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Abstract— Many linear dynamics over networks can be
related by duality to the evolution of a Markov chain with state
space coinciding with the node set of the network. Examples
include opinion dynamics over social networks as well as dis-
tributed averaging algorithms for estimation or control. When
the transition probability matrix P associated to the Markov
chain is irreducible, a key quantity is its invariant probability
distribution π = P

′
π. In this work, we study how π is affected

by, possibly non-reversible or non-irreducible, perturbations of
P . In particular, we are interested in perturbations which are
localized on a small fraction of nodes but are not necessarily
small in any induced norm. While classical perturbation results
based on matrix analysis can not be applied in this context,
we present various bounds on the effect onπ of changes of
P obtained using coupling and other probabilistic techniques.
Such results allow one to find sufficient conditions for thel1-
distance betweenπ and its perturbed version to vanish in
the large-scale limit, depending on the mixing time and one
additional local property of the original chain P .

Index Terms— Robustness, resilience, large-scale networks,
consensus, network centrality, stochastic matrices, stationary
probability distributions.

I. I NTRODUCTION

How much can the invariant probability distributionπ
of an irreducible row-stochastic matrixP be affected by
perturbations localized on a relatively small subsetW of
its state spaceV? Such a question arises in an increasing
number of applications, most notably in the emerging field
of large-scale networks.

As an example, many notions of network centrality can
be formulated in terms of invariant probability distribu-
tions of suitably defined stochastic matrices. In particular,
Google’s PageRank algorithm [1] assigns to webpages values
corresponding to the entries of the invariant probability
distribution π of the matrixP obtained as a convex com-
bination of the normalized adjacency matrix of the directed
graph describing the hyperlink structure of the World Wide
Web (WWW), and of a matrix whose all entries equal the
inverse of the total number of webpages [2], [3]. A well-
known problem in this context is rank-manipulation, i.e.,
the intentional addition or removal of hyperlinks from some
webpages (hence, the alteration of the corresponding rows of
P ) with the goal of modifying the PageRank vector [4], [5],
[6]. A natural question is then, to what extent a small subset
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W of webpages can alter the PageRank vectorπ. Similar
robustness issues have been raised for accidental variations
of the WWW topology occurring, e.g., because of server
failures or network congestion problems [7].

More generally, the problem is of central interest in the
context of distributed averaging and consensus algorithms
[8]. There, linear systems of the formx(t + 1) = Px(t),
or their continuous-time analogues, are studied, e.g., as
algorithms for distributed optimization [9], [10], control [11],
[12], synchronization in sensor networks [13], or reputation
management in ad-hoc networks [14], as well as behavioral
models for flocking phenomena [15], [16], or opinion dy-
namics in social networks [17], [18], [19], [20]. Equilibria
of such systems are consensus vectors, i.e., multiples of the
all-one vector, and standard results following from Perron-
Frobenius theory guarantee convergence (with the additional
assumption of aperiodicity ofP , in the discrete time case) to
a consensus vector with all entries equal toπ′x(0). Depend-
ing on the specific applicative context, the natural question
is to what extent the consensus valueπ′x(0) is affected by
perturbations ofP corresponding, e.g., to malfunctioning of
a small fraction of the sensors, or conservative/influential
minorities in social networks [21].

Other applications can be found in the context of in-
teracting particle systems [22], [23]. In particular, in the
voter model on a finite graph [24], [25], [26, Ch. 14], [27,
Ch. 6.9], the probability distribution of the final consensus
value is determined by the invariant distribution of the
stochastic matrix associated to the simple random walk on
the graph. Perturbations in this case may model the presence
of inhomogeneities or ‘zealots’ [28], [29].

The above-described problems all boil down to estimating
the distance between the invariant probability distribution
π of an irreducible stochastic matrixP and an invariant
probability distributioñπ = P̃ ′π̃ of another stochastic matrix
P̃ , to be interpreted as a perturbed version ofP . In some
applications,P may be reversible, i.e., coincide with the
normalization of a symmetric positive matrix, so thatπ can
be easily computed in terms of the latter. However, even in
these cases, the considered perturbations will typically be
such thatP̃ is not reversible and thus̃π does not allow for
a tractable explicit expression.

