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The Error Exponent of Variable-Length Codes over
Markov Channels with Feedback

Giacomo Como, Serdar Yüksel and Sekhar Tatikonda

Abstract—The error exponent of Markov channels with feed-
back is studied in the variable-length block-coding setting. Bur-
nashev’s classic result is extended to finite-state ergodicMarkov
channels. For these channels, a single-letter characterization of
the reliability function is presented, under the assumption of
full causal output feedback, and full causal observation ofthe
channel state both at the transmitter and at the receiver side.
Tools from stochastic control theory are used in order to treat
channels with inter-symbol interference. Specifically, the convex-
analytic approach to Markov decision processes is adopted in
order to handle problems with stopping time horizons induced
by variable-length coding schemes.

Index Terms—Channel coding with feedback, finite-state
Markov channels, error exponents, Markov decision processes,
variable-length block codes.

I. I NTRODUCTION

The role of feedback in channel coding is a long studied
problem in information theory. In 1956, Shannon [28] proved
that noiseless causal output feedback does not increase the
capacity of a discrete memoryless channel (DMC). Feedback,
though, can help in improving the trade-off between reliability
and delay of DMCs at rates below capacity. This trade-off
is traditionally measured in terms of error exponents; in fact,
since Shannon’s work, much research has focused on studying
error exponents of channels with feedback. Burnashev [6]
found a simple exact formula for the reliability function
(i.e. the highest achievable error exponent) of a DMC with
perfect causal output feedback in the variable-length block-
coding setting. The present paper deals with a generaliza-
tion of Burnashev’s result to a certain class of channels
with memory. Specifically, we shall provide a simple single-
letter characterization of the reliability function of finite-state
Markov channels (FSMCs), in the general case when inter-
symbol-interference (ISI) is present. Under mild ergodicity
assumptions, we will prove that, when one is allowed variable-
length block-coding with perfect causal output feedback and
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causal state knowledge both at the transmitter and at the
receiver end, the reliability function has the form

EB(R) = D

(

1 −
R

C

)

, R ∈ (0, C) . (1)

In (1),R denotes the transmission rate, measured with respect
to the average number of channel uses. The capacityC and
the coefficientD are quantities which will be defined as so-
lutions of finite-dimensional optimization problems involving
the stochastic kernel describing the FSMC. The former will
turn out to equal the maximum, over all choices of the channel
input distributions as a function of the channel state, of the
conditional mutual information between channel input and the
pair of channel output and next channel state given the current
state, whose marginal distribution coincides with the induced
ergodic state measure (see (6)). The latter will instead equal
the average, with respect to the induced ergodic state measure,
of the Kullback-Leibler information divergence between the
joint channel output and next state distributions associated to
the pair of most distinguishable choices of a channel input
symbol as a function of the current state (see (14)).

The problem of characterizing error exponents of mem-
oryless channels with feedback has been addressed in the
information theory literature in a variety of different frame-
works. Particularly relevant are the choice of block versus
continuous transmission, the possibility of allowing variable-
length coding schemes, and the way delay is measured. In
fact, much more than in the non-feedback case, these choices
lead to very different results for the error exponent of DMCs,
albeit not altering the capacity value. In continuous transmis-
sion systems information bits are introduced at the encoder,
and later decoded, individually. Continuous transmissionwith
feedback was considered by Horstein [19], who was probably
the first showing that variable-length coding schemes can pro-
vide larger error exponents than fixed-length ones. Recently,
continuous transmission with fixed delay has attracted renewed
attention in the context of anytime capacity [27]. In this paper,
however, we shall restrict ourselves to block transmission,
which is the framework considered by the largest part of the
previous literature.

In block transmission systems, the information sequence is
partitioned into blocks of fixed length which are then encoded
into channel input sequences. When there is no feedback
these sequences need to be of a predetermined, fixed length.
When there is feedback, instead, the availability of common
information shared between transmitter and receiver makesit
possible to use variable-length schemes. Here, the transmission
time is allowed to dynamically depend on the channel output
sequence. It is known that exploiting the possibility of using
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variable-length block-coding schemes guarantees high gains
in terms of the attainable error exponent. In fact, Dobrushin
[13] showed that the sphere-packing upper bound still holds
for fixed-length block-coding schemes over symmetric DMCs
even when perfect output feedback is causally available the
encoder (a generalization to non-symmetric DMCs was ad-
dressed first in [18] and then in [31]). Even though fixed-length
block-coding schemes with feedback have been studied (see
[39], [12]), the aforementioned results pose severe constraints
on the performance such schemes can achieve. Moreover,
no closed form for the reliability function at all rates is
known for fixed-length block coding with feedback, but for
the very special class of symmetric DMCs with positive zero-
error capacity (cf. [9, pag. 199]). It is worth to mention that
the situation can be different for infinite-input channels.For
the additive white Gaussian noise channel (AWGNC) with
average power constraint, Shalkwijk and Kailath [30] proved
that a doubly exponential error rate is achievable by fixed-
length block codes. However, when a peak power constraint
to the input of an AWGNC is added, then this phenomenon
disappears as shown in [37]. At the same time it is also known
that, if variable-length coding schemes are allowed, then the
sphere-packing exponent can be beaten even when no output
feedback is available but for a single bit used only once. This
situation is traditionally referred to as decision feedback and
was studied in [14] (see also [9, pag. 201]).

