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Abstract—We provide a single letter characterization of
the capacity region for independent, identically distributed,
finite-state channels, with partial (quantized) state informa-
tion, when the channel state information is available at the
receiver. The partial state information is asymmetric at the
encoders. The problem is practically relevant, and provides
a tractable optimization problem. We also consider the case
where the channel has memory.

I. I NTRODUCTION AND L ITERATURE REVIEW

Wireless communication channels and Internet are
examples of channels where the channel characteristics
are variable. Channel fading models for wireless com-
munications include fast fading and slow fading; in fast
fading the channel state is assumed to be changing for
each use of the channel, whereas in slow fading, the
channel is assumed to be constant for each finite block
length. In fading channels, the channel fade might not
be transmitted to the transmitter over a perfect channel,
but via reducing the data rate, the error in feedback
transmission can be improved.

Capacity with partial channel state information at the
transmitter is related to the problem of coding with
unequal side information at the encoder and the decoder.
The capacity of memoryless channels with various cases
of side information being available at neither, either
or both the transmitter and receiver have been studied
in [12] and [5]. [1] studied the capacity of channels
with memory and complete noiseless output feedback
and introduced a stochastic control formulation for the
computation via the properties of the directed mutual
information. Reference [6] considered fading channels
with perfect channel state information at the transmitter,
and showed that with instantaneous and perfect state
feedback, the transmitter can adjust the data rates for
each channel state to maximize the average transmission
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Fig. 1: Finite state multiple access channel with asym-
metric partial state feedback.

rate. Viswanathan [15] relaxed this assumption of per-
fect instantaneous feedback, and studied the capacity of
Markovian channels with delayed feedback. Reference
[16] studied the capacity of Markov channels with per-
fect causal state feedback. Capacity of Markovian, finite
state channels with quantized state feedback available at
the transmitter was studied in [2].

A related work [9] has studied MAC channels where
the encoders have degraded information on the channel
state, which is coded to the encoders. In this paper, we
consider a setting where the encoders have asymmetric
partial state information, where the partial information
is obtained through a quantizer.

Another recent related work is [20] which provided
an infinite-dimensional characterization for the capacity
region for Multiple Access Channels with feedback.

We use tools from team decision theory to develop
our result [17], [18]. We also discuss the case where the
channel state has Markovian dynamics.

II. CAPACITY OF I.I .D FINITE-STATE MAC CHANNEL

WITH ASYMMETRIC PARTIAL STATE FEEDBACK

In the following, we shall present some notation,
before formally stating the problem. For a vectorv, and



a positive integeri, vi will denote thei-th entry of v,
while v[i] = (v1, . . . , vi) denotes the vector of the first
i entries ofv. Following the usual convention, capital
letters will be used to denote random variables (r.v.s),
and small letters denote particular realizations. We shall
use the standard notationH( · ), andI( · ; · ) (respectively
H( · | · ), andI( · ; · | · )) for the (conditional) binary en-
tropy and mutual information of r.v.s. For0 ≤ x ≤ 1,
H(x) will also denote the binary entropy ofx. For a
finite setA, P(A) will denote the simplex of probability
distributions overA. Finally, for a positive integern, we
shall denote by

A(n) :=
⋃

0≤s<t A
s

the set ofA-strings of length smaller thann.
We shall consider a finite state, multiple access chan-

nel with two transmitters, indexed byi = a, b, and one
receiver. Transmitteri aims at reliably communicating
a messageWi, uniformly distributed over some finite
message setWi, to the receiver. The two messagesWa

andWb are assumed to be mutually independent. We
shall use the notationW := (Wa,Wb) for the vector of
the two messages.

The channel state process is modeled by a sequence
S = (St) of independent, identically distributed (i.i.d.)
r.v.s, taking values in some finite state spaceS, and
independent fromW . The two encoders have access to
causal, partial state information: at each timet ≥ 1,
encoderi observesV i

t = qi(St), where qi : S → Vi

is a quantizer modeling the imperfection in the state
information. We shall denote byVt := (V a

t , V
b
t ) the

vector of quantized state observations, taking values in
V := Va × Vb. The channel input of encoderi at time
t, X i

t , takes values in a finite setXi, and is assumed a
function of the locally available information(Wi, V

i
[t]).

