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Abstract—We provide a single letter characterization of

the capacity region for independent, identically distributed, ] Encoder

finite-state channels, with partial (quantized) state infema- Wo ——— (W, V[‘;])

tion, when the channel state information is available at the

receiver. The partial state information is asymmetric at the V‘J xa

encoders. The problem is practically relevant, and provide ¢ ‘ ¢

art_]ractatgle orﬁ)timiz?ttion problem. We also consider the case Channel Y:.S, [ Decoder W,

where the channel has memory. P(Y,|S,, X2, X?) (S Vi) 7*’A s

Wi
I. INTRODUCTION AND LITERATURE REVIEW ‘ ’
. o V! X
Wireless communication channels and Internet a |

examples of channels where the channel characterist - Encoder

are variable. Channel fading models for wireless con b ot (W, Vi)

munications include fast fading and slow fading; in fas

fading the channel state is assumed to be changing
each use of the channel, whereas in slow fading, the
channel is assumed to be constant for each finite bloEig. 1: Finite state multiple access channel with asym-
length. In fading channels, the channel fade might netetric partial state feedback.
be transmitted to the transmitter over a perfect channel,
but via reducing the data rate, the error in feedback
transmission can be improved. rate. Viswanathan [15] relaxed this assumption of per-

Capacity with partial channel state information at théect instantaneous feedback, and studied the capacity of
transmitter is related to the problem of coding wittMarkovian channels with delayed feedback. Reference
unequal side information at the encoder and the decodass] studied the capacity of Markov channels with per-
The capacity of memoryless channels with various caskest causal state feedback. Capacity of Markovian, finite
of side information being available at neither, eithestate channels with quantized state feedback available at
or both the transmitter and receiver have been studigitk transmitter was studied in [2].
in [12] and [5]. [1] studied the capacity of channels A related work [9] has studied MAC channels where
with memory and complete noiseless output feedbatke encoders have degraded information on the channel
and introduced a stochastic control formulation for thstate, which is coded to the encoders. In this paper, we
computation via the properties of the directed mutugbnsider a setting where the encoders have asymmetric
information. Reference [6] considered fading channefsartial state information, where the partial information
with perfect channel state information at the transmitteis obtained through a quantizer.
and showed that with instantaneous and perfect stateAnother recent related work is [20] which provided
feedback, the transmitter can adjust the data rates #f infinite-dimensional characterization for the capacity
each channel state to maximize the average transmissiegion for Multiple Access Channels with feedback.

We use tools from team decision theory to develop
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a positive integet, v; will denote thei-th entry ofv, such that, fori = a,b, 1 <t < n:
while vy = (v1,...,v;) denotes the vector of the first W] > 2B
i entries ofv. Following the usual convention, capital o X/ — ¢§(Wi,V[§]):
letters will be used to denote random variables (r.v.s), | yi/ . B(Sis Yin);
and small letters denote particular realizations. We shall N e 1
o P(W #W) <e.

use the standard notati®f( - ), andI( -; -) (respectivel L L
oI ) (- -) (resp Y Upon the description of the channel and transmission

H(-|-), andI(-; -|-)) for the (conditional) binary en- g X
tropy and mutual information of r.v.s. For < z < 1 systems, we now proceed with the computation of the
B —¢ £ . capacity region.

H(z) will also denote the binary entropy af. For a . : ) 5 ) ,
finite setA, P(.A) will denote the simplex of probability Definition 2: A rate pairR € R is achievable if, for
all e > 0, there exists, for some > 1, an (R, n,¢)-

distributions overtA. Finally, for a positive integen, we i X : o
shall denote by coding scheme. The capacity region of the finite state
MAC is the closure of the set of all achievable rate pairs.

