = +∞ for fe ≥ fmax
e . Fix someǫ ∈ (0, 1) and let

λ0 = 1/ǫ. Let the parameters of the flow functions be given byfmax
e1

= fmax
e2

= 1/ǫ + ǫ,

fmax
e3

= fmax
e4

= 1/(2ǫ) + ǫ/2, a1 = 1, a2 = a3 = a4 =
(

3ǫ
1−ǫ

)

log
(

ǫ+ǫ2

1+ǫ2

)

/ log
(

1+ǫ2−ǫ
1+ǫ2

)

. For

these values of the parameters, one can verify that the unique Wardrop equilibrium is given by

fW = [1 1/ǫ − 1 1/(2ǫ) − 1/2 1/(2ǫ) − 1/2]T . The strong resilience offW is then given

by R(N , fW) = min{2/ǫ + 2ǫ − 1/ǫ, 1/ǫ + ǫ − (1/ǫ − 1)} = 1 + ǫ. One can also verify that,

for this case,R∗ = 1/ǫ + 2ǫ which would correspond tof * = [1/ǫ 0 0 0]T . Therefore,

P (fW) = 1/ǫ + 2ǫ − (1 + ǫ) = 1/ǫ + ǫ − 1 which tends to+∞ as ǫ → 0+.

The above example provides a strong motivation to take robustness into account while selecting

the equilibrium operating condition for the network. However, conventionally, the equilibrium

selection problem for transportation networks has been primarily motivated from the point-of-

view of minimizing average delay. The average delay associated with an equilibriumf ∗ is defined

as:

D(f ∗) :=
∑

e∈E

f ∗
e Te(f

∗
e )/λ0. (20)

The following simple example illustrates that the maximizers of −D(f ∗) and R(f ∗) are not

necessarily the same.

Example 6:Consider the network topology shown in Figure 1. Let the link-wise flow functions

be given by Equation (14). Let the parameters of the flow function be given by:ae1
= 0.01,

ae2
= ae3

= ae4
= 10 and fmax

e1
= fmax

e2
= 2, fmax

e3
= fmax

e4
= 0.75. Let λ0 = 2. The

equilibrium maximizingR(f ∗) is f * = [2 0 0 0]T and the maximum strong resilience is

found to beR∗ = 1.5. The minimum value ofD(f ∗) over all f ∗ ∈ F∗(λ0) is 15.17, and the

corresponding equilibriumf ∗ and the value of strong resilience are[0.5 1.5 0.75 0.75]T and
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Fig. 4. Plots of the solution of the optimization in (21) for parameters specified in Example 6, asb is increased from0 to

R∗ = 1.5: (a) f∗
1 is the flow on linke1 corresponding tof∗ optimizing (21); note thatf∗

2 = λ0 − f∗
1 , andf∗

3 = f∗
4 = f∗

2 /2,

(b) D∗ is the solution of (21).

0.5 respectively. Note that the maximizers of−D(f ∗) andR(f ∗) are not necessarily the same.

Therefore, a reasonable optimization problem should take into account average delay as well as

network resilience. Accordingly, we propose a modified optimization problem as follows:

minimize D(f ∗)

subj. to f ∗ ∈ F∗(λ0),

R(f ∗) ≥ b,

(21)

whereb ∈ [0, R∗]. Assumption 2 and Equation (20) imply thatD(f ∗) is convex. Therefore, taking

into account the expression forR(f ∗), (21) is still a convex optimization problem. Figure 4 plots

the outcome of this optimization asb is varied from0 to R∗. In all the cases, we solved (21)

usingCVX, a package for specifying and solving convex programs [19].

