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Abstract— Many linear dynamics over networks can be
related by duality to the evolution of a Markov chain with state
space coinciding with the node set of the network. Examples
include opinion dynamics over social networks as well as dis
tributed averaging algorithms for estimation or control. When
the transition probability matrix P associated to the Markov
chain is irreducible, a key quantity is its invariant probability
distribution = = P’x. In this work, we study how = is affected
by, possibly non-reversible or non-irreducible, perturbaions of
P. In particular, we are interested in perturbations which are
localized on a small fraction of nodes but are not necessayil
small in any induced norm. While classical perturbation resilts
based on matrix analysis can not be applied in this context,
we present various bounds on the effect onr of changes of
P obtained using coupling and other probabilistic technique.
Such results allow one to find sufficient conditions for thel;-
distance betweenw and its perturbed version to vanish in
the large-scale limit, depending on the mixing time and one
additional local property of the original chain P.

Index Terms— Robustness, resilience, large-scale networks,
consensus, network centrality, stochastic matrices, stanary
probability distributions.

|. INTRODUCTION

How much can the invariant probability distribution
of an irreducible row-stochastic matri® be affected by
perturbations localized on a relatively small subggt of

W of webpages can alter the PageRank veeatoSimilar
robustness issues have been raised for accidental vagatio
of the WWW topology occurring, e.g., because of server
failures or network congestion problems [7].

More generally, the problem is of central interest in the
context of distributed averaging and consensus algorithms
[8]. There, linear systems of the form(t + 1) = Px(t),
or their continuous-time analogues, are studied, e.g., as
algorithms for distributed optimization [9], [10], cont{d 1],
[12], synchronization in sensor networks [13], or repwtati
management in ad-hoc networks [14], as well as behavioral
models for flocking phenomena [15], [16], or opinion dy-
namics in social networks [17], [18], [19], [20]. Equililari
of such systems are consensus vectors, i.e., multipleseof th
all-one vector, and standard results following from Perron
Frobenius theory guarantee convergence (with the addition
assumption of aperiodicity aP, in the discrete time case) to
a consensus vector with all entries equakte(0). Depend-
ing on the specific applicative context, the natural questio
is to what extent the consensus valdle:(0) is affected by
perturbations ofP corresponding, e.g., to malfunctioning of
a small fraction of the sensors, or conservative/influéntia
minorities in social networks [21].

Other applications can be found in the context of in-

its state spac®? Such a question arises in an increasingeracting particle systems [22], [23]. In particular, ineth
number of applications, most notably in the emerging fieldoter model on a finite graph [24], [25], [26, Ch. 14], [27,

of large-scale networks.

Ch. 6.9], the probability distribution of the final conseasu

As an example, many notions of network centrality cavalue is determined by the invariant distribution of the

be formulated in terms of invariant probability distribu-

stochastic matrix associated to the simple random walk on

tions of suitably defined stochastic matrices. In particulathe graph. Perturbations in this case may model the presence
Google’'s PageRank algorithm [1] assigns to webpages valuesinhomogeneities or ‘zealots’ [28], [29].
corresponding to the entries of the invariant probability The above-described problems all boil down to estimating

distribution = of the matrix P obtained as a convex com-

the distance between the invariant probability distritati

bination of the normalized adjacency matrix of the directed of an irreducible stochastic matri¥ and an invariant
graph describing the hyperlink structure of the World Wideprobability distributiont = P'7 of another stochastic matrix
Web (WWW), and of a matrix whose all entries equal the”, to be interpreted as a perturbed versionfofin some
inverse of the total number of webpages [2], [3]. A well-applications,P may be reversible, i.e., coincide with the
known problem in this context is rank-manipulation, i.e.normalization of a symmetric positive matrix, so thatan
the intentional addition or removal of hyperlinks from somebe easily computed in terms of the latter. However, even in
webpages (hence, the alteration of the corresponding rbwstbese cases, the considered perturbations will typicadly b
P) with the goal of modifying the PageRank vector [4], [5],such thatP is not reversible and thug does not allow for
[6]. A natural question is then, to what extent a small subset tractable explicit expression.
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Remarkably, standard perturbation results based on sensi-
tivity analysis [30]-[31], [21] do not provide a satisfaoio
answer to this problem. Indeed, they provide upper bounds

of the form
|7 — x|, < kp||P = Pllg,

1)