The symbolXt = (Xa
t , X

b
t ) will be used for the vector

of the two channel inputs at timet, taking values in
V := Va × Vb. The channel output at timet, Yt,
takes values in a finite setY; its conditional distribution
satisfies

P (Yt|W,X[N ], S[N ]) = P (Yt|Xt, St) . (1)

Finally, the decoder is assumed to have access to perfect
causal state information; the estimated message pair will
be denoted byŴ = (Ŵa, Ŵb).

We now present the class of transmission systems.
Definition 1: For a rate pairR = (Ra, Rb) ∈ R

2
+, a

block-lengthn ≥ 1, and a target error probabilityε ≥ 0,
an (R, n, ǫ)-coding scheme consists of two sequences of
functions

{φi
t : Wi × Vt

i → Xi}1≤t≤n ,

and a decoding function

ψ : St × Yt → Wa ×Wb ,

such that, fori = a, b, 1 ≤ t ≤ n:

• |Wi| ≥ 2Rin;
• X i

t = φi
t(Wi, V

i
[t]);

• Ŵ := ψ(S[t], Y[t]);
• P(Ŵ 6= W ) ≤ ε.

Upon the description of the channel and transmission
systems, we now proceed with the computation of the
capacity region.

Definition 2: A rate pairR ∈ R
2
+ is achievable if, for

all ε > 0, there exists, for somen ≥ 1, an (R, n, ε)-
coding scheme. The capacity region of the finite state
MAC is the closure of the set of all achievable rate pairs.

We now introduce static team policies and their asso-
ciated rate regions.

Definition 3: A static team policy is a family

π = {πi( · |xi) ∈ P(Xi)| i = a, b, vi ∈ Vi} (2)

of probability distributions on the two channel input
sets conditioned on the quantized observation of each
transmitter. For every static team policyπ, R(π) will
denote the region of all rate pairsR = (Ra, Rb) ∈ R

2
+

satisfying

Ra < I(Xa;Y |Xb, S)

Rb < I(Xb;Y |Xa, S)

Ra +Rb < I(X ;Y |S) , (3)

whereS, X = (Xa, Xb), andY , are r.v.s whose joint
distribution factorizes as

P (S,Xa, Xb, Y )
= P (S)πa(Xa|qa(S))πb(Xb|qb(S))P (Y |S,Xa, Xb) .

(4)
We can now state the main result of the paper.
Theorem 4:The achievable rate region is given by

co (∪µR(µ))

the closure of the convex hull of the rate regions asso-
ciated to all possible static team policiesπ as in (2).

In the sequel, we shall prove this theorem.

III. C ONVERSE TO THECHANNEL THEOREM

For R ∈ R
2
+, and 0 < ε ≤ 1/2, let us consider a

(R, n, ε)-code. Fano’s inequality implies that

H(W |Y[n];S[n]) ≤ H(ε) + ε log(|Wa||Wb|) .
(5)

For t ≥ 1, define

∆t := I(W ;Yt, St+1|Y[t−1], S[t]) ,

and observe that
∑

1≤t≤N

∆t = H(W |S1) − H(W |S[n+1], Y[n])

= log(|Wa||Wb|) − H(W |S[n], Y[n]) ,
(6)



sinceS1 is independent ofW , andSn+1 is conditionally
independent ofW given (S[n], Y[n]). On the other hand,
using the conditional independence ofW from St+1

given (S[t], Y[t]), one gets

∆t = I(W ;Yt, St+1|Y[t−1], S[t])
= I(W ;Yt|Y[t−1], S[t])
= H(Yt|Y[t−1], S[t]) − H(Yt|W,Y[t−1], S[t])
≤ H(Yt|S[t]) − H(Yt|W,S[t])
= I(W ;Yt|S[t]) ,

(7)
where the above inequality follows from the fact
that H(Yt|Y[t−1], S[t]) ≤ H(Yt|S[t]), since removing
the conditioning does not decrease the entropy, while
H(Yt|W,Y[t−1], S[t]) = H(Yt|W,S[t]), as Yt is condi-
tionally independent fromY[t−1] given (W,S[t]), due to
the absence of output feedback. Since(W,S[t])−Xt−Yt

forms a Markov chain, the data processing inequality
implies that

I(W ;Yt|S[t]) ≤ I(Xt;Yt|S[t]) . (8)

By combining (5), (6), (7) and (8), we then get

Ra+Rb ≤
1

n
log(|Wa||Wb|)