V. CASCADED FAILURES

In this section, through numerical experiments, we study the case when the flow functions are

set to the ones commonly accepted in the transportation literature, e.g., see [20]. In transportation

literature, the flow functions are defined over a finite interval of the form [0, ρmax
e ], whereρmax

e

is the maximum traffic density that linke can handle. Additionally,µe is assumed to be strictly

concave and achieves its maximum in(0, ρmax
e ). For example, consider the following:
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µe(ρe) =
4fmax

e ρe(ρ
max
e − ρe)

(ρmax
e )2

, ρe ∈ [0, ρmax
e ]. (22)

An important implication of the finite capacity on the trafficdensities is the possibility of cascaded

spill-backstraveling upstream as follows. When the density on a link reaches its capacity, its

outflow permanently becomes zero and hence the link is effectively cut out from the network.

When all the outgoing links from a particular node are cut out, it makes the outflow on all the

incoming links to that node zero. Eventually, theseupstreamlinks might possibly reach their

capacity on the density and cutting themselves off permanently and cascading the effect further

upstream. We shall show how such cascaded effects possibly reduce the resilience.

Another important differentiating feature of the flow functions given by (22) with respect to

the flow functions satisfying Assumption 2 is that the flow functions corresponding to (22) are

not strictly increasing. As a result, one cannot readily claim that the locally responsive distributed

routing policies are maximally robust for this case. However, we illustrate via simulations that,

with additional assumptions, the locally responsive distributed routing policies considered in this

paper could possibly be maximally robust. In these simulations, we also study the effect of the

flow functions given by (22) on theweak resilienceof the network, which was formally defined

in [3]. In simple words, weak resilience of the network is defined as the minimum sum of the

link-wise magnitude of all the disturbances under which theoutflow from the destination node is

asymptotically zero. In [3, Proposition 1], we showed that the weak resilience of the dynamical

flow network with the flow functions satisfying Assumption 2 is upper bounded by its min-cut

capacity. It is easy to show that this upper bound on weak resilience also holds when the flow

functions are the ones given by (22).

For the simulations, we selected the following parameters:

• the graph topologyT shown in Figure 5.

• λ0 = 3.

• let ρmax
e = 3 for all e ∈ E , and flow capacities given byfmax

e1
= fmax

e2
= fmax

e3
= 2.5,

fmax
e4

= 0.9, fmax
e5

= 1.75, fmax
e6

= fmax
e11

= fmax
e13

= 1, fmax
e7

= fmax
e8

= 0.7, fmax
e9

= 0.4,

fmax
e10

= fmax
e12

= 1.5, fmax
e14

= 2, andfmax
e15

= 1.6. The link-wise flow functions are as given in

(22), if e ∈ E−
n or if ρ < ρmax

e′ for at least onedownstreamedgee′, i.e., e′ ∈ E such that

e ∈ E−
v and e′ ∈ E+

v for somev ∈ {1, . . . , n − 1}, and the flow functions are uniformly
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Fig. 5. The graph topology used in simulations.

zero otherwise;

• the equilibrium flowf ∗ has componentsf ∗
e1

= f ∗
e3

= f ∗
e6

= 0.5, f ∗
e2

= 2, f ∗
e4

= f ∗
e13

= 0.3,

f ∗
e5

= 1.5, f ∗
e7

= f ∗
e8

= 0.25, f ∗
e9

= 0.2, f ∗
e10

= f ∗
e12

= 0.9, f ∗
e11

= 0.2, f ∗
e13

= 0.3, f ∗
e14

= 1.1,

andf ∗
e15

= 0.7;

• for the route choice function is as follows:

Gv
e(ρ

v) =
f *

e exp(−η(ρe − ρ∗
e))1[0,ρmax

e ](ρe)
∑

j∈E+
v

f *
j exp(−η(ρj − ρ∗

j ))1[0,ρmax
j

](ρj)
,

whereη will be a variable parameter for the simulations. Note that this is a modified version

of the route choice function given provided in [3]. The modification is done to respect the

finite traffic density constraint on the links.

One can verify that, with these parameters, the minimum noderesidual capacity, and hence

an upper bound on the strong resilience, as defined by (13) is0.75. One can also verify that the

maximum flow capacity of the network, and hence an upper boundon the weak resilience, is

5.2.

