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» who is more influential? » does influence induce polarization?

* pics from Padgett and Ansell (1993) and Adamic and Glance (2005)



Plan

» centrality, opinion dynamics, stochastic matrices, mixing times
» harmonic influence, random walks, and electrical networks
» harmonic influence in large-scale networks

» homogeneous influence
» polarization

» optimizing harmonic influence

» distributed estimation from relative measurements



Which node is the most central?




Which node is the most central?

Google's Page-rank: > .mi =1

1 1
w,:(l—ﬂ)zgjwﬁ;ﬁ B ~0.15
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Networks, stochastic matrices, and invariant distributions




Networks, stochastic matrices, and invariant distributions

G strongly connected = 7 unique



Random walk




Opinion dynamics 1: distributed averaging




Opinion dynamics 1: distributed averaging




Opinion dynamics 1: distributed averaging

1

x(t+1)=((1 - a)l + aP)x(t)

G connected = x(t) — z1

consensus value: z = 7'x(0)



Opinion dynamics 2: Voter model

P(xu)5i§zn):1

P (Z = 1|X(0)) = 7'X(0)






Undirected networks




Undirected networks

G undirected, c=c~C
A8

» P reversible, i.e, m;P; = m;jPj; (detailed balance)

V) E7 = (V(0), V(),...,V(t) L (V(t), V(t-1),..., V(0))



Undirected networks




Mixing time
: Lot t 1
Tmix := inf § £ > 02 max S ||(P%);. — (P%).[l1 <
IN} 2 e

» speed of convergence

lir(e) — el < e Lt/ i

[|x(t) — z1||oo < ||x(0) — 2z1||oce™ Lt/ Timix]



Mixing time
. Lo t L
Tmix 1= inf £ >0 max S[[(P*)i. — (P*);lli < =
ij 2 e
» speed of convergence

» G undirected = 7p,ix depends on conductance




Mixing time
: 1 ot t 1
Tmix := inf § £ > 0: max S ||(P%)i. — (P%)j.[l1 < =
i,J 2 e
» speed of convergence

» G undirected = Ty,ix depends on conductance

» small 7,;x = robustness of 7 to perturbations of P

More on this in the talk on Tue, July 8, at 10:30, in A.7



Consensus vs disagreement

“Since universal ultimate agreement is an ubiquitous outcome of a
very broad class of mathematical models, we are naturally led to

inquire what on earth one must assume in order to generate ..."
(Abelson '64)

“If people tend to become more alike in their beliefs, attitudes, and
behavior as they interact, why do not such differences eventually
disappear?” (Axelrod '97)



Opinion dynamics with stubborn agents

X5 (t) =0 x5, (t) =1

xi(t+1) = (1—a)x,-(t)+aZP,-jxj(t) i # 50,51

x(t) =5 x






Stubborn nodes and Harmonic influence

Harmonic influence vector as Nash equilibrium

x; € argmin U;(y, x_;)
y

Uilxi,x-i) = 3 Cily = x)> i # 50,51
J
USO(X) = Xs2o USl (X) = (Xsl - 1)2



Opinion dynamics with stubborn nodes 2: voter model




Random walk interpretation BV(¢+1) = jIV(E) = i) = Py




T := hitting time on j 7‘/ =E[T;|V(0) = i]




How many stubborn nodes can polarize a network?







How many stubborn nodes can polarize a network?

nd./d

fluidit b= — -
e 7'mix(dso + dsl)

Theorem [Acemoglu, Como, Fagnani, Ozdaglar, MOR 2013]

1. _ 1
;HIZ|X,'*X|Z€}|SK€ Ve >0

Corollary:
Highly fluid: homogeneous influence:
n—oo i
= x almost constant on V



How many stubborn nodes can polarize a network?

nd./d

1
b=— =) X
7'mix(dso + dsl) n Z

> if Tmix < Klog"n and d < K'd, then

(ds, + ds;) < K"n'~¢ = ® — oo



Highly fluid networks
(s, s1 obtained by merging nodes from S C V)

» Connected Erdos-Rényi
G=ER(n,p=<logn), c>1

n . .
S| = o(@) — highly fluid w.h.p.

