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Abstract—Robustness of distributed routing policies is studied
for dynamical networks, with respect to adversarial disturbances
that reduce the link flow capacities. A dynamical network is mod-
eled as a system of ordinary differential equations derived from
mass conservation laws on a directed acyclic graph with a single
origin-destination pair and a constant total outflow at the origin.
Routing policies regulate the way the total outflow at each nondes-
tination node gets split among its outgoing links as a function of the
current particle density, while the outflow of a link is modeled to
depend on the current particle density on that link through a flow
function. The dynamical network is called partially transferring if
the total inflow at the destination node is asymptotically bounded
away from zero, and its weak resilience is measured as the min-
imum sum of the link-wise magnitude of disturbances that make it
not partially transferring. The weak resilience of a dynamical net-
work with arbitrary routing policy is shown to be upper bounded
by the network’s min-cut capacity and, hence, is independent of the
initial flow conditions. Moreover, a class of distributed routing poli-
cies that rely exclusively on local information on the particle densi-
ties, and are locally responsive to that, is shown to yield such max-
imal weak resilience. These results imply that locality constraints
on the information available to the routing policies do not cause loss
of weak resilience. Fundamental properties of dynamical networks
driven by locally responsive distributed routing policies are ana-
lyzed in detail, including global convergence to a unique limit flow.
The derivation of these properties exploits the cooperative nature
of these dynamical systems, together with an additional stability
property implied by the assumption of monotonicity of the flow as
a function of the density on each link.
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I. INTRODUCTION

ETWORK FLOWS provide a fruitful modeling frame-

work for transport phenomena, with many applications of
interest (e.g., road traffic, data, and production networks). They
entail a fluid-like description of the macroscopic motion of par-
ticles, which are routed from their origins to their destinations
via intermediate nodes, and we refer to standard textbooks, such
as [2], for a thorough treatment.

The present and a companion paper [3] study dynamical for-
mulations of flows over networks. In particular, we study dy-
namical networks, modeled as systems of ordinary differen-
tial equations derived from mass conservation laws on directed
acyclic graphs with a single origin-destination pair and a con-
stant total outflow at the origin. The rate of change of the par-
ticle density on each link of the network is equal to the differ-
ence between the inflow and the outflow of that link. The latter
is modeled to depend on the current particle density on that link
through a flow function. On the other hand, the way the total
outflow at a nondestination node gets split among its outgoing
links depends on the current particle density, possibly on the en-
tire network, through a routing policy. A routing policy is said
to be distributed if the proportion of total outflow routed to the
outgoing links of a node is allowed to depend only on local in-
formation, consisting of the current particle densities on the out-
going links of the same node.

The inspiration for such a modeling paradigm comes from
empirical findings from several application domains: in road
traffic networks [4], the flow functions are typically referred to
as fundamental diagrams; in data networks [5]-[7], flow func-
tions model congestion-dependent throughput and average de-
lays, while routing policies are designed in order to optimize the
total throughput or other performance measures; in production
networks [8], [9], flow functions correspond to clearing func-
tions. As for the routing policies, in data and production net-
works, they have to be thought as suitably designed distributed
feedback controls. On the other hand, in road traffic networks,
routing policies are meant to describe the selfish dynamic route
choice behavior of the drivers adapting to the current conges-
tion levels of the network.

Our objective is the analysis and design of distributed routing
policies for dynamical networks that are maximally robust with
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respect to adversarial disturbances that reduce the link flow ca-
pacities. Two notions of transfer efficiency are introduced in
order to capture the extremes of the resilience of the network
toward disturbances: the dynamical network is fully transfer-
ring if the total inflow at the destination node asymptotically
approaches the total outflow at the origin node, and partially
transferring if the total inflow at the destination node is asymp-
totically bounded away from zero. The robustness of distributed
routing policies is evaluated in terms of the network’s strong
and weak resilience, which are defined as the minimum sum
of link-wise magnitude of disturbances making the perturbed
dynamical network not fully transferring, and, respectively, not
partially transferring. In this paper, we prove that the maximum
possible weak resilience is yielded by a class of locally respon-
sive distributed routing policies, which rely only on local infor-
mation on the current particle densities on the network, and are
characterized by the property that the portion of its total outflow
that a node routes toward an outgoing link does not decrease as
the particle density on any other outgoing link increases. More-
over, we show that the maximum weak resilience of dynam-
ical networks with arbitrary, not necessarily distributed, routing
policies is equal to the min-cut capacity of the network and,
hence, is independent of the initial flow.

The contributions of this paper are as follows: 1) we formulate
a novel dynamical system framework for robustness analysis of
network flows under feedback routing policies that are possibly
constrained in the available information; 2) we introduce a rich
class of locally responsive distributed routing policies that yield
the maximum weak resilience; 3) we provide a simple char-
acterization of the resilience in terms of the topology and ca-
pacity of the network. In particular, the class of locally respon-
sive distributed routing policies can be interpreted as approxi-
mate Nash equilibria in an appropriate zero-sum game setting
where the objective of the adversary inflicting the disturbance
is to make the network not partially transferring with a distur-
bance of minimum possible magnitude, and the objective of the
system planner is to design distributed routing policies that yield
the maximum possible resilience. The results of this paper imply
that locality constraints on the information available to routing
policies do not affect the maximally achievable weak resilience.
In contrast, in the companion paper [3], we focus on the strong
resilience properties of dynamical networks, and show that lo-
cally responsive distributed routing policies are maximally ro-
bust, but only within the class of distributed routing policies
which are constrained to use only local information on the par-
ticle densities.

The main technical assumptions in our model are that the
network topology is acyclic and contains a single origin-des-
tination pair; that there is no bound on the density on the links;
and that, on every link, the flow is monotonically increasing in
the density. The acyclicity assumption does not cause serious
limitations to the applicability of our results as long as one is
dealing, as we are, with a single origin-destination pair. How-
ever, such an assumption limits the generalizability of our re-
sults to scenarios with multiple origin-destination pairs, where
the absence of cycles is harder to justify. On the other hand, the
absence of an a priori bound on the particle density prevents the
occurrence of backward effects, such as the so-called bullwhip
effect often observed in production networks (see, e.g., [10]). Fi-
nally, monotonicity of the flow function is a reasonable assump-

tion for production networks [10] as well as data networks, in
particular, the Internet, for the existence of traffic control pro-
tocol/internet protocol (TCP/IP) congestion control procedures
[6], [7]. In contrast, this assumption constitutes a major limita-
tion in road traffic networks, where fundamental diagrams are
typically assumed to have a N-shaped graph. However, in this
application context, our results can be applied, provided that
the density on each link remains on the interval where the flow
function is increasing and, thus, allows one to obtain possibly
conservative bounds on the resilience of road traffic networks.
Also, it is worth stressing that in road traffic networks, local re-
sponsiveness of the distributed routing policies appears to be a
very natural assumption for the behavior of drivers who natu-
rally tend to choose a link with higher frequency the less con-
gested it is. Similarly, local responsiveness appears to be an in-
tuitive design guideline for distributed routing policies in data
and production networks.

In the course of our analysis, we prove some fundamental
properties of dynamical networks driven by locally responsive
distributed policies, including global convergence to a unique
limit flow. These results are mainly a consequence of the coop-
erativeness property (in the sense of Hirsch [11], [12]; see also
the recent survey [13]) which dynamical networks inherit from
local responsiveness of the distributed routing policies. In par-
ticular, our proof of global convergence to a unique limit flow
exploits the acyclicity assumption on the network topology in
order to treat the dynamical network as a cascade of monotone
local systems (in the spirit of [14]), whose input—output char-
acteristics are established by an ad hoc contraction argument
which makes careful use of the local responsiveness of the dis-
tributed routing policy as well as of the monotonicity of the link
flow functions.