A. Effect ofη on the strong resilience

Consider an admissible perturbation such thatµ̃e10
= 8

15
µe10

and µ̃ek
= µk for all k ∈

{1, . . . , 15} \ {10}. As a result,δe10
= 0.7 andδek

= 0 for all k ∈ {1, . . . , 15} \ {10}. Therefore,

the magnitude of the perturbation isδ = 0.7. Note that this value is less than the minimum

node residual capacity of the network. We found thatlimt→∞ λe8
(t) = 0 for all η < 0.25, and
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limt→∞ λe8
(t) = λ0 = 3 for all η ≥ 0.25. The role ofη in the strong resilience is best understood

by concentrating on a parallel topology consisting of edgese10 and e12 with arrival rateλ∗
e4

.

Using similar techniques as in the proof of Theorem 3, one canshow the existence of a new

equilibrium for thislocal system. However, this equilibrium is not attractive from a configuration

where at least one of̃ρe10
or ρ̃e12

is at ρmax
e10

or ρmax
e12

, respectively. Forη < 0.25, ρ̃e10
reaches

ρmax
e10

, whereas forη ≥ 0.25, neither ρ̃e10
nor ρ̃e12

hit the maximum density capacity and the

system is attracted towards the new equilibrium.

B. Effect of cascaded shutdowns on the weak resilience

Consider an admissible disturbance such thatµ̃e4
= 2

9
µe4

, µ̃e5
= 23

35
µe5

, µ̃e6
= 4

5
µ6, µ̃e7

= 2
7
µe7

,

µ̃e8
= 2

7
µe8

, µ̃e9
= 1

2
µe9

, µ̃e10
= 3

5
µe10

, µ̃e12
= 8

15
µe12

andµ̃k = µk for k = {1, 2, 3, 11, 13, 14, 15}.

As result,δe4
= 0.7, δe5

= 0.6, δe6
= 0.2, δe7

= 0.5, δe8
= 0.5, δe9

= 0.2, δe10
= 0.6, δe12

= 0.7

and δek
= 0 for k = {1, 2, 3, 11, 13, 14, 15}. Therefore,δ = 4, which is less than the min-cut

flow capacity of the network. For this case, it is observed that, limt→∞ λe8
(t) = 0 independent

of the value ofη. This can be explained as follows. For the given disturbance, we have that

f̃max
e10

+ f̃max
e12

= 1.7 < 1.8 = f ∗
e10

+f ∗
e12

. Therefore, after finite timet1, we have that̃ρe10
(t) = ρmax

e10

and ρ̃e12
(t) = ρmax

e12
for all t ≥ t1. As a consequence, we have that,f̃e4

(t) = 0 and f̃e5
(t) = 0

for all t ≥ t1. One can repeat this argument to conclude that, for the givendisturbance, after

finite time, ρ̃ek
for k = 1, . . . , 9 reach and remain at their maximum density capacities. As a

consequence, after such a finite time,f̃e1
(t) + f̃e2

(t) + f̃e3
(t) = 0 and hence,limt→∞ λe8

(t) = 0,

i.e., the network is not partially transferring. This is also illustrated in Figure 6 which plots the

flow through some of the links of the network as a function of time. This example illustrates that

the cascaded effects can potentially reduce the weak resilience of a dynamical flow network.

VI. CONCLUSION

In this paper, we studied strong resilience of dynamical flownetworks, with respect to

perturbations that reduce the flow functions of the links of the network. We showed that locally

responsive distributed routing policies yield the maximumstrong resilience under local informa-

tion constraint. We also showed that the corresponding strong resilience is equal to the minimum

node residual capacity of the network, and hence depends on the limit flow of the unperturbed

network. Our results show that, unlike the weak resilience which was considered in [3], the
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Fig. 6. Plot of link-wise flows for some of the links of the network that ultimately shut down. The timings of shut downs of

the links demonstrate the cascaded effect starting from link e10 and traveling up to the origin node.

strong resilience of a dynamical flow network is sensitive tolocal information constraint. We

proposed simple convex optimization problems to solve for equilibria that maximize traditional

metrics of social optimality such as average delay subject to guarantees on strong resilience.