≤
1

1 − ε

1

n

∑

1≤t≤n

I(Xt;Yt|S[t]) +
H(ε)

n(1 − ε)

≤
1

n

∑

1≤t≤n

I(Xt;Yt|S[t]) + η(ε)

≤
∑

s∈S(n)

αsI(Xt;Yt|St, S[t−1] = s) + η(ε) ,

(9)
where

η(ε) :=
ε

1 − ε
log |Y| +

H(ε)

1 − ε
, (10)

is such that
lim
ε→0

η(ε) = 0 , (11)

and
αs :=

1

n
P(S[t−1] = s) , s ∈ S(n) , (12)

are such that
∑

s∈S(n)

αs = 1 . (13)

Analogously, let us focus on encodera: by Fano’s
inequality, we have that

H(Wa|Y[N ];S[N ]) ≤ H(ε) + ε log(|Wa|) . (14)

For t ≥ 1, define

∆a
t := I(Wa;Yt, St+1|Wb, Y[t−1], S[t]) ,

and observe that
∑

1≤t≤n

∆a
t = H(W1|S1,W2) − H(Wa|Wb, S[n+1], Y[n])

≥ log |Wa| − H(Wa|S[n], Y[n]) ,
(15)

where the last inequality follows from the independence
betweenWa, S1, andWb, and the fact that removing
the conditioning does not decrease the entropy. Now, we
have

∆a
t = I(Wa;Yt, St+1|Wb, Y[t−1], S[t])

= I(Wa;Yt|Wb, Y[t−1], S[t])
= H(Yt|Wb, Y[t−1], S[t]) − H(Yt|W,Y[t−1], S[t])
≤ H(Yt|Wb, S[t]) − H(Yt|W,S[t])
= I(Wa;Yt|Wb, S[t]) ,

(16)
where the inequality above follows from the fact that
H(Yt|Wb, Y[t−1], S[t]) ≤ H(Yt|Wb, S[t]) since removing
the conditioning does not decrease the entropy, and that
H(Yt|W,Y[t−1], S[t]) = H(Yt|W,S[t]) due to absence of
output feedback. Observe that, since, conditioned onWb

andS[t] (hence, onXb
t ), Wa −X

a
t −Yt forms a Markov

chain, the data processing inequality implies that

I(Wa;Yt|Wb, S[t]) ≤ I(Xa
t ;Yt|X

b
t , S[t]) . (17)

By combining (14), (15), (16), and (17), one gets

Ra ≤
1

n
log |Wa|

≤
1

1 − ε

1

n

∑

t

I(Xa
t ;Yt|X

b
t , S[t]) +

1

n

H(ε)

1 − ε

≤
1

n

∑

t

I(Xa
t ;Yt|X

b
t , S[t]) + η(ε)

=
∑

s∈S(n)

αsI(X
a
t ;Yt|X

b
t , St, S[t−1] = s) + η(ε) .

(18)
In the same way, by reversing the roles of encodera and
b, one obtains

Rb ≤
1

n

∑

s∈S(n)

I(Xa
t ;Yt|X

b
t , St, S[t−1] = s) + η(ε) .

(19)
Observe that, for alls[t] ∈ St, x = (xa, xb) ∈ X , and

y ∈ Y,

P(St = st, Xt = x, Yt = y|S[t−1] = s[t−1])
= P(St = st|S[t−1] = st−1)

P(Xt = x|S[t] = s[t])P (y|st, x)
= P (st)P(Xt = x|S[t] = s[t])P (y|st, x) ,

(20)
the former above equality following from (1), the latter
being implied by the assumption that the channel state
sequence is i.i.d..

Now, recall thatX i
t = φi

t(Wi, V
i
[t]), for i = a, b. For

xi ∈ Xi, vi ∈ Vi, ands ∈ St−1, let us consider the set
Υi

s
(xi, vi) ⊆ Wi,

Υi
s
(xi, vi) :=

{

wi : φi
t(wi, qi(s1), . . . , q(st−1), vi) = xi

}

,

and the probability distributionπi
s
( · |vi) ∈ P(Xi),

πi
s
(xi|vi) :=

∑

wi∈Υi
s
(xi,vi)

|Wi|
−1



Then, we have

P(Xt = x|S[t] = s[t])
=

∑

w

P(Xt = x|S[t] = s[t],W = w)P(W = w|s[t])

=
∑

w

P(Xt = x|S[t] = s[t],W = w)|Wa|
−1||Wb|

−1

=
∑

wa∈Υa
s
(xa,qa(st))

|Wa|
−1

∑

wb∈Υb
s
(xb,qb(st))

|Wb|
−1

= πa
s
(xa|qa(st))π

b
s
(xb|qb(st)) ,

(21)
the second inequality above following from the mutual
independence ofS[t], Wa, andWb.