Stability analysis of network flow control policies under non-
persistent disturbances, especially in the context of the Internet,
has attracted a lot of attention (see, e.g., [15]-[18]). Robustness
of the Internet with respect to its architecture has been studied in
[19] and [20]. Recent work on robustness analysis of static net-
work flows under adversarial and probabilistic persistent distur-
bances in the spirit of this paper include [21]-[23]. Our problem
setup could also be considered a dynamical and distributed ver-
sion of the network interdiction problem (see, e.g., [24]), where
the objective is to find the set of links to be removed from a
network to maximize the reduction in its flow capacity subject
to budget constraints on link removal. It is worth comparing
the distributed routing policies studied in this paper with the
back-pressure policy [25], which is one of the most well-known
robust distributed routing policies for queueing networks. While
relying on local information in the same way as the distributed
routing policies studied here, back-pressure policies require the
nodes to have, possibly unlimited, buffer capacity. In contrast,
in our framework, the nodes have no buffer capacity. In fact, the
distributed routing policies considered in this paper are closely
related to the well-known hot-potato or deflection-routing poli-
cies [5, Sec. 5.1], [26], where the nodes route incoming packets
immediately to one of the outgoing links. However, to the best
of our knowledge, the robustness properties of dynamical net-
works, where the outflow from a link is not necessarily equal to
its inflow, have not been studied before.

It is also worth contrasting our work with the fluid-dynamical
and kinetic models of transport networks as treated (e.g., in [4]



COMO et al.: ROBUST DISTRIBUTED ROUTING IN DYNAMICAL NETWORKS—PART I 319

and [9]) and references therein. Compared to these models (typ-
ically described by partial, or integro-differential equations),
ours provide a much coarser description (treating particle den-
sity and flow as homogeneous quantities on the links, represen-
tative of spatial averages), whereas it highlights the role of the
feedback routing policies, with possibly different levels of in-
formation, which is typically neglected in that literature.

Finally, we wish to stress once more that the notion of
resilience we deal with in this paper is with respect to deter-
ministic adversarial disturbances. Based on similar analyses for
other complex networks [19], [20], it is reasonable to expect
that, in some cases, stochastic perturbations may guarantee
better resilience for given probabilistic models of perturbations,
as opposed to the worst case scenario analyzed here. This point
is not addressed here, but rather left as a topic for further
research.

The rest of this paper is organized as follows. In Section II,
we formulate the problem by formally defining the notion of
a dynamical network and its resilience, and we prove that the
weak resilience of a dynamical network driven by an arbitrary,
not necessarily distributed, routing policy is upper bounded by
the min-cut capacity of the network. In Section III, we intro-
duce the class of locally responsive distributed routing policies,
and state the main results on dynamical networks driven by such
locally responsive distributed routing policies: Theorem 1, con-
cerning global convergence toward a unique equilibrium flow;
and Theorem 2, concerning the maximal weak resilience prop-
erty. In Sections IV, and V, we state proofs of Theorem 1 and
Theorem 2, respectively.

Before proceeding, we define some preliminary notations to
be used throughout this paper. Let R be the set of real numbers,
and Ry := {# € R : & > 0} be the set of non-negative
real numbers. When A and B are finite sets, |.4| will denote
the cardinality of A, R* (respectively, Rﬁ) will stay for the
space of real-valued (non-negative-real-valued) vectors whose
components are indexed by elements of .4, and R**% for the
space of matrices whose real entries are indexed by pairs of
elements in A x B. The transpose of a matrix A/ € RA*XB,
will be denoted by MT € RB*A while 1 will stand for the
all-one vector, whose size will be clear from the context. Let
cl(X) be the closure of a set X C R4, A directed multigraph
is the pair (V, £) of a finite set V' of nodes, and of a multiset £
of links consisting of ordered pairs of nodes (i.e., we allow for
parallel links between a pair of nodes). If e = (v,w) € £ isa
link, where v, w € V, we shall write o(¢) = v and 7(¢) = w
for its tail and head node, respectively. The sets of outgoing and
incoming links of a node v € V will be denoted by £, := {e €
E:o0(e)=wv}land &, := {e € £ : 7(ec) = v}, respectively.
Moreover, we shall use the shorthand notation R,, := Rf’r for
the set of non-negative-real-valued vectors whose entries are
indexed by elements of &, S, == {p € Ry : D cot Pe = 1}
for the simplex of probability vectors over £, and R := Rf_
for the set of non-negative-real-valued vectors whose entries are
indexed by the links in £.

II. DYNAMICAL NETWORKS AND THEIR RESILIENCE

In this section, we introduce our model of dynamical net-
works and define the notions of transfer efficiencies.

A. Dynamical Networks

We start with the following definition.

Definition 1 (Network): A network N' = (T, ) is the pair
of a topology, described by a finite directed multigraph 7 =
(V. &), where V is the node set and £ is the link multiset, and a
family of flow functions p = {p. : Ry — R} } .. describing
the functional dependence f. = p.(p.) of the flow on the den-
sity of particles on every link e € £. The flow capacity of a link
e € & is defined as

f = sup pe(pe). 1)
P20
We shall use the notation 7y, 1= x_.+[0, f***) for the set

of admissible flow vectors on outgoing links from node v, and
F = Xeegl0, f22*%) for the set of admissible flow vectors for
the network. We shall write f := {f. : ¢ € £} € F, and
p:={pe: ¢ € £} € R, forthe vectors of flows and of densities,
respectively, on the different links. The notation f* := {f. :
c€&ft e F, and p¥ := {p. : ¢ € EF} € R, will stand for
the vectors of flows and densities, respectively, on the outgoing
links of a node ». We shall use /' = u(p) and f* = u¥(p*)
to compactly denote the functional relationships between the
corresponding density and flow vectors.

Throughout this paper, we shall restrict ourselves to network
topologies satisfying the following assumptions:

Assumption 1: The topology 7 contains no cycles, has a
unique origin (i.e., a node v € V such that £ is empty), and a
unique destination (i.e., a node v € V such that £} is empty).
Moreover, a path exists in 7 to the destination node from every
other node in V.

Assumption 1 implies that one can find a (not necessarily
unique) topological ordering of the node set V (see, e.g., [27]).
We shall assume to have fixed one such ordering, identifying V

with the integer set {0,1,...,n}, where n := |V| — 1, in such
a way that
&<l &l w=o...n )
0<u<y

In particular, (2) implies that O is the origin node, and » is the
destination node in the network topology 7. (See Fig. 1.) An
origin-destination cut (see, e.g., [2]) of 7 is a binary partition
of Vintof and V \ U suchthat0 € f andn € V \ U. Let

SJ ={{u,v) €€ ueld,veV\U} 3)
be the set of all links pointing from some node in ¢/ to some

node in V \ Y. (See Fig. 2.) The min-cut capacity of a network
N is defined as

CN) := HBH Z Jamax 4)

3 +
e€&y

where the minimization runs over all of the origin-destination
cuts of 7. Throughout this paper, we shall assume a constant
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Fig. 1. Network topology satisfying Assumption 1: the nodes v are labeled by
the integers between 0 (denoting the origin node) and rn (denoting the destina-
tion node) in such a way that the label of the head node of each link is higher
than the label of its tail node. The total outflow at the origin Ay may be inter-
preted as the input to the dynamical network, and the total inflow at destination
.. (t) as the output. For « € [0, 1], the dynamical network is cx-transferring if
liminf,, .. A.(t) 2 aAq (ie., if at least an a-fraction of the total outflow at
the origin is transferred to the destination, asymptotically).

Fig. 2. Origin/destination cut of the network: {{ is a subset of nodes including
the origin 0 but not the destination 1, and £;; is the subset of those links with
tail node in{, and head node in V \ 4.

total outflow Ag > 0 at the origin node. Let us define the set of
admissible equilibrium flows associated with a total flow Ag as

FOw={r er: Y 1=

eESJ
Zf:: Zf: VOo<wv<mn
ecf, eCE,

Then, it follows from the max-flow min-cut theorem (see, e.g.,
[2]) that F*(Xg) # @ whenever Ay < C(A). That is, the
min-cut capacity is equal to the maximum flow that can pass
from the origin to the destination node while satisfying capacity
constraints on the links, and conservation of flow at the interme-
diate nodes.

Throughout this paper, we shall make the following assump-
tion on the flow functions. (Also see Fig. 3.)

Assumption 2: For every link e € £, the map p. : Ry — R4
is continuously differentiable, strictly increasing, has bounded
derivative, and is such that y1.(0) = 0 and f™™* < +o0.