A = U0§s<t A? We now introduce static team policies and their asso-
the set ofA-strings of length smaller than. ciated rate regions. o _
We shall consider a finite state, multiple access chan-Definition 3: A static team policy is a family
nel with two transmitters, indexed by= a, b, and one m={m(|z;) e P(X)|i=a,b,v, e V;} (2)

receiver. Transmittei aims at reliably communicating

a messagédl;, uniformly distributed over some finite Of probability distributions on the two channel input

message setV;, to the receiver. The two messagds Sets conditioned on the quantized observation of each

and 17, are assumed to be mutually independent. \Weansmitter. For every static team poliey R(r) will

shall use the notatiofl’ := (W,, W,) for the vector of denote the region of all rate paif® = (R,, R;) € R

the two messages. satisfying
The channel state process is modeled by a sequence )

S = (S,) of independent, identically distributed (i.i.d.) Ra < I(Xo;Y|X,5)

r.v.s, taking values in some finite state spageand Ry < I(Xp;Y[Xq,5)

independent froniV. The two encoders have access to R.,+ Ry < I(X;Y|9), 3)

causal, par‘ual stateimformauon. at each time> 1, where S, X = (X., X,), andY, are rv.s whose joint

encoderi observesV) = ¢;(S;), whereg; : S — V; distributi .

. . . . S istribution factorizes as

is a quantizer modeling the imperfection in the state

information. We shall denote by; := (V,2,V}?) the P(S Xa, Xp,Y)

vector of quantized state observations, taking values ifF £ (5)Ta(Xa|qa(5))m(Xo|qs(S)) P(Y]S, Xa, Xo) .

VY :=V, x V. The channel input of encodérat time . (4)

t, X7, takes values in a finite set;, and is assumed a Ve can how state the main result of the paper.

function of the locally available informatioi;, V). Theorem 4:The achievable rate region is given by

The symbolX, = (X2, X?) will be used for the vector @ (U, R(1))
of the two channel inputs at timg taking values in .
Y = V, x V. The channel output at time, Y; the closure of the convex hull of the rate regions asso-

ciated to all possible static team policiesas in (2).

takes values in a finite sét; its conditional distribution ’
In the sequel, we shall prove this theorem.

satisfies

P(Y|W, X(ny, Sinp) = P(Yi X4, S) - (1) I1l. CONVERSE TO THECHANNEL THEOREM

9 .
Finally, the decoder is assumed to have access to perf It:or ke R3, and,0_< N S_ 1/_2’ Ie_t us consider a
r{%, n,e)-code. Fano’s inequality implies that

causal state information; the estimated message pair wi

be denoted byV” = (W, I1}). H(W Y3 Spuy) < H(e) + < log([Wal W)
We now present the class of transmission systems. (5)
Definition 1: For a rate paitR = (R., Ry) € R3, a For¢ > 1, define

block-lengthn > 1, and a target error probability> 0,

an (R, n, ¢)-coding scheme consists of two sequences of Ay = I(W; Yy, Seqa|Yi-1), Spyp) »
functions and observe that
{d} : W; x Vit — Xiti<i<n s > A = H(WI|S)) - H(W|S[n+1]’y["])
1<i<N

and a decoding function 10g(|Wal W) = H(W| S}y, Yin)) ,

PS8tV W, x Wy, (6)



sinceS; is independent ofV, and.S,,; is conditionally where the last inequality follows from the independence
independent otV given (Sy,,), Y},)). On the other hand, betweenlV,, S;, and W,, and the fact that removing

using the conditional independence @f from S;y;
given (Siy, Yj4), one gets

Ay = I(W;Yt,StJrﬂY[t—l]vS[t])
= I(W;Yt|Y[t—1], S[t])
= HYi|Yt—1), Si) — HY W, Y1), Spy)
< HYSy) — HY: W, Spy)
= I(W;Y:|Sy),
)
where

the conditioning does not decrease the entropy. Now, we
have

Af

I(Wa; Y, Sep1[Wo, Yii—1), Spyy)

= I(Wa; Ye[Wh, Yi—11, Spy)

H(Y;:|Wba Y[t71]75[t]) - H(Y}|W, Y[t71]75[t])
H(Y: Wy, Spy) — H(Y:[W, Spy)

I(Wa; Ye|[Wa, Sty)