A very simple exact formula was found by Burnashev
[6] for the reliability function of DMCs with full causal
output feedback in the case of variable-length block-coding
schemes. Burnashev’s analysis combined martingale theory
arguments with more standard information-theoretic tools. It is
remarkable that in this setting the reliability function isknown,
in a very simple form, at any rate below capacity, in sharp
contrast to what happens in most channel-coding problems for
which the reliability function can be exactly evaluated only at
rates close to capacity. Another important point is that the
Burnashev exponent of a DMC can dramatically exceed the
sphere-packing exponent; in particular it approaches capacity
with nonzero slope.

Thus, variable-length block-coding appears a natural setting
for transmission over channels with feedback. In fact, it
has already been considered by many authors after [6]. A
simple two-phase iterative scheme achieving the Burnashev
exponent was introduced by Yamamoto and Itoh in [38].
More recently, low-complexity variable-length block-coding
schemes with feedback have been proposed and analyzed in
[25]. The works [33] and [34] dealt with universality issues,
addressing the question whether the Burnashev exponent can
be achieved without exact knowledge of the statistics of the
channel but only knowing it belongs to a certain class of
DMCs. In [2] a simplification of Burnashev’s original proof [6]
is proposed, while [23] is concerned with the characterization
of the reliability function of DMCs with feedback and cost
constraints. In [26] low-complexity schemes for FSMCs with
feedback are proposed. However, to the best of our knowledge,
no extension of Burnashev’s theorem to channels with memory
has been considered so far.

The present work deals with a generalization of Burnashev’s

result to FSMCs. As an example, channels with memory,
and FSMCs in particular, model transmission problems where
fading is an important component, like in wireless communi-
cation. Information theoretic limits of FSMCs both with and
without feedback have been widely studied in the literature: we
refer to the classic textbooks [15], [36] and references therein
for overview of the available literature (see also [16]). Itis
known that the capacity is strongly affected by the hypothesis
about the nature of the channel state information (CSI) both
available at the transmitter and at the receiver side. In par-
ticular, while output feedback does not increase the capacity
when the state is causally observable both at the transmitter
and at the receiver side (see [32] for a proof, first noted in
[28]), it generally does so for different information patterns.
In particular, when the channel state is not observable at the
transmitter, it is known that feedback may help improving
capacity by allowing the encoder to estimate the channel state
[32]. However, in this paper only the case when the channel
state is causally observed both at the transmitter and at the
receiver end will be considered. Our choice is justified by
the aim to separate the study of the role of output feedback
in channel state estimation from its effect in allowing better
reliability versus delay tradeoffs for variable-length block-
coding schemes.

In [32] a general stochastic control framework for evaluating
the capacity of channels with memory and feedback has been
introduced. The capacity has been characterized as the solution
of a dynamic-programming average-cost optimality equation.
Existence of a solution to such an equation implies information
stability [17]. Also lower bounds à la Gallager to the error
exponents achievable with fixed-length coding schemes are
obtained in [32]. In the present paper we follow a similar
approach in order to characterize the reliability functionof
variable-length block-coding schemes with feedback. Suchan
exponent will be characterized in terms of solutions to certain
Markov decision processes (MDPs). The main new feature
posed by variable-length schemes is that we have to deal
with average cost optimality problems with a stopping time
horizon, for which standard results in MDP theory cannot
be used directly. We adopt the convex-analytic approach [4]
and use Hoeffding-Azuma inequality in order to prove a
strong uniform convergence result for the empirical measure
process. (See [21] for results of a similar flavour in the finite-
state finite-action setting.) This allows us to find sufficient
conditions on the tails of a sequence of stopping times
for the solutions of the average-cost optimality problems to
asymptotically converge to the solution of the corresponding
infinite-horizon problems, for which stationary policies are
known to be optimal.

The rest of this paper is organized as follows. In Sect. II
causal feedback variable-length block-coding schemes for
FSMCs are introduced, and capacity and reliability function
are defined as solution of optimization problems involving the
stochastic kernel describing the FSMC. The main result of
the paper is then stated in Theorem 1. In Sect. III we prove
an upper bound to the reliability function of FSMCs with
feedback and variable-length block-coding. The main result of
that section is contained in Theorem 2 which generalizes Bur-
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nashev’s result [6]. Sect. IV is of a technical nature and deals
with Markov decision processes with stopping time horizons.
Some stochastic control techniques are reviewed and the main
result is contained in Theorem 3 which is then used to prove
that the bound of Theorem 2 asymptotically coincides with
the reliability function (1). In Sect. V a sequence of simple
iterative schemes based on a generalization of Yamamoto-
Itoh’s idea [38] is proposed and its performance is analyzed
showing that this sequence is asymptotically optimal in terms
of attainable error exponents. Finally, in Sect. VI an explicit
example is studied. Sect. VII presents some conclusions and
points out to possible topics for future research.