/2 by

S

0 > Pe

Fig. 3. Qualitative behavior of a flow function satisfying Assumption 2:
Jjt.(p.) is differentiable, strictly increasing, has bounded derivative and such
that . (0) = 0, and lim,, . o pte(pe) = f** < oo. The median density
pt, as defined in (5), is plotted as well.

max _ fmax
e —Je

é‘nax — fé‘naX/Q

)

> Pe

Fig.4. Perturbed flow functions for Example 2, withe = 1/2. For the first per-
turbation ft. (p.) = pt.{p.)/2 (dashed plot), the magnitude is 6. = f==*/2,
while the stretching coefficient is # = p#/p# = 1. For the second pertur-
bation fi.(p.) = pte(p./2) (densely dotted plot), the magnitude is é. =
sup{ji.(pe) — pep./2) : p. > 0}, while the stretching coefficient is 8 =
pEfpt =172

Thanks to Assumption 2, one can define the median density
on link e € £ as the unique value p# € R, such that

pre (pt) = JE /2. )

Example 1 (Flow Function): For every linke € £, let e, and
fex be positive real constants. Then, a simple example of flow
function satisfying Assumption 2 is given by

pre(pe) = J& (1 — exp(—acpe)) -

It is easily verified that the flow capacity is f**, while the
median density for such a flow function is p* = a_!log2.

We now introduce the notion of a distributed routing policy
used in this paper.

Definition 2 ((Distributed) Routing Policy): A routing policy
for a network A is a family of differentiable functions G :=
{GY : R — 8, } <y, describing the ratio in which the particle
flow incoming in each nondestination node v gets split among
its outgoing link set £, as a function of the observed current
particle density. A routing policy is said to be distributed if,
for all 0 < v < n, a differentiable function G R, — S,
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exists such that G¥(p) = G (p*) forall p € R, where p" is the
projection of p on the outgoing link set £F.

The salient feature in Definition 2 is that a distributed routing
policy depends only on the local information on the current par-
ticle density p* on the set £ of outgoing links of the nondesti-
nation node v, instead of the full vector of current particle den-
sities p on the whole link set £. Throughout this paper, we shall
make a slight abuse of notation and write G"(p"), instead of
G"(p"), for the vector of the fractions in which the total out-
flow of node v gets split into its outgoing links.

We are now ready to define a dynamical network.

Definition 3 (Dynamical Network): A dynamical network
associated with a network N satisfying Assumption 1, a dis-
tributed routing policy G, and a total outflow Ay > 0 at the
origin node, is the dynamical system

d

—pe(t) = /\U(e) (t)Gg(e) (p(1)) — fe(t),

v bt
T [

(6)
where

fe(t) = e (/)e(t)) y
ifv=20

) =1
o(t) = Yoece- Je(t) if0<w<n

Equation (6) states that the rate of change of the par-
ticle density on a link e is given by the difference between
Ao(e) (1)G7(p(t)) (i.e., the portion of the total outflow at the
tail node o(e) of link ¢ which is routed to link ¢), and f.(¢)
(i.e., the particle flow on link ¢). Observe that the (distributed)
routing policy G"(p) at node v induces a (local) feedback
which couples the dynamics of the particle flow on the different
links outgoing from node ». Notice that the differentiability
assumptions on the routing policy and on the flow functions
readily imply the existence and uniqueness of a solution to
the dynamical network (6) for every initial flow f° € F (or,
equivalently, for every initial density p® € R).

We now introduce the following notion of the transfer effi-
ciency of a dynamical network.

Definition 4 (Transfer Efficiency): Consider a dynamical
network A satisfying Assumptions 1 and 2. Given some flow
vector f° € F and a € [0, 1], the dynamical network (6) is
said to be a-transferring with respect to f° if the solution of
(6) with initial condition p(0) = g~ 1(f°) satisfies

h}EE}f An(t) > ado. @)

Definition 4 states that a dynamical network is «-transfer-
ring when the total inflow at destination is asymptotically not
smaller than o times the total outflow at the origin. In particular,
a fully transferring («« = 1) dynamical network is characterized
by the property of having total inflow at destination asymptot-
ically equal to the total outflow at the origin, so that there is
no throughput loss. On the other hand, a partially transferring
dynamical network might allow for some throughput loss, pro-
vided that some fraction of the flow is still guaranteed to be
asymptotically transferred.

Remark 1: Standard definitions in the literature are typically
limited to static network flows describing transport of particles

at equilibrium via conservation of flow at intermediate nodes.
In fact, they usually consist (see, e.g., [2]) in the specification
of a topology 7, a vector of flow capacities f™** ¢ R, and
an admissible equilibrium flow vector f* € F*(Aq) for Ay <
C(N) (or, often, f* € cl(F*Aq)) for Ag < C(N)). In contrast,
in our model, we focus on the off-equilibrium particle dynamics
on a network A/, induced by a (distributed) routing policy G.

B. Examples

We now present three illustrative applications of the dynam-
ical network framework.

1) Data networks: We start by explaining how to frame
data networks with the TCP/IP congestion control in
our setting. We shall refer to models and terminology
from [5] and [7]. In data networks, the particles are
meant to represent data packets, the nodes are an ab-
straction for the combination of a modem, and the cor-
responding local process associated with the data link
control layer (for transmission of data between nodes)
and the network layer (for implementing the routing pro-
tocol). Links are the channels where the packets form
queues during transmission between the corresponding
nodes. Hence, the notion of density p. on a link e in our
framework is directly related to the (suitably rescaled)
queue length on the channels. On the other hand, the out-
flow pie(pe) = fe represents the throughput, measuring
the number of packets successfully transmitted per unit
of time.

Observe that, in TCP/IP, the round-trip (delay) time
(RTT) is the time from sending a packet for the first
time to receiving its acknowledgement from the destina-
tion (see, e.g., [7]). When only a few packets are being
sent on the channel, one does not observe relevant con-
gestion effects, and the throughput can be reasonably
modeled as proportional to the density divided by the
RTT. On the other hand, as the number of packets being
sent increases, bandwidth limitations imply an increase
in the packet drop probability, and consequently an
increase in the (average) number of retransmissions per
packet. As an effect, as the packet density increases, the
throughput tends to saturate approaching the channel
capacity. Flow functions f. = p.(p.) satisfying As-
sumption 2 provide effective models for such behavior.

2) Production networks: In the context of multistage pro-
duction networks, the particles represent goods that
need to be processed by a series of production modules
located on links. The nodes represent abstractions of
routing policies that route goods from one stage to the
next. The density corresponds to work-in-process . It is
known, e.g., see [8], that the throughput of a single-stage
production system follows a nonlinear relationship with
respect to its work-in-process. This relationship, which
is commonly referred to as clearing function, satisfies
Assumption 2 of our model. Therefore, such production
networks have a clear analogy with our setup where p.
represents the work-in-progress and ji.{p.) represents
the clearing function. Notice that in our formulation, we
do not incorporate feedback between the inflow at the
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destination node and the outflow at the origin node and,
hence, our model is not well suited to generate bullwhip
effects commonly observed in supply chains (see, e.g.,
[9] and [28]).

3) Traffic networks: In road traffic networks, particles rep-
resent cars and distributed routing policies correspond
to the local route choice behavior of the drivers in re-
sponse to the locally observed link densities. The dis-
tributed routing policies correspond to the node-wise
route choice behavior of the drivers. In that respect, ob-
serve that in road traffic networks, locally responsive
policies, as characterized by Definition 7, are particu-
larly natural as they model the behavior of drivers my-
opically preferring routes which appear to be locally less
congested.

The flow function . (p.) presented in this paper is related
to the notion of the fundamental diagram in traffic theory (see,
e.g., [4]). As already pointed out, however, Assumption 2 on
the monotonicity of the flow functions poses a potential limi-
tation to the applicability of our results, as typical fundamental
diagrams in road traffic theory have a N-shape form. Some sim-
ulations are provided in [3] illustrating how the results of this
paper could be extended to this case. On the other hand, the
analysis presented in this paper continues to provide insight
on the local behavior of dynamical networks with flow func-
tions having N-shaped graph, in the region where the flow is
increasing in the density.!