It thus follows from (20) and (21) that the conditional
joint distribution ofSt, Xt = (Xa

t , X
b
t ), andYt, given

S[t−1] = s, factorizes as in (4). Hence, (9), (18),
and (19), together with (11) and (13), imply that any
achievable data rateR = (Ra, Rb) can be written as a
convex combination of rate pairs satisfying (3). Hence,
any achievable rate pairR belongs toco(∪µR(µ)).

Remark: For the validity of the arguments above, a
critical step is (20), where the hypothesis of i.i.d.channel
state sequence has been used. ⋄

IV. A CHIEVABILITY

In this section, we shall show that any rate pairR =
(Ra, Rb) belonging to the regionR(π), for some static
policy π, is achievable. Achievability of any rate pair
R in co(∪πR(π)) will then follow by a standard time-
sharing argument (see e.g. [19, Lemma 2.2, p.272]).

In order to prove achievability on the original finite
state MAC, we shall consider an equivalent memoryless
MAC having output spaceZ := S × Y coinciding with
the product of the state and output space of the original
MAC, input spacesUi := {ui : Vi → Xi}, for i = a, b,
and transition probabilities

Q(z|ua, ub) := P (s)P (y|ua(qa(s)), ub(qb(s))) ,

where z = (s, y). A coding scheme for such a MAC
consists of a pair of encoders

fi : Wi → Un
i , i = a, b ,

and a decoder

g : Yn × Sn → Wa ×Wb .

To any such coding scheme it is natural to associate
a coding scheme for the original finite state MAC, by
defining the encoders

φi
t : Wi × Vt

i → Xi , φi
t(wi, s[t]) = [fi(wi)](st)

for i = a, b, and letting the decoderψ : Yn × Sn →
Wa ×Wb coincide withg. It is not hard to verify that
the probability measure induced on the product space
Wa ×Wb × Sn × Yn by the coding scheme(fa, fb, g)
and the memoryless MACQ coincides with that induced
by the corresponding coding scheme(φa

t , φ
b
t , ψ) and the

finite state MACP . Hence, in this way, to any(R, n, ε)-
coding scheme on the memoryless MACQ, it is possible
to associate an(R, n, ε)-coding scheme(φa

t , φ
b
t , ψ) on

the original finite state MACP ,
Now, letµa ∈ P(Ua), andµb ∈ P(Ub), be probability

distributions on the input spaces of the new memoryless
MAC, and fix an arbitrary rate pairR = (Ra, Rb) ∈ R

2
+,

such that

Ra < I(Ua;Z|Ub)

Rb < I(Ub;Z|Ua)

Ra +Rb < I(U ;Z) , (22)

where U = (Ua, Ub) and Z are r.v.s whose joint
distribution factorizes as

P (Ua, Ub, Z) = µa(Ua)µb(Ub)Q(Z|Ua, Ub) . (23)

Consider a sequence of random codes
{

f (n)
a : W(n)

a → Un
a , f

(n)
b : W

(n)
b → Un

b

}

n

where|W(n)
a | = ⌈exp(Ran)⌉ and|W(n)

b | = ⌈exp(Rbn)⌉

and {f
(n)
a (wa), f

(n)
b (wb)|wa ∈ W

(n)
a , wb ∈ W

(n)
b } is

a collection of independent r.v.s, withf (n)
i (wi) taking

values inUn
i with product distributionµi⊗ . . .⊗ µi, for

i = a, b andwi ∈ Wi. Then, it follows from the direct
coding theorem for memoryless MACs [19, Th.3.2, p.
272] that the average error probability of such a code
ensemble converges to zero in the limit ofn going to
infinity.

