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Abstract— In this paper, we study robustness properties of
transportation networks with respect to its pre-disturbance
equilibrium operating condition and the agents’ response to
the disturbance. We perform the analysis within a dynamical
system framework over a directed acyclic graph between a sin-
gle origin-destination pair. The dynamical system is composed
of ordinary differential equations (ODEs), one for every edge
of the graph. Every ODE is a mass balance equation for the
corresponding edge, where the inflow term is a function of
the agents’ route choice behavior and the arrival rate at the
base node of that edge, and the outflow term is function of the
congestion properties of the edge. We consider disturbances that
reduce the maximum flow carrying capacity of the links and
define the margin of stability of the network as the minimum
capacity that needs to be removed from the network so that
the delay on all the edges remain bounded over time. For
a given equilibrium operating condition, we derive upper
bounds on the margin of stability under local information
constraint on the agents’ behavior, and characterize the route
choice functions that yield this bound. We also setup a simple
convex optimization problem to find the most robust operating
condition for the network and determine edge-wise tolls that
yield such an equilibrium operating condition.

I. INTRODUCTION

Social planning for efficient usage of transportation net-
works (TNs) is attracting renewed research interest as trans-
portation demand is fast approaching its infrastructure ca-
pacity. While there exists an abundant literature on socially
optimal traffic assignments, e.g., see [1], robustness analysis
of TNs has received very little attention. In this paper,
we study the relationship of the robustness properties of a
large-scale TN to its pre-disturbance equilibrium operating
condition and the agents’ response to the disturbance.

We abstract the topology of the transportation network by
a directed acyclic graph between a single origin-destination
pair. For the analysis, we adopt a dynamical system frame-
work that is composed of ordinary differential equations
(ODEs), one for every edge of the graph. Every ODE
represents a mass balance equation for the corresponding
edge, where the inflow term is a function of the agents’
route choice behavior and the arrival rate at the base node of
that edge, and the outflow term is function of the congestion
properties of the edge. We consider a setup where, before
the disturbance, the network is operating at an equilibrium
operating condition and information about this equilibrium
condition is shared by all the agents. Such an equilibrium
condition might be thought of as the outcome of a slower
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time-scale learning process, e.g., see [2], [3], [4], in presence
of incentive mechanisms such as tolls, e.g., see [5], [6].
After the disturbance, we assume that the global knowledge
of the agents remains fixed and that the agents act by
complementing the fixed global knowledge with real-time
local information. Such a setup is meant is give insight into
the evolution of the network in the immediate aftermath
of a disruption when the availability of accurate global
information about the whole network is sparse or it is too
time-consuming for the agents to incorporate the real-time
information about the whole network because of the huge
computations involved.

We consider disturbances that reduce the maximum flow
carrying capacities of the edges by affecting their congestion
properties. We define the margin of stability of the TN
to be the maximum sum of capacity losses, under which
the traffic densities on all the edges remain bounded over
time. We then prove that, irrespective of the route choice
behavior of the agents, the margin of stability is upper-
bounded by the minimum of all the node cuts of the residual
capacities of the TN. We then characterize the route choice
behaviors that match this upper bound. Finally, we study the
dependence of the margin of stability on the equilibrium,
and formulate a simple optimization problem for finding the
most robust equilibria. This is, in general, different from the
classical socially optimal equilibrium, as well as from the
user-optimal equilibrium. We also discuss the utility of tolls
in yielding a desired equilibrium operating condition. Our
results provide important guidelines for social planners in
terms of determining robust equilibrium operating conditions
and route choice behaviors for TNs. Alternate notions of
robustness for networks have been proposed in [7], [8], [9].

The contributions of the paper are as follows: (i) we
formulate a novel dynamical system framework for robust-
ness analysis of transportation networks, (ii) we derive an
upper bound on the margin of stability of the network and
characterize the features of the agents’ route choice behavior
under which this bound is tight, and (iii) we postulate
the notion of robustness price of anarchy to quantify the
loss in robustness due to sub-optimal equilibrium operating
condition of a network and discuss the use of tolls in
removing this gap.

This technical results of this paper rely on tools from
several disciplines. The upper bounds on the margin of
stability for a given equilibrium operating condition uses
graph theory notions from flow networks, e.g., see [10]. The
properties of the route choice functions that give maximum
margin of stability are reminiscent of cooperative dynamics,
e.g., see [11]. The problem of determining tolls for a desired
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equilibrium condition exploits the fact that the associated
congestion game is a potential game and that the extremum
of the potential function corresponds to the equilibrium.

The rest of the paper is organized as follows. In Section II,
we describe basic notations and concepts useful for the
paper and formulate the robustness analysis problem. In
Sections III and IV, we derive bounds on the margin of
stability of the network. Section V discusses the problem of
selection of the most robust equilibrium operating point of
the network. Finally, we conclude in Section VI with remarks
on future research directions.