for somep,q € [1,o0], wherexp is a condition number



depending on the original stochastic matiik only. Such In fact, of the last two parameters appearing in the
condition numbers are lower bounded by an absolute positivighthand side of[{2), the escape tingeis the only one
constant (e.g.1 /4 for the smallest of those surveyed in [32])truly depending on the perturbatidf — P, and is indeed
and typically blow up as the state spavegrows large. easily estimated in typical cases whiv is a small subset
Therefore, such results do not allow one to prove that thef V. On the other hand, the minimal hitting tims3,, which
distance||® — ||, vanishes in the limit of large network depends o andWV only, turns out to be the hardest to get
size, even ifP and P differ only in a single row, unless lower bounds on in typical applications whekeis sparse

||P — PJ|, itself vanishes. and YV remains small but not necessary localized as the
In this papetl we obtain upper bounds on the totalstate space grows large. While Kac’s formula ([35, Lemma
variation distancé|7 — || := || — x| of the form 21.13]) readily implies the upper bound, < 1/7(W),
~ lower bounds oy, typically involve finer details of” than
|7 — x| <6 (7%) ’ 2) justT(W). In the last section of this paper, we will propose
Tw an analysis of,, for networks with high local connectivity,

(see Theoreif3) wheré:: [0, +00) — [0, 1] is a continuous which finds natural application when the graph associated

nondecreasing function such thét) = 0 (see [[B) for its to P is a d-dimensional grid, and the size oV re_mains
definition); bounded (or grows very slowly) as the network size grows

large. Results for random, locally tree-like networks vioid
=inf{t>1:||P, — P! ||[<1/e,Vu,veV} (3) the objectof a forthcoming work.

is the mixing time of the original stochastic matrix, 7, The rest of this paper is organized as follows. Sedfibn Il in-
denotes the minimal expected hitting time on thelsefor a  troduces three motivating examples formalizing some of the
Markov chain with transition probability matri¥ (see [7)); applications mentioned at the beginning of this Introdareti
andy stands for the escape time frani for a Markov chain  |n Section[TIl, we present our main result which is stated
with transition probability matrixP (see [B) for the exact as Theoreni]3 and apply it in four examples. We refer the
definition). As opposed to the aforementioned sensitivéty r reader to [33] for applications to stochastic matrices vehos

sults, all derived from algebraic arguments, our proofgoel  sypport graph has high local connectivity such as grid-like
coupling techniques, combined with an argument similar tgraphs.

the one developed in [20] for ‘highly fluid’ networks. Clegarl

(@ implies that||7 — 7|| vanishes provided thatx /7, Before proceeding, let us collect here some notational
does. As we will show, this finds immediate application inconventions to be used throughout the paper. Vectors and
the PageRank manipulation problem. More in general, oghatrices will be considered with entries from a 3étof
results prove useful in many of those aforementioned larg@nite cardinalityn := |V|. The all-one column vector will be
scale network applications where classical sensitivagesl genoted by]l For a matrixA, A’ will stand for its transpose
results fail to provide a satisfactory answer. andsupp(A) := {v: A,. # 0} for the set of its nonzero
Mixing properties of stochastic matrices have been the obows. Then, a probab|l|ty distributiop (i.e., a nonnegative-
ject of extensive recent research [26], [34], [35], and s&#ve yalued vector such that'l = 1) will be said invariant for a
results are available allowing one to estimate the mixim@ti stochastic matrixA (i.e., a nonnegative-valued matrix such
 of a stochastic matri¥’, e.g., in terms of the conductancethat A1 = 1) if A’y = p. The total variation distance

