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Abstract

A single letter characterization is provided for the capacity region of finite-state multiple
access channels, when the channel state is an independent and identically distributed process,
the transmitters have access to partial (quantized) state information, and complete channel
state information is available at the receiver. The partial state information is asymmetric at the
encoders. The problem is practically relevant, and provides a tractable optimization problem.
The case where the channel state process is Markovian is also discussed.

1 Introduction and Literature Review

Wireless communication channels and the Internet are examples of channels where the channel
characteristics are time-varying. Channel fading models for wireless communications include fast
fading and slow fading; in fast fading the channel state is assumed to be changing for each use of
the channel, whereas in slow fading, the channel is assumed to be constant for each finite block
length. In fading channels, the channel fade might not be transmitted to the transmitter over a
perfect channel, but via reducing the data rate, the error in feedback transmission can be improved.

The present paper studies finite state multiple access channels (MACs) with asymmetrically
quantized state information at the transmitters, and perfect state information at the receiver.
A single letter characterization of the capacity region is proved for the case of independent and
identically distributed channel state sequence. Generalizations to the case where the channel state
dynamics is Markovian are discussed as well. Our approach is inspired by analogies with team
decision theory [18, 17].

Capacity with partial channel state information at the transmitter is related to the problem
of coding with unequal side information at the encoder and the decoder. The capacity of mem-
oryless channels with various cases of side information being available at neither, either or both
the transmitter and receiver have been studied in [12] and [5]. [1] studied the capacity of channels
with memory and complete noiseless output feedback and introduced a stochastic control formu-
lation for the computation via the properties of the directed mutual information. Reference [6]
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Figure 1: Finite state multiple access channel with asymmetric partial state feedback.

considered fading channels with perfect channel state information at the transmitter, and showed
that with instantaneous and perfect state feedback, the transmitter can adjust the data rates for
each channel state to maximize the average transmission rate. Viswanathan [15] relaxed this as-
sumption of perfect instantaneous feedback, and studied the capacity of Markovian channels with
delayed feedback. Reference [16] studied the capacity of Markov channels with perfect causal state
feedback. Capacity of Markovian, finite state channels with quantized state feedback available at
the transmitter was studied in [2].

A related work [9] has studied MAC channels where the encoders have degraded information
on the channel state, which is coded to the encoders. Authors in [9] also considered outer and
inner bounds on the capacity region when the information at the encoders is asymmetric, that
is not necessarily degraded. In contrast, the present paper considers and obtains a precise result
for a setting where the encoders have asymmetric, partial state information, which is obtained
through fixed quantizers acting componentwise, rather than encoded in blocks (that is, the side
information is causal as opposed to non-causal). Another recent related work is [20] which provided
an infinite-dimensional characterization for the capacity region for Multiple Access Channels with
feedback.

The rest of the paper is organized as follows. In Sect. 2 a formal statement of the problem and
the main results are presented, consisting in a single letter characterization of the capacity region
of finite state MACs with i.i.d. state. Sect. 3 contains the proof of achievability of the capacity
region, while Sect. 4 presents a proof of the converse coding theorem. Finally, in Sect. 5 we discuss
generalizations to the memory case and present some final remarks.

2 Capacity of i.i.d. Finite-State MAC Channel with Asymmetric

Partial State Feedback

In the following, we shall present some notation, before formally stating the problem. For a vector
v, and a positive integer i, vi will denote the i-th entry of v, while v[i] = (v1, . . . , vi) will denote
the vector of the first i entries of v. Following the usual convention, capital letters will be used
to denote random variables (r.v.s), and small letters denote particular realizations. We shall use
the standard notation H( · ), and I( · ; · ) (respectively H( · | · ), and I( · ; · | · )) for the (conditional)
entropy and mutual information of r.v.s. With a slight abuse of notation, for 0 ≤ x ≤ 1, we shall
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write H(x) for the entropy of x. For a finite set A, P(A) will denote the simplex of probability
distributions over A. Finally, for a positive integer n, we shall denote by

A(n) :=
⋃

0≤s<n A
s

the set of A-strings of length smaller than n. 1

We shall consider a finite state, multiple access channel with two transmitters, indexed by
i ∈ {a, b}, and one receiver. Transmitter i aims at reliably communicating a message Wi, uniformly
distributed over some finite message set Wi, to the receiver. The two messages Wa and Wb are
assumed to be mutually independent. We shall use the notation W := (Wa,Wb) for the vector of
the two messages.