II. STATEMENT OF THE PROBLEM AND MAIN RESULT

A. Stationary ergodic Markov channels

Throughout the paperX , Y, S will respectively denote
channel input, output and state spaces. All are assumed to
be finite.

Definition 1. A stationaryMarkov channelis described by:
• a stochastic kernel consisting of a family

{P ( · , · | s, x) ∈ P(S × Y)|s ∈ S, x ∈ X} of joint
probability measures overS × Y, indexed by elements
of S andX ;

• an initial state distributionµ in P(S).

As it will become clear, the quantityP (s+, y|s, x) corre-
sponds to the conditioned joint probability that the next state
is s+ and the current output isy, given that the current state
is s and the current input isx.

For a channel as in Def. 1, let

PS(s+| s, x) :=
∑

y∈Y

P (s+, y| s, x)

PY (y| s, x) :=
∑

s+∈S

P (s+, y| s, x)

be the S-marginals and theY-marginals respectively. A
Markov channel is said to have no ISI if, conditioned on the
current state, the next state is independent from the current
input and output, i.e. if the stochastic kernel factorizes as

P (s+, y|s, x) = PS(s+|s)PY (y|s, x) . (2)

We shall consider the associated stochastic kernels
{QS( · | s,u)} and {Q( · , · | s,u)} where, for the states
s+, s ∈ S, the outputy ∈ Y, and the input distribution
u ∈ P(X ),

Q(s+, y| s,u) :=
∑

x∈X

P (s+, y | s, x)u(x)

QS(s+| s,u) :=
∑

x∈X

PS(s+ | s, x)u(x) .
(3)

We shall use the notation

Qπ :=
(

QS

(

s+ | s, π(s)
))

s,s+∈S
(4)

for the state-transition stochastic matrix induced by a map
π : S → P(X ) (the latter will be referred to as a deterministic
stationary policy). With a common abuse of notation, for any
mapf : S → X we shall writeQf in place ofQδf(·)

. 1

1Here and throughout the paper, for a measure space(A,B) we shall denote
Dirac’s delta probability measure centered in a pointa ∈ A by δa, i.e., for
B ∈ B, δa(B) = 1 if a ∈ B, andδa(B) = 0 if a /∈ B.

Throughout the paper we shall restrict ourselves to FSMCs
satisfying the following ergodicity assumption.

Assumption 1. For everyf : S → X the stochastic matrix
Qf is irreducible, i.e. for everys1, s2 ∈ S there exists some
t ≥ 1 such that(Qt

f )s1,s2 > 0, whereQt
f denotes the product

of Qf with itself t times.

Assumption 1 can be relaxed or replaced by other equiv-
alent assumptions. Here we limit ourselves to observe that it
involves theS-marginals{PS} of the Markov channel only.
Moreover, it is easily testable, since it requires a finite number
of finite directed graphs to be strongly connected. Since taking
a convex combination does not reduce the support, Assumption
1 guarantees that for every deterministic stationary policy
π : S → P(X ) the stochastic matrixQπ is irreducible. Then,
the Perron-Frobenius theorem [10, pag. 58] guarantees that
Qπ has a unique stationary distribution inP(S) which will
be denoted byµπ.

B. Capacity of ergodic FSMCs

To any ergodic FSMC we associate the mutual information
cost functionc : S × P(X ) → R,

c(s,u) := I(X ;Y, S+|S = s)

=
∑

x,y,s+

u(x)P (s+, y| s, x) log P (s+,y| s,x)
P

z
u(z)P (s+,y| s,z) ,

(5)
and define its capacity as

C := max
π

I(X ;Y, S+|S) = max
π:S→P(X )

∑

s∈S

µπ(s)c(s, π(s)) .

(6)
In the definitions (5) and (6) the termsI(X ;S+, Y |S = s) and
I(X ;S+, Y |S) respectively denote the mutual information be-
tweenX and the pair(S+, Y ) whenS = s, and the conditional
mutual information (see [8]) betweenX and the pair(S+, Y )
givenS, whereS is anS-valued random variable (r.v.) whose
marginal distribution is given by the stationary measureµπ,
X is anX -valued r.v. whose conditional distribution givenS
is described by the policyπ, while S+ andY are respectively
an S-valued r.v. and aY-valued r.v. whose joint conditional
distribution givenX and S is described by the stochastic
kernelP (S+, Y |S,X). Observe that the mutual information
cost functionc is continuous2 overS×P(X ), and takes values
in the bounded interval[0, log |X |] .

The quantityC defined above is known to equal the capacity
of the ergodic Markov channel we are considering when
perfect causal CSI is available at both transmission ends, with
or without output feedback [32]. It is important to observe
that, due to the presence of ISI the policyπ plays a dual role
in the optimization problem (5) since it affects both the mutual
information costc(s, π(s)) = I(X ;S+, Y |S = s) as well as
the ergodic channel state distributionµπ with respect to which
the former is averaged.