Remarkably, standard perturbation results based on sensi-
tivity analysis [30]–[31], [21] do not provide a satisfactory
answer to this problem. Indeed, they provide upper bounds
of the form

||π̃ − π||p ≤ κP ||P̃ − P ||q , (1)

for somep, q ∈ [1,∞], whereκP is a condition number



depending on the original stochastic matrixP only. Such
condition numbers are lower bounded by an absolute positive
constant (e.g.,1/4 for the smallest of those surveyed in [32])
and typically blow up as the state spaceV grows large.
Therefore, such results do not allow one to prove that the
distance||π̃ − π||p vanishes in the limit of large network
size, even ifP and P̃ differ only in a single row, unless
||P̃ − P ||q itself vanishes.

In this paper,1 we obtain upper bounds on the total
variation distance||π̃ − π|| := 1

2 ||π̃ − π||1 of the form

||π̃ − π|| ≤ θ

(

τ
χ̃

τ∗W

)

, (2)

(see Theorem 3) where:θ : [0,+∞) → [0, 1] is a continuous,
nondecreasing function such thatθ(0) = 0 (see (6) for its
definition);

τ := inf
{

t ≥ 1 : ||P t
u,· − P t

v,·|| ≤ 1/e , ∀u, v ∈ V
}

(3)

is the mixing time of the original stochastic matrixP ; τ∗W
denotes the minimal expected hitting time on the setW for a
Markov chain with transition probability matrixP (see (7));
andχ̃ stands for the escape time fromW for a Markov chain
with transition probability matrixP̃ (see (8) for the exact
definition). As opposed to the aforementioned sensitivity re-
sults, all derived from algebraic arguments, our proofs rely on
coupling techniques, combined with an argument similar to
the one developed in [20] for ‘highly fluid’ networks. Clearly,
(2) implies that ||π̃ − π|| vanishes provided thatτχ̃/τ∗W
does. As we will show, this finds immediate application in
the PageRank manipulation problem. More in general, our
results prove useful in many of those aforementioned large-
scale network applications where classical sensitivity-based
results fail to provide a satisfactory answer.

Mixing properties of stochastic matrices have been the ob-
ject of extensive recent research [26], [34], [35], and several
results are available allowing one to estimate the mixing time
τ of a stochastic matrixP , e.g., in terms of the conductance
or other geometrical properties of the graph associated toP .
It is worth pointing out that a connection between mixing
properties and robustness of stochastic matrices is already
unveiled by the perturbation results of [36], [31], where (1)
is proven forp = 1, q = ∞, and condition numberκP

proportional toτ . Of a similar flavor are Seneta’s results
[37], [38] estimating the condition numberκP in terms of
ergodicity coefficients. Also the estimates proposed in [21]
for symmetricP can be rewritten as (1) with forp = q = 2
and κP equal to the inverse of the spectral gap ofP . As
compared to these references, the fundamental novelty of our
bound (2) consists in measuring the size of the perturbation
in terms of the ratiõχ/τ∗W instead of the distance||P̃−P ||q,
thus enabling one to obtain significant results in scenarios
whereW is small butP̃ −P is not necessarily small in any
norm.

1The present is a short version of the manuscript [33] available on the
arxiv and currently under review for journal publication. We will refer to
[33] for the proofs of some of the statements.

In fact, of the last two parameters appearing in the
righthand side of (2), the escape timẽχ is the only one
truly depending on the perturbatioñP − P , and is indeed
easily estimated in typical cases whenW is a small subset
of V . On the other hand, the minimal hitting timeτ∗W , which
depends onP andW only, turns out to be the hardest to get
lower bounds on in typical applications whereP is sparse
and W remains small but not necessary localized as the
state space grows large. While Kac’s formula ([35, Lemma
21.13]) readily implies the upper boundτ∗W ≤ 1/π(W),
lower bounds onτ∗W typically involve finer details ofP than
just π(W). In the last section of this paper, we will propose
an analysis ofτ∗W for networks with high local connectivity,
which finds natural application when the graph associated
to P is a d-dimensional grid, and the size ofW remains
bounded (or grows very slowly) as the network size grows
large. Results for random, locally tree-like networks willbe
the object of a forthcoming work.