Remark 2: Tt is worth stressing that while distributed routing
policies depend only on local information on the current density,
their structural form may depend on some global information
on the network. This global information might have been ac-
cumulated through a slower time-scale evolutionary dynamics.
A two time-scale process of this sort has been analyzed in our
related work [29] in the context of traffic networks. Multiple
time-scale dynamical processes have also been analyzed in [30]
in the context of data networks. When not directly designable,
desired route choice behaviors from a social optimization per-
spective may be achieved by appropriate incentive mechanisms.
While we do not address the issue of mechanism design in this
paper, the companion paper [3] discusses the use of tolls in in-
fluencing the long-term global route choice behavior of drivers
to obtain a desired equilibrium flow in traffic networks.

C. Perturbed Dynamical Networks and Resilience

We shall consider persistent perturbations of the dynamical
network (6) that reduce the flow functions on the links, as
follows:

Definition 5 (Admissible Perturbation): An admissible per-
turbation of a network N = (7', 1), satisfying Assumptions 1
and 2, is a network A" = (7', j) with the same topology 7 and
a family of perturbed flow functions i := {fic : B, — R}, .
such that for every e € &, [i. satisfies Assumption 2 as well as

fre(pe) < pre(pe), Vpe > 0.

!In particular, in that context, possibly conservative bounds on the resilience
of dynamical networks driven by locally responsive distributed routing policies

can be obtained by using the analysis presented in this paper and the monotone
properties of such dynamical systems.

We accordingly let fmax = sup{jie(pe) : pe > 0} and F :=
X oce [0, f2*). The magnitude of an admissible perturbation is
defined as

§:=>" 5,

e€f

de 1= sup {Me(f)e) - ﬂe(/)e)} . (8)
pe=0

The stretching coefficient of an admissible perturbation is de-
fined as

.
::max{—;:eeg} )
where pf and pt are the median densities associated with the
unperturbed and the perturbed flow functions, respectively, on
link e € &, as defined in (5).

Observe that the magnitude of an admissible perturbation is
defined as the sum, over all links, of the infinity norm of the un-
perturbed minus the perturbed flow functions and is therefore
an aggregate measure of the changes on the ordinate of the flow
function graphs. In contrast, the stretching coefficient is a mea-
sure of the maximal change of the median of the flow functions,
which is measured on the abscissa of their graphs. In fact, we
shall regard the former as the most informative measure of the
perturbation, while the latter is introduced mostly for technical
reasons which will be made clear in the sequel (see Remark 4).

Example 2: Fix ¢ € (0,1] and consider the perturbed
networks with flow functions ji.(p.) = epc(pe), and
fie(pe) = pelepe), respectively, for e € £. Then, the first
perturbation has magnitude 6 = (1 — &) .o f"** and
stretching coefficient # = 1 while the second one has magni-
tude b = Yece SUP{pte(pe) — pre(epe) : pe > 0} and stretching
coefficient § = 1/e. The case & = 1/2 is reported in Fig. 2.

Given a dynamical network as in Definition 3 and an admis-
sible perturbation as in Definition 5, we shall consider the per-
turbed dynamical network

Chlt) = X (DGI ()~ fol1), Wee£ (10)
where
Je(t) = fie (pe(1))
by = { s £ 0 <<

Observe that the perturbed dynamical network (10) has the same
structure as the original dynamical network (6) since it describes
the rate of change of the particle density on each link e as the
difference between 5\0(6) (t)Gg(e) (p(1)) (i.e., the portion of the
total outflow at the tail node o(e) of link e which is routed to
link e), and the perturbed flow on link e itself. Notice that the
only difference with respect to the original dynamical network
(6) is in the perturbed flow function ji.(p.) on each link e € &£,
which replaces the original one fi.(p. ). In particular, the (dis-
tributed) routing policy G is the same for the unperturbed and
the perturbed dynamical networks. In this way, we model a situ-
ation where the routers are not aware of the fact that the network
has been perturbed, but react to this change only indirectly, in
response to variations of the local density vectors §”(t).
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Remark 3: Observe that admissible perturbations as charac-
terized by Definition 5 do not include complete link shutdowns,
as these would correspond to perturbed flow functions fi.{(p.) =
0, which clearly violate the strict monotonicity required by As-
sumption 2. Nevertheless, complete link shutdowns can be ap-
proximated arbitrarily closely by admissible perturbations (e.g.,
by considering perturbed flow functions of the form fi.(p.) =
epie(pe) with arbitrarily small but positive ). In fact, the anal-
ysis presented in this paper could be suitably extended so as to
include complete link shutdowns. The authors’ choice not to do
that is in the interest of simplicity and brevity of the exposition.

We are now ready to define the following notion of resilience
of a dynamical network as in Definition 3 with respect to an
initial flow.

Definition 6 (Resilience of a Dynamical Network): Let N be
a network satisfying Assumptions 1 and 2, G be a distributed
routing policy, and Ay > O be a constant total outflow at
the origin node. Given o € (0,1], 8 > 1 and f° € F, let
Yo0(f°,G) be equal to the infimum magnitude of all the
admissible perturbations of stretching coefficient less than or
equal to @ for which the perturbed dynamical network (10) is
not a-transferring with respect to f°. Also, define

0°.0) = im0, 0).
For « € [0, 1], the a-resilience with respect to f° is defined as?
’Y(l(fov g) = thgo ’chﬂ(foa g)

The 1-resilience will be referred to as the strong resilience,
while the O-resilience will be referred to as the weak resilience.

Remark 4: For o« = 0, the perturbed network is always
O-transferring with respect to any initial flow. For this reason,
the definition of the weak resilience vo(f°,G) involves the
double limit limg_, o, limy o Va0 (f°, G): the introduction of
the bound on the stretching coefficient of the admissible pertur-
bation is a mere technicality whose necessity will become clear
in Section V.

In the remainder of this paper, we shall focus on the charac-
terization of the weak resilience of dynamical networks, while
the strong resilience will be addressed in the companion paper
[3]. Before proceeding, let us elaborate a bit on Definition 6.
Notice that for every & € (0,1], the a-resilience v, (f°,G)
is simply the infimum magnitude of all the admissible pertur-
bations such that the perturbed dynamical network (10) is not
a-transferring with respect to the equilibrium flow f°. In fact,
one might think of v, ( f°, G) as the minimum effort required by
a hypothetical adversary in order to modify the dynamical net-
work from (6)—(10), and not make it «-transferring, provided
that such an effort is measured in terms of the magnitude of the
perturbation 8 = 3, ¢ 1e() — ().

Remark 5 (Zero-Sum Game Interpretation): The notions of
resilience are with respect to adversarial perturbations. There-
fore, one can provide a zero-sum game interpretation as fol-

2t is easily seen that the limits involved in this definition always exist, as
~a,6(f°,G) is clearly nonincreasing in ¢ (the higher cv, the more stringent the
requirement of c-transfer) and € (the higher €, the more admissible perturba-
tions are considered that may potentially make the dynamical network not be
a-transferring).

lows. Let the strategy space of the system planner be the class of
distributed routing policies and the strategy space of an adver-
sary be the set of admissible perturbations. Let the utility func-
tion of the adversary be M ® — 6, where M is a large quantity
(6.8 Y pes fI), and © takes the value 1 if the network is
not -transferring under given strategies of the system planner
and the adversary, and zero otherwise. Let the utility function
of the system planner be § — M©. As stated in Section III, a
certain class of locally responsive distributed routing policies
characterized by Definition 7, is optimal in terms of both weak
and strong resilience. This will then show that the locally re-
sponsive distributed routing policies correspond to approximate
Nash equilibria in this zero-sum game setting.

We conclude this section with the following result, providing
an upper bound on the weak resilience of a dynamical network
driven by any, not necessarily distributed, routing policy G, in
terms of the min-cut capacity of the network. The tightness of
this bound will follow from Theorem 2 in Section III, which
will show that for a particular class of locally responsive dis-
tributed routing policies, the dynamical network has weak re-
silience equal to the min-cut capacity.

Proposition 1: Let N be a network satisfying Assumptions
1 and 2, Ag > O be a constant total outflow at the origin node,
and G be an arbitrary routing policy. Then, for any initial flow
¢, the weak resilience of the associated dynamical network
satisfies

(f%,G) < CN).