2Throughout the paper, finite sets will be considered equipped with the
complete topology, finite-dimensional spaces equipped with the Euclidean
topology, and product spaces with the product topology. Hence, for instance,
the continuity of the functionc : S × P(X ) → R is equivalent to the
continuity of the functionsu 7→ c(s, u) over the simplexP(X ), for all
s ∈ S.
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In the case when there is no ISI, i.e. when (2) is satisfied,
this phenomenon disappears. In fact, since the invariant mea-
sure µ is independent from the policyπ, we have that (6)
reduces to

C =
∑

s
µ(s)max

pX

c(s, pX)

=
∑

s
µ(s)max

pX

I(X ;Y |S = s) ,
(7)

where in the rightmost side of (7),maxpX
I(X ;Y |S = s)

coincides with the capacity of the DMC with inputX , output
Y, and transition probabilitiesPY ( · |s, · ). The simplest case
of FSMCs with no ISI is obtained when the state sequence is
an i.i.d. exogenous process, i.e. when

P (s+, y| s, x) = µ(s+)PY (y|s, x) .

In this case, (6) reduces to the capacity of a DMC with input
spaceX ′ := XS -the set of all maps fromS to X -, output
spaceY ′ := S × Y -the Cartesian product ofS andY-, and
transition probabilities given by

P ′(y′|x′) := µ(s)PY (y| s, x′(s)) , (8)

where y′ = (s+, y). Observe the difference with respect to
the case when the state is causally observed at the transmitter
only, whose capacity was first found in [29]. While the input
spaces of the equivalent DMCs do coincide, the output space
is larger, as we assume that the state is causally observable
also at the receiver end.

Finally, notice that, when the state space is trivial (i.e. when
|S| = 1), (6) reduces to the well-known formula for the
capacity of a DMC.

C. Burnashev coefficient of FSMCs

Consider now the cost functiond : S × P(X ) → [0,+∞]

d(s,u) = sup
u′

D (Q( · , · | s,u)||Q( · , · | s,u′))

:= sup
u′

∑

y,s+

Q(s+, y|s,u) log Q(s+,y|s,u)
Q(s+,y|s,u′) ,

(9)

where D(ν1||ν2) denotes the Kullback-Leibler information
divergence between two probability measuresν1 andν2. For
eachs ∈ S, it is useful to consider the set

Zs := {(s+, y) ∈ S × Y| ∃x ∈ X : P (s+, y|s, x) > 0} (10)

of all channel state and output pairs which can be achieved
from the states, and the quantity

λs := min
{

P (s+, y| s, x)
∣

∣x ∈ X , (s+, y) ∈ Zs

}

. (11)

Observe thatλs = 0 iff there exists a pair(s+, y) ∈ S × Y
which is reachable froms by some but not all possible inputs
x ∈ X . It follows that, the cost functiond is bounded and
continuous overS × P(X ) if and only if

λ := min{λs| s ∈ S} , (12)

is strictly positive, i.e.

λ > 0 ⇐⇒ dmax := sup
s,u

d(s,u) < +∞ . (13)

P(S
t+1

,Y
t
|S

t
,X

t
) ΨΦ ŴW

Delay

X
t

Y
t

Y
t−1

S
t

S
t

Fig. 1. Information patterns for variable-length block-coding schemes on a
FSMC with causal feedback and CSI.

Define the Burnashev coefficient of a Markov channel as

D := sup
π:S→P(X )

∑

s∈S

µπ(s)d(s, π(s)) . (14)

Notice thatD is finite iff (13) holds.

Moreover, a standard convexity argument allows one to
argue that both the suprema in (9) and in (14) are achieved
in some corner points of the simplexP(X ). More precisely,
for (9), this follows immediately from the convexity of the
Kullback-Leibler divergenceD(ν1||ν2) in ν2 [8, Th. 2.7.2],
and the linearity ofQ( · , · ||s,u′) in u′. For (14), one
can invoke [5, Lemma 5.3] guaranteeing the convexity of
∑

s∈S µπ(s)d(s, π(s)) in Q( · , · ||s,u), and again observe
thatQ( · , · ||s,u) is linear inu. Hence, we have

D = max
fa,fb

∑

s,s+,y
µfa

(s)P (s+, y| s, fa(s)) log P (s+,y| s,fa(s))
P (s+,y| s,fb(s))

= max
fa,fb

∑

s
µfa

(s)D (P (·, ·|s, fa(s))||P (·, ·|s, fb(s))) ,

(15)
where the maximum is taken over all functionsfa, fb ∈ XS .

Similarly to what has been already noted for the role
of the policy π in the optimization problem (6), it can
be observed that, due to the presence of ISI, the mapfa

has a dual effect in the maximization in (15) since it af-
fects both the Kullback-Leibler information divergence cost
D (P ( · , · | s, fa(s))||P ( · , · | s, fb(s))) and the ergodic state
measureµfa

. Notice the asymmetry with the role of the map
fb whose associated invariant state measure instead does not
come into the picture at all in the definition of the coefficient
D. Once again, in the absence of ISI, (15) simplifies to

D =
∑

s∈S

µ(s) max
xa,xb∈X

D (P ( · , · | s, xa)||P ( · , · | s, xb)) .