The rest of this paper is organized as follows. Section II in-
troduces three motivating examples formalizing some of the
applications mentioned at the beginning of this Introduction.
In Section III, we present our main result which is stated
as Theorem 3 and apply it in four examples. We refer the
reader to [33] for applications to stochastic matrices whose
support graph has high local connectivity such as grid-like
graphs.

Before proceeding, let us collect here some notational
conventions to be used throughout the paper. Vectors and
matrices will be considered with entries from a setV of
finite cardinalityn := |V|. The all-one column vector will be
denoted by1. For a matrixA, A′ will stand for its transpose
and supp(A) := {v : Av,· 6= 0} for the set of its nonzero
rows. Then, a probability distributionµ (i.e., a nonnegative-
valued vector such thatµ′

1 = 1) will be said invariant for a
stochastic matrixA (i.e., a nonnegative-valued matrix such
that A1 = 1) if A′µ = µ. The total variation distance
between two probability distributions will be denoted by
||µ − π|| := 1

2

∑

v |µv − πv|. For a probability distribution
µ and a subsetA ⊆ V such thatµ(A) > 0, µA will
stand for the conditional probability distribution onA, i.e.,
µA
a = µa/µ(A) for a ∈ A, andµA

v = 0 for v ∈ V \A. For a
graphG = (V , E) we shall use the convention thatE ⊆ V×V ,
so thatG undirected means that if(u, v) ∈ E then(v, u) ∈ E
as well. To every stochastic matrixP we shall associate the
support graphGP = (V , EP ) where(u, v) ∈ EP if and only
if Puv > 0. For stochastic matricesP, P̃ , we will consider
discrete-time Markov chainsV (t) and Ṽ (t), t = 0, 1, . . .,
with state spaceV and transition probability matrixP , and
P̃ , respectively. Forv ∈ V , Pv and Ev will stand for the
probability and expectation conditioned onV (0) = Ṽ (0) =
v, while for a probability distributionµ, Pµ :=

∑

v µvPv and
Eµ :=

∑

v µvEv. We will denote the corresponding hitting
times on a subsetU ⊆ V by TU := inf{t ≥ 0 : V (t) ∈ U},
and T̃U := inf{t ≥ 0 : Ṽ (t) ∈ U}, and their expectations
by τvU := Ev[TU ] and τ̃vU := Ev[T̃U ], respectively.



II. T HREE MOTIVATING EXAMPLES

In this section we present three motivating examples
formalizing some of the application problems discussed in
the Introduction.

A. PageRank manipulation

Let Q be a stochastic matrix,µ a probability distribution,
and β a parameter in the interval(0, 1). Let P := (1 −
β)Q + β1µ′, and observe that, irrespective of whetherQ
is reducible or not, the matrixW := (I − (1 − β)Q′) is
strictly diagonally dominant, hence nonsingular, so thatP
has a unique invariant probability distributionπ = βW−1µ.

Now, let G = (V , E) be the directed graph describing the
WWW, whose nodesv ∈ V correspond to webpages and
where there is a directed edge(u, v) ∈ E whenever page
u has a hyperlink directed to pagev. Let du := |Eu| and
Eu := {v : (u, v) ∈ E} be the number of hyperlinks and,
respectively, the set of linked pages, from pageu. Define
the stochastic matrixQ by Quv = 1/n for all v if du = 0,
and, if du ≥ 1, let Quv = 0 if (u, v) /∈ E andQuv = 1/du
if (u, v) ∈ E . Also, let µ be the uniform distribution over
the set of webpages. Then,π = (1 − β)Q′π + βµ is the
PageRank vector, first introduced by Brin and Page [1] to
measure the relative importance of webpages. Typical values
of β used in practice are about0.15. For general probability
distributionµ, the vectorπ is referred to as the personalized
PageRank [39], and is used in context-sensitive searches.

Now, let W ⊆ V be a (relatively small) set of webpages,
and assume that the hyperlinks∪w∈WEw can be modified
arbitrarily in order to changeπ. Let G̃ = (V , Ẽ) be the
modified WWW graph,Q̃ the corresponding stochastic ma-
trix. Let π̃ be the unique invariant probability distribution of
P̃ := (1− β)Q̃ + β1µ′. Then, one has that

||π̃ − π|| = max
U⊆V

{π̃(U)− π(U)} .