The channel state process is modeled by a sequence S = (St) of independent, identically dis-
tributed (i.i.d.) r.v.s, taking values in some finite state space S, and independent from W ; the
probability distribution of any St is denoted by P ( · ) ∈ P(S). The two encoders have access to

causal, partial state information: at each time t ≥ 1, encoder i observes V
(i)
t = qi(St), where

qi : S → Vi is a quantizer modeling the imperfection in the state information. We shall denote by

Vt := (V
(a)
t , V

(b)
t ) the vector of quantized state observations, taking values in V := Va × Vb. The

channel input of encoder i at time t, X
(i)
t , takes values in a finite set Xi, and is assumed to be a

function of the locally available information (Wi, V
(i)
[t] ). The symbol Xt = (X

(a)
t ,X

(b)
t ) will be used

for the vector of the two channel inputs at time t, taking values in X := Xa × Xb. The channel
output at time t, Yt, takes values in a finite set Y; its conditional distribution satisfies

P(Yt = y|W = w,X[t] = x[t], S[t] = s[t]) = P (yt|st, xt) , (1)

where, for any s ∈ S, and x ∈ X , P ( · |s, x) ∈ P(Y) is an output probability distribution. Finally,
the decoder is assumed to have access to perfect causal state information; the estimated message
pair will be denoted by Ŵ = (Ŵa, Ŵb).

We now present the class of transmission systems.

Definition 1 For a rate pair R = (Ra, Rb), a block-length n ≥ 1, and a target error probability
ε ≥ 0, an (R,n, ǫ)-coding scheme consists of two sequences of functions

{φ
(i)
t : Wi × Vt

i → Xi}1≤t≤n ,

and a decoding function
ψ : Sn × Yn → Wa ×Wb ,

such that, for i ∈ {a, b}, 1 ≤ t ≤ n:

• |Wi| ≥ 2Rin;

• X
(i)
t = φ

(i)
t (Wi, V

(i)
[t] );

• Ŵ := ψ(S[n], Y[n]);

• P(Ŵ 6= W ) ≤ ε.

Upon the description of the channel and transmission systems, we now proceed with the char-
acterization of the capacity region.

1This includes the empty string, conventionally assumed to be the only element of A0.
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Definition 2 A rate pair R ∈ R
2
+ is achievable if, for all ε > 0, there exists, for some n ≥ 1, an

(R,n, ε)-coding scheme. The capacity region of the finite state MAC is the closure of the set of all
achievable rate pairs.

We now introduce static team policies and their associated rate regions.

Definition 3 A static team policy is a family

π = {πi( · |vi) ∈ P(Xi)| i ∈ {a, b}, vi ∈ Vi} (2)

of probability distributions on the two channel input sets conditioned on the quantized observation
of each transmitter. For every static team policy π, R(π) will denote the region of all rate pairs
R = (Ra, Rb) satisfying

0 ≤ Ra < I(Xa;Y |Xb, S)
0 ≤ Rb < I(Xb;Y |Xa, S)
0 ≤ Ra +Rb < I(X;Y |S) ,

(3)

where S, X = (Xa,Xb), and Y , are r.v.s taking values in S, X , and Y, respectively, and whose
joint probability distribution

ν(s, x, y) := P (S = s,X = x, Y = y)

factorizes as
ν(s, x, y) = P (s)πa(xa|qa(s))πb(xb|qb(s))P (y|s, x) . (4)

We can now state the main result of the paper.