We observe that in the memoryless case (i.e. when|S| = 1)
the coefficientD coincides with the Kullback-Leibler infor-
mation divergence between the output measures associated to
the pair of most distinguishable inputs, the quantity originally
denoted with the symbolC1 in [6]. When the state space is
nontrivial (|S| > 1), and the channel state process forms an
i.i.d. sequence independent from the channel input, then the
Burnashev coefficientD reduces to that of the equivalent DMC
with enlarged input spaceX ′ = XS , output spaceY ′ = S×Y,
and transition probabilities defined in (8).
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D. Causal feedback encoders, sequential decoders, and main
result

Definition 2. A causal feedback encoderis the pair of a finite
message set and a sequence of maps

Φ =
(

W ,
(

φt : W ×St × Yt−1 → X
)

t∈N

)

. (16)

With Def. 2, we are implicitly assuming that perfect chan-
nel state knowledge as well as perfect output feedback are
available at the encoder side.

Given a stationary Markov channel and a causal feedback
encoder as in Def. 2, we shall consider a probability space
(Ω,A,P). The corresponding expectation operator will be
denoted byE, while, for an eventA ∈ A, A = Ω \ A will
denote the complementary event, and1A : Ω → {0, 1} will
denote its indicator function, defined by1A(a) = 1 if a ∈ A,1A(a) = 0 if a /∈ A. We assume that the following r.v.s are
defined over(Ω,A,P):

• a W-valued r.v.W describing the message to be trans-
mitted;

• a sequenceX = (Xt) of X -valued r.v.s (the channel
input sequence);

• a sequenceY = (Yt) of Y-valued r.v.s (the channel
output sequence);

• a sequenceS = (St) of S-valued r.v.s (the channel state
sequence).

We shall consider the time ordering3

W,S1, X1, Y1, S2, X2, Y2, . . . ,

and assume thatP-a.s.

P(W = w) = 1/|W| , P(S1 = s
∣

∣W ) = µ(s) ,

P(Xt = x
∣

∣W,St
1,X

t−1
1 ,Y t−1

1 ) = δφt(W,St
1,Y t−1

1 )(x) ,

P(St+1 = s, Yt = y
∣

∣W,St
1,Y

t−1
1 ,Xt

1) = P
(

s, y
∣

∣St, Xt

)

.
(17)

It is convenient to introduce the following notation for the
observation available at the encoder and decoder side. For
everyt we define theσ-fieldsEt := σ

(

St
1,Y

t−1
1

)

, describing
the feedback observation available at the encoder side, and
Ft := σ (St

1,Y
t
1 ), describing the observation available at

the decoder. Notice that the full observation available at the
encoder at timet is σ(W,St

1,Y
t−1
1 ). Clearly

{∅,Ω}=E0=F0⊆E1⊆F1⊆ . . . ⊆ A . (18)

In particular, we end up with two nested filtrations:
F := (Ft)t≥0 andE := (Et)t≥0.

Observe that, while the space(Ω,A) and the filtrations(Ft)
and (Et) depend on the message setW and on the channel
state, input and output setsS, X andY only, 4 the probability
measureP does depend on the stochastic kernelP describing
the channel, as well as on the encoderΦ. Many of statements

3Different time orderings would lead to similar results: forinstance the
time orderingW, S0, X1, S1, Y1, X2, S2, Y2, . . . can be handled by consid-
ering the stochastic kernel{P (s, y|s−, x)} describing the joint probability
distribution of the current state and output given the previous state and the
current input.

4Indeed, with no loss of generalityΩ can be identified withW×SN×XN×
YN, and the r.v.sW, S, X, Y can be identified with the standard projections
to W , SN, XN andYN respectively.

in this paper will be meant to holdP-almost surely, thought
this may not always be explicitly stated.

Definition 3. A transmission timeT is a stopping time for the
receiver filtrationF , i.e. it is {1, 2, . . . ,∞}-valued r.v. such
that, the event{T ≤ t} is Ft-measurable for each timet.

Definition 4. A sequential decoderfor for a causal feedback
encoderΦ as in (16) is a sequence of maps

Ψ =
(

ψt : St × Yt → M
)

t∈N
. (19)

For a transmission timeT and a sequential decoderΨ, the
estimated message is

Ŵ := ψT

(

ST
1 ,Y

T
1

)

. (20)

Notice that with Def.s 3 and 4 we are assuming that perfect
causal state knowledge is available at the receiver. In particular
the fact that the transmitter’s feedback and the receiver’s
observation patterns are nested allows one to use a variable-
length scheme.

The triple(Φ, T,Ψ) consisting of a causal feedback encoder
Φ, a transmission timeT and a sequential decoderΨ, is called
a variable-length block-coding scheme. Its error probability is
given by

pe(Φ, T,Ψ) := P

(

Ŵ 6= W
)

.

Following Burnashev’s approach we shall consider the ex-
pected decoding timeE[T ] as a measure of the delay of the
scheme(Φ, T,Ψ) and accordingly define its rate as

R(Φ, T,Ψ) :=
log |W|

E[T ]
.