Proof: We shall prove that for every « € (0,1] and every
6 >1

Yad(£°:6) € CN) = Tho. (12)

Observe that (12) immediately implies that
M0(f%.9) = Jim Ty (£, )

< lim lim (C(N) — aXg/2)

f—o00 a0

=C(N)

thus proving the claim.

Consider a minimal origin-destination cut (i.e., some &/ C V
such that 0 € U, n & U, and Zeeszj Jmax — C(N)). Define
e := aMg/(2C(N)) and consider an admissible perturbation
such that ji.(p.) = eje(pe) for every ¢ € &V, and jie(pe) =
te(pe) foralle € E\E . Ttis readily verified that the magnitude
of such perturbation satisfies

6=(1=e) 3 f™ = (1= )C(N) = CW) = Tho

eegtﬁ

while its stretching coefficient is 1.
Observe that

= Y s Y e =e 30 g = 0

eEEJ
(13)

ee&y eesy
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for all + > 0. Now, let W := V \ U be the set of nodes on
the destination side of the cut, and observe that for every w &

WA {n}
KD SIACED S) SEAUIRT OIS AT
R AT

where the summation indices ¢ and j run over &,
respectively. Define

A= U &X,

weWw

(14)

and &,

B:= ] &,

wewWw

and let

C(t) =D pelt).

e€A

From (14), with the identity A U Szj' = B and (13), one obtains

d d .
S =3 St
weW ecgt
:foi(t)_ Z fe(t)_z.ff’(f)
ech €&, ec A

Il
S
o
—~

o~
B ~—

I
st
Py

~+~
=

(15)
Now assume, by contradiction, that

lim inf 5\,,(15) > alg.

t—oc

Then, there would exist some s > 0 such that A, (t) > 3arp/4
forallt > s. Forall ¢ > s, it would then follow from (15) that
d¢(#)/dt < —ahg/4 < 0, which would contradict the fact that
((t) > 0 for all t > 0. Then, necessarily

litm inf 5\,,(7‘) < aXg
so that the perturbed dynamical network is not a-transferring.
This implies (12), and, therefore, the claim. [ ]

III. MAIN RESULTS AND DISCUSSION

In this paper, we shall be concerned with a family of maxi-
mally robust distributed routing policies. Such a family is char-
acterized by the following definition:

Definition 7 (Locally Responsive Distributed Routing): A lo-
cally responsive distributed routing policy for a network with
topology 7 = (V.€) and node set V = {0,1,...,n} is a
family of continuously differentiable distributed routing func-
tions G = {G": R, — Su},cy such that for every nondesti-
nation node 0 < v < n:

a) for every p¥ € R,

d
Ge(p®) > 0.
o “(p”) 20,

Viee&l, j#e

b) for every nonempty proper subset 7 < £, there exists a
continuously differentiable map

G‘/]ZR:]—>5‘7

where Ry := R, and S7 := {p € Rs : Yicsbi =
1} is the simplex of probability vectors over 7, such that
for every p7 € R, if

pe—o00, YeeEI\JT, pj—pl, Vied

then

GI(p") =0, Vee s\ J.
Gi(p") =G (p7), Vied.
Property a) in Definition 7 states that as the particle density on
an outgoing link ¢ € £ increases while the particle density on
all of the other outgoing links remains constant, the fraction of
total outflow at node v routed to any link j € &F \ {e} does
not decrease and, hence, the fraction of total outflow routed to
link e itself does not increase. In fact, Property a) in Defini-
tion 7 is reminiscent of Hirsch’s notion of cooperative dynam-
ical systems [11], [12]. On the other hand, Property b) implies
that the fraction of the incoming particle flow routed to a subset
of outgoing links X C & vanishes as the density on links in
K grows unbounded while the density on the remaining out-
going links remains bounded. It is worth observing that when
the routing policy models some selfish behavior of the particles
(e.g., in road traffic networks), then Property a) and b) are very
natural assumptions on such behavior as they capture some sort
of greedy local behavior.

Example 3 (Locally Responsive Distributed Routing): Letm,,,
for 0 < v < n,and «a., for e € &£, be positive constants. Define
the routing policy G by

e eXP(_UvPe)

G(p) =
(:0) ZLEE‘,"' a; eXP(*”Iva‘,)

(16)

forevery) < v < nande € & . Clearly, G is distributed, since
it uses only information on the particle density on the links out-
going from a node v in order to compute how the total outflow
at node v gets split among its outgoing links. Moreover, for all
0<wv<mnande € &, GY(p) is clearly differentiable, and
computing partial derivatives, one gets

o . oty exXp(—1,pe) exp(—1yp;
a—p,Ge(P) = 1, —2 ( ( ! )
! (Ziesj Gy CXP(—%/L:))

for every j € £F, j # e, and (8/9p;)G.(p) = 0, for all

>0 (17

J € E\ EF. This implies that Property a) of Definition 7 holds

true. Property b) is also easily verified. Therefore, G is a lo-
cally responsive distributed routing policy. In the context of
road traffic networks, the example in (16) is a variant of the logit
function from discrete choice theory emerging from the utility
maximization perspective of drivers, where the utility associ-
ated with link e is the sum of —p. +log a. /7, and a double ex-
ponential random variable with parameter 7, (see, for example,

[31D).
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We are now ready to state our main results. The first one
shows that when the distributed routing policy G is locally re-
sponsive, the dynamical network (6) always admits a unique,
globally attractive limit-flow vector.

Theorem [ (Existence of Globally Attractive Limit Flow): Let
N be a network satisfying Assumptions 1 and 2, Ag > 0 a con-
stant total outflow at the origin node, and G a locally responsive
distributed routing policy. Then, there exists a unique limit flow
1™ € cl(F) such that, for every initial condition p(0) € R, the
dynamical network (6) satisfies

Jlim f(t) = f*.
Moreover, the limit flow f* is such that if fF = f™** for some
link e € £ outgoing from a nondestination node 0 < v < n,
then f* = f32* for every outgoing link e € £ on that node.
Proof: See Section IV. ]

Theorem 1 states that when the routing policy is distributed
and locally responsive, there is a unique globally attractive limit
flow f*. Such a limit flow may be in F, in which case it is
not hard to see that it is necessarily an equilibrium flow, that is,
€ F*(Xo); or it belongs to ¢l(F) \ F, that is, it satisfies the
capacity constraint on at least one link with equality, in which
case it is not an equilibrium flow. In the latter case, it satisfies
the additional property that on all the links outgoing from the
same node, the capacity constraints are satisfied with equality.
Such additional property will prove particularly useful in our
companion paper [3], when characterizing the strong resilience
of dynamical networks. As it will become clear in Section IV,
the global convergence result mainly relies on Assumption 2 on
monotonicity of the flow function, and Property a) in Definition
7 of locally responsive distributed routing policies, from which
the dynamical network (6) inherits a cooperative property. It is
worth mentioning that we shall not use general results for co-
operative dynamical systems [11], [12], [32], but rather exploit
some other structural properties of (6) which, in fact, allow us to
prove stronger results. The additional property of the limit flow
follows instead mainly from Property b) of Definition 7.

Example 4: Consider a simple topology containing just the
origin and the destination node, that is., with V = {0,1}, and
two parallel links £ = {e1, e2}. Assume that the flow functions
on the two links are identical 1., (p) = po, (p) = 3(1—e ?)/4.
Consider the routing policy

3 e Pa

=520

e~ Pes

Z(p)

where Z(p) := (3/5)e”P=1 4 Ge~ 2. Then, the limit flow of
the associated dynamical network can be explicitly computed
for every constant total outflow Ay > 0 at the origin node, and
is given by

G2 (p) G2 (p)=6

(122 -1+4w(a)  jpg < ), < 3
*(\) = 24 A I
fl( 0) { % if Ao > %’

(20+1L-2Q0))  jp( < ) < 2
(A} = 24 A I
f2( 0) {% if/\()Z%

fe, (o)

fe (1)

0 5 max M

fmax

0=f10) 1

(b)

Fig. 5. Dependence of the limit flow f* on the total outflow A, at the origin
for the dynamical network of Example 4. In (a), the two components of the limit
flow fZ and f are plotted as functions of Ag. In (b), the curve of the limit
flows is plotted in the (f et ;’2)—plane. Observe that both the components of
the limit flow are increasing from 0 to f***, as A¢ is increasing from 0 to A;***,
while they remain constant at £2"'**, for all Ay > Ajj'>*.

where

w(Ao) := V/(12hg — 11)2 + 48).