A

(16)

the above inequality follows from the factvhere the inequality above follows from the fact that

that H(Y;|Y},_1;,Sy) < H(Y;|Sy), since removing H(Ye[Wo, Yr—1), Sp) < H(Y:i[Wy, Spy) since removing
the conditioning does not decrease the entropy, whilde conditioning does not decrease the entropy, and that

H(Y: W, Yjs—13, Spy) = H(Y:|W, Sy), asy; is condi-

H(Y:|W, Yjy—1, Spyy) = H(Y:|W, Sp) due to absence of

tionally independent fronY;, ,; given (W, Sy;), due to  Output feedback. Observe that, since, conditionedign

the absence of output feedback. Sifé Sy,;) — X —Y;

andSj; (hence, onX?), W, — X¢ - Y; forms a Markov

forms a Markov chain, the data processing inequali§hain., the data processing inequality implies that

implies that
I(W;Yi|Sp) < I(X4;Ye|Spy) - (8)
By combining (5), (6), (7) and (8), we then get

1
Ro+Ry < - log(|Wa|[Wh!)

11 H(e)
< — (XY,
~ l1l-en Z (X3 t|8[t])+n(1—6)
1<t<n
1
< - > I(X:YilS) +n(e)
1<t<n
< Y @ l(X4YilSi, Spa = 8) +(e)
seS(n)
)
where H(:)
13 g
ne) = lgVl+ =, (10)
is such that
lim n(e) =0, (11)
e—0
and 1
ai= —P(Syy=s), seS", (12)
are such that
3 ap =1 (13)
seSn)

Analogously, let us focus on encoder by Fano’s
inequality, we have that

H(Wa|Y{ny; Sivy) < H(e) + e log(|Wal) -
Fort > 1, define
A = I(Wa; Ve, St 1 |[Wh, Ye—11, Spy)
and observe that
Y. AP = HW1[S1, W2) — H(Wa|Ws, Siniy, Ying)

1<t<n

(14)

> 1Og |Wa| - H(Wals[n]ayv[n]) ’
(15)

I(Wa; Vi Wy, Spy) < I(X® Y| XE, Sy) . (A7)

By combining (14), (15), (16), and (17), one gets

1
a S _10g|Wa|
i ()
11 oo 1 H(e
1—eﬁzt:I(Xt’Yt'X“Sm)Jrﬁl—g
<

1
- > I(XE VXY, Spy) + n(e)
t

Z as (XY X0, S, Sii—1 = 8) +nl(e).
seS(n)

(18)
In the same way, by reversing the roles of encadand
b, one obtains

1 a
s - > I(XP VX, Si, Sy = 8) + ().

seS™)

Ry

(19)
Observe that, for alk;,) € S, = = (24, 23) € X, and
ye Y,

P(S; = s¢, Xt = 2,Y; = y|Sp—1] = sp—1))
= ]P’(St = St|S[t71] = St—l)
P(X; = z|Sp = sp) P(ylse, x)
= P(st)P(Xy = 2|Spy = sp99) P(ylse, 7)),

(20)
the former above equality following from (1), the latter
being implied by the assumption that the channel state
sequence is i.i.d..

Now, recall thatX; = ¢! (W, V[i]), for i = a,b. For
x; € X;, v; € Vi, ands € St1, let us consider the set
Ti(zi,vi) C Wi,

Yi(2s,v5) o= {wi : ¢f(wi,qi(s1),--.,q(s1-1),v3) = i},
and the probability distribution’ (- |v;) € P(X;),

> !

wi €Y L (x4,v;)

w;(xz|vz) =



Then, we have finite state MACP. Hence, in this way, to anyR, n, ¢)-
P(X; = 2|y = spy) coding sgheme on the mem_oryless MAL it is possible
= S P(X; = @[Sy = sp, W = w)P(W = wlspy) to ass_o_C|ate_a_mR7n, e)-coding scheméa¢, ¢?, 1)) on

© the original finite state MACP,

=Y P(X; = Sy = 5749, W = w0) [ Wa| H[[We| Now, let i, € P(Us), anduy, € P(Uy), be probability