We are now ready to state our main result. It is formulated
in an asymptotic setting, considering infinite sequences of
variable-length block-coding schemes with asymptotic average
rate below capacity and vanishing error probability.

Theorem 1. For anyR in (0, C)

1) any infinite sequence(Φ(n), T (n),Ψ(n)) of variable-
length block-coding schemes5 such that

lim
n
pe

(

Φ(n), T (n),Ψ(n)
)

= 0 ,

lim inf
n

R
(

Φ(n), T (n),Ψ(n)
)

≥ R ,
(21)

satisfies

lim sup
n

−
1

E[T (n)]
log pe

(

Φ(n), T (n),Ψ(n)
)

≤ EB(R) .

(22)
2) there exists an infinite sequence

(

Φ(n), T (n),Ψ(n)
)

of
variable-length block-coding schemes satisfying (21)
and such that:

• if D < +∞

lim
n

−
1

E[T (n)]
log pe

(

Φ(n), T (n),Ψ(n)
)

= EB(R) ,

(23)

5Here the sequence indexn should not be confused with the time indext,
nor with the average block-lengthE[T (n)].
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• if D = +∞

pe

(

Φ(n), T (n),Ψ(n)
)

= 0 , ∀n ∈ N . (24)

Observe that Burnashev’s original result [6] for DMCs can
be recovered as a particular case of Theorem 1 when the state
space is trivial, i.e.|S| = 1.

Notice that, whenD = +∞, the first point of Theorem 1
becomes trivial, while the second point tells us that feedback
coding schemes with zero-error probability exist. As it will
become clear in Sect V, the reason is thatD = +∞ iff there
exist two statess ands+, two inputsx1 andx2 and an output
y such thatP (s+, y|s, x1) > 0 andP (s+, y| s, x2) = 0: this
makes it possible to build a sequence of binary coding schemes
whose error probability conditioned on the transmission of
one of the two codewords is identically zero, while the
error probability conditioned on the transmission of the other
codeword is asymptotically vanishing.

III. A N UPPER BOUND ON THE ACHIEVABLE ERROR

EXPONENT

The aim of this section is to provide an upper bound
on the error exponent of an arbitrary variable-length block-
coding scheme. A first observation is that, without any loss
of generality, we can restrict ourselves to the case whenD is
finite, since otherwise the claim (22) is trivially true. Themain
result of this section is contained in Theorem 2 whose proof
will pass through a series of intermediate steps, containedin
Lemmas 1, 2, 3, 4 and 5. The results of this section generalize
those in the [6], [33], [34], [23] and [2] to Markov channels,
and the proofs we present are close in spirit to the arguments
developed in these references.

The main idea, borrowed from [6], is to obtain two different
upper bounds for the error probability. Differently from [6],
[33], [34] and [23], we will follow an approach similar to the
one proposed in [2] and look at the behaviour of the maximum
a posteriori (MAP) error probability, rather than that of the a
posteriori entropy. The aforementioned bounds correspondto
two distinct phases which can be recognized in any sequential
transmission scheme and will be the content of Sect.s III-A
and III-B. The first one is provided in Lemma 2 whose proof
is based on an application of Fano’s inequality combined
with a martingale argument invoking Doob’s optional stopping
theorem. The second bound is given by Lemma 4 whose
proof combines the use of the log-sum inequality with another
application of Doob’s optional stopping theorem. In Sect. III-C
these two bounds will be combined obtaining Theorem 2.

A. A first bound on the error probability

Suppose we are given a causal feedback encoderΦ =
(W , {φt}) as in (16) and a transmission timeT as in Def. 3.
The goal is to find a lower bound for the error probability
pe(Φ, T,Ψ) whereΨ is an arbitrary sequential decoder forΦ
and T . Our arguments here closely parallel those developed
in [2, Sect. IV] in the memoryless case.

It will be convenient to define for every timet ≥ 0 the σ-
field Gt := Et+1 describing the encoder’s feedback observation

at timet+1. G := (Gt) will denote the corresponding filtration.
Let

θt ∈ P(W) , θt(w) := P(W = w|Gt) ,

Πt := 1 − max {θt(w)|w ∈ W} ,

be respectively the conditioned probability distributionof the
messageW and the MAP error probability given the feedback
observationGt at time t+ 1. Clearly, bothθt andΠt areGt-
measurable r.v.s.

For each timet, let us consider the classes of decoders
Dt := {ψt : St × Yt → W}, Ďt := {ψt : St+1 × Yt → W},
differing because of the possible dependence on the stateSt+1.
It is a well-known fact that the decoder minimizing the error
probability overĎt is the maximum a posteriori one, defined
by 6

ψ̌t(S
t+1
1 ,Y t

1 ) := argmax
w∈W

{θt(w)} . (25)

SinceDt ⊆ Ďt, it follows that, for any decoderψt ∈ Dt, we
have

pe(Φ, t, ψt) ≥ pe(Φ, t, ψ̌t) = E [Πt] .