II. PROBLEM FORMULATION

We start by defining a few preliminary notations. Let N be
the set of natural numbers, R be the set of real numbers, R+

be the set of non-negative real numbers and R>0 be the set
of positive real numbers. Let 1n be the n-dimensional vector,
all of whose entries are one. Let |B| be the cardinality of
set B and let int(B) denote the interior of set B. Let 1A(x)
be the indicator function with respect to A, i.e., 1A(x) = 1
if x ∈ A and zero otherwise. Given a set A, let Ac be its
complement. For p ∈ [1,∞], ‖.‖p is the p-norm. Specifically,
let ‖.‖ denote the Euclidean norm.

A. Physical properties of the network and Wardrop equilib-
rium

Let the topology of the transportation network be de-
scribed by a directed graph G = (V, E), where V is the
set of nodes and E is the set of edges. An edge e ∈ E from
u ∈ V to w ∈ V is represented by the ordered set (u,w).
Given an edge e = (u,w), u will be called the base node of
edge e. Let o ∈ V and d ∈ V be the origin and the destination
nodes in G. For every node v ∈ V \ {d}, we shall denote
by E+

v ⊆ E the set of outgoing edges from v. Similarly, For
every node v ∈ V \ {o}, we shall denote by E−v ⊆ E the
set of incoming edges to v. A path from a vertex u ∈ V
and w ∈ V is an ordered set of vertices u, v1, v2, . . . , vl, w
such that (u, v1), (v1, v2), . . . , (vl, w) each belong to E . The
length of such path will be defined to be l + 1, i.e., the
number of edges in the path. A path is said to exist between
u ∈ V and w ∈ E if there exists an ordered set of nodes
connecting u and w.

Throughout, we shall assume that
(A1) G is acyclic, and there exists a path from every

v ∈ V \ {d} to d.
Let P be the set of distinct paths from o to d in G, and let
Π be the simplex of probability distributions over P .

Traffic arrives at a unit rate at the node o and is destined for
the node d. We shall denote the traffic density and flow, on
the network at time t by vectors ρ(t), f(t) ∈ RE+ respectively,
whose entries, ρe(t), and fe(t), respectively, will denote the
traffic density, and flow, on the link e ∈ E at time t. Traffic
flow and density on a link are related by the functional
dependence

fe = µe(ρe) , ∀e ∈ E , (1)

on which we shall make the following assumption for all
e ∈ E :

(A2) µe : R+ → R+ is Lipschitz continuous,
strictly increasing, strictly concave, and such that
µe(0) = 0, limρe↓0 dµe/dρe < +∞ and
lim supρe→+∞ µe(ρe) < +∞.

Let µ(ρ) be the vector of the edge-wise flow functions
µe(ρe). Let Ψ be the set of all functions µ : RE+ → RE+ that
satisfy condition (A2).

Example: The following flow function belongs to Ψ.

µe(ρe) = fmax
e

(
1− e−αeρe

)
e ∈ E , (2)

where αe > 0 for all e ∈ E .
It follows from assumption (A2) that µe( · ) admits a

continuous inverse µ−1
e ( · ). We can then consider the delay

functions
Te(fe) := µ−1

e (fe)/fe , (3)

i.e., Te(fe) is the time taken to traverse link e when the
flow on it is fe. Following assumption (A2), let fmax

e :=
lim supρe→+∞ µe(ρe) be the maximum flow capacity of
edge e. Let fmax ∈ RE+ be the vector of maximum flow
capacities of the links in E , ordered lexicographically. Let
Ψ(fmax) := {µ ∈ Ψ | lim supρe→+∞ µe(ρe) = fmax

e ∀e ∈
E}. For a vector f ∈ RE+, put λ−v (f) :=

∑
e∈E−v fe for all

v ∈ V \{o}, λ+
v (f) :=

∑
e∈E+v fe for all v ∈ V \{d}. For a

given G and fmax ∈ RE>0, define the set of admissible flows
through G as

F(G, fmax) := {f ∈ RE≥0 | fe ≤ fmax
e ∀ e ∈ E ;

λ+
u (f) = λ−u (f) + 1o(u) ∀u ∈ V \ {d}}.

Let F̊(G, fmax) be the interior of F(G, fmax). Throughout
this paper, we will assume that G and fmax are such that
F(G, fmax) 6= ∅.