We also discussed the use of tolls to induce a generic initialequilibrium flow in the context of

transportation networks. Finally, we also discussed cascading failures due to spill backs when

we impose finite density constraints on the links and illustrated the utility of routing policies

discussed in this paper in averting such failures. The findings of this and the companion paper [3]

stand to provide important guidelines for management of several large scale critical infrastructures

both from planning as well as real-time operation point of view.

In future, we plan to extend the research in several directions. We plan to rigorously study

the robustness properties of the network with finite link-wise capacity for the densities, and

formally establish the results on the resilience as suggested in Section V. We plan to study the

scaling of the resilience with respect to the amount of information, e.g., multi-hop as opposed

to just single-hop, available to the routing policies. We also plan to perform robustness analysis

in a probabilistic framework to complement the adversarialframework of this paper, possibly

considering other general models for disturbances. In particular, it would be interesting to study

robustness with respect to sequential disturbances than just one-shot disturbance considered in

this paper. We plan to consider a setting with buffer capacities on the nodes and study the

scaling of the resilience with such buffer capacities. We also plan to consider more general
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graph topologies, e.g., graphs having cycles and multiple origin-destination pairs.

APPENDIX A

PROOF OFTHEOREM 2

In this section, we shall prove Theorem 2 , by showing that, given a flow networkN satisfying

Assumptions 1 and 2, a constant inflowλ0 ≥ 0, a distributed routing policyG, and a limit flow

f ∗ ∈ cl(F) for the associated dynamical flow network (4), the strong resilience satisfies

γ1(f
∗,G) = R(N , f ∗) .

Let f ◦ ∈ B(f ∗) be some initial flow attracted byf ∗. In order to prove the result it is sufficient

to exhibit a family of admissible perturbations, with magnitudeδ arbitrarily close toR(N , f ∗),

under which the network is not fully transferring with respect to f ◦. Let us fix some non-

destination node0 ≤ v < n minimizing the right-hand side of (13), and putκ :=
∑

e∈E+
v

fmax
e .

For anyR(N , f ∗) < δ < κ, consider the admissible perturbation defined by

µ̃e(ρe) :=
κ − δ

κ
µe(ρe) , ∀e ∈ E+

v , µ̃e(ρe) := µe(ρe) , ∀e ∈ E \ E+
v . (23)

Clearly, the magnitude of such perturbation equalsδ.

Let us consider the origin-destination cut-setU := {0, 1, . . . , v}, and put

E+
U := {(u, w) ∈ E : 0 ≤ u ≤ v, v < w ≤ n} .

Observe that, thanks to Assumption 1 on the acyclicity of thenetwork topology, since all

the edges outgoing from some nodeu ≤ v are unaffected by the perturbation, the associated

perturbed dynamical flow network (11) with initial flow̃f(0) = f ◦ ∈ B(f ∗) satisfies

lim
t→+∞

f̃e(t) = lim
t→+∞

fe(t) = f *
e , ∀e ∈ E+

u , ∀0 ≤ u < v .

In particular, this implies that̃µe(ρ̃e(t)) = f *
e for all t ≥ 0, and for every linke ∈ E+

U \ E+
v . On

the other hand, one has that

f̃e(t) < f̃max
e =

κ − δ

κ
fmax

e , ∀e ∈ E+
v , ∀t ≥ 0 .
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Therefore, one has that

lim sup
t→+∞

∑

e∈E+

U

f̃e(t) ≤
∑

e∈E+
v

f̃max
e +

∑

e∈E+

U
\E+

v

f *
e

=
κ − δ

κ

∑

e∈E+
v

fmax
e +

∑

e∈E+

U
\E+

v

f *
e

=
∑

e∈E+
v

fmax
e − δ −

∑

e∈E+
v

f ∗
e +

∑

e∈E+

U

f ∗
e

= R(N , f ∗) − δ + λ0 .