The discussion above naturally generalizes from the fixed-
length setting to the sequential one. Given a transmission time
T , observe that, sinceFt ⊆ Gt for every t ≥ 0, T is also
stopping time for the filtrationG and FT ⊆ GT . It follows
that the error probability of any variable-length block-coding
scheme(Φ, T,Ψ), is lower bounded by that of(Φ, T, Ψ̌),
where Ψ̌ := (ψ̌t) is the sequential MAP decoder defined in
(25). Therefore we can conclude that

pe (Φ, T,Ψ) ≥ E [ΠT ] , (26)

for any variable-length block-coding scheme(Φ, T,Ψ).
In the sequel we shall obtain lower bounds for the righthand

side of (26). In particular, sinceW is uniformly distributed
over the message setW and is independent from the initial
stateS1, we have thatθ0(w) = P(W = w) = 1/|W| for each
messagew ∈ W , so thatΠ0 = (|W|− 1)/|W|. Moreover, we
have the following recursive lower bound forΠt.

Lemma 1. Given any causal feedback encoderΦ, P-a.s.,

Πt ≥ λΠt−1 , t ≥ 1 .

Proof: See Appendix A. �

For everyε in (0, 1
2 ), we consider the r.v.

τε := min {T, inf {t ∈ N : Πt ≤ ε}} , (27)

describing the first time beforeT when the MAP error
probability goes belowε. It is immediate to verify thatτε
is a stopping time for the filtrationG. Moreover, the event
{Πτε

> ε} implies the event{τε = T }, so that an application
of the Markov inequality and (26) give us

P (Πτε
> ε) = P ({Πτε

> ε} ∩ {τε = T })

≤ P (ΠT > ε)

≤ 1
εE [ΠT ]

≤ 1
εpe(Φ, T,Ψ) .

6We shall use the convention for the operatorargmax to arbitrarily assign
one of the optimizing values in case of non-uniqueness.
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We introduce the following notation for the a posteriori
entropy

Γt := H(θt) = −
∑

w∈W

θt(w) log θt(w) , t ≥ 0 .

Observe that, since the initial stateS1 is independent from the
messageW , then

Γ0 = log |W| .

From Fano’s inequality [8, Th. 2.11.1,pag. 39] it follows that,
the eventA := {Πτε

≤ ε} implies that

Γτε
≤ H(ε) + ε log |W| .

Hence, sinceΓτε
≤ log |W|, the expected value ofΓτε

can be
bounded from above as follows:

E [Γτε
] = E

[

Γτε

∣

∣A
]

P (A) + E
[

Γτε

∣

∣A
]

P
(

A
)

≤ P (A) (H(ε) + ε log |W|) + P
(

A
)

log |W|

≤ H(ε) +
(

ε+ 1
εpe(Φ, T,Ψ)

)

log |W| .
(28)

We now introduce, for every timet, aP(X )-valued r.v.Υt

describing the channel input distribution induced by the causal
encoderΦ at time t:

Υt(x) := P (Xt = x|Et) = P
(

φt(W,S
t
1,Y

t−1
1 ) = x|Et

)

.
(29)

Notice thatΥt is anEt-measurable r.v., i.e. equivalently it is
a function of the pair(St

1,Y
t−1
1 ).

The following result relates three relevant quantities char-
acterizing the performances of any variable-length block-
coding scheme: the cardinality of the message setW , the
error probability of the coding scheme, and the the mutual
information costc (5) incurred up to the stopping timeτε:

Cε(Φ, T ) := E

[

∑

1≤t≤τε

c(St,Υt)
]

. (30)

Lemma 2. For any variable-length block-coding scheme
(Φ, T,Ψ) and any0 < ε < 1

2 , we have

Cε(Φ, T ) ≥

(

1 − ε−
pe (Φ, T,Ψ)

ε

)

log |W| − H(ε) . (31)

Proof: See Appendix A. �

B. A lower bound to the error probability of a composite
binary hypothesis test

We now consider a particular binary hypothesis testing
problem which will arise while proving the main result, and
provide a lower bound on its error probability. The steps here
are similar to those in [2, Sect. III] and [34, Sect. III].

Suppose we are given a causal feedback encoderΦ =
(W , (φt)). Consider a non-trivial binary partition of the mes-
sage set

W = W0∪W1 , W0∩W1 = ∅ , W0,W1 6= ∅ , (32)

a stooping timeT for the filtrationG, and a sequential binary
hypothesis test̃Ψ = (ψ̃ : St+1 × Yt → {0, 1}) between the
two hypothesis{W ∈ W0} and {W ∈ W1}. Following the
common statistical terminology, we shall callΨ̃ a composite

test since it must decide between two classes of probability
laws for the process(S,Y ) rather than between two single
laws. Define

W̃ := ψ̃T (ST+1
1 ,Y T

1 ) .

For everyt, we define theP(X )-valued random variables
Υ

0
t andΥ

1
t by

Υ
i
t(x) = P (Xt = x|W ∈ Wi, Et) , x ∈ X , i = 0, 1 .