or other geometrical properties of the graph associatdd to petween two probability distributions will be denoted by
It is worth pointing out that a connection between mixing|,, — 7|| := 13 |ie — m,|. For a probability dlstrlbu'uon
properties and robustness of stochastic matrices is alread and a subsetd C V such thatu(A) > 0, pA will
unveiled by the perturbation results of [36], [31], whelr} (1stand for the conditional probability distribution o4, i.e.,
is proven forp = 1, ¢ = oo, and condition humbekp A = o /u(A) fora € A, andput =0 forv € V\ A. For a
proportional tor. Of a similar flavor are Seneta’s resultsgraphg (V, €) we shall use the convention thatC Vx V,
[37], [38] estimating the condition numbery in terms of o thatg undirected means that i, v) € £ then(v, u) € £
ergodicity coefficients. Also the estimates proposed ifl [21as well. To every stochastic matrix we shall associate the
for symmetricP can b_e rewritten ag (1) with fgr = ¢ = 2 support graptgp = (V,Ep) where (u,v) € Ep if and only
and xp equal to the inverse of the spectral gapf As if p,, > 0. For stochastic matrice®, P, we will consider
compared to these references, the fundamental noveltyrof Qijscrete-time Markov chaing’(t) and V(t), t = 0,1,...,
bound [2) consists in measuring the size of the perturbatiqfith state space’ and transition probability matri¥?, and
in terms of the ratioy/5,, instead of the distandeP — P||,, P, respectively. Fom € V, P, andE, will stand for the
thus enabling one to obtain significant results in scenarlqﬁobab,“ty and expectation conditioned (M(O) V(0) =
where)V is small butP — P is not necessarily small in any v, while for a probability distributions, B,, := 3", 11,P,, and
norm. E, =, mE,. We will denote the corresponding hitting

times on a subsé@y C V by Ty, :=inf{t > 0: V(¢ ,
1The present is a short version of the manuscript [33] availain the @ cy by Ty m { - ( ) < L{}

arxiv and currently under review for journal publication.eWtill refer to and Ty, := inf{t > 0: V(t) € y}' and th(?il’ expectations
[33] for the proofs of some of the statements. by 7} := E,[Ty] and 7} := E,[Ty], respectively.
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II. THREE MOTIVATING EXAMPLES [2o(t+1),20(t+1)] = 3lze(t), 20(t)]

1
In this section we present three motivating examples o0 2wy eelu(t), 2u(t)] -

formalizing some of the application problems discussed in )
the Introduction. What makes the above particularly appealing in large-scale

network applications is the fact that it requires sensors to
A. PageRank manipulation exchange information with their neighbors ¢ only, and
that each sensor needs to know its degre€¢, only with
no need for global knowledge about the network structure or
size.

In order to analyze the algorithm let us rewr{té (4) dod (5)
in matrix notation. LetP be the stochastic matrix associated
to the lazy random walk og, i.e., P = (I + Q)/2, where
I denotes the identity matrix ar@,,, = 1/d,, if (u,v) € &.

Let 2(0) = y/d, 2(0) = 1/d (where division between two
vectors is meant componentwise) and consider the iteration

Let Q be a stochastic matriy, a probability distribution,
and S a parameter in the intervdD,1). Let P := (1 —
8)Q + 1y, and observe that, irrespective of whether
is reducible or not, the matri¥¥ := (I — (1 — 5)Q’) is
strictly diagonally dominant, hence nonsingular, so tRat
has a unique invariant probability distributian= W ~! .

Now, letG = (V, &) be the directed graph describing the
WWW, whose nodes € V correspond to webpages and
where there is a directed edge,v) € £ whenever page
u has a hyperlink directed to page Let d, := |&,| and z(t+1) = Pz(t), z(t+1) = Pz(t).

& = {v : (u,v) € £} be the number of hyperlinks and, . . _ e
respectively, the set of linked pages, from pageDefine OE)s_erve_ that the unlque|n\iar|antpri)bab|llt31/d|str|bqho:
the stochastic matriQ by Q.. = 1/n for all v if d, =0, L TISgven bym, = d./(nd) whered :=n"~" 5, d, is the
and, if dy > 1, let Quo = 0 if (u,0) ¢ € and Quy = 1/d, average degree. Moreover, irreducibility and acyclicityro
if (u,v) € £. Also, lety be the uniform distribution over imply that

the set of webpages. Then, = (1 — 3)Q'w + [u is the
PageRank vector, first introduced by Brin and Page [1] t6"
measure the relative importance of webpages. Typical salug, nat

of B used in practice are abo0115. For general probability Xy (t) t—oo _
distribution i, the vectorr is referred to as the personalized Zy(t) — Y
PageRank [39], and is used in context-sensitive searches

Now, letWW C V be a (relatively small) set of webpages
and assume that the hyperlinks, €, can be modified
arbitrarily in order to changer. Let G = (V,€) be the
modified WWW graph() the corresponding stochastic ma-;
trix. Let & be the unique invariant probability distribution of
P:=(1—p)Q+ B1y . Then, one has that

—_

(t) = Pf% 2y ]lw’% - ]1%, 2(t) = P'1/d "2 1=,

S8

Yvey,

e., [4)-[5) effectively describe an iterative distribdtalgo-
r|thm for the computation ofj. The example can be easily
generalized starting from an undirected weighted grapis th
preserving reversibility ofP and an explicit form of the
invariant distributions.