Theorem 4 The achievable rate region is given by

co

(

⋃

π

R(π)

)

the closure of the convex hull of the rate regions associated to all possible static team policies π as
in (2).

In Sect.3 we shall prove the direct part of Theorem 4, namely that every rate pair R ∈ co (∪πR(π))
is achievable. In Sect. 4 we shall prove the converse part, i.e. that no rate pair R ∈ R

2
+\co (∪πR(π))

is achievable.

3 Achievability of the capacity region

In this section, we shall show that any rate pair R = (Ra, Rb) belonging to the region R(π), for
some static policy π, is achievable. Achievability of any rate pair R in co(∪πR(π)) will then follow
by a standard time-sharing argument (see e.g. [19, Lemma 2.2, p.272]).

In order to prove achievability on the original finite state MAC, we shall consider an equivalent
memoryless MAC having output space Z := S × Y coinciding with the product of the state and
output space of the original MAC, input spaces Ui := {ui : Vi → Xi}, for i ∈ {a, b}, and transition
probabilities

Q(z|ua, ub) := P (s)P (y|ua(qa(s)), ub(qb(s))) ,

where z = (s, y). A coding scheme for such a MAC consists of a pair of encoders

f (i) : Wi → Un
i , i ∈ {a, b} ,
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and a decoder
g : Yn × Sn → Wa ×Wb .

To any such coding scheme it is natural to associate a coding scheme for the original finite state
MAC, by defining the encoders

φ
(i)
t : Wi × Vt

i → Xi , φ
(i)
t (wi, v[t]) = [f (i)(wi)](v

(i)
t )

for i ∈ {a, b}, and letting the decoder ψ : Yn × Sn → Wa ×Wb coincide with g. It s not hard to
verify the following:

Lemma 3.1 The probability measure induced on the product space Wa×Wb×Sn×Yn by the coding
scheme (f (a), f (b), g) and the memoryless MAC Q coincides with that induced by the corresponding

coding scheme (φ
(a)
t , φ

(b)
t , ψ) and the finite state MAC P .

Hence, in this way, to any (R,n, ε)-coding scheme on the memoryless MAC Q, it is possible to

associate an (R,n, ε)-coding scheme (φ
(a)
t , φ

(b)
t , ψ) on the original finite state MAC P .

Now, let µa ∈ P(Ua), and µb ∈ P(Ub), be probability distributions on the input spaces of the
new memoryless MAC, and fix an arbitrary rate pair R = (Ra, Rb), such that

Ra < I(Ua;Z|Ub)

Rb < I(Ub;Z|Ua)

Ra +Rb < I(U ;Z) , (5)

where U = (Ua, Ub) and Z are r.v.s whose joint distribution factorizes as

P (Ua, Ub, Z) = µa(Ua)µb(Ub)Q(Z|Ua, Ub) . (6)

Consider a sequence of random codes

{

f (n)
a : W(n)

a → Un
a , f

(n)
b

: W
(n)
b

→ Un
b

}

n

where
|W(n)

a | = ⌈exp(Ran)⌉ , |W
(n)
b

| = ⌈exp(Rbn)⌉

and
{

f (n)
a (wa), f

(n)
b (wb) : wa ∈ W(n)

a , wb ∈ W
(n)
b

}

is a collection of independent r.v.s, with f
(n)
i (wi) taking values in Un

i with product distribution
µi⊗ . . . ⊗ µi, for each i ∈ {a, b} and wi ∈ Wi. Then, it follows from the direct coding theorem for
memoryless MACs [19, Th.3.2, p. 272] that the average error probability of such a code ensemble
converges to zero in the limit of n going to infinity.