The r.v. Υ0
t (respectivelyΥ1

t ) represents the channel input
distribution at timet induced by the encoderΦ when restricted
to the message subsetW0 (resp.W1). Notice that

Υt = θt−1(W0)Υ
0
t + θt−1(W1)Υ

1
t .

For r ≤ t and i = {0, 1}, define theGr-conditioned
probability distributionνi

r,t ∈ P
(

St+1 × Yt
)

of the channel
state and output pair(St+1

1 ,Y t
1 ) given {W ∈ Wi}:

νi
r,t(s,y) = P

(

St+1
1 = s,Y t

1 = y|W ∈ Wi,Gr

)

.

Observe that both the random measuresν0
r,t andν1

r,t put mass
only on those sequences(s,y) ∈ St+1×Yt such thatsr+1

1 =
Sr+1

1 andyr
1 = Y r

1 .
Let now τ be another stopping time for the filtrationG,

such thatτ ≤ T . Then,ν0
τ,T andν1

τ,T are well-defined asGτ -
measurable random measures on theσ-field GT . Therefore, we
can consider their Kullback-Leibler information divergences

L0 := D
(

ν0
τ,T ||ν

1
τ,T

)

= E

[

log
ν0

τ,T

(

ST+1
1 ,Y T

1

)

ν1
τ,T

(

S
T+1
1 ,Y T

1

)

∣

∣

∣
W∈W0,Gτ

]

L1 := D
(

ν1
τ,T ||ν

0
τ,T

)

= E

[

log
ν1

τ,T

(

S
T+1
1 ,Y T

1

)

ν0
τ,T

(

S
T+1
1 ,Y T

1

)

∣

∣

∣
W∈W1,Gτ

]

(33)
Observe that bothL0 andL1 areGτ -measurable r.v.s.

In the special case when bothτ and T are deterministic
constants, an application of the log-sum inequality would show
that, for i = 0, 1, Li can be bounded from above by the
Gτ -conditional expected value of the sum of the information
divergence costsd

(

St,Υ
i
t

)

incurred from timeτ + 1 to T .
It turns out that the same is true in our setting where bothτ
andT are stopping times for the filtrationG, as stated in the
following lemma, whose proof requires, besides an application
of the log-sum inequality, a martingale argument invoking
Doob’s optional stopping theorem.

Lemma 3. Let τ andT be stopping times for the filtrationG
such thatτ ≤ T , and consider a nontrivial binary partition
of the message set as in (32). Then, fori = 0, 1,

Li ≤ E

[

∑

τ<t≤T

d
(

St,Υ
i
t

)

∣

∣

∣
W ∈ Wi,Gτ

]

. (34)

Proof: See Appendix A. �

Suppose now thatW1 is a Gτ -measurable random variable
taking values in2W \ {∅,W}, the class of non-trivial proper
subsets of the message setW . In other words, we are assuming
thatW1 is a random subset of the message setW , determinis-
tically specified by the pair(Sτ+1

1 ,Y τ
1 ). The following result

provides a lower bound on the error probability of the binary
test Ψ̃ conditioned on theσ-field Gτ :

pτ := P

(

W̃ 6= 1{W∈W1}

∣

∣Gτ

)

.
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Lemma 4. Let Φ be any causal encoder, andτ and T be
stopping times for the filtrationG such thatτ ≤ T . Then, for
every2W-valuedGτ -measurable r.v.W1, we have

E

[

∑

τ<t≤T

d
(

St,Υ
1{W∈W1}

t

)

∣

∣Gτ

]

≥ log
Z

4
− log pτ , (35)

whereZ := min
{

θτ (W0) ,θτ (W1)
}

.

Proof: See Appendix A. �

C. Burnashev bound for Markov channels

Lemma 5. Let Φ be a causal feedback encoder andT a
transmission time. Then, for every0 < ε < 1/2 there exists
a Gτε

-measurable random subsetW1 of the message setW ,
whose a posteriori error probability satisfies

1 − λε ≥ θτε
(W1) ≥ λε . (36)

Proof: See Appendix A. �

To a causal encoderΦ and a transmission timeT , for every
0 < ε < 1/2 we associate the quantity

Dε(Φ, T ) := sup
W1Gτε−meas.

2W−valued r.v.
λε≤P(W∈W1|Gτε )≤1−λε

E

[

∑

τε<t≤T

d
(

St,Υ
1{W∈W1}

t

) ]

(37)
equal to the maximum, over all possible choices of a non-
trivial partition of the message setW as a deterministic
function of the joint channel state output process(S

τε+1

1 ,Y τε

1 )
stopped at the intermediate timeτε, of the averaged sum of
the information divergence costsd

(

St,Υ
1{W∈W1}

)

incurred
between timesτε+1 andT . IntuitivelyDε(Φ, T ) measures the
maximum error exponent achievable by the encoderΦ when
transmitting a binary message between timesτε andT .

Based on Lemma 2 and Lemma 4, we will now prove the
main result of this section, consisting in an upper bound on
the largest error exponent achievable by variable-length block-
coding schemes with perfect causal state knowledge and output
feedback.

Theorem 2. Consider a variable-length block-coding scheme
(Φ, T,Ψ). Then