(24)

Observe that, for everyv < w < n, andt ≥ 0,

d

dt

(

∑

e∈E+
w

ρ̃e(t)
)

=
∑

e∈E+
w

(

∑

e∈E−
w

f̃e(t)
)

Gv
e(ρ̃

w(t)) −
∑

e∈E+
w

f̃e(t)

=
∑

e∈E−
w

f̃e(t) −
∑

e∈E+
w

f̃e(t) .
(25)

Define the edge sets

A :=
⋃n−1

w=v+1
E+

w , B :=
⋃n

w=v+1
E−

w ,

and putζ(t) :=
∑

e∈A ρe(t). Using (25), the identityA∪ E+
U = B, and (24), one gets that there

exists someτ ′ ≥ 0 such that

d

dt
ζ(t) =

∑

v<w≤n

∑

e∈E−
w

f̃e(t) −
∑

v<w≤n

∑

e∈E+
w

f̃e(t)

=
∑

e∈B
f̃e(t) −

∑

e∈E−
n

f̃e(t) −
∑

e∈A
f̃e(t)

=
∑

e∈E+

U

f̃e(t) −
∑

e∈E−
n

f̃e(t)

≤ R(N , f ∗) − δ + λ0 − λ̃n(t) + ε ,

(26)

for all t ≥ τ ′. Now assume, by contradiction, that

lim inf
t→+∞

λ̃n(t) > R(N , f ∗) − δ + λ0 .

Then, there would exist someε > 0 andτ ′′ ≥ 0 such that

λ̃n(t) ≥ R(N , f ∗) − δ + λ0 + 2ε , t ≥ τ ′′ .

It would then follow from (26) and Gronwall’s inequality that

ζ(t) ≤ ζ(τ) − (t − τ)ε , ∀t ≥ τ ,

whereτ := max{τ ′, τ ′′}. Then,ζ(t) would converge to−∞ as t grows large, contradicting the

fact thatζ(t) ≥ 0 for all t ≥ 0. Hence, necessarily

lim inf
t→+∞

λ̃n(t) ≤ R(N , f ∗) − δ + λ0 < λ0 ,
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so that the perturbed dynamical flow network is not fully transferring. Then, from the arbitrariness

of the perturbation’s magnitudeδ ∈ (R(N , f ∗), κ), it follows that the network’s strong resilience

is upper bounded byR(N , f ∗).

APPENDIX B

PROOF OFTHEOREM 3

In this section, we shall prove Theorem 3, by showing that, given a flow networkN satisfying

Assumptions 1 and 2, a constant inflowλ0 ≥ 0, and a locally responsive distributed routing policy

G, then the strong resilience of the unique limit flowf ∗ ∈ cl(F) of the associated dynamical

flow network (4) satisfies

γ1(f
∗,G) = R(N , f ∗) .

Thanks to Theorem 2, it is sufficient to show that

γ1(f
∗,G) ≥ R(N , f ∗) . (27)

First, let us consider the case whenf ∗ ∈ cl(F) \ F∗(λ0), i.e., when the limit flow of the

unperturbed dynamical flow network (4) is not an equilibrium. As argued in Remark 1, in this

case some of the capacity constraints are satisfied with equality, i.e., there exist0 ≤ v < n and

e ∈ E+
v such thatf ∗

e = fmax
e . Then, Theorem 1 implies thatf ∗

e = fmax
e for all e ∈ E+

v , so that

R(N , f ∗) ≤
∑

e∈E+
v

(fmax
e − f ∗

e ) = 0 ,

and (27) is trivially satisfied, sinceγ1(f
∗,G) ≥ 0 by definition. Therefore, for the rest of this

section, we shall restrict ourselves on the case whenf ∗ ∈ F∗(λ0), i.e., whenf ∗ is a globally

attractive equilibrium flow of the unperturbed dynamical flow network (4).

Observe that, for any admissible perturbation, regardlessof its magnitude, the perturbed

dynamical flow network (11) satisfies all the assumptions of Theorem 1, which can therefore

be applied to show the existence of a globally attractive perturbed limit flow f̃ ∗ ∈ cl(F). This

in particular implies that̃λn(t) =
∑

e∈E−
n

f̃e(t) converges tõλ∗
n =

∑

e∈E−
n

f̃ ∗
e as t grows large.