Now, we apply the arguments above to the special class of probability distributions µi ∈ P(Ui) =
P(X Si

i ) with the product structure

µi(ui) =
∏

vi∈Vi

πi(ui(vi)|vi) , ui : Vi → Xi , i ∈ {a, b} , (7)

for some static team policy π as in (2). Observe that, for such µa and µb, to any triple of r.v.s
(Ua, Ub, Z), with joint distribution as in (6), one can naturally associate r.v.s S, Xa := Ua(qa(S)),
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Xb := Ub(qb(S)), and Y , whose joint probability distribution satisfies (4). Moreover, it can be
readily verified that

I(Xa;Y |S,Xb) = I(Ua;Z|Ub)
I(Xb;Y |S,Xa) = I(Ub;Z|Ua)

I(X;Y |S) = I(U ;Z) .
(8)

Hence, if a rate pair R = (Ra, Rb) belongs to the rate region R(π) associated to some static team
policy π (i.e. if it satisfies (3)), that R satisfies (5) for the product probability distributions µa, µb

defined by (7). As observed above, the direct coding theorem for memoryless MACs implies that
such a rate pair is achievable on the MAC Q. Thanks to Lemma 3.1, this in turn implies that the
rate pair is achievable on the original finite state MAC P . The proof of achievability of the capacity
region co(∪πR(π)) then follows from a standard time-sharing principle.

4 Converse to the coding theorem

In this section, we shall prove that no rate outside co(∪πR(π)) is achievable. Lemma 5 shows
that any achievable rate pair can be approximated by convex combinations of (conditional) mutual
information terms. For ε ∈ [0, 1], define

η(ε) :=
ε

1 − ε
log |Y| +

H(ε)

1 − ε
, (9)

and observe that
lim
ε→0

η(ε) = 0 . (10)

For every t ≥ 1, and σ ∈ St−1, define

ασ :=
1

n
P(S[t−1] = σ) . (11)

Clearly,

ασ ≥ 0 ,
∑

σ∈S(n)

ασ =
1

n

∑

1≤t≤n

∑

σ∈St−1

P(S[t−1] = σ) = 1 . (12)

Lemma 5 For a rate pair R ∈ R
2
+, a block-length n ≥ 1, and a constant ε ∈ (0, 1/2), assume that

there exists a (R,n, ε)-code. Then,

Ra +Rb ≤
∑

σ∈S(n)

ασI(Xt;Yt|St, S[t−1] = σ) + η(ε) (13)

Ra ≤
∑

σ∈S(n)

ασI(X
(a)
t ;Yt|X

(b)
t , St, S[t−1] = σ) + η(ε) . (14)

Rb ≤
∑

σ∈S(n)

ασI(X
(b)
t ;Yt|X

(a)
t , St, S[t−1] = σ) + η(ε) . (15)

Proof By Fano’s inequality we have the following estimate of the residual uncertainty on the
messages given the full decoder’s observation

H(W |Y[n];S[n]) ≤ H(ε) + ε log(|Wa||Wb|) . (16)
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For 1 ≤ t ≤ n, we consider the conditional mutual information term

∆t := I(W ;Yt, St+1|Y[t−1], S[t]) ,

and observe that
∑

1≤t≤n

∆t = H(W |S1) − H(W |S[n+1], Y[n])

= log(|Wa||Wb|) − H(W |S[n], Y[n]) ,
(17)

since the initial state S1 is independent of the message pair W , and the final state Sn+1 is condi-
tionally independent of W given (S[n], Y[n]). On the other hand, using the conditional independence
of W from St+1 given (S[t], Y[t]), one gets

∆t = I(W ;Yt, St+1|Y[t−1], S[t])

= I(W ;Yt|Y[t−1], S[t])

= H(Yt|Y[t−1], S[t]) − H(Yt|W,Y[t−1], S[t])

≤ H(Yt|S[t]) − H(Yt|W,S[t])