» Preferential attachment [Barabasi'99]

zs:d - (Io

& ) — highly fluid w.h.p-
n

» Small world [Watts&Strogatz'98]

n
Xs:ds B O(log3

) — highly fluid w.h.p.
n




Homogeneous influence vs uncorrelated opinions

In voter model with stubborn agents X(t) 4 X,

Persistent fluctuations.

, . - 1
ergodic aggregate belief X = - ZX,-
1
1
mean square disagreement A% = 573 ZE [(Xi — X;)?]
ij

Proposition: highly fluid => A? 4 Var[X] = o2 + o(1)



Homogeneous influence vs uncorrelated opinions (cont’d)
Theorem: in highly fluid networks

d2 o0 eV
T T%0 — Var[X] 50, A2=02+o0(1)
7(S) nd



Homogeneous influence vs uncorrelated opinions (cont’d)

Theorem: in highly fluid networks
&
m(S) nd”

n—oo

— 0

Connected Erdos-Rényi

n
w(logn) =|S| = O(Iogn

Preferential attachment

w(logn) = st = o(
Small world

w(log® n) = Z ds = o(

S

)

n

)

log n

n

log® n

= Var[X] -0,

A? =52 + 0o(1)

)



How many stubborn nodes can polarize a network?




Harmonic influence in undirected networks




Electrical network interpretation

=1V

+1

1
= argmin fE Cilyi — y;)?
X y%R"I: 2 ’_/(yl .yj)
Ys5o=0 ys; =1

» Cjj = conductance of link {i, }

» x; = voltage at node /



Electrical network interpretation

=1V

+1

o1 5
X = argmin EZCU(yi_)/j)

yeR™

ysO =0 ysl =1 L)

» Ohm: «(7,j) := Cjj(x; — x;) current flow i to j

» = Kirchoff: 3. ¢(i,j) =0 Vi # so, 51



Effective resistance

=1V

+

i



Thompson's variational principle




Computation /estimation of effective resistances

» series and parallel laws
» glueing nodes does not increase effective resistance
» removing links does not decrease effective resistance

» Laplacian L = diag(C1) — C Green function: Z = pinv(L)

R(i Hj) =Zi+ ij —2Z;



Effective resistance and local influence

. . . X51 - - .
Z] L(f? 50./) - R(SO o ) - ZJ L(517J)
N—_——— ——
rrrrrr tin sg current to s;



Effective resistance and local influence




Effective resistance and local influence

current in sg



Effective resistance and local influence




From local to global influence

1
Recall: highly flud = =|{i: |[x; — x| > ¢}| = 0
n

d 1
9 oo AND highly flud  —= SR



From local to global influence

1
—~00 AND highly fliid & Z|{i: x>} =0
n

ds,



Escape probability




Escape probability




Escape probability in large-scale networks
(i obtained by merging nodes from random § C V)

» Connected Erdos-Rényi
G=ER(n,p=%logn), c>1

IS| = O(n*™°) = liminf¢s >0 w.h.p. _

» Preferential attachment [Barabasi'99]

S do=0(nt%) = liminf( >0 whap.

» Small world [Watts&Strogatz'98]

Y ds=0(n'%) = liminf¢; > 0 w.h.p.

s




Sufficient condition for polarization




Sufficient condition for polarization

50
w1

dcut

Relative cut V =VyUV;.  Gg := G with V1 collapsed in one node



Sufficient condition for polarization [ACFO,’14]

‘ [ J ()
R VAR B

R~
W2 al

Relative cut V = Vo UV;.  Go := G with V1 collapsed in one node
Theorem 1:  deye/dsy, — 0, Go highly fluid,  liminf¢g >0

1
= m\{ievo:x,->€}]—>0 Ve >0
0



Sufficient condition for polarization

N
S

dcut

51

Relative cut V = Vo UV;.  G1 := G with V) collapsed in one node

Theorem 1:  deye/ds, — 0, G1 highly fluid,  liminf¢l >0

1
= —{ieVi:xi<l—¢}—=0 Ve>0

%t



Sufficient condition for (weakly) homogeneous influence

Relative cut V = Vy U Vy. Zp 1= maxXx; z1 = min x;
i€Vo i€Vy

ds, + dg,

cut

Theorem 2: — 0, Go, Gy highly fluid, liminf¢l (i >0

1
= E|{i€V:zl—5<x,-<zo+5}\—>1 Ve >0



‘Phase-transition’

| 2 high|y fluid Gg = (Vo,&)), G = (Vo,go) with sg € Vg, 51 € V1



‘Phase-transition’

» highly fluid Go = (Vo, &), G1 = Vo, &) with sp € Vo, s1 € Vg

» connect every | € Vg with j € V1 indep. with probability «



‘Phase-transition’

Theorem
ds, + d. o
> o << 22 = polarization
n
ds, + d. :
> a>> 2 (weakly) homogeneous influence



Plan

» centrality, opinion dynamics, stochastic matrices, mixing times
» harmonic influence, random walks, and electrical networks
» harmonic influence in large-scale networks

» homogeneous influence
» polarization

» optimizing harmonic influence

» distributed estimation from relative measurements
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Part Il: Optimal placement problems.

» What are the most influential nodes in a network?

» What are the nodes to conquer to maximize influence?
» What are the nodes to defend to minimize the effect of
possible future invasions?

» In this talk, we will focus on these topics using the Harmonic
centrality as a measure of influence.



Summary

Harmonic influence

v

v

Two optimality problems

v

Structural properties.

» A message-passing recursive algorithm for trees

v

Theoretical results for general graphs

Simulations

v



Harmonic influence
G=(V,€&)graph. n=|V|. §=8US1 CV

P stochastic matrix on G (e.g. SRW)

Asymptotic opinions under a consensus dynamics are characterized
by the :

xi=» Pyxj, VieV\S, x,=aVseS,

JeV
Harmonic influence centrality (HIC):

_ 1
H(So,S1) =% = HZV



Two optimality problems
H(So,S1) Harmonic influence centrality.

Two problems:
1. Given Sg C V, find the best placement for S;

H(Sp, S
Slngqgi(so (07 1)

(|S1| = ny assigned)

2. Find the best placement for Sy assuming he can choose first

min _max_ H(Sp, S1)
SoCV §1TW\So

(|Si| = n; assigned)



Two optimality problems
Standing assumptions in this part:

» G undirected, P reversible (e.g. SRW).

» Electrical interpretation:
» Xx; voltage at node i.
» R(i + j) effective resistance.

» A useful formula:

1 R(So < j)— R(S1 )

M= 2R(So < S1)
Proof follows from classical electrical networks tools (Green function
1 R(So)—R(S
H(So,Sl) _* (So) (S1)

2 2R(Sp > S1)



Some preliminary results

So = {so}; S1 = {s1} both singletons.

1 R(so) — R(s1)
H(so,s1) = 5 m

» argmin  max H(sg, s1) = argmin R(sp)
soeV siEV\{so} SEV

> If sp is optimal, H(sp,s1) < 1/2 for every choice of s;

» If 5o is optimal and Js; # s s.t. R(sp) = R(s1), then
H(So,51) = 1/2

To choose first is better!



Some preliminary results
So = {so}; S1 = {s1} both singletons.

_ 1 R(s0) = R(s1)
Hlsos1) =5+ SR o s)

> If sp is optimally placed
» and there is not another minimum for ﬁ,ﬁthe best placement
for sy is a trade-off between minimizing R(s;) with s; # s and
maximizing R(sp <+ s1). In this case H < 1/2
» If sp is not optimally placed,

» the optimal placement for s; is always such that R(s;) < R(sp)
so that H > 1/2

» the optimal placement for s; is a trade-off between minimizing
R(s1) with s; # s and minimizing R(sp <> s1).

Two possible different strategies: 'close to' or 'far from’ s;.

The optimal placement for sy is a more difficult problem!



When the network 7 = (V, ) is a tree

» i,j €V, T<U subtree from node i including all branches not
containing J.

» R<U(Sy <+ i) eff. resistance between Sy and i in T<V.

® ro
l@o@

@ @R<U(so<—>i)® R(i < j) @

» A natural iterative computational structure: i € V, j € N;.

; 1
R<i ) = _
(So i) > rem gy R9(So © k) + 1

1

R(So « i) = > wen, R<H(So <> k) + 1




Optimal placement examples, |Sp| = |S1| = 1.

The role of the mean effective resistances R.




Optimal placement examples, |Sp| = |S1| = 1.

The role of the mean effective resistances R.
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Optimal placement examples, |Sp| = |S1| = 1.

The role of the mean effective resistances R.

O O O @ O O O O O
36 A 255 2.4 25 28 33 3.9 47
36 36
O O) O




Optimal placement examples, |Sp| = |S1| = 1.

The role of the mean effective resistances R.

O O O @ @ O O O O
36 A 255 2.4 2.5 28 33 3.9 47
36 36
O O) O




Optimal placement examples, |Sp| = |S1| = 1.

The role of the mean effective resistances R.

0O
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Optimal placement examples, |Sp| = |S1| = 1.

The role of the mean effective resistances R.
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Optimal placement examples, |Sp| = |S1| = 1.

The role of the mean effective resistances R.

O 0O 0O
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Optimal placement examples, |Sp| = |S1| = 1.

The role of the mean effective resistances R.
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Optimal placement examples, |Sp| = |S1| = 1.

The role of the mean effective resistances R.

O 0O 0O
£\ p
3.6 2.8 2.5 2.4 2.5 2.8

O O
\J \J

w
w
w
©

4.7

3.6 3.6

O O
O N
1.6 2.1 2.6 3.4




Optimal placement examples, |Sp| = |S1| = 1.

The role of the mean effective resistances R.

O 0 O @ @ O O O O

3.6 2.8 2.5 2.4 2.5 2.8 4.7

w
w
w
©

3.6 3.6

@ O O O
1.6 21 256 34

Harmonic centrality % Degree centrality



Optimal placement examples, |Sp| = |S1| = 1.



Optimal placement examples, |Sp| = |S1| = 1.




Optimal placement examples, |Sp| = |S1| = 1.




Optimal placement examples, |Sp| = |S1| = 1.




Optimal placement examples, |Sp| = |S1| = 1.




Optimal placement examples, |Sp| = |S1| = 1.




Optimal placement examples, |Sp| = |S1| = 1.




Optimal placement examples, |Sp| = |S1| = 1.




Optimal placement examples, |Sp| = |S1| = 1.

Trade-off: min R(s1) > max R(sg <> 1)



Optimal placement examples, |Sp| = |S1| = 1.



Optimal placement examples, |Sp| = |S1| = 1.



Optimal placement examples, |Sp| = |S1| = 1.



Optimal placement examples, |Sp| = |S1]| = 1.

Optimal strategy for s;: Invade sy neighbor or conquer far away
virgin areas?



Marriage ties between Florentine families, XV century

14: Bischeri

[13: Lamberteschil

11: Guadagni

10: Castellani

8: Tornabuoni

9: Ridolf 7. Albizzi

6: Ginori

[5: Barbadori——4: Medici|

[3: Acciaiuoli] [2: Salviati]

1: Pazzi



Florentine families: analysis

—— R (scaled)

—e— HIC (vs 4: Medici)

Historical comments:

>

>

>

Medici (4) is the most authoritative family
Guadagni (11) is Medici's best opponent

Strozzi (12), recorded as the main Medici's rival, is only their
second best opponent

the politically weakest Pazzi (1) unsuccessfully attempted an armed
conspiracy in 1478



Optimal placement: more general examples
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Optimal placement: more general examples
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Optimal placement: more general examples
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Optimal placement: more general examples

o
——-O
o
[
[ ]
o
o
o




Optimal placement: more general examples




Optimal placement: more general examples




Optimal placement: more general examples




Optimal placement: more general examples

@)
@)
@)
@)
@)
@)

O
Quite different strategies depending on the number of possible
invasors expect!



A distributed message-passing algorithm (the tree case)

v

So arbitrary consisting of leaves (no loss of generality).
S1 = {a} to be placed. Notation: H(«)
Voltage as a function of a:

v

v

(@ _ R<j°‘(80 @)
I RYA(Sy ¢ a) + R(j & )

Voltage scaling xj(a) = xéa)xj(ﬁ)

v

> for H. H<e HIC on T<ea’,

()€€ H@)= Y xPHE)+1
BeNN\{a'}

Hia)= > X\ H<P(p) + 1
BEN



A distributed message-passing algorithm
L. Vassio, et al, "Message Passing Optimization of Harmonic Influence
Centrality”, IEEE T-CONES, Vol. 1(1), pp 109-120, 2014.

» estimate of voltage in o' induced by «: Xa_’o‘/(t)
> estimate of influence of a “behind it": H*~%(t)

For regular agents:
Ha—>a’(0) -1 Xa—)a’(o) -1

Haao/(t_’_ 1) _ Z Xﬁ%a(t)Hﬁﬁa(t) +1
BeN\{j}
-1
, _ JB—a
a—a (t+ 1) =1+ R, Z 1X7(t)

R3a
BEN\{a} p

For stubborn leaders:

H7(t)=0 x*7%(t)=0  forallt



Properties of the algorithm.

» distributed: can be run by the agents, communicating with
neighbors

» fast: On trees the message-passing algorithm exactly
computes H in O(diam(7)) steps.

» low complexity: On trees (with bounded degrees) the
message-passing algorithm exactly computes H in O(n) steps.

» theoretical analysis On connected regular graphs, the
algorithm converges.

» simulation show general remarkable performance



Simulation examples

Erdos-Renyi random graph

Harmonic Influence Centrality

5
45l HIC
- = = MPA estimated HIC
AR
O Degree Centrality
asf Eigenvector Centrality

15F

Node



Simulation examples

Random 4-regular graph

Centrality value

Harmonic Influence Centrality

10
8
6
4 4
HIC
2 = = = - MPA estimated HIC 1
L L L L L L L L
[ 5 10 15 20 30 35 40 45 50
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Part 3: Estimation from relative
measurements



Outline of Part 3

» Estimation from relative measurements

» Problem statement
» Applications

» Electrical analogy
» Estimation error

» Anchors and resistances



Relative measurements

» Sensor i € V, located at x; € R
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Relative measurements

» Sensor i € V, located at x; € R
» Xx; € R is unknown to i

» Sensors i and j measure relative values
bij:)_(i_)_(j‘f"/{i,j} ifi <j

= — . .

“F“rﬂ ‘P with noise v j ~ N(O,ai-)

by symmetry b;; = —bj;



Relative measurements

» Sensor i € V, located at x; € R
. » X; € R is unknown to i

» Sensors i and j measure relative values
bjj = X — Xj + vijy ifi <j
with noise v j ~ N(O,ai-)
by symmetry b;; = —bj;
Goal:

Each sensor i seeks an estimate x;
of its actual value X;




Estimation from measurements

» G =(V,&) connected graph
» define: edge (/,j) <— bj
» edge (/,/) has weight 0—12

ij

Estimation criterion:
1 1 )
x = argming Z Z ?(y,- —yj — bjj)
Y i i

least squares problem, maximume-likelihood
estimator




Why this problem?

Applications:

» spatial localization
- in one dimension, e.g. car platoons
- in two dimensions (provided the sensors have compasses)

» time synchronization
by exchanging hello messages, two clocks can measure t; — t;

» ranking problems — Big Data!
derive an universal rating from pairwise comparisons
e.g., Yahoo! and Netflix movie ratings



Electrical interpretation

» Cj= 0—12 conductances
i

o1 2
> X:arg;nlnzzi:zj: Cij()’i—yj—bij)
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Electrical interpretation

» Cj= 0—12 conductances
i

o1 2
> X:arg;nlnzzi:zj: Cij()’i—yj—bij)

%ZZC/‘J’(% -y — by)? =%ZCU()’/‘ —M)2+M—2nyzcﬁbij
i ij i j

iJ



Electrical interpretation

» Cj= 0—12 conductances
i

o1 2
> X:arg;nlnzzi:zj: Cij()’i—yj—bij)

» injected currents v; = — Zj Cijbjj

E,"WZO

%ZZC/‘J’(% -y — by)? =%ZCU()’/‘ —M)2+M—2nyzcﬁbij
i ij i j

iJ



Electrical interpretation

» Cj= 0—12 conductances
i

o1 2
> X:arg;nlnzzi:zj: Cij()’i—yj—bij)

» injected currents v; = — Zj Cijbjj

E,"WZO

%ZZ Cilyi — yj — by)* =% > Gilyi—y)? +%— 2> i Cibj
i Jj ij ij i J

= % D Gli—w)+2 D v
ij i

~—




Electrical interpretation

Cij = 12 conductances
U

!
x = argminy Z Z Ci(vi — yj — bij)?
injected currents v; = — Zj Cijbjj
> =0

minimize energy dissipation with
injected currents

IS Gi v — b 2Zc,, mu}m;f 2Zy,ZCUbU
i T

ZCU(YI yJ +2 Zyr%

\—v—’

energy dissipation energy dissipation



Least squares problem: Solution

. 2 _ . .
Assume: o =1 for all i,



Least squares problem: Solution

. 2 _ . .
Assume: o =1 for all i,

1 5
x = argminz Z ; Ci(yi — y; — by)

satisfies 3 :(xi — x;) = >_; bjj that is Lx =~
Laplacian equation



Least squares problem: Solution

. 2 _ . .
Assume: o =1 for all i,

.1 2
x = argminz Z ; Ci(yi — y; — by)
satisfies 3 :(xi — x;) = >_; bjj that is Lx =~

Laplacian equation

We can “invert” the Laplacian using the Green matrix Z:

ZL=1LZ=1-n"111, Z1=0

where 1 is vector of ones



Least squares problem: Estimation error

Useful notation:

» edge orientation, incidence matrix:
BeR®*Y: B.j=-1,Bej=+1

» vector of measurements b = Bx + v

Then, v = B’b and we have
solution: x = ZB'b+ c1




Least squares problem: Estimation error

Useful notation:

» edge orientation, incidence matrix:
BeR®*Y: B.j=-1,Bej=+1

» vector of measurements b = Bx + v

Then, v = B’b and we have
solution: x = ZB'b+ c1

Estimation error: averaged over the measurements

1
_Elx — %

1
or more precisely - miﬂr{gEH(ZB'b +cl) — X3
n ce



Estimation error: “tedious” algebra

1 1
“E|lx — x||> == minE||(ZB'b + c1) — X||3
n n ceR
1
=~ minE||ZLx — X + c1 + ZB'v||5
n ceR

1
== m|n E|[1(—=n"*'1% + ¢) + ZB'v||3
n ce

1
fmmE[n( n'1'x 4+ ¢) + /' BZ*B'v]

n ceRr

(choose ¢ = n~'1'x) :f]E[y’BZ2B’u]
n

1 1
:EEtr[ZB’m/BZ] = tr[ZB'E[v|BZ] =

by Green matrix property R(i < j) = Zij + Zj; — 2Z;;

- —tr —nzzR/HJ

%tr(Z)



Dimension matters

. = 1 . .
Average resistance R = = Z R(i < j)
i
describes how well connected is the network

10°

For d-dimensional graphs:

. Cin ford=1
R~{ Glogn ford=2 =
o ford >3

High graph dimension gives good performance



Dimension matters

. = 1 . .
Average resistance R = = Z R(i < j)
i
describes how well connected is the network

For d-dimensional graphs:

. Cin ford=1
R~{ Glogn ford=2
o ford >3

Cq ~ % decreasing in d

High graph dimension gives good performance



Anchor nodes
If anchor node iy knows its value exactly,

1 1
x = argmin 5 ZZ g(y; —yj — bj)?

yip=Xo < 5 T
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Global error:
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Anchor nodes
If anchor node iy knows its value exactly,

.1 1
x = argmin 5 ZZ —Syi—y— b,-j)2
YYig=%o < T 5 T

Error on sensor i:
E’X,' — )_(,'|2 = R(io <~ i)

Global error:

1 _ 1 . )
“Ellx— %3 =~ 3" R(i ¢+ ) = R(i)
i

Conclusion: optimal anchor position is if = argmin R())
J



Future directions and applications

1. Estimation:
Design fast, distributed, robust
algorithms solving the relative estimation problem

» Can we exploit the electrical analogy
(as done for harmonic centrality)?



Future directions and applications

1. Estimation:
Design fast, distributed, robust
algorithms solving the relative estimation problem

» Can we exploit the electrical analogy
(as done for harmonic centrality)?

2. Experimental design:
optimize anchor position, overall topology, addition of edges

» Can we find distributed algorithms?
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