However, this is not sufficient in order to prove strong resilience of the perturbed dynamical

flow network (11), as it might be the case thatλ̃∗
n < λ0.

In fact, it turns out that, provided that the magnitude of theadmissible perturbation is smaller

thanR(N , f ∗), the perturbed limit flowf̃ ∗ is an equilibrium flow for the perturbed dynamical
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flow network, so that̃λ∗
n = λ0 and (11) is fully transferring. In order to show this, we needto

study theperturbed local system

d

dt
ρ̃e(t) = λ̃(t)Gv

e(ρ̃
v(t)) − f̃e(t) , f̃e(t) = µ̃e(ρ̃e(t)) , ∀e ∈ E+

v , (28)

for every non-destination node0 ≤ v < n, and nonnegative-real-valued, Lipschitz local input

λ̃(t). Indeed, [3, Lemma 4] can be applied to the perturbed local system (28) establishing

convergence of the perturbed local flowsf̃ v(t) to a local equilibrium flowf̃ ∗(λ) ∈ Fv, provided

that the input flowλ̃(t) converges, ast grows large, to a valueλ which is strictly smaller than

the sum of the perturbed flow capacities of the outgoing links. However, such local result is not

sufficient to prove strong resilience of the entire perturbed dynamical flow network. The key

property in order to prove such a global result is stated in Lemma 1, which describes how the

flow redistributes itself upon the network perturbation. Inparticular, such result ensures that the

increase in flow on all the links downstream from a node whose outgoing links are affected by

a given perturbation, is less than the magnitude of the disturbance itself. We shall refer to this

property as to thediffusivity of the local perturbed system.

Lemma 1 (Diffusivity of the local perturbed system):Let N be a flow network satisfying As-

sumptions 1 and 2,G be a locally responsive distributed routing policy,λ0 ≥ 0 a constant inflow.

Assume thatf ∗ ∈ F∗(λ0) is an equilibrium flow for the dynamical flow network (4). Let̃N be

an admissible perturbation ofN , 0 ≤ v < n be a nondestination node,λ∗
v :=

∑

e∈E+
v

f ∗
e , and

λ ∈ [0,
∑

e∈E+
v

f̃max
e ). Then, for everyJ ⊆ E+

v , the local equilibrium flowf̃ ∗(λ) of the perturbed

local system (11) with constant local inputλ̃(t) ≡ λ satisfies

∑

e∈J

(

f̃ ∗
e (λ) − f *

e

)

≤ [λ − λ∗
v]+ +

∑

e∈E+
v

δe , (29)

whereδe := ||µe( · )− µ̃e( · )||∞.

Proof: Define λ∗
v :=

∑

e∈E+
v

f *
e , and λ̂ := max{λ, λ∗

v}. Let ρ̂v(t) be the solution of the

perturbed local system (28) with constant inputλ̃(t) ≡ λ̂, and initial conditionρ̂e(0) = ρ∗
e :=

µ−1
e (f ∗

e ), for all e ∈ E+
v , and letf̂e(e) := µ̃e(ρ̂e(t)). We shall first prove that

f̂e(t) ≥ f ∗
e , ∀ t ≥ 0 ∀ e ∈ E+

v . (30)

For this, consider a point̂ρv ∈ Rv, such thatρ̂v 6= ρ* , and there exists somei ∈ E+
v such that

ρ̂i = ρ*
i and ρ̂e ≥ ρ*

e for all e 6= i ∈ E+
v . For such aρ̂v and i, [3, Lemma 4] implies that
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Gv
i (ρ̂

v) ≥ Gv
i (ρ

*). This, combined with the fact that̂λ ≥ λ∗
v and

µ̃i(ρ̂i) ≤ µi(ρ̂i) = µi(ρ
*
i ) ,

yields

λ̂vG
v
i (ρ̂

v) − µ̃i(ρ̂i) ≥ λ∗
vG

v
i (ρ

* ) − µi(ρ
*
i ) = 0 . (31)