Let τe ≥ 0 be the toll on edge e ∈ E , and let τ ∈ RE≥0

be the vector of tolls. Assuming a unit dollar value for a
unit amount of delay the utility associated with edge e when
the flow on it is fe is − (Te(fe) + τe). We now recall the
notion of a Wardrop equilibrium [1] that also includes the
effect of tolls. Define Pf := {p ∈ P | fe > 0 , ∀e ∈ p}. A
Wardrop equilibrium is a vector f ∈ F(G, fmax), such that,
for all p, q ∈ P ,

p, q ∈ Pf =⇒
∑
e∈p

Te (fe) + τe =
∑
e∈q

Te (fe) + τe ,

p ∈ Pf , q /∈ Pf =⇒
∑
e∈p

Te (fe)+τe ≤
∑
e∈q

Te (fe)+τe .

The following result guarantees the existence and uniqueness
of a Wardrop equilibrium in our setting.

Proposition 2.1: Given a G satisfying (A1), µ(ρ) ∈ Ψ
and τ ∈ RE≥0, there exists a unique Wardrop equilibrium
f eq(τ) ∈ F(G, fmax).
Proof It follows from assumption (A2) that, for all e ∈ E ,
the delay function Te( · ) is continuous, strictly increasing,
and such that Te(0) > 0. Then, the claim follows by applying
Theorems 2.4 and 2.5 from [1].
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In this paper, we assume that G, µ and τ are such that
f eq
e (τ) > 0 for every e ∈ E . This is for technical reasons

and we shall address the case when f eq
e (τ) = 0 for some

e ∈ E in a future publication. We shall drop the explicit
dependency of f eq on τ , when not required, for brevity in
notation.

B. Dynamic Route Choice Behavior

We now describe the behavioral model of agents’ routing
through the network. We envision a very large population
of agents traveling through the network. Agents enter the
network from the origin node o at a constant unitary rate,
travel through it, and leave the network from the destination
node d. Once left the network, agents join a reservoir, from
which they will eventually reenter the network. While inside
the network, agents occupy some link e ∈ E . The rate at
which they leave link e is fe = µe(ρe), where ρe is the
current occupancy density of e. When leaving link e ∈ E−v ,
agents choose which link j ∈ E+

v to join. We shall assume
such a choice to depend on two factors: (i) a personal belief
on what the best path is, which is updated at a time scale
much slower than than the one of the dynamics through the
network; (ii) an instantaneous local feedback consisting in
the observation of the current traffic flows on the outgoing
links. Since the focus of this paper is on robustness properties
when the network is disturbed from its equilibrium operating
condition, we study the relationship between the robustness
properties of the network and the myopic behavior of agents
based on instantaneous local feedback for a constant belief
by the agents on the best path that also coincides with the
equilibrium operating condition.

More precisely, if f eq ∈ F(G, fmax) is the Wardrop
equilibrium operating condition of the network then it also
constitutes the beliefs shared by all the agents on the best
path through the network. Let ρeq = µ−1(f eq) be the
corresponding equilibrium agent densities on the links. For
a node u ∈ V \ {d}, let Γu be the simplex of probability
distributions over E+

u . We shall assume that the probability
that an agent chooses link e ∈ E+

u when traversing node
u and observes the actual density ρ ∈ RE+ is given by
Gue (ρ, f eq), where Gu : RE+×F(G, fmax)→ Γu is a Lipschitz
continuous function. Let G be the vector of node-wise route
choice functions Gu. Let Υ be the set of all such Lipschitz
continuous G. In the sequel, we shall consider a certain sub-
class of Υ by placing restrictions on the amount of local
information available to the agents. Accordingly, let Υ1 ⊂ Υ
be the set of G such that the node-wise Gu have access only
to the densities on the links E+

u , i.e., if the local density at
node u is denoted by ρu ∈ RE

+
u

+ , then such a Gu(ρu, f eq) is
the route choice function at node u.

C. Dynamical system formulation

For a given G, flow profiles µ ∈ Ψ, equilibrium flow
f eq ∈ F(G, fmax), route choice function vector G ∈ Υ, let
D(G, G, µ, f eq; t) be the solution of the following system of
ordinary differential equations:

d
dt
ρe(t) = λ−u (f)Gue (fu, f eq)− fe, ρe(0) = µ−1

e (f eq
e ),

fe = µe(ρe), ∀e ∈ E+
u ∀u ∈ V \ {d},

(4)

The stability of the transportation network is formally
defined as follows.

Definition 2.2: For a given G, flow profiles µ,
equilibrium flow f eq, route choice function vector G,
the dynamical system given by Equation (4), or equivalently
D(G, G, µ, f eq; t) is stable if

lim sup
t→+∞

‖D(G, G, µ, f eq; t)‖∞ < +∞.
Remark 2.3: Equations (1) and (3) imply that, for any

e ∈ E , ρe(t) → +∞ implies that Te → +∞. Therefore,
definition 2.2 implies that the transportation network is stable
if the traffic comes to a standstill at one or more locations
in the network.

