Ph.D. course on Network Dynamics Homework 1

To be discussed on Tuesday, October 8, 2013

Exercise 1. Let $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ be the complete graph with n nodes, and P the stochastic matrix associated to the standard random walk on \mathcal{G}. Determine the spectral gap of P (i.e., $1-\lambda_{2}$, where λ_{2} is the second largest eigenvalue of P).

Exercise 2. Prove that all the entries of the invariant probability distribution π of an irreducible stochastic matrix P are strictly positive. (hint: recall the argument used in class to prove uniqueness)

Exercise 3. Consider the stochastic matrix

$$
P=\left[\begin{array}{ccccc}
1 / 3 & 2 / 3 & 0 & 0 & 0 \\
0 & 1 / 3 & 2 / 3 & 0 & 0 \\
0 & 0 & 1 / 3 & 2 / 3 & 0 \\
0 & 0 & 0 & 1 / 3 & 2 / 3 \\
2 / 3 & 0 & 0 & 0 & 1 / 3
\end{array}\right]
$$

Find its invariant probability distribution and its spectrum. Is P reversible? (hint: to compute eigenvalues, use the fact that an orthonormal basis of eigenvectors is $\left\{v^{(k)}: 0 \leq k \leq 4\right\}$ where $v_{j}^{(k)}=\frac{1}{\sqrt{5}} e^{i 2 \pi k j / 5}$ for $1 \leq j \leq 5$, where i is the imaginary unit.)

Exercise 4 (Birth and death chain). Consider a Markov chain over $\mathcal{V}=$ $\{0,1, \ldots, n\}$ with $P_{i j}=0$ for all $|i-j|>1$. Assume that $P_{i j}>0$ whenever $|i-j|=1$ (which makes P irreducible). Find the invariant probability distribution π and prove that P is reversible. (hint: do both things at once, using reversibility to determine $\pi_{k+1} / \pi_{k}, k=0,1, \ldots, n-1$.)

Exercise 5 (Lazy random walk on the hypercube). The hypercube of dimension $k \geq 1$ is the graph with node set $\mathcal{V}=\{0,1\}^{k}$ and $\mathcal{E}:=\{\{u, v\}$: $\|u-v\|=1\}$. Let P be the stochastic matrix associated to the lazy random walk on \mathcal{G}. Determine an upper bound on the spectral gap $1-\lambda_{2}$ using its variational characterization (hint: take $\mathcal{S}=\left\{v \in\{0,1\}^{k}: v_{1}=0\right\}$ and f equal to 1 on \mathcal{S} and to -1 on $\mathcal{V} \backslash \mathcal{S}$)

Exercise 6 (Lazy random walk on the cycle). The cycle of size n is the graph $(\mathcal{V}, \mathcal{E})$ with $\mathcal{V}=\{0, \ldots, n-1\}$ and $\mathcal{E}:=\{\{u, v\}:|u-v|=1\}$ where the difference is taken modulo n (so that 0 and $n-1$ are linked to each other). Use Cheeger's inequality to get a lower bound on the spectral gap.