= I(W ;Yt|S[t]) ,

(18)

where the above inequality follows from the fact that H(Yt|Y[t−1], S[t]) ≤ H(Yt|S[t]), since removing
the conditioning does not decrease the entropy, while H(Yt|W,Y[t−1], S[t]) = H(Yt|W,S[t]), as Yt is
conditionally independent from Y[t−1] given (W,S[t]), due to the absence of output feedback. Since
(W,S[t]) − (Xt, St) − Yt forms a Markov chain, the data processing inequality implies that

I(W ;Yt|S[t]) ≤ I(Xt;Yt|S[t]) . (19)

By combining (16), (17), (18) and (19), we then get

Ra+Rb ≤
1

n
log(|Wa||Wb|)

≤
1

1 − ε

1

n

∑

1≤t≤n

I(Xt;Yt|S[t]) +
H(ε)

n(1 − ε)

≤
1

n

∑

1≤t≤n

I(Xt;Yt|S[t]) + η(ε) .

(20)

Moreover, observe that

I(Xt;Yt|S[t]) =
∑

σ∈St−1

P(S[t−1] = σ)I(Xt;Yt|St, S[t−1] = σ)

= n
∑

σ∈St−1

ασI(Xt;Yt|St, S[t−1] = σ) .

Substituting into (20) yields (13).
Analogously, let us focus on encoder a: by Fano’s inequality, we have that

H(Wa|Y[n], S[n]) ≤ H(ε) + ε log(|Wa|) . (21)

For t ≥ 1, define

∆
(a)
t := I(Wa;Yt, St+1|Wb, Y[t−1], S[t]) ,
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and observe that
∑

1≤t≤n

∆
(a)
t = H(Wa|S1,Wb − H(Wa|Wb, S[n+1], Y[n])

≥ log |Wa| − H(Wa|S[n], Y[n]) ,
(22)

where the last inequality follows from the independence between Wa, S1, and Wb, and the fact that
removing the conditioning does not decrease the entropy. Now, we have

∆
(a)
t = I(Wa;Yt, St+1|Wb, Y[t−1], S[t])

= I(Wa;Yt|Wb, Y[t−1], S[t])

= H(Yt|Wb, Y[t−1], S[t]) − H(Yt|W,Y[t−1], S[t])

≤ H(Yt|Wb, S[t]) − H(Yt|W,S[t])

= I(Wa;Yt|Wb, S[t]) ,

(23)

where the inequality above follows from the fact that H(Yt|Wb, Y[t−1], S[t]) ≤ H(Yt|Wb, S[t]) since re-
moving the conditioning does not decrease the entropy, and that H(Yt|W,Y[t−1], S[t]) = H(Yt|W,S[t])

due to absence of output feedback. Observe that, since, conditioned on Wb and S[t] (hence, on X
(b)
t ),

Wa −X
(a)
t − Yt forms a Markov chain, the data processing inequality implies that

I(Wa;Yt|Wb, S[t]) ≤ I(X
(a)
t ;Yt|X

(b)
t , S[t]) . (24)

By combining (21), (22), (23), and (24), one gets

Ra ≤
1

n
log |Wa|

≤
1

1 − ε

1

n

∑

1≤t≤n

I(X
(a)
t ;Yt|X

(b)
t , S[t]) +

1

n

H(ε)

1 − ε

≤
1

n

∑

1≤t≤n

I(X
(a)
t ;Yt|X

(b)
t , S[t]) + η(ε)

=
∑

σ∈S(n)

ασI(X
(a)
t ;Yt|X

(b)
t , St, S[t−1] = σ) + η(ε) ,

which proves (14).
In the same way, by reversing the roles of encoder a and b, one obtains (15).