Hence, estimating the impact that the arbitrary change of the
hyperlinks from a set of webpagesW has on the aggregate
PageRank of an arbitrary set of webpagesU boils down to
bounding the total variation distance between the invariant
probability distributionsπ and π̃. Observe that the matrices
Q and Q̃, and thereforeP and P̃ , differ only on the rows
indexed by elements ofW . A solution to this problem will
be discussed in Example II-A of Section III.

B. Faulty communication links in distributed averaging

Consider a sensor network described as a connected undi-
rected graphG = (V , E), whose nodes and edges represent
sensors and two-way communication links, respectively. As-
sume that each sensorv initially measures a scalaryv and the
goal is to design a distributed algorithm for the computation
of the arithmetic averagey := n−1

∑

v yv.
A possible solution [8] is as follows. Letd ∈ R

V be the
degree vector inG, and, for allv ∈ V , put

xv(0) =
yv
dv

, zv(0) =
1

dv
, (4)

[xv(t+ 1), zv(t+ 1)] = 1
2 [xv(t), zv(t)]

+ 1
2dv

∑

u:(u,v)∈E [xu(t), zu(t)] .
(5)

What makes the above particularly appealing in large-scale
network applications is the fact that it requires sensors to
exchange information with their neighbors inG only, and
that each sensorv needs to know its degreedv only with
no need for global knowledge about the network structure or
size.

In order to analyze the algorithm let us rewrite (4) and (5)
in matrix notation. LetP be the stochastic matrix associated
to the lazy random walk onG, i.e., P = (I +Q)/2, where
I denotes the identity matrix andQuv = 1/du if (u, v) ∈ E .
Let x(0) = y/d, z(0) = 1/d (where division between two
vectors is meant componentwise) and consider the iteration

x(t+ 1) = Px(t) , z(t+ 1) = Pz(t) .

Observe that the unique invariant probability distributionπ =
P ′π is given byπu = du/(nd) whered := n−1

∑

v dv is the
average degree. Moreover, irreducibility and acyclicity of P
imply that

x(t) = P t y

d

t→∞
−→ 1π′ y

d
= 1

y

d
, z(t) = P t

1/d
t→∞
−→ 1

1

d
,

so that
xv(t)

zv(t)

t→∞
−→ y , ∀v ∈ V ,

i.e., (4)-(5) effectively describe an iterative distributed algo-
rithm for the computation ofy. The example can be easily
generalized starting from an undirected weighted graph, thus
preserving reversibility ofP and an explicit form of the
invariant distributionπ.

Let F ⊆ E be a subset of directed communication links
which stop working. LetẼ := E \ F , G̃ := (V , Ẽ), and d̃ be
the vector of in-degrees iñG. Let P̃ = (I+Q̃)/2, whereQ̃ is
a stochastic matrix with̃Quv = 1/d̃u if (v, u) ∈ Ẽ . Consider
the analogous of (4) and (5) withdv andE replaced byd̃v
and Ẽ , i.e., x̃(0) = y/d̃, z̃(0) = 1/d̃, x̃(t+1) = P̃x(t), and
z̃(t + 1) = P̃ z̃(t). Then, provided that̃G remains strongly
connected, arguing as before shows that

x̃v(t)

z̃v(t)

t→∞
−→

π̃′y/d̃

π̃′1/d̃
=

y + ε1 + ε2
1 + ε3 + ε4

, ∀v ∈ V ,

whereπ̃ = P̃ ′π̃ is the unique invariant probability distribu-
tion of P̃ and

ε1 :=
1

n

∑

v

(

dv

d̃v
− 1

)

yv , ε2 := d
∑

v

(π̃v − πv)
yv

d̃v
,

ε3 :=
1

n

∑

v

(

dv

d̃v
− 1

)

, ε4 := d
∑

v

(π̃v − πv)
1

d̃v
.

Observe that|ε1| ≤
|F|
n ||y||∞,|ε2| ≤ d||y||∞||π̃ − π||, while

|ε3| ≤ |F|
n and |ε4| ≤ d||π̃ − π|| . Hence, provided that

|F| = o(n), and that the average degreed and||y||∞ remain
bounded asn grows large, a sufficient condition for̃y =
y + o(1) is that ||π̃ − π|| = o(1).