Let 7 C £ be a subset of directed communication links
which stop working. Le€ := £\ F, G := (V,€), andd be
|17 = 7| = max {#(t) - 7(t)} - the vector of in-degrees iG. Let P = (I+@Q)/2, whereQ is
uc a stochastic matrix witld),,, = 1/d,, if (v,u) € £. Consider
Hence, estimating the impact that the arbitrary changeef tihe analogous of14) and(5) withh, and £ replaced byd,
hyperlinks from a set of webpage® has on the aggregate andé, i.e.,#(0) = y/d, 2(0) = 1/d, &(t+1) = Px(t), and
PageRank of an arbitrary set of webpagesoils down to  2(t + 1) = PZ(t). Then, provided thag remains strongly
bounding the total variation distance between the invariagonnected, arguing as before shows that
probability distributionst and 7. Observe that the matrices
Q and Q, and thereforeP and P, differ only on the rows
indexed by elements ofV. A solution to this problem will

be discussed in Example TIFA of SectibnlIll. where# = P'7 is the unique invariant probability distribu-
tion of P and

jv(t) t—o00 ﬁ/y/d - §+61 + &9
Zy(t) 7~T/11/CZ l4+es+eq’

YoeV,

B. Faulty communication links in distributed averaging

Consider a sensor network described as a connected undit ‘= % Z (% - 1) Yo €2 1= dz — Ty ZT )
rected graptg = (V, &), whose nodes and edges represent v v
sensors and two-way communication links, respectively. As 1 dy
sume that each sensoinitially measures a scalat, and the e =7 Z <d7 - 1) ) €4 = dz — ) dT :
goal is to design a distributed algorithm for the computatio v v
of the arithmetic averagg:=n""'3_, v,. Observe thate:| < Zl{jy[|c,le2] < d||yl|w||7 — 7|, while

A possible solution [8] is as follows. Let € RY be the

\ les] < 21 and |ey| "< d||7 — 7| . Hence, provided that
degree vector irj, and, for allv € V, put

|F| = o(n), and that the average degréand||y||-, remain
Yo 1 bounded as: grows large, a sufficient condition fay =
w0 =7,  20)=7, @y o(1) is that||7 — || = o(1).

v



C. Voter model with influential agents

Let G = (V,&) be a connected undirected graph (with
no self-loops). Fom # v € V, let E(%) ¢ RY*Y have all
entries equal to zero but fdz(";") = —E{%") = 1. Consider
the following Markov chainX (¢) over {0, 1}V: given X (¢),
X(t+1) = (I +E™Y))X(t) with probability1/|£|, for all
(u,v) € £. This is an instance of the voter model [22], [23],
[24], [25]. In a social network interpretation, this may be Fig. 1. Graph of the functio(z) defined in [(6).
thought of modeling a society where every pair of individual
whose corresponding nodes are neighboks irave the same
chance to influence each other.

It is standard result that with probability on€,(t) — 2 I”'. PERTL.JRBATION RE.SULTS . o
Y for all v, whereY is a {0,1}-valued random variable. L€t P’ be an irreducible stochastic matrix on the finite

0

Moreover, it is not hard to see that state space) and letm = P’m be its unique invariant
probability distribution. LetP be another stochastic matrix

=714+ —= Z Ev) (not necessarily irreducible) on the same state spade be

| (u,0)E€ interpreted as a perturbation &f and let® be an invariant

. N _ probability distribution ofP (not necessarily the unique one).
'St prlmlti\fmand/ symmetric, so tha]lE[).((t)|X(0)]. - The following result provides an upper bound on the total
PIX(0) — 17X (0), wherer = P'm is the uniform \aration distance between and . It is stated in terms of

distribution overV. In particular, this implies that the functiond : [0, +00) — [0, 1]
2 *
y:=PY =1/X(0 E X o zln (e?/x) x<ux
0(x) : 1 x> ", (6)

In the statistical physics jargon, the fact that the uniformvherexz* = 0.31784... is the smallest positive solution of

distribution is invariant forP, so that", E[X,(t)|X(0)] e*/x = exp(1/z).