For t ≥ 1, let us fix some string σ ∈ St−1, and focus our attention on the condi-

tional mutual information terms I(Xt;Yt|St, S[t−1] = σ), I(X
(a)
t ;Yt|X

(b)
t , St, S[t−1] = σ), and

I(X
(b)
t ;Yt|X

(a)
t , St, S[t−1] = σ), appearing in the rightmost sides of (13), (14), and (15), respec-

tively. Clearly, the three of these quantities depend only on the joint conditional distribution of
current channel state St, input Xt, and output Yt, given the past state realization S[t−1] = σ.
Hence, the key step now consists in showing that

νσ(s, x, y) := P(St = s,Xt = x, Yt = y|S[t−1] = σ) (25)

factorizes as in (4). This is proved in Lemma 6 below.

For xi ∈ Xi, vi ∈ Vi, and σ ∈ St−1, let us consider the set Υ
(i)
σ (xi, vi) ⊆ Wi,

Υ
(i)
σ (xi, vi) :=

{

wi : φ
(i)
t (wi, qi(σ1), . . . , q(σt−1), vi) = xi

}

,
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and the probability distribution π
(i)
σ ( · |vi) ∈ P(Xi),

π
(i)
σ (xi|vi) :=

∑

wi∈Υ
(i)
σ (xi,vi)

|Wi|
−1 .

Lemma 6 For every 1 ≤ t ≤ n, σ ∈ St−1, s ∈ S, xa ∈ Xa, and xb ∈ Xb,

νσ(s, x, y) = P (s)π
(a)
σ (xa|qa(s))π

(b)
σ (xb|qb(s))P (y|s, x) . (26)

Proof First, observe that

νσ(s, x, y) = P(St = s|S[t−1] = σ)νσ(x|s)P (y|s, x)

= P (s)νσ(x|s)P (y|s, x)
(27)

where
νσ(x|s) := P(Xt = x|S[t] = (σ, s)) ,

the former above equality follows from (1), while the latter is implied by the assumption that the
channel state sequence is i.i.d..

Now, recall that, for i ∈ {a, b}, the current input satisfies X
(i)
t = φ

(i)
t (Wi, V

(i)
[t] ). Therefore, we

have
νσ(x|s) =

∑

w

P(Xt = x|S[t] = (σ, s),W = w)P(W = w|S[t] = (σ, s))

=
∑

w

1

|Wa||Wb|
P(Xt = x|S[t] = (σ, s),W = w)

=
∑

wa∈Υ
(a)
σ (xa,qa(s))

1

|Wa|

∑

wb∈Υ
(b)
σ (xb,qb(s))

1

|Wb|

= π
(a)
σ (xa|qa(s))π

(b)
σ (xb|qb(s)) ,

(28)

the second inequality above following from the mutual independence of S[t], Wa, and Wb.
The claim now follows from (27) and (28).

Let us now fix an achievable rate pair R = (Ra, Rb). By choosing (R,n, ε)-codes for arbitrarily
small ε > 0, the inequalities (13), (14), and (15), together with (10) and (12), imply that (Ra, Rb)
can be approximated by convex combinations of rate pairs (indexed by σ ∈ S(n)) satisfying (3)
for joint state-input-output distributions as in (25). Hence, any achievable rate pair R belongs to
co(∪πR(π)).

Remark 1: For the validity of the arguments above, two critical steps were (27), where the
hypothesis of i.i.d. channel state sequence has been used, and (28), which only relies on the mutual
independence of W and S[t], this being a consequence of the assumption of absence of inter-symbol
interference. In particular, the key point in (27) is the fact that the past state realization σ appears
in νσ only and not in P (St). ⋄

Remark 2: For the validity of the arguments above, it is critical that the receiver observes
the channel state. In this way, the decoder does not need to estimate the coding policies used in a
decentralized time-sharing. ⋄
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5 Extensions and concluding Remarks

The present paper has dealt with the problem of reliable transmission over multiple access finite
state channels with asymmetric, imperfect channel state information. A single letter characteri-
zation of the capacity region has been provided in the special case when the channel state is a
sequence of independent and identically distributed random variables.