Considering the regionΩ := {ρ̂v ∈ Rv : ρ̂j ≥ ρ*
j , ∀j ∈ E+

v }, and denoting byω ∈ RE+
v the unit

outward-pointing normal vector to the boundary ofΩ at ρ̂v, (31) shows that

d

dt
ρ̂v · ω =

(

λ̂vG
v(ρ̂v) − µ̃v(ρ̂

v)
)

· ω ≤ 0 , ∀ρ̂v ∈ ∂Ω , t ≥ 0 .

Therefore,Ω is invariant under (28). Sincêρv(0) = ρ* ∈ Ω, this proves (30).

Now, [3, Lemma 4] implies that there exists a unique local equilibrium flow f̂ ∗ := f̃ ∗(λ̂).

Then, for anyJ ⊆ E+
v , (30) implies that

∑

j
f̂ ∗

j = λ̂∗
v −

∑

k
f̂ ∗

k

≤ λ̂∗
v −

∑

k
µ̃k(ρ

*
k)

= λ̂∗
v − λ∗

v +
∑

j
f *

j +
∑

k
µk(ρ

*
k) −

∑

k
µ̃k(ρ

*
k)

≤ [λ̂∗
v − λ∗

v]+ +
∑

j
f *

j +
∑

k
δk

≤ [λ̂∗
v − λ∗

v]+ +
∑

j
f *

j +
∑

e
δe ,

(32)

where the summation indicesj, k, ande run overJ , E+
v \ J , andE+

v , respectively. Moreover,

sinceλ ≤ λ̂ from [3, Lemma 3], one gets that̃f ∗
e (λ) ≤ f̃ ∗

e (λ̂) = f̂ ∗
e for all e ∈ E+

v . In particular,

this implies that
∑

j∈J

f̃ ∗
j (λ) ≤

∑

j∈J

f̂ ∗
j , ∀J ⊂ E+

v .

This, combined with (32), proves (29).

The following lemma exploits the diffusivity property fromLemma 1 along with an induction

argument on the topological ordering of the node set to provethat R(N , f ∗) is indeed a lower

bound on the strong resilience of the network under the locally responsive distributed routing

policies.

Lemma 2 (Gloally attractive equilibrium for perturbed flow network): Consider a flow net-

work N satisfying Assumptions 1 and 2, a locally responsive distributed routing policyG, and

March 19, 2011 DRAFT



30

0 v + 1 n
λ0

Dv+1

Bv+1

J

J1

J2

Fig. 7. Illustration of the sets used in proving the induction step.

a constant inflowλ0 ≥ 0. Assume thatf ∗ ∈ F∗(λ0) is an equilibrium flow for the associated

dynamical flow network. Let̃N be an admissible perturbation ofN , of magnitudeδ < R(N , f ∗).

Then, the perturbed dynamical flow network (11) has a globally attractive equilibrium flow and

hence it is fully transferring.

Proof: First recall that Theorem 1 can be applied to the perturbed dynamical network (11)

in order to prove existence of a globally attractive limit flow f̃ ∗ ∈ cl(F) for the perturbed

dynamical network flow (11). For brevity in notation, for every 1 ≤ v < n, put

λ∗
v :=

∑

e∈E+
v

f *
e , λ̃∗

v :=
∑

e∈E−
v

f̃e , λmax
v :=

∑

e∈E+
v

f̃max
e .

Also, for every nodev ∈ V, let

Dv :=
⋃v

u=0
E+

u , Bv := {(u, w) ∈ E : 0 ≤ u ≤ v, v < w ≤ n}

be, respectively, the set of all outgoing links, and the link-boundary of the node set{0, 1, . . . , v}.