In this paper, we consider disturbances that affect the
flow function, specifically by reducing the maximum flow
capacity of the edges. We shall measure the magnitude of the
disturbance by the resultant reduction in the flow carrying
capacity of the network. Let ∆(fmax) = {δ ∈ RE+ | δ ≤
fmax}, where the inequality is element wise, denote the set
of feasible disturbances. On application of a disturbance δ ∈
∆(fmax), the flow profile switches to µδ ∈ Ψ(fmax−δ) which
is also dominated by the pre-disturbance flow function by no
more than δ, i.e., it satisfies µδe(ρe) ∈ [µe(ρe) − δe, µe(ρe)]
for all ρe ≥ 0 and all e ∈ E .

Example: The following post-disturbance model is admis-
sible with respect to the example given in Equation (2).

µδe(ρe) = (fmax
e − δe)

(
1− e−αeρe

)
e ∈ E . (5)

D. Robustness: Margin of stability

We quantify the robustness of transportation network by
defining a notion of margin of stability as follows. For a
given G, equilibrium flow f eq, route choice function vector
G, define the set of destabilizing disturbances as:

∆U (G, G, f eq) := {δ ∈ ∆(fmax) | ∃µδ ∈ Ψ(fmax−δ) s.t.

D(G, G, µδ, f eq; t) is unstable}.

Define the the margin of stability of the given transporta-
tion network as:

γ (G, G, f eq) := inf
δ∈∆U (G,G,f eq)

‖δ‖1.

E. Problem statement

Given a set of feasible route choice functions Υ, define
the maximum attainable margin of stability as:

Γ (G,Υ, f eq) := sup
G∈Υ

γ (G, G, f eq) . (6)

Our primary objective is to find the route choice functions
G in the given feasible set Υ that yield a margin of stability
as close to Γ as possible. Define maximum margin of stability
with respect to the equilibrium flow as follows.
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Γ∗ (G,Υ) := sup
f eq∈F(G,fmax)

Γ (G,Υ, f eq) . (7)

Our secondary objective is to identify the equilibrium
operating point for the network, f eq(τ) that would yield the
margin of stability as close to Γ∗ as possible and determine
the tolls τ that yield a desired equilibrium flow over the
network.

In general it is difficult to analytically solve Equations (6)
and (7). We start by deriving bounds on the corresponding
quantities.

III. UPPER BOUND ON THE MARGIN OF STABILITY

In this section, we derive a number of upper bounds on
the margin of stability.

We start by giving an upper bound that holds true for any
G ∈ Υ. We first need to mention a few relevant concepts
from flow networks.

An o − d cut (O,D) is a partition of V such that o ∈ O
and d ∈ D. The cut-set of (O,D) is the set C(O,D) :=
{(u, v) ∈ E | u ∈ O, v ∈ D}. The capacity of an o− d cut,
C = (O,D), is defined as C(O,D) =

∑
e∈C(O,D) f

max
e .

Theorem 3.1: Given a graph G satisfying (A1), equilib-
rium flow f eq ∈ F(G, fmax), we have that

γ (G, G, f eq) ≤ min
{A⊂V | o∈A, d/∈A}

C(A,Ac)− 1, ∀G ∈ Υ.

Proof Let e∗ := argmaxe∈Emc
f eq
e , where Emc is the cut set

of (Ã, Ãc) with Ã := argmin{A⊂V | o∈A, d/∈A} C(A,Ac). For
any ε ∈

(
0,maxe∈Emc f

eq
e

)
, consider a feasible disturbance

vector δ(ε), where

δe(ε) =
{
fmax

e − f eq
e + ε · 1e∗(e) if e ∈ Emc,

0 otherwise,

Note that,

‖δ(ε)‖1 =
∑
e∈Emc

(fmax
e − f eq

e ) + ε. (8)

Let this disturbance be applied to the network at time t = 0.
The max-flow min-cut theorem [10] implies that a suf-

ficient condition for F (G, fmax − δ(ε)) = ∅ is that the
minimum of the capacities of all the o − d cuts in
(G, fmax − δ(ε)) is strictly less than 1. Capacity of the Emc

cut in (G, fmax − δ(ε)) is
∑
e∈Emc

fmax
e − ‖δ(ε)‖1, which

is equal to 1 − ε. This implies that, the minimum of the
no comma here

capacities of all the o − d cuts in (G, fmax − δ(ε)) is less
than or equal to 1− ε, i.e., strictly less than 1 for all ε > 0.
Therefore, F (G, fmax − δ(ε)) = ∅ for all ε > 0. This implies
that, for all ε > 0, there is at least one one edge e ∈ E such
that d

dtρe(t) > 0 for all t ≥ 0, which in turn implies that
limt→+∞ ρe(t) = ∞. In other words, D(G, G, µδ, f eq; t) is
unstable for all ε > 0 and G ∈ Υ. The result follows by
taking infimum over ε > 0 in Equation (8).