C. Voter model with influential agents

Let G = (V , E) be a connected undirected graph (with
no self-loops). Foru 6= v ∈ V , let E(u,v) ∈ R

V×V have all
entries equal to zero but forE(u,v)

u,v = −E
(u,v)
u,u = 1. Consider

the following Markov chainX(t) over{0, 1}V : givenX(t),
X(t+ 1) = (I +E(u,v))X(t) with probability1/|E|, for all
(u, v) ∈ E . This is an instance of the voter model [22], [23],
[24], [25]. In a social network interpretation, this may be
thought of modeling a society where every pair of individuals
whose corresponding nodes are neighbors inG have the same
chance to influence each other.

It is standard result that with probability oneXv(t)
t→∞
−→

Y for all v, whereY is a {0, 1}-valued random variable.
Moreover, it is not hard to see that

P := I +
1

|E|

∑

(u,v)∈E

E(u,v)

is primitive and symmetric, so thatE[X(t)|X(0)] =

P tX(0)
t→∞
−→ 1π′X(0), where π = P ′π is the uniform

distribution overV . In particular, this implies that

y := P(Y = 1|X(0)) =
1

n

∑

v

Xv(0) .

In the statistical physics jargon, the fact that the uniform
distribution is invariant forP , so that

∑

v E[Xv(t)|X(0)]
remains constant int, is referred to as conservation of the
average magnetization [40].

Now, let us consider the following variant to the model.
Let F ⊆ E be such that the directed graph̃G = (V , Ẽ),
whereẼ := E \ F remains strongly connected, and consider
the Markov chainX̃(t) over {0, 1}V such that givenX̃(t),
X̃(t + 1) = (I + E(u,v))X̃(t) with probability |E|−1, for
all (u, v) ∈ Ẽ , and X̃(t + 1) = X̃(t) with probability
|F|/|E|. The social network interpretation is thatW := {u :
(u, v) ∈ F for somev} is a set of influential individuals,
whose interactions with some of their neighbors inG are
asymmetric, as they influence such neighbors without being
influenced in turn from them. A similar model is discussed
in [21] in the framework of continuous opinion dynamics.
Observe that strong connectivity of̃G implies that, with
probability oneX̃v(t)

t→∞
−→ Ỹ for all v, whereỸ ∈ {0, 1} is

a random variable such that

ỹ := P(Ỹ = 1|X̃(0)) = π̃′X̃(0) ,

whereπ̃ = P̃ ′π̃ is the unique invariant probability distribu-
tion of

P̃ := I +
1

|E|

∑

(u,v)∈Ẽ

E(u,v) .

Clearly, if the initial conditions of the two processes coincide,
i.e., if X̃(0) = X(0), then

|ỹ − y| ≤ ||π̃ − π|| ,

with equality for at least one value of̃X(0) = X(0) ∈
{0, 1}V . Will |ỹ − y| vanish asn grows large if the set of
influential agentsW (and henceF ) remains small?

1

0 x
∗

x

Fig. 1. Graph of the functionθ(x) defined in (6).

III. PERTURBATION RESULTS

Let P be an irreducible stochastic matrix on the finite
state spaceV and let π = P ′π be its unique invariant
probability distribution. LetP̃ be another stochastic matrix
(not necessarily irreducible) on the same state spaceV , to be
interpreted as a perturbation ofP , and letπ̃ be an invariant
probability distribution ofP̃ (not necessarily the unique one).

The following result provides an upper bound on the total
variation distance betweenπ and π̃. It is stated in terms of
the functionθ : [0,+∞) → [0, 1]

θ(x) :=

{

x ln
(

e2/x
)

x ≤ x∗

1 x ≥ x∗ ,
(6)

wherex∗ = 0.31784 . . . is the smallest positive solution of
e2/x = exp(1/x).

Lemma 1:Let P andP̃ be stochastic matrices on a finite
setV . LetP be irreducible with invariant probability measure
π and mixing timeτ (3), andπ̃ be an invariant probability
measure forP̃ . Then,

||π̃ − π|| ≤ θ(τπ̃(W)) ,

for all W ⊆ V such thatW ⊇ supp(P − P̃ ).
Proof: See [33].