Fig. 5 shows the dependence of the limit flow f* on the total
outflow at the origin Ag. The two components f and f7, in-
crease from 0 to f.** and, respectively, from 0 to f12%*, as Ag
increases from 0 to Ag'®* := f** + f21**, and they remain con-
stant for all Ag > A§**. Fig. 6 reports the vector fields and flow
trajectories associated with the dynamical network for three dif-
ferent values of the inflow, namely, Ay = 0, Ag = 1,and Ag = 2.
In the first two cases, A\ < A, and f* € F*()Xg) is an equi-
librium flow; in the third case, f* € cl(F(Xo)) \ F(Ao) is not
an equilibrium flow.

Our second main result, stated below, shows that locally re-
sponsive distributed routing policies are maximally robust, as
the resilience of the induced dynamical network coincides with
the min-cut capacity of the network.
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Fig. 6. Flow vector fields and flow trajectories for the dynamical network of
Example 4, for three values of the inflow. In the first two cases Ag < AJ**
and, hence, the limit flow f* is an equilibrium flow. In contrast, in the last case,
Ag 2 Ag™* and, consequently, f* is not an equilibrium flow and f7 = f2,**
and f, = fi**, as predicted by Theorem 1. (a) Ay = 0, (b) Ao = 1, and
(c) Ao = 2.

Theorem 2 (Weak Resilience): Let N be a network satisfying
Assumptions 1 and 2, Ag > 0 is a constant inflow at the origin
node, and G is a locally responsive distributed routing policy
such that G¥(p¥) > 0 forall0 < v < n,e € £, and p” € R,.

Then, for every f° € F, the associated dynamical network is
partially transferring with respect to f© and has weak resilience

Yo (f°.G) = C(N).

Proof: See Section V. ]

Theorem 2, combined with Proposition 1, shows that locally

responsive distributed routing policies achieve the maximal
weak resilience possible on a given network A

Remark 6:

a) A consequence of Theorem 2 is that locality constraints on
the feedback information available to routing policies do
not reduce the achievable weak resilience. It is also worth
observing that such maximal weak resilience coincides
with the min-cut capacity of the network, and is therefore
independent of the initial flow f°. This is in sharp con-
trast with the results on the strong resilience of dynamical
networks presented in the companion paper [3]. There, it
is shown that the strong resilience depends on the initial
flow, and local information constraints reduce the max-
imal strong resilience achievable on a given network.

b) It is also interesting to note that the upper bound on
the weak resilience, as given by Proposition 1, does not
change even if we allow routing policies G that have
knowledge of the perturbation. This, combined with
Theorem 2, shows that the lack of knowledge of the
perturbations is not a hindrance in achieving maximal
weak resilience.

IV. PROOF OF THEOREM 1

Let N be a network satisfying Assumptions 1 and 2, G be a
locally responsive distributed routing policy, and Ay > 0 be a
constant outflow at the origin node. We shall prove that there
exists a unique f* € cl(F) such that the flow f(¢) associated
with the solution of the dynamical network (6) converges to f*
as t grows large, for every initial condition p(0) € R. Before
proceeding, it is worth observing that, thanks to Property a) of
Definition 7 of locally responsive distributed routing policies,
Assumption 2 on the monotonicity of the flow functions, and
the structure of the dynamical network (6), one may rewrite (6)
as

d
—pe = Fe ) Vee &
E (p) e€
where F : R — R¢ is differentiable and such that
d J
—F, <0, —F, >0, Ve e & (18
P (p) <0, o (p) >0, e£j€eE (18

Equation (18a) shows that the dynamical network (6) driven by
a locally responsive distributed routing policy G is cooperative
in the sense of Hirsch [11], [12]. Indeed, one may apply the stan-
dard theory of cooperative dynamical systems and monotone
flows [13], [32] in order to prove some properties of (6), for ex-
ample, convergence from almost every initial condition.
However, we shall not rely on this general theory and rather
use a direct approach leading us to much stronger results, that is,
global convergence to a unique limit flow. We shall proceed by
proving a series of intermediate results some of which will prove
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useful also in the companion paper [3]. Our approach is based on
the observation that thanks to Assumption 1 on the acyclicity of
the network topology, one can consider the dynamical network
(6) as a cascade of monotone local systems (see [14]), each de-
scribing the flow dynamics on the set of outgoing links of a non-
destination node. Specifically, for every 0 < v < n, we shall
focus on the input—output properties of the local system

Epe(t) = MBGE (0" (1) — felt),
fe(®) = e (pe(t))

where A(t) is a nonnegative-real-valued, Lipschitz continuous
input, and f“(t) := {f.(¢t) : e € &} is interpreted as the
output. We shall first prove existence and uniqueness of a glob-
ally attractive limit flow for the local system (18) under con-
stant input (a property similar to static input-output charac-
teristic, cf. [14, Def. V.I]). We shall then extend this result to
show the existence and attractivity of a local equilibrium point
under time-varying, convergent local input. Finally, we shall
exploit this local input—output property, and the assumption of
acyclicity of the network topology in order to establish the main
result.

The following simple technical result will prove useful in
order to apply Property a) of Definition 7.

Lemma 1: Let0 < v < n be anondestination node, and G :
R, — S, be a continuously differentiable function satisfying
Property a) of Definition 7. Then, for any v,¢ € R,

Y sen(ve — ) (GLlv) - GU(q)) 0.

eeﬁj

Vee &F  (18)

19

Proof: Define

Ki={e€& v>a} Gr(Q)=3 Gi),
k
Ji={ce&lv. <}, Gz(0):= ZG}J‘(Q

L= {e S S,,'}' Pl < ge}, Ge(C0) := ZG;(C)
[

where ¢ € R,,, and the summation indices %, {, and 7 run over
K, £, and J, respectively. We shall show that forany v, € R,

Ge(v) £ Grl(c),  Ge(v) 2 Gelq). (20)
Let ¢ € R, be defined by & = vy forallk € K, and & = <.
foralle € £ \ K. We shall prove that G (v) — Gx(s) < 0 by
writing it as a path integral of VG (() first along the segment
Sk from ¢ to &, and then along the segment S, from & to v.

Proceeding in this way, one obtains

Ge(v) - Grelo)= / VGe(Q)-d¢ + / VGr(0) - d¢

S Sk

:/'VGK(C)-dc— / VG(O)-de @)
Se SK

where the second equality follows from the fact that G (¢) =
1—G7(¢) since G'(¢) € S,.. Now, Property a) of Definition 7

implies that 0G(¢)/3¢ > O foralll € £,and 3G 7(¢)/ Ok >
0 for all k € K. It follows that VG 7 () - d¢ > 0 along Sy, and
VGk(¢) - d¢ < 0 along S;. Substituting in (21), one obtains
the first inequality in (20). The second inequality in (20) follows
by similar arguments. Then, one has

02 Gr(r) = Gls) + Gels) — Ge(v)
= Y sen(ve — <) (GE(v) — GL(<))

ec&f

which proves the claim. [ |

We can now exploit Lemma 1 in order to prove the following
key result guaranteeing that the solution of the local dynamical
system (18) with constant input A(£) = X converges to a limit
point which depends on the value of A but not on the initial
condition. (Cf. Example 4 and Fig. 6.)

Lemma 2 (Existence of a Globally Attractive Limit Flow for
the Local Dynamical System Under Constant Input): Let 0 <
v < n be a nondestination node, and A a non-negative-real con-
stant. Assume that G* : R, — S, is continuously differentiable
and satisfies Property (a) of Definition 7. Then, there exists a
unique f*(A) € cl(F,) such that the solution of the dynamical
system (18) with constant input A(¥) = A satisfies
lim £.(6) = £ (0,

t—

Ve e &f

for every initial condition p”(0) € R,.