One can prove a tighter upper bound by restricting atten-
tion to route choice functions in Υ1.

Theorem 3.2: Given a graph G satisfying (A1), equilib-
rium flow f eq ∈ F̊(G, fmax), we have that,

γ (G, G, f eq) ≤ min
u∈V\{d}

∑
e∈Eu+

(fmax
e − f eq

e ) , ∀G ∈ Υ1.

Proof For an acyclic G and a G ∈ Υ1 and
hence satisfying (A3), the inflow at any node u ∈
V \ {d} is independent of the agent densities down-
stream from u. Let u ∈ V \ {d} be such that∑
e∈E+u

(
fmax

e − f eq
e

)
= minu∈V\{d}

∑
e∈E+u

(
fmax

e − f eq
e

)
.

Let e∗ := argmaxe∈E+u f
eq
e . For any ε ∈

(
0, f eq

e∗
)
, consider a

feasible disturbance vector δ(ε) defined as

δe(ε) =
{
fmax

e − f eq
e + ε · 1e∗(e) if e ∈ E+

u ,
0 otherwise,

Note that,

‖δ(ε)‖1 =
∑
e∈E+u

(fmax
e − f eq

e ) + ε. (9)

Therefore, the dynamics of the sum of densities on the
edges outgoing from the node u under the disturbance δ(ε)
can be written as

d
dt

∑
e∈E+u

ρe(t)

 =
∑
e∈E+u

f eq
e −

∑
e∈E+u

µδ(ε)e (ρe). (10)

For all e ∈ E , we have that

µδ(ε)e (ρe) ≤ lim sup
ρe→+∞

µδ(ε)e (ρe) = fmax
e − δe(ε), ∀ρe ≥ 0.

(11)
Therefore, combining Equations (9), (10) and (11), we have
that

d
dt

∑
e∈E+u

ρe(t)

 ≥ ε > 0,

i.e.,
∑
e∈E+u

ρe(t)→ +∞ as t→ +∞. Therefore, ρe′(t)→
+∞ as t→ +∞ for at least one e′ ∈ E+

u . The result follows
by taking infimum over ε > 0 in Equation (9).

Remark 3.3: It is easy to verify that the upper bound in
Theorem 3.2 is less than or equal to the upper bound in
Theorem 3.1. This, possibly, illustrates the loss in margin of
stability due to lack of global information.

For the rest of the paper we shall restrict our attention to
the set Υ1 as the set of feasible route choice functions.

IV. ROUTE CHOICE BEHAVIOR AND LOWER BOUND ON
THE MARGIN OF STABILITY

In this section, we derive lower bounds on the margin of
stability for the specific case when f eq

e > 0 for all e ∈ E and
the route choice set is Υ1. Throughout this section, we shall
write Gvj (ρ

v) for Gvj (ρ
v; f eq).

In particular, we will show that a G ∈ Υ1 with the
following properties will give the maximum possible margin
of stability.

(A3) µe(ρe) = f eq
e , ∀e ∈ E+

v =⇒
λ−v (f eq)Gvj (ρ

eq) = f eq
j ;
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(A4) Gvj is differentiable in ρ and ∂Gvj (ρ
v)/∂ρk <

0 , ∀j 6= k ∈ E+
v .

(A5) lim
ρj→+∞

Gj(ρ) = 0 , ∀j ∈ E+
v .

Assumption (A3) is a consistency assumption, and ensures
that, if the current flow coincides locally with the agents’
belief, then their route choice coincides with such a belief.
Assumption (A4) instead captures the fact that, if the flow,
and hence the congestion, on a certain link is increased, then
each of the other links is chosen with higher probability. Let
Υ1 be the subset of Υ1 whose elements satisfy assumptions
(A3) and (A4).

An example of function G that satisfies conditions (A3)-
(A5) when f eq ∈ ˚F(G, fmax) is the i-logit route choice with
noise level β > 0, defined by

Gve(ρ
v) =

f eq
e exp(−β(µe(ρe)− f eq

e ))∑
j∈E+v f

eq
j exp(−β(µj(ρj)− f eq

j )
,

for all v ∈ V \ {d}, and e ∈ E+
v .

We now present a local result for the behaviour of the
system on the set of outgoing edges from a given node. We
start with the following result ensuring existence of a local
equilibrium.

Lemma 4.1: For every node v ∈ V \ {d}, and 0 ≤ λv <∑
e∈E+v f

max
e , there exists an equilibrium point ρv ∈ RE+v

such that

λvG
v
e(ρ

v) = µe(ρe) , ∀e ∈ E+
v .

Proof We state the proof for the case when |E+
v | = 2. The

proof for the general case follows along similar lines. Let
E+
v = {e, j}. First, if both λv ≤ fmax

e , and λv ≤ fmax
j , then

the map g(fe) = λvG
v
e(fe, λv − fe) continuously maps the

closed interval [λv − fmax
j , fmax

e ] in itself, and existence of a
fixed point is guaranteed by Brouwer’s fixed point theorem.

Second, if both λv > fmax
e , and λv > fmax

j , then consider
the function h(fe) = λvG

v
e(µ
−1
e (fe), µ−1

j (λv − fe)) − fe.
Then, h is continuous over the nonempty interval (λv −
fmax
j , fmax

e ), and satisfies

lim
fe→λv−fmax

j

h(fe) = fmax
j , lim

fe→fmax
e

h(fe) = −fmax
e .

Therefore, by the mean-value theorem, there exists some f∗e
such that h(f∗e ) = 0. Setting f∗j = λv − f∗e concludes the
proof.

Finally, consider the case when fmax
e < λv , while fmax

j ≥
λv (the case when the roles of e and j are reversed can
be treated by a symmetric argument). Then, the function
h(fe) = λvG

v
e(µ
−1
e (fe), µ−1

j (λv − fe)) − fe is continuous
and decreasing over the interval (0, fmax

e ), and satisfies

lim
fe→0

h(fe) > 0 , lim
fe→fmax

e

h(fe) = −fmax
e ,

and existence of a zero is again guaranteed by the mean-
value theorem.

We now prove an important lemma on the node-wise
stability and diffusivity properties of G ∈ Υ1.

Lemma 4.2 (Local stability and diffusivity properties):
Given a δ ∈ ∆(fmax) and a G ∈ Υ1, consider the initial
value problem for every node v ∈ V \ {d}:{

d
dtρj = λv(t)Gvj (ρ

v)− µδj(ρj) ,
ρj(0) = ρeq

j , j ∈ E+
v .

Assume that the input λv(t) is continuous, and it satisfies
the following for every node v ∈ V \ {d}:

λv(t) ≤ λ∗v ≤
∑

j∈E+v

(
fmax
j − δj

)
, t ≥ 0 . (12)

Then, for all v ∈ V \ {d} and t ≥ 0, we have that∑
j∈J

µδj(ρj(t))−f
eq
j ≤

[
λ∗v − λ−v (f eq)

]++
∑
j∈E+v

δj . ∀J ⊆ E+
v .

(13)
.
Proof Let ρ̃v(t) be the solution of the initial value problem{

d
dt ρ̃j = λ∗vG

v
j (ρ̃

v)− µδj(ρ̃j)
ρ̃j(0) = ρeq

j .

Observe that, thanks to Assumption (A4), for every ρv 6=
ρeq ∈ RE

+
v

+ such that

ρj = ρeq
j for some j ∈ E+

v , ρe ≥ ρeq
e , ∀e 6= j ∈ E+

v ,

one has Gvj (ρ
v) > Gvj (ρ

eq), and then, for all t ≥ 0,

λ∗Gj(ρv(t))− µδj(ρj) > (
∑
e

feqe )Gj(ρ∗)− µδj(ρ
eq
j ) ≥ 0 .

Therefore, if we consider the region

Req := {ρv : ρj ≥ ρeq
j , ∀j ∈ E} ,

and denote by n the outward-pointing normal vector to ∂R∗,
one has that(

λ(t)Gvj (ρ
v)− µδj(ρj)

)
· n < 0 , ∀ρv ∈ ∂R∗ , t ≥ 0 .

It follows that

ρ̃e(t) ≥ ρeq
e , ∀e ∈ E , ∀t ≥ 0 . (14)

On the other hand, thanks to Lemma 4.1, there exists ρ∗

such that

(
∑
e

feqe )Gvj (ρ
∗) = µδj(ρ

∗
j ) , ∀j ∈ E+

v .

Then, for all ρv 6= ρ∗ such that

ρj = ρ∗j for some j ∈ E , ρe ≤ ρ∗e, ∀e 6= j ∈ E .

Assumption (A4) implies that Gvj (ρ
v) < Gvj (ρ

∗), and then

λ(t)Gvj (ρ
v)− µδj(ρj) < λ∗Gvj (ρ

∗)− µδj(ρ∗j ) = 0 .