Lemma 1 shows that it is sufficient to have an upper bound
on the productτπ̃(W) in order to obtain an upper bound
on ||π̃ − π||. In particular, assuming that an upper bound
on the mixing timeτ is available, e.g., from an estimate
of the conductance ofP , one is left with estimating̃π(W).
Observe that̃π(W) is typically unknown in the applications.
Below, we derive an upper bound oñπ(W) in terms of two
quantities.

The first quantity we need to introduce is the minimal
hitting time

τ∗W := min{τvW : v ∈ V \W} . (7)

Observe that the minimal hitting timeτ∗W only depends on
the choice of the subsetW ⊇ supp(P̃ − P ) and on the
original matrixP (in particular, on the rows ofP indexed
by v /∈ W), but not on finer details of the perturbatioñP−P .

The second quantity we shall need is the escape time from
W with respect toP̃ and π̃, defined as

χ̃ := max
w: π̃w>0

inf
t≥1

t

Pw(T̃V\W ≤ t)
. (8)

Notice that the escape timẽχ depends only on the rows
of the perturbed matrixP̃ whose index lies in the setW



(because so does the distribution ofT̃V\W) and, whenP̃ is
not irreducible, on the choice of the invariant measureπ̃.
In particular,χ̃ = +∞ if and only if the setV \ W is not
accessible under̃P from some statew ∈ W in the support
of π̃. Observe that Markov’s inequality implies that

χ̃ ≤ max
w: π̃w>0

2τ̃V\W

1− Pw(T̃V\W > 2τ̃wV\W)
≤ 4 max

π̃w>0
τ̃wV\W ,

which justifies the choice of the name escape time. The
reason for introducing̃χ instead of usingmax{τ̃wV\W : π̃w >

0} directly is that in some cases the former is more easily
estimated than the latter.

We are now in a position to prove the following result.
Lemma 2:Let P̃ be a stochastic matrix on a finite setV ,

and π̃ an invariant probability measure. Then,

π̃(W) ≤
χ̃

τ∗W
, ∀W ⊆ V . (9)

Proof: See [33].

Lemmas 1 and 2 immediately imply the following result:

Theorem 3:LetP andP̃ be stochastic matrices on a finite
setV . LetP be irreducible with invariant probability measure
π and mixing time τ , and π̃ be an invariant probability
measure forP̃ . Then,

||π̃ − π|| ≤ θ

(

τ
χ̃

τ∗W

)

,

for all W ⊆ V such thatsupp(P̃ − P ) ⊆ W .
Theorem 3 implies that, in order for the total variation
distance||π̃− π|| to vanish as the network size grows large,
it is sufficient thatτχ̃/τ∗W vanishes.

Example 1:For integersm ≥ 2 andd ≥ 1, let P be the
transition probability matrix of the lazy random walk on a
d-dimensional toroidal grid of sizen = md, i.e., V = Z

d
m,

Puu = 1/2, Puv = 1/(4d) if
∑

1≤i≤d |ui − vi| = 1, and
Puv = 0 if

∑

1≤i≤d |ui − vi| ≥ 2. For somew ∈ V andα ∈

(0, 1), consider a perturbed stochastic matrixP̃ coinciding
with P outsidew, and such that̃Pww < 1. PutW = {w}.
It is immediate to verify that

τ̃V\W = (1− P̃ww)
−1 .

On the other hand, Kac’s formula [35, Lemma 21.3] yields

n =
1

πw
= 1 +

1

4d

∑

v:|v−w|=1

τvw = 1 +
1

2
τ∗W ,

where last equality follows from a basic symmetry argument.
Moreover, standard results [35, Theorem 5.5] imply thatτ ≤
Cdn

2/d for some constantCd depending ond but not onn.
Then, Theorem 3 implies that

||π − π̃|| ≤ θ

(

2Cd

1− P̃ww

n2/d

n− 1

)

.

The above guarantees that||π − π̃|| vanishes asn grows
large provided thatd ≥ 3. More general examples involving
toroidal grids will are discussed in [33].