Proof: Letus fixsome A € Ry.Forv € R,,and? > 0, let
D*(1v) := p“(t) be the value of the solution of (18) with constant
input A({) = A and initial condition p¥(0) = v, at time ¢. Also,
let ¥%(v) € R, be defined by ¥t (v) = pu (P (v)), for every
e e é’j’ Now, fix two initial conditions v, ¢ € R,, and define
x(t) == ®(v) — B*(c), and £(¢) := V(v) — U'(s). Since
te(pe) is increasing by Assumption 2, for all ¢ € £}, one has
sgn(x.(t)) = sgn(&(t)) forall ¢ > 0. On the other hand, using
Lemma 1, one obtains

> san (xe(1) (G2 (@) - GL (2(<))) <0

eESj

for all £ > 0. It follows that, if

() =X Y sen (xe(1)) (G2 (9'(1) — G2 (9'(c)))

eeg,j'

then, ¢(t) < 0 fort > 0, and

t

®ll = X+ [ (65) = I ds
< Il ~ [ el as

for all £ > 0. Rearranging the inequality above provides

[l ds <xoly . w0 e
0
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Therefore, (each component of) £(t) is absolutely integrable
and, hence, £(t) is integrable for all # > 0. It is now standard
to show how this implies global convergence to a unique limit
flow. For completeness, we provide such an argument below.
Let
hi == —\Iff(l/) t>0.

By applying the mean value theorem twice, one gets that for all

z >0
) t+z
:—/ de—zthb
z

for some z; € [0,2] and s} € [£,¢ 4 z]. On the other hand,
observe that Assumption 2 implies that ds. /dp. is bounded and
(18) under the condition A(¥) = A implies that
. dpe
_pmax < CPe oy g >,
ds

Hence, there exists some positive constant M such that

IBelly = >

eEC

dpe dpe

<M,

Vs > 0.

dp. ds

For a given z > 0, by choosing ¢ = ®*(v), and defining the
quantity s, := z:hy: — zohy;, one gets that for all ¢ > 0

t+z z
1 1
) + k., =0(w) + = / U (v)ds — — /\IJS(I/)dS
z z
b 0
tz ¢
0 1 s 1 s
=U'w)+ - [ V(r)ds — — | ¥ (v)ds
2 z,
z 0

t

1
= \IIO(I/) + = (\DS"'Z (v) — \IIS(I/)) ds
:

. t
+ ;/ﬁ(s)ds
0

Since £(t) is integrable, the above equation shows that, for every
z > 0, ¥ (v) + k. is convergent as ¢ grows large. Then, for
every nondecreasing sequence of time instants £; < 15 <
such that limy, #;, = oo, arbitrariness of » and the bound

imply that the sequence {\IJ’:’c (v) : k > 1} is Cauchy and, hence,
convergent in cl(F,). It follows that ¥*(v) converges to some
limit flow f*(A,») € cl(F,) depending both on the inflow A as
well as possibly on the initial density v. Moreover, using (22)
again, one gets that

]l < || < 2:M

— o)l ds

= 1) = A9l

for every v.¢ € R,, which shows that, in fact, the limit flow
does not depend on the initial condition. ]
Now, let us define

pmax . fmax
v T Je .

eEE:r

The following result characterizes the way the local limit flow
JF*(A) depends on the local input A. (Cf. Example 4 and Fig. 5.)

Lemma 3 (Dependence of the Limit Flow on the Input): Let
0 < v < n be a nondestination node, and A be a non-negative-
real constant. Assume that G” : R, — &, is continuously
differentiable and satisfies Properties a) and b) of Definition 7.
Let f*(A) € cl{(F,) be the limit flow of the local system (18)
with constant input A(¢) = A. Then, the following statements
hold true:

i) if A < A, then

FEQ) < 0 0GE (wH (V)

i) if A > A= then ff(A) = fia= Ve e &F.
Moreover, f*(A) is continuous as a map from R to ¢cl(F,,), and
each component f.(A) is nondecreasing in A.
Proof: Let p* € R, be such that

. {uel (fr(), iffr(n) <
| 400, if f2(A) =

for every e € £F. Now, by contradiction, assume that there
exists a nonempty proper subset 7 C £, such that p; is finite
for every j € 7, and pj, is infinite for every k£ € K = EF\JT.
Thanks to Property b) of Definition 7, one would have that for
any initial condition p?(0) € R.,, the solution of (18) satisfies

Jim Y7 AGE (07 (D) = fult) = = D <0

ke kex

= JE(\Ve € 7

]l' max

]L'max
o€

so that there would exist some z > () such that

Pk AGR(U() = fi(t)) <0 for every t > =z
Hence, if pc(t) := > .cx pr(t), then for every £ > =z, one
would have
prc(t) = prc(z /Z AGY (5°(5)) — fu(3)) d
kEK
< px(z)
< + o0,

which would contradict the assumption that p;, = 400 for every
k € K. Therefore, either p* is finite for every e € £, or p* is
infinite for every e € &;T.

If p* is finite for every e € £, then p* is necessarily an equi-
librium, being a finite limit point of the autonomous dynamical
system (18) with a continuous right-hand side, and so f*(\) is
an equilibrium flow for the local dynamical system (18). The
contrapositive of this proves ii) of the Lemma. On the other
hand, when p is infinite for every e € £, sothat 3" o+ 7' =
Zeedf fopax = A\1aX_ Then, necessarily A < A for oth-
erwise, if A" — A = ¢ > 0, then (d/dt) }° e+ pe(t) <
—&/2 < 0 for all ¢ large enough, thus contradicting the fact that
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Yoec oF pe(t) diverges as t grows large. The contrapositive of
thls proves i) of the Lemma.

Finally, it remains to prove continuity of f*(A) as a func-
tion of A. For this, consider the function H : (0, 4—00)5r X

(0, Amax) — RE. defined by H.(p", A) := AGY(p") — pte(pe).
Clearly, H is differentiable and such that
a d
___l]F v A _,A___Crr v / .
7, (p", ) 7, (p") = pe(pe)
= - ZA—G - pe(pe)
jte Pe
< - z —H,(p". \) (23)
7759 Pe

where the inequality follows from the strict monotonicity of the
flow function (see Assumption 2). Property a) in Definition 7
implies that 9H,;(p", A)/Op. > 0 forall j # e € £F. Hence,
from (23), we also have that dH, (p /\)/Ope < Oforalle €
£} Therefore, forall p* € (0,400)¢" ,and A € (0, A™*), one

has
15} 3]
,—Ha(pv'/A)’ = - f—He(pvv)‘)
Op. Op,
0 v
> Z O_HI(/) 7)‘
gte T
=3 |g- )
Jj#e

that is, (the transpose of) the Jacobian matrix V,+H{p", A)
is strictly diagonally dominant and, hence, invertible by a
standard application of the Gershgorin Circle Theorem, for
example, see [33, Theor. 6.1.10]. It then follows from the
implicit function theorem that p*()), which is the unique zero
of H(-, ), is continuous on the interval (0, A\™**). Hence,
also f*(A) = pu(p*(A)) is continuous on (0, A"**)  since
it is the composition of two continuous functions. More-
over, since > .o+ ff(A) = A for every A € (0,A7%),
and 0 < fX(A) < f&*% one gets limy o fX(A) = 0 and
limypamax fF(A) = f***. Now, one has that >, f7(0) = 0,
so that limy o f*(A) = f(0) = 0 forall e € £ . Moreover,
as previously shown, f¥(A) = fI** = limypamax fF(A) for
A > AmaX This completes the proof of continuity of )
on [0, 4+00). Monotonicity of each component f.(A) follows,
in turn, from standard arguments for monotone dynamical
systems, see, for example, [14, Remark V.2]. ]

While Lemma 2 ensures the existence of a unique limit point
for the local system (18) with constant input A(¢#) = A, the
following lemma establishes that the output of the local system
(18) is convergent, provided that the input is convergent.

Lemma 4 (Attractivity of the Local Dynamical System): Let
0 < v < n be a nondestination node, G* : R, — S, a con-
tinuously differentiable map, satisfying Properties (a) and (b) of
Definition 7, and A(t) be a non-negative-real-valued Lipschitz
continuous function such that

lim A(f) = A.

t—oc

24

Then, for every initial condition p(0) € R, the solution of the
local dynamical system (18) satisfies

Jim .(8) = 10,

where f*(\) is the limit flow of the local system (18) with con-
stant input A(¢) = A.