We shall prove the following through induction onu = 0, 1, . . . , n − 1:
∑

e∈J

(

f̃ ∗
e − f *

e

)

≤
∑

e∈Du

δe , ∀J ⊆ Bu . (33)

First, notice thatB0 = D0 = E+
0 . Since

∑

e∈E+

0

δe ≤ δ < R(N , f ∗) ≤
∑

e∈E+

0

(fmax
e − f *

e ) ,

we also have thatλ0 < λ̃max
v . Therefore, by using (29) of Lemma 1, one can verify that (33)

holds true forv = 0.
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Now, for somev ≤ n − 2, assume that (33) holds true for everyu ≤ v. Consider a subset

J ⊆ Bv+1 and letJ1 := J ∩E+
v+1 andJ2 := J \J1 (e.g., see Figure 7). By applying Lemma 1

to the setJ1, one gets that

∑

e∈J1

(

f̃ ∗
e − f *

e

)

≤
[

λ̃∗
v+1 − λ∗

v+1

]

+
+

∑

e∈E+

v+1

δe, ∀ t ≥ 0. (34)

It is easy to check thatJ2 ⊆ Bv and E−
v+1 ⊆ Bv. Therefore, using (33) for the setsJ2 and

J2 ∪ E−
v+1, one gets the following inequalities respectively:

∑

e∈J2

(

f̃ ∗
e − f *

e

)

≤
∑

e∈Dv

δe, (35)

∑

e∈J2

(

f̃ ∗
e − f *

e

)

+
∑

e∈E−

v+1

(

f̃ ∗
e − f *

e

)

≤
∑

e∈Dv

δe. (36)

Consider the two cases:̃λ∗
v+1 ≤ λ∗

v+1, or λ̃∗
v+1 > λ∗

v+1. By adding up (34) and (35), in the first

case, or (34) and (36) in the second case, one gets that

∑

e∈J

(

f̃ ∗
e − f *

e

)

=
∑

e∈J1

(

f̃ ∗
e − f *

e

)

+
∑

e∈J2

(

f̃ ∗
e − f *

e

)

≤
∑

e∈E+

v+1

δe +
∑

e∈Dv

δe ≤
∑

e∈Dv+1

δe .

This proves (33) for nodev + 1 and hence the induction step.

Fix 1 ≤ v < n. SinceE−
v ⊆ Bv−1, (33) with u = v − 1 implies that

λ̃∗
v =

∑

e∈E−
v

f̃ ∗
e ≤

∑

e∈E−
v

f *
e +

∑

e∈Dv−1

δe =
∑

e∈E+
v

f *
e +

∑

e∈E

δe −
∑

e∈E\Dv−1

δe ,

where the third step follows from the fact that
∑

e∈E−
v

f *
e =

∑

e∈E+
v

f *
e by conservation of mass.

Then, sinceE+
v ⊆ E \ Dv−1, one gets that

λ̃∗
v ≤

∑

e
f *

e + δ −
∑

e
δe

<
∑

e
f *

e + R(N , f ∗) −
∑

e
δe

≤
∑

e
f *

e +
∑

e

(

fmax
e − f *

e

)

−
∑

e
δe

=
∑

e
(fmax

e − δe)

=
∑

e
f̃max

e ,

where the summation indexe runs overE+
v . Hence, it follows from [3, Lemma 2] applied to the

perturbed local system (28) that

f̃ ∗
e = f̃ ∗

e (λ̃∗
v) < f̃max

e , ∀e ∈ E+
v , (37)
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for all 1 ≤ v < n − 1. Moreover, sinceλ0 =
∑

e∈E+
v

f ∗
e <

∑

e∈E+
v

fmax
e , applying [3, Lemma 2]

again to the perturbed local system (28) shows that (37) holds true forv = 0 as well. Hence,

f̃ ∗
e < fmax

e , ∀e ∈ E ,

so that the limit flowf̃ ∗ belongs toF , and hence it is necessarily an equilibrium flow of the

perturbed dynamical flow network (11), as argued in Remark 1.Therefore, the dynamical flow

network (11) is fully transferring.

Theorem 3 now immediately follows from Lemma 2, and the arbitrariness of the admissible

perturbation of magnitude smaller thanR(N , f ∗).
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