Example 2:For a stochastic matrixQ, a probability dis-
tributionµ, and someβ ∈ (0, 1), letP andπ be as in Section
II-A. Let Q̃ be a perturbation ofQ, andP̃ = (1−β)Q̃+β1µ′.
ClearlyW := supp(Q̃ −Q) ⊇ supp(P̃ − P ). Moreover,

χ̃ ≤
1

maxw Pw(Ṽ (1) ∈ V \W)
≤

1

β(1 − µ(W))
. (10)

On the other hand, the mixing time can be easily bounded by
considering a coupling of two Markov chains,U(t) andV (t)
defined as follows. Before meeting,U(t) and V (t) move
independently according to the transition probability matrix
Q with probability(1−β) and jump to a common new state
chosen according toµ with probabilityβ. From the first time
they meet, i.e., fort ≥ Tc := inf{t ≥ 0 : U(t) = V (t)},
U(t) = V (t) move together with transition probability
matrix P . Since

||P t
u,· − P t

v,·|| ≤ P(Tc > t|U(0) = u, V (0) = v) ≤ (1 − β)t

for everyt ≥ 0 andu, v ∈ V , one gets that

τ ≤

⌈

−1

log(1 − β)

⌉

≤
1

β
+ 1 . (11)

Finally, let τµW :=
∑

v µvτ
v
W be the expected hitting time

of the Markov chain with initial distributionµ and transition
probability matrixP . For all v, one has that

τvW ≤
∑

t≥0

(1 − β)tβ(t+ τµW ) =
1− β

β
+ τµW .

Using Kac’s formula, the above implies that

1

π(W)
= 1 +

∑

w

∑

v

πw

π(W)
Pwvτ

v
W ≤

1

β
+ τµW .

It follows that

τ∗W ≥ βτµW ≥
β

π(W)
− 1 . (12)

By combining (10), (11), and (12) with Theorem 3, one gets
that

||π̃ − π|| ≤ θ

(

(1 + β)π(W)

β2(1− µ(W))

)

.

In particular, the above implies that the alteration of a setof
rowsW of vanishing aggregate PageRankπ(W), andµ(W)
bounded away from1, has a negligible effect on the whole
PageRank vectorπ (in total variation distance).

We conclude this section with the following two simple
examples, showing that having control of each of the terms
χ̃ andτ is necessary in order to estimate||π̃ − π||.

Example 3:Consider the stochastic matrixP with all
entries equal to1/n, and perturb it in a single nodew by
putting P̃ww = 1− α, and P̃wv = α/(n− 1) for all v 6= w,
for someα ∈ (0, 1 − 1/n). Then, τ = 1, τ∗W = n, and
τ̃V\W = 1/α, so that Theorem 3 guarantees thatαn → ∞
is a sufficient condition for||π̃ − π|| → 0 asn grows large.
On the other hand, it is easily verified thatπv = 1/n for all
v, while π̃w = 1/(nα+1), andπ̃v = nα/((n−1)(nα+1)),
for all v 6= w. Hence,||π̃−π|| = (1−α−1/n)(nα+1) which



Fig. 2. The graph of Example 4, form = 7. The perturbation setW = {0}
is shaded in gray.

shows thatαn → ∞ is indeed also a necessary condition for
||π̃ − π|| → 0 asn grows large.

Example 4:Form > 1, let V := {−m,−m+1, . . . ,m−
1,m} andPuv = 1/m if u 6= v anduv ≥ 0, Puv = 0 if uv <
0 or u = v, andP0v = 1/(2m) for all v 6= 0. Then, one has
π0 = 2/(2m+1) while πv = 1/(2m+1) for all v 6= 0. Now
perturbP onW = {0} only, by puttingP0v = (1/2−α)/m
if v < 0 andP0v = (1/2 + α)/m if v > 0, for someα ∈
(0, 1/2). Observe thatτ∗W = m, while τ̃V\W = 1. On the
other hand, the bottleneck bound [35, Theorem 7.3] implies
that τ ≥ 1/(4π0) ≥ m/2, so that Theorem 3 is useless
as it only provides the trivial conclusion that||π̃ − π|| ≤ 1.
However, observe that̃πv−πv = 2α/(2m+1)sgn(v), which
is arbitrarily close to1 for largen andα close to1/2.
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