It is worth commenting to which extent the results above can be generalized to channels with
memory. Let us consider the case when the channel state sequence {St : t ≥ 1} forms a Markov
chain with stationary transition probabilities P(St+1 = s+|St = s) = P (s+|s) satisfying the strongly
mixing condition P (s+|s) > 0 for all s, s+ ∈ S. Further, assume that there is no inter-symbol
interference, i.e. {St : t ≥ 1} is independent from the message W , and that the state process is

observed through quantized observations V
(i)
t = qi(St) as discussed earlier.

In general, for a multi-person optimization problem, whenever a dynamic programming recur-
sion with a fixed complexity per time stage is possible via the construction of a Markov Chain
with a fixed-state space (see [17] for a review of information structures in decentralized control),
the information structure is said to have a quasi-classical pattern; thus, under such a structure,
the optimization problem is computationally feasible and the problem is said to be tractable. In a
team decision theoretic approach, one assumes that there is a centralized fictitious decision maker
which designs an optimal design statically, before random variables take place. This approach is
based on Witsenhausen’s equivalent model for discrete stochastic control [18].

For case of finite state MACs with i.i.d. state sequence, by first showing that the past information
is irrelevant, we observed that we could limit the memory space on which the optimization is
performed. This is because, as observed in Remark 1, in the rightmost side of (27) the past state
realization σ affects only the control νσ(x|s), but not the current state distribution P (St). In
contrast, when the state sequence is a Markov chain, the past state realization σ does affect both
the control νσ(x|s) as well as the current state distribution P (St|S[t−1] = σ). It is exactly such a
joint dependence which prevents the proof presented here to be generalized to the Markov case.

In case there is only one transmitter, the conditional probability distribution of the state given
the observation history, Πt( · ) := P(St = · |V[t]) ∈ P(S), can be shown to be a sufficient statistic,
i.e. the optimal coding policy can be shown to depend on it only. As a consequence, the opti-
mization problem is tractable. Such a setting was studied in [2], where the following single letter
characterization was obtained for the capacity of finite state, single user channels with quantized
state observation at the transmitter and full state observation at the receiver:

C :=

∫

P(S)
sup

{

∑

s∈S

I(X;Y |s, π)P̃ (s|π) : P (X|π) ∈ P(X )

}

dP̃ (π),

where P̃ (s, π) := P̃ (s|π)P̃ (π) denotes the asymptotic joint distribution of the state St and its
estimate Πt, existence and uniqueness of which are ensured by the strong mixing condition.

For finite state multiple access channels with memory, a similar approach can successfully be
undertaken only if the state observation is symmetric, namely if qa = qb. Indeed, in this case,

the conditional state estimation Πt( · ) = P(St = · |V
(a)
[t] ) = P(St = · |V

(b)
[t] ) can be shown to

be a sufficient statistic, and a single letter characterization of the capacity region can be proved.
However, for the general case when the channel state sequence has memory and the state observation
is asymmetric (i.e. qa 6= qb), the construction of a Markov chain is not straightforward. The
conditional measure on the channel state is no longer a sufficient statistic. In particular, if one
adopts a team decision based approach, where there is a fictitious centralized decision maker, this
decision maker should make decisions for all the possible memory realizations, that is the policy is to
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map the variables (W,V
(a)
[t] , V

(b)
[t] ) to (X

(a)
t ,X

(b)
t ) decentrally, and the memory cannot be truncated,

as every additional bit is essential in the construction of an equivalent Markov chain to which the
Markov Decision Dynamic Program can be applied; both for the prediction on the channel state as
well as the belief of the belief of the coders on each other’s memory. If the encoders can exchange
their past observations with a fixed delay, if they can exchange their observations periodically, or if
they can exchange their beliefs at every time stage, then the optimization problem will be tractable
[17]. One question of interest is the following: if the channel transitions form a Markov chain, which
is mixing fast, is it sufficient to use a finite memory construction for practical purposes? This is
currently being investigated.
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