_ ) W,|~! ) W]~ distributions on the input spaces of the new memoryless
Wa €% (2uqa(s0)) ¢ Wy €T (@m,a5 (1)) MAC, and fix an arbitrary rate pait = (R,, R;) € R%,
= 72 (alga(50))78 (2l (51)) oy
the second inequality above following from the mutual Ra < 1(Ua; Z|Us)
independence o[, W,, andW,. Ry < I(Uy; Z|U,)
It thus follows from (20) and (21) that the conditional R.+ Ry, < I(U;2), (22)
joint distribution of S;, X; = (X, X}?), andY;, given o
Su_y = s, factorizes as in (4). Hence, (9), (18)where U = (U,,Uy,) and Z are rv.s whose joint

and (19), together with (11) and (13), imply that anfliStribution factorizes as
achievable da}ta ratg — (Ra,Rg,) can be. written as a  p(U,, Uy, Z) = pq(Ua)pis(Us)Q(Z|Ua, Uy) . (23)
convex combination of rate pairs satisfying (3). Hence,
any achievable rate pait belongs toco(U, R (1)). Consider a sequence of random codes
Remark: For the validity of the arguments above, a (n) .y _gm ¢ ™) gm
critical step is (20), where the hypothesis of i.i.d.chdnne {f“ W Uas Ty 2 W U, }n

state sequence has been used. Where|W§")| — exp(Ran)] and|Wl§")| — Texp(Ron)]
IV. ACHIEVABILITY and { £ (wa), ;" (wo)[wa € W, w, € WV} is

In this section, we shall show that any rate pRie= a collection of independent r.v.s, Witﬁf") (w;) taking
(R4, Ry) belonging to the regiofR (), for some static values inl4/* with product distribution;® . .. ® y;, for
policy 7, is achievable. Achievability of any rate pairi = a,b andw; € W;. Then, it follows from the direct
R in co(U,R(r)) will then follow by a standard time- coding theorem for memoryless MACs [19, Th.3.2, p.
sharing argument (see e.g. [19, Lemma 2.2, p.272]). 272] that the average error probability of such a code

In order to prove achievability on the original finiteensemble converges to zero in the limit mfgoing to
state MAC, we shall consider an equivalent memoryle#finity.
MAC having output space& := S x Y coinciding with Now, we apply the arguments above to the special
the product of the state and output space of the originass of probability distributiong; € P(U;) = P(X")
MAC, input space$/; := {u; : V; — X;}, for i = a,b, Wwith the product structure

and transition probabilities
ton p i wi(ug) = H mi(ui(vi)|vi), u;: Vi — X, i =a,b,

Q(z]ta, up) == P(s)P(ylua(qa(s)), us(gs(s))) , Vi€V (24)
where z = (s,y). A coding scheme for such a MAC for some static team policy as in (2). Observe that, for
consists of a pair of encoders suchu, anduy, to any triple of r.v.d/,, Uy, Z, with joint

£ Wi = ur i—ab distribution as in (23), one can naturally associate r.v.s
Lo v Y S, Xa := Us(qa(9)), Xp := Up(qs(S)), andY’, whose
and a decoder joint probability distribution satisfies (4). Moreover, it
GV XS Wy x Wy can be readily verified that
, L , I(Xa;Y|8,Xy) = I({Ua Z|U
To any such coding scheme it is natural to associate IEXb-Y||S Xb; _ IEUb-Z||Ub; (25)
a coding scheme for the original finite state MAC, by }(X-’YL;) _ I(U-,Z) ¢
defining the encoders ' T
; . ; Hence, if a rate pairR = (R,,R) belongs to the
o Wi x Vi — Xiy ¢(wi, sp) = [fi(wi)](se) rate regionR(w) associated to some static team policy

for i = a,b, and letting the decodep : Y x S* —  (i.e. if it satisfies (3)), thatR satisfies (22) for the
W, x W, coincide withg. It is not hard to verify that Product probability distributiong.,, /., defined by (24).
the probability measure induced on the product spadé observed above, the direct coding theorem for mem-
Wa x W, x 8™ x Y™ by the coding scheméf., f», g) oryless MACs implies that such a rate pair is achievable
and the memoryless MAQ coincides with that induced ©n the MAC Q. As argued above in this section, this
by the corresponding coding scherfi, ¢?, ) and the in turn implies that the rate pair is achievable on the