Now, we apply the arguments above to the special
class of probability distributionsµi ∈ P(Ui) = P(XSi

i )
with the product structure

µi(ui) =
∏

vi∈Vi

πi(ui(vi)|vi) , ui : Vi → Xi , i = a, b ,

(24)
for some static team policyπ as in (2). Observe that, for
suchµa andµb, to any triple of r.v.sUa, Ub, Z, with joint
distribution as in (23), one can naturally associate r.v.s
S, Xa := Ua(qa(S)), Xb := Ub(qb(S)), andY , whose
joint probability distribution satisfies (4). Moreover, it
can be readily verified that

I(Xa;Y |S,Xb) = I(Ua;Z|Ub)
I(Xb;Y |S,Xa) = I(Ub;Z|Ua)

I(X ;Y |S) = I(U ;Z) .
(25)

Hence, if a rate pairR = (Ra, Rb) belongs to the
rate regionR(π) associated to some static team policy
π (i.e. if it satisfies (3)), thatR satisfies (22) for the
product probability distributionsµa, µb defined by (24).
As observed above, the direct coding theorem for mem-
oryless MACs implies that such a rate pair is achievable
on the MACQ. As argued above in this section, this
in turn implies that the rate pair is achievable on the



original finite state MACP . The proof of achievability
of the capacity regionco(∪µR(µ)) then follows from
the aforementioned time-sharing principle.

Remark: For the validity of the arguments above, it
is critical that the receiver observes the channel state.
In this way, the decoder does not need to estimate the
coding policies used in a decentralized time-sharing.⋄

V. D ISCUSSION ONWHEN THE CHANNEL STATE IS

MARKOVIAN

In this section, we briefly comment on the case where
the channel state has Markovian dynamics. Consider
a Markov chain{St, t = 1, 2, . . .} taking values in
finite state spaceS with a stationary transition matrix
A such thatP (St+1 = j|St = i) = Ai,j . Suppose
this Markovian process is observed through a quantized
observation process as discussed earlier. In [2] such a
setting was studied when there is only one coder and a
single letter characterization was obtained as follows:

C :=

∫

s,π̃

P (dπ̃) sup
P (X|π̃)

{P (s|π̃)I(X ;Y |s, π̃)},

where π̃ denotes the conditional distribution of the
channel state given the quantized observation history.

In a multi-person optimization problem, whenever a
dynamic programming recursion with a fixed complexity
per time stage is possible via the construction of a
Markov Chain with a fixed-state space (see [17] for a re-
view of information structures in decentralized control),
the information structure is said to have a quasi-classical
pattern; thus, under such a structure, the optimization
problem is computationally feasible and the problem is
said to be tractable. In case there is only one encoder,
then it was shown that the optimal encoder policy uses
the conditional probability measure on the state as a
sufficient statistic. As such, the optimization problem is
tractable.

For the sum-rate, one might consider the mutual
information costc : S × P(Xa) × P(Xb) → R defined
by

c(s, πa, πb) =
∑

xa,xb,y

πa(xa)πb(xb)P (y|s, xa, xb)

log P (y|s,xa,xb)
P

xa,xb

P (y|s,xa,xb)πa(xa)πb(xb)
,

where the admissible coding policies map, decentrally,
the observation histories toP(Xa) andP(Xb).

For such a setting, however, the construction of a
Markov chain is not straightforward. The conditional
measure on the channel state is no longer a sufficient
statistic.

In particular, if one adopts a team decision based
approach, where there is a fictitious centralized decision
maker, this decision maker should make decisions for all
the possible memory realizations, that is the policy is to

map the variables(W,V a
[t], V

b
[t]) to (Xa

t , X
b
t ) decentrally,

and the memory cannot be truncated, as every additional
bit is essential in the construction of an equivalent
Markov chain to which the Markov Decision Dynamic
Program can be applied; both for the prediction on the
channel state as well as the belief of the belief of the
coders on each other’s memory.

For the i.i.d. case, by first showing that the past infor-
mation is irrelevant, we observed that we could limit the
memory space on which the optimization is performed,
and as such have a problem which is tractable.

VI. CONCLUDING REMARKS

This paper studied the problem of multi-access coding
with asymmetric, imperfect channel state information.
We observed that one can provide a single letter char-
acterization when the channel state is i.i.d., but when
the channel state is Markovian, the problem is more
complicated.

One question of interest is the following: If the chan-
nel transitions form a Markov chain, which is mixing
fast, is it sufficient to use a finite memory construction
for practical purposes? This is currently being investi-
gated.
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