remains constant im, is referred to as conservation of the Lemma 1:Let P and P be stochastic matrices on a finite

average magnetization [40]. setV. Let P be irreducible with invariant probability measure
Now, let us consider the following variant to the modelx and mixing timer (3), and# be an invariant probability

Let F C € be such that the directed gragh= (V,£), measure foP. Then,

whereé := £\ F remains strongly connected, and consider - -

the Markov chainX (¢) over {0,1}V such that givenX (t), 17 =l < 67 (V). i

X(t+1) = (I 4+ E®)X(t) with probability €], for  for all W C V such that¥V D supp(P — P).

all (u,v) € & and X(t + 1) = X(t) with probability Proof: See [33]. [

|71/|€]. The social network interpretation is thiat := {u : Lemma_l shows that it is sufficient to have an upper bound

(ur; v) € F for _somev_}h|s a set ?f ;]nf_luent_la:]lljndlwduals, on the product-7(W) in order to obtain an upper bound
whose interactions with some of their neighborsdnare o 112" " "\ barticular, assuming that an upper bound

asymmetric, as they influence such neighbors without bei the mixing timer is available, e.g., from an estimate
influenced in turn from them. A similar model is discusse:g]the conductance oP, one is left with estimating ().
in [21] in the framework of continuous opinion dynamics. ‘Observe that (V) is typically unknown in the applications.

Observe that strong connect|V|ty of |mpI|es that, with Below, we derive an upper bound @if\V) in terms of two
probability oneX, (t) 2%y for all v, whereY € {0,1} is quantities.

a random variable such that The first quantity we need to introduce is the minimal
=P(Y = 1|X(0)) = #X(0), hitting time
where® = P’# is the unique invariant probability distribu- ny = min{ry : v € VAW}. (7)
tion of Observe that the minimal hitting tims;,, only depends on
Z Ev) the choice of the subséty O supp(P — P) and on the
(u v)eé original matrix P (in particular, on the rows of’ indexed

by v ¢ W), but not on finer details of the perturbatiéh- P.
The second quantity we shall need is the escape time from
W with respect toP and, defined as
|gj—y|§||ﬁ—w||, X = max inf ———— t . (8)
with equality for at least one value of(0) = X(0) wimn>0t21 Py (Tyyyy < 1)
{0,1}Y. Will | — y| vanish asn grows large if the set of Notice that the escape timg depends only on the rows
influential agentsV’ (and henceF) remains small? of the perturbed matrix®> whose index lies in the sety

Clearly, if the initial conditions of the two processes aite,
e., if X(0) = X(0), then



(because so does the distributionqu\w) and, whenP is Example 2:For a stochastic matrik), a probability dis-
not irreducible, on the choice of the invariant meastire tribution s, and somes € (0, 1), let P and= be as in Section
In particular,y = +oc if and only if the setV \ W is not [[=Al Let Q be a perturbation af), andP = (1—3)Q+ 31’
accessible undeP from some states € W in the support Clearly W := supp(Q — Q) D supp(P — P). Moreover,

of 7. Observe that Markov’s inequality implies that 1 1
2 S e B,V evow) By 0
¥ < max - — < 4 max 7y, max,, P, (V(1) € V\W) H
wire0 L= Pu (T > 275 y) Tz On the other hand, the mixing time can be easily bounded by

which justifies the choice of the name escape time. THePnsidering a coupling of two Markov chairis(#) andV'(#)
reason for introducing instead of usingnax{#%,,, : 7, > defined as follows. Before meetingi(t) and V'(t) move
0} directly is that in some cases the former is more easilj?dependently according to the transition probability rixat
estimated than the latter. @ with probability (1 — 5) and jump to a common new state

Lemma 2:Let P be a stochastic matrix on a finite st ~ they meet, i.e, for > T, := inf{t > 0: U(t) = V())},
and# an invariant probability measure. Then, U(t) = V(t) move together with transition probability
matrix P. Since

~ X
V) <o, Ywey. OF 1Pt~ P < BT > HU(©0) = w, V(0) = v) < (1 - B
Proof: See [33]. [ |
for everyt > 0 andu,v € V, one gets that
Lemmadl an@l2 immediately imply the following result: .
3 Tg[7W§—+1. (11)
Theorem 3:Let P and P be stochastic matrices on a finite log(1 - B) g

set). Let P be irreducible with invariant probability measure Finally, let7l., := 3, 1,73, be the expected hitting time
« . . - . . o ! ° v
7 and mixing time, and 7 be an invariant probability f the Markov chain with initial distributiop: and transition

measure for”. Then, probability matrix P. For all v, one has that
- X . 1- 53
17 7T||§9(T7'{fv) ’ TWSZ(l—ﬁ)tﬂ(t"‘T#v):T"'T#V'
>0

for all W C V such thatsupp(P — P) C W.