original finite state MACP. The proof of achievability map the variable§iV, V[g],V[f]) to (X, X?) decentrally,
of the capacity regiorto(U,R(x)) then follows from and the memory cannot be truncated, as every additional
the aforementioned time-sharing principle. bit is essential in the construction of an equivalent
Remark: For the validity of the arguments above, itMarkov chain to which the Markov Decision Dynamic
is critical that the receiver observes the channel statrogram can be applied; both for the prediction on the
In this way, the decoder does not need to estimate thkannel state as well as the belief of the belief of the
coding policies used in a decentralized time-sharirg. coders on each other's memory.
For the i.i.d. case, by first showing that the past infor-
mation is irrelevant, we observed that we could limit the
memory space on which the optimization is performed,

In this section, we briefly comment on the case wheighd as such have a problem which is tractable.
the channel state has Markovian dynamics. Consider

a Markov chain{S;,t = 1,2,...} taking values in VI. CONCLUDING REMARKS
finite state space with a stationary transition matrix  This paper studied the problem of multi-access coding
A such thatP(S;4+1 = j|S: = i) = A;;. Suppose with asymmetric, imperfect channel state information.
this Markovian process is observed through a quantiz®é& observed that one can provide a single letter char-
observation process as discussed earlier. In [2] suchaeterization when the channel state is i.i.d., but when
setting was studied when there is only one coder andtee channel state is Markovian, the problem is more
single letter characterization was obtained as follows: complicated.
One question of interest is the following: If the chan-
o=
S

P(dr) ?UI‘D ){P(S|7~T)I(X;Y|Sv7~7)}, nel transitions form a Markov chain, which is mixing
F P(X|7

V. DISCcUSSION ONWHEN THE CHANNEL STATE IS
MARKOVIAN

fast, is it sufficient to use a finite memory construction

where 7 denotes the conditional distribution of thefor practical purposes? This is currently being investi-

channel state given the quantized observation history.gated.
In a multi-person optimization problem, whenever a

dynamic programming recursion with a fixed complexity

per time Stage is possib|e via the construction of alll S. Tatikonda and S. Mitter, “The Capacity of channels hwit

. . . feedback”,|IEEE Trans. Inf. Theoryvol. 55, pp. 323-349, 2009.
Markov Chain with a fixed-state space (see [17] for a re1,, <" viksel and S. Tatikonda, “Capacity of Markov Chamsnel

view of information structures in decentralized control), ~ with Partial State Feedback”, Proc. of the IEEE International
the information structure is said to have a quasi-classical ~Symposium on Information Theorjune 2007, Nice, France.

. - I3] E. Altman, Constrained Markov Decision Process&hapman
pattern; thus, under such a structure, the optimizatio & HalllCRC, Boca Raton, FL, 1999,

problem is computationally feasible and the problem isj4] G. caire and S. Shamai “On the capacity of some channéfs wi
said to be tractable. In case there is only one encoder, channel state information’lEEE Trans. Inf. Theoryvol. 45,

. . . pp. 2007-2019, 1999.
then it was shown that the optimal encoder policy usesf5] S.I. Gelfand and M.S. Pinsker, “Coding for Channel witarR

the conditional probability measure on the state as a  dom ParameterspProb. of Cont. and Info. Theoryol. 9, pp. 19-
sufficient statistic. As such, the optimization problem is 31, 1980. _ _ ) )
tractable [6] A. Goldsmith and P. Varaiya, “Capacity of fading charmelith
: . . channel side information”JEEE Trans. Inf. Theoryvol. 43,
For the sum-rate, one might consider the mutual pp. 1986-1992, 1997.

information costc : S x P(X,) x P(X,) — R defined [7] O. Hernndez-Lerma and J.B. Lasseriscrete-Time Markov
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