Therefore,(
λ∗Gvj (ρ

v)− µδj(ρj)
)
· n < 0 , ∀ρv ∈ ∂R∗ ,

where
R∗ := {ρv : ρj ≤ ρ∗j , ∀j ∈ E+

v } ,
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and n is the outward-pointing normal vector to its boundary.
This proves that

ρ̃e(t) ≤ ρ∗e , ∀e ∈ E , ∀t ≥ 0 ,

from which, in particular, it follows that∑
e∈E

µδe(ρ̃e(t)) ≤
∑
e∈E

µδe(ρ
∗
e) = λ∗ . (15)

Now, combining (15) with (14), one gets that, for all t ≥ 0∑
j∈J µ

δ
j(ρ̃j(t)) ≤ λ∗v −

∑
j /∈J

µδj(ρ̃j(t))

≤ λ∗v −
∑
j /∈J

µδj(ρ
eq
j )

= δλ +
∑
j∈J

f eq
j +

∑
j /∈J

(
f eq
j − µδj(ρ

eq
j )
)

≤ δλ +
∑
j∈J

f eq
j + δµ ,

where δλ = λ∗v−λ−v (f eq) and δµ =
∑
j∈E+v δj . To complete

the proof, it remains to show that

ρ̃j(t) ≥ ρj(t) , t ≥ 0 . (16)

for all j ∈ E+
v . In order to see this, first observe that ρ̃j(0) =

ρj(0). Moreover, if ρ̃j(t) = ρj(t) for some j, and ρ̃e(t) ≥
ρe(t) for all other e, then Assumption (A4) guarantees that
Gvj (ρ̃

v) ≥ Gvj (ρv), and, as a consequence,

d
dt
ρ̃j = λ∗Gvj (ρ̃

v)−µδj(ρ̃j) ≥ λ(t)Gvj (ρ
v)−µδj(ρj) =

d
dt
ρj ,

which in turn can be shown to imply (16).

Remark 4.3: Lemma 4.2 implies that for a G ∈ Υ1, the
effect of a disturbance diffuses away from the location where
it is applied. Specifically, the increase in the flow on all the
edges downstream from a node whose outgoing edges are
affected by a disturbance, is less than the magnitude of the
disturbance.

One can exploit the local stability and diffusivity property
of G in Υ1 from Lemma 4.2 along with a standard induction
associated with a topological ordering of an acyclic graph to
prove the following theorem.

Theorem 4.4: Given a graph G satisfying (A1), equilib-
rium flow f eq ∈ F(G, fmax), we have that

γ (G, G, f eq) ≥ min
u∈V\{d}

∑
e∈E+u

(fmax
e − f eq

e ) ∀G ∈ Υ1,

and hence,

Γ (G,Υ1, f
eq) = min

u∈V\{d}

∑
e∈E+u

(fmax
e − f eq

e ) ∀G ∈ Υ1.

(17)
Note that the second part of the Theorem 4.4 follows by

combining the first part and Theorem 3.2.
Remark 4.5: Theorem 4.4 implies that, for a given f eq, the

route choice functions G in Υ1 give the maximum possible
margin of stability.

V. ROBUST EQUILIBRIUM SELECTION AND OPTIMAL
TOLL SELECTION

In the previous sections, we studied robustness properties
of a transportation network around a given equilibrium point.
We now return to our secondary objective of identifying the
most robust equilibrium operating point for the network.

A. Robust equilibrium selection as an optimization problem

The robust equilibrium selection problem can be posed as
an optimization problem as follows:

maximize Γ (G,Υ1, f
eq) ,

subj. to f eq ∈ F(G, fmax).
(18)

The solution to this optimization problem can help a system
planner evaluate the distribution of traffic flow that is most
robust to disruptions and can implement this distribution
using, for example, using tolls τ , e.g., see [5]. Similar
optimization problems and their solution methodologies have
been widely studied in context of traffic assignment in [1].

Equation (17) shows that, under these conditions, Γ∗ is
a minimum of a set of functions linear in f eq and hence is
concave in f eq. Therefore the optimization problem stated in
Equation (18) is equivalent to minimizing a convex function
over a convex polytope. However, note that the objective
function, Γ (G,Υ1, f

eq) is non-smooth and one needs to use
non-smooth convex optimization techniques, e.g., see [12],
to solve this problem.

B. The robustness price of anarchy

Conventionally, transportation networks have been viewed
as static flow networks, where a given equilibrium traffic flow
is an outcome of driver’s selfish behavior in response to the
delays associated with various paths and the incentive mecha-
nisms in place. The price of anarchy [13] has been suggested
as a metric to measure how sub-optimal a given equilibrium
is with respect to the societal optimal equilibrium, where the
societal optimality is related to the average delay faced by the
agents. In the context of robustness analysis of transportation
networks, it is natural to consider societal optimality from
the robustness point of view, thereby motivating a notion of
the robustness price of anarchy. Formally, it can be defined
as

P (G,Υ, f eq) = Γ∗ (G,Υ)− Γ (G,Υ, f eq) .

It is worth noting that, for a parallel topology, we have that
Γ∗ (G,Υ1, f

eq) = Γ∗ (G,Υ, f eq) =
∑
e∈E f

max
e − 1 for all

f eq. That is, the margin of stability is independent of the
equilibrium operating condition and hence, for a parallel
topology, P (G,Υ, f eq) = 0 for all f eq. However, for a
general topology and a general equilibrium, this quantity is
non-zero. In the next section, we discuss the use of tolls to
yield a robust equilibrium point for a given topology, i.e.,
the one for which the robustness price of anarchy is zero.
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C. Tolls for the robust equilibrium point

In this section, we discuss the use of tolls τ to yield
a desired equilibrium operating condition, f eq(τ), for the
network.

Proposition 5.1: Given a graph G satisfying (A1), µ ∈ Ψ,
and a desired equilibrium f∗ ∈ F̊(G, fmax), a set of tolls
τ∗ ∈ RE+ that yield this desired equilibrium is given by

τ∗ = max
e∈E

Te(1)
Te(f eq(0))

· T (f eq(0))− T (f∗),

where f eq(0) is the Wardrop equilibrium for tolls set to zero.
Proof Let Π be a simplex of dimension P (number of paths
in G between o and d). Consider the function V : Π → R
that serves as a potential function for the congestion game
at hand:

V (π) =
∑
e∈E

∫ fe

0

(τe + Te(z)) dz

=τT f +
∑
e∈E

∫ fe

0

Te(z)dz, (19)

where f = ATπ, with A ∈ {0, 1}P×E being the path-link
incidence matrix, i.e., for all e ∈ E and p ∈ P , Ap,e = 1
if e lies in path p and zero otherwise. Equation (19) can be
rewritten as

V (π) = (Aτ)Tπ +
∑
e∈E

∫ (ATπ)e

0

Te(z)dz,

Following assumption (A2) and the discussion thereafter, it
is easy to see that V (π) is convex in π. It is known, e.g., see
Theorem 2.1 in [1], that the (unique) Wardrop equilibrium
f eq(τ) is equivalent to the first order optimality condition of
the following optimization problem:

minimize V (π),
subj. to π ∈ Π.

(20)

Let ζ ∈ R be the Lagrange multiplier corresponding to
the constraint in (20). The Lagrangian function can then be
written as

L(π, ζ) := (Aτ)Tπ+
∑
e∈E

∫ (ATπ)e

0

Te(z)dz+ ζ
(
1− 1TPπ

)
.

Considering the first order optimality conditions, the nec-
essary and sufficient condition for f∗ ∈ F̊(G, fmax) to be a
Wardrop equilibrium is the existence of τ∗ ∈ RE+ and ζ∗ ∈ R
that satisfy the following condition:

A (τ∗ + T (f∗)) = ζ∗1P . (21)

Since f eq(0) is a Wardrop equilibrium for τ = 0, the first
order optimality conditions imply that there exists ζ̂ ∈ R
such that

AT (f eq(0)) = ζ̂1P . (22)

Using Equation (22) and simple algebra, one can verify
that Equation (21) is satisfied for τ∗ = maxe∈E

Te(1)
Te(f eq(0)) ·

T (f eq(0))− T (f∗) and ζ∗ = maxe∈E
Te(1)

Te(f eq(0)) · ζ̂.

Remark 5.2: The set of tolls that yield a desired equilib-
rium operating condition is not unique. In fact, any toll of the
form τ∗ = ηT (f eq(0))−T (f∗), with η ≥ maxe∈E

Te(f∗)
Te(f eq(0))

would yield f∗ as the equilibrium condition. Proposition 5.1
gives just one such set of tolls.

VI. CONCLUSION

In this paper, we studied robustness properties of trans-
portation networks with respect to its pre-disturbance equi-
librium operating condition and the agents’ response to
the disturbance. We considered disturbances that reduce the
maximum flow carrying capacities of the edges by affecting
their congestion properties. We define the margin of stability
of the network to be the maximum sum of capacity losses,
under which the traffic densities on all the edges remain
bounded over time. We characterized the class of route
choice functions that yield the maximum margin of stability
for a given equilibrium operating condition and also the
formulated an optimization problem to find the most robust
equilibrium point. Finally, we discussed the use of tolls in
yielding a desired equilibrium operating condition.

In future, we plan to extend the research in several
directions. First, we plan to study the dependence of the
margin on stability on the amount of information available
to the agents. We also plan to perform robustness analysis
in a probabilistic framework versus the min-max framework
of this paper, possibly considering other general models for
disturbances. Finally, we also plan to consider more general
graph topologies, e.g., graphs have cycles, multiple origin-
destination pairs etc.
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