Theorem[B implies that, in order for the total variationusmg Kac's formula, the above implies that

distance||7 — 7|| to vanish as the network size grows large 1 Tow v 1 u
- 1 . ’ — =1 ——— Py < - .
it is sufficient thatry /7, vanishes. T(W) + zw: ZU: W) W =3 T
Example 1:For integersn > 2 andd > 1, let P be the
transition probability matrix of the lazy random walk on alt follows that
d-dimensional toroidal grid of size = m?, i.e.,V = Z¢ ¥ " B
1 1 ml > > - A
Puu = 1/2, Puv = 1/(4d) |f Zlgigd |uz — UZ'| = 1, and TW - BT - W(W) 1 (12)

Py =0 if Zlgigd [us —vi| > 2. For somew € 4 gndg_ < By combining [10),[(I11), and_(12) with Theorém 3, one gets
(0,1), consider a perturbed stochastic matfixcoinciding 4t

with P outsidew, and such thaP,,, < 1. PutW = {w}. N <o (0 +BTW)
It is immediate to verify that 17 =l < 321 - W) )
oo = (1— Puw) L. In particular, the above implies that the alteration of adfet

rows )V of vanishing aggregate PageRan®RV), andu (W)

Sounded away from, has a negligible effect on the whole
1 1 v 1, PageRank vector (in total variation distance).

"= =1 Z Tw =14 57w, We conclude this section with the following two simple

Tw ad B
vilv=wl=1 examples, showing that having control of each of the terms
where last equality follows from a basic symmetry argument; andr is necessary in order to estimaté — =||.

On the other hand, Kac’s formula [35, Lemma 21.3] yield

2

Moreover, standard results [35, Theorem 5.5] imply that Example 3:Consider the stochastic matriR with all
Cqn?*/? for some constant’; depending onl but not onn.  entries equal tal /n, and perturb it in a single node by
Then, Theoreril3 implies that putting P, = 1 — a, and P, = a/(n — 1) for all v # w,
90, n2/d for somea € (0,1 — 1/n). Then,7 = 1, 73, = n, and

[|lm—7|| <0 (ﬁn — 1) Ty\w = 1/a, so that Theorernhl3 guarantees that — oo

is a sufficient condition fof|7 — || — 0 asn grows large.
The above guarantees thgt — 7|| vanishes as: grows On the other hand, it is easily verified that = 1/n for all
large provided thatl > 3. More general examples involving v, while 7, = 1/(na+1), and7, = na/((n—1)(na+1)),
toroidal grids will are discussed in [33]. for all v # w. Hence)|7—=|| = (1—a—1/n)(na+1) which



[12]

[13]
[14]
[15]
Fig. 2. The graph of Examplé 4, fon = 7. The perturbation séty = {0}
is shaded in gray.
[16]
[17]

shows thatvn — oo is indeed also a necessary condition for[
|7 —7|| — 0 asn grows large.
Example 4:Form > 1, letV :={-m,—-m+1,...,m—

18]

1,m}andP,, = 1/mif u # vanduv > 0, Py, = 0if uv < [19]
0 oru = v, and Py, = 1/(2m) for all v # 0. Then, one has

7o = 2/(2m~+1) while 7, = 1/(2m+1) for all v # 0. Now  [20]
perturbP on W = {0} only, by puttingPy, = (1/2—«)/m

if v <0andPy, = (1/2+ a)/m if v >0, for somea € [21]

(0,1/2). Observe thatry,, = m, while 7,y = 1. On the
other hand, the bottleneck bound [35, Theorem 7.3] implitn1§2
that - > 1/(4m) > m/2, so that Theorem]3 is useless[23]
as it only provides the trivial conclusion thgfr — «|| < 1.
However, observe that, —m, = 2a/(2m+1)sgn(v), which
is arbitrarily close tol for largen and« close tol/2.

[24]
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