Proof: Lemma 2 guarantees that the local systems (18)

are endowed with the static input—output characteristic f*(\).

Then, the result follows immediately from [14, Prop. V.§]. ®

We are now ready to prove Theorem 1 by showing that, for

any initial condition p(0) € R, the solution of the dynamical
network (6) satisfies

Ve € EF (25)

lim f.(t) = f (26)
{—o0

for all e € £. We shall prove this by showing via induction on
v = 0,1,...,n — 1 that, for all e € £F, there exists f* €
[0, f2**] such that (26) holds true. First, observe that, thanks
to Lemma 2, this statement is true for ¥ = 0, since the total
outflow at the origin node is constant at Ay. Now, assume that the

statement is true for all 0 < v < w, where w € {1,...,n — 2}
is some intermediate node. Then, since £,; C U, 0151‘} , one has
3%
i 250 = iy T 0= 5 17 =
ecE,, e,

Then, Lemma 4 implies that for all ¢ € £, (26) holds true
with 2 = fX(A%), thus proving the statement for v = w. This
proves the existence of a globally attractive limit flow f*. The

proof of Theorem 1 is completed by Lemma 3.

V. PROOF OF THEOREM 2

This section is devoted to the proof of Theorem 2 on the weak
resilience of dynamical networks with locally responsive dis-
tributed routing policies G.

To start with, let us recall that in this case, Theorem 1 im-
plies the existence of a globally attractive limit flow fre Cl(j: )
for the perturbed dynamical network associated with any admis-
sible perturbation AV. Define A} := Ao, and \* =D e i,
for0 < v < n.

Lemma 5: Consider a dynamical network A satisfying As-
sumptions 1 and 2, with locally responsive distributed routing
policy G such that GZ(p”) > O forall0 < v < m,e €
EF,and p¥ € R,. Then, for every # > 1, there exists 3y €
(0,1) such that, if A" is an admissible perturbation of A" with a
stretching coefficient less than or equal to #, and f* € Cl(]} ) is
the limit-flow vector of the corresponding perturbed dynamical
network (10), then

IEZ BaX;
for every nondestination node 0 < v < n, and every link e €
EF for which f* < fmax /2,
Proof: First, observe that the claim is trivially true when
f > f max /2 for all e € £. Therefore, let us assume that there
exists a node v € {0,...,n — 1} such that fr < fmax /9 for

some link e E EX. Deﬁnep € R, by p] =0 forallj € &F,
j # e,and p? = 6p!*, where recall that p” is the median density
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of the flow function f.. Since the stretching coefficient of Nis
less than or equal to &, one has that the median densities of the
perturbed and the unperturbed flow functions satisfy p£ < ¢ pﬁf.
This and the fact that f < fmaX/Q imply that 5 < gt < p?,
while clearly p; 2 0= p forall j € £F, 7 # e. Now, let
Be := G(p?), and observe that, thanks to the assumption on the
strict positivity of GZ(p"), one has g > 0. Then, from Lemma
1, one obtains

. 1 v
G =5 |Gt +1- Y 60
Jj#e
>1 GY( 1 G4 (p’
j#e
= (/16

27

On the other hand, since f* < fmax/9 < fmax [ emma 2
implies that necessarily
NGe(p™) = fL.

The claim now follows by combining this and (27). [ |

As a consequence of Lemma 5, we now prove the following
result showing that the dynamical network is partially transfer-
ring and providing a lower bound on its weak resilience.

Lemma 6: Let NV be a network satisfying Assumptions 1
and 2, A\g > 0 be a constant outflow at the origin node, and
G be a locally responsive distributed routing policy such that
GY(p°) > 0forall0 < v < mn,e € EF, and p* € R,,. Then,
the associated dynamical network is partially transferring, and
forevery # > 1 and & € (0, 3F], its resilience satisfies

’7%9(f*ag)20( )_2‘5|)\ ﬂl L

where 3y € (0,1) is as in Lemma 5. .
Proof: Consider an arbitrary admissible perturbation A" of
magnitude

6 < CN) = 2|E|Xof) " (28)
and stretching coefficient less than or equal to # > 1. We shall
iteratively select a sequence of nodes vy, vy, ..., v such that
vg = 0, vy = n, and, for every 1 < 5 < £k, there exists
1€ 40,...,45 — 1} such that
(vi,v;) € E, f(v 0) 2 /\U(xﬂj " (29)

Since v, = n, and ,85‘” > 1, the above with v; = v, = n will
immediately imply that
lim A, (t) = XX =

t—o00

Dz ke >

ect,

(30)

so that the perturbed dynamical network is a-transferring.
Moreover, observe that the trivial perturbation N = N
has magnitude ¢ = 0, hence it satisfies (28) for all
a € (0,C(N)By1/(2|€|\o)]. Therefore, (30) will imply

the partial transferring property of the original dynamical
network. Moreover, the rest of the claim will then readily
follow from the arbitrariness of the considered admissible
perturbation.

First, let us consider the case 7 = 1. Assume by contradiction
that f < )\004,69*” for every link e € €+ Since o < Gy, this
would imply that f* < B¢ and, hence by Lemma 5, that
fma" < 2f* for all e € &, so that

SOFme <2 fr < 2a|EF] By Ao < 200185 Ao

(=3

where the summation index e runs over . Combining the

above with the inequality C(N) < 37 .o+ f2**, one would
. eef Je

obtain

> 30 (0= ) > OW) - 2015

F/ES(T

thus contradicting the assumption (28). Hence, necessarily there
exists e € & such that f* > )\oaﬁl ™, and choosing v; € V
to be the head node of such e, one sees that (29) holds true with
j =1

Now, fix some 1 < j* < k, and assume that (29) holds true
for every 1 < 7 < j*. Then, by choosing 7 as in (29), one

obtains
= 3 B2 fy) = Moo "2 ey N (1)
665,‘,}
forevery 1 < j < j*. Moreover
Xe= 2o > doafly " > Mal) T (32)

LetU := {wg,v1,...,v;-_1} and EZJ; C & be the set of links
with tail node in{ and head node in V\I{. Assume by contradic-
tion that f* < Aoafy " forevery e€ €+ Thanks to (31) and
(32), this would imply that f* < /39 for every e € €+ néEr
with 0 < § < j*. Then, since &; = U;:?)l(é'j; neED), Lemma
5 would imply that

Ymax T +
e cofr Veeg)

This would yield

Z Jre < 221’ < ZZ)\oaﬁJ <208 Ny

where the summation index e runs over S;[ . From the above and
the inequality C(N) < 37 o+ fI***, one would obtain
i u

6> 7 (fmx = fm) > OV - 200€]5 X

3 +
e€&y;

thus contradicting the assumption (28). Hence, necessarily there

exists e € EZJ; such that f* > Aoafy o , and choosing v;-

V\ U to be the head node of e one sees that (29) holds true w1th

j = j~. Iterating the argument above until v;+ = n yields the

claim. ]
It is now easy to see that Lemma 6 implies that

limyjoYae > C(N) for every § > 1, thus showing that
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Y(f°,G) > C(N). Combined with Proposition 1, this shows
that yo(f°,G) = C(N), thus completing the proof of Theorem
2.

VI. CONCLUSION

In this paper, we studied robustness properties of dynamical
networks, where the dynamics on every link are driven by the
difference between the inflow, which depends on the upstream
routing decisions, and the outflow, which depends on the par-
ticle density, on that link. We proposed a class of locally respon-
sive distributed routing policies that rely only on local infor-
mation about the network’s current particle densities and yield
the maximum weak resilience with respect to adversarial dis-
turbances that reduce the flow functions of the links of the net-
work. We also showed that the weak resilience of the network
in that case is equal to the min-cut capacity of the network, and
that it is independent of the locality constraint on the informa-
tion available as well as of the initial flow. Strong resilience of
dynamical networks is studied in the companion paper [3]. The
main technical assumptions of this paper are acyclicity of the
network topology, monotonicity of the flow function, and the
absence of a bound on the density on the links. Relaxing such
assumptions is part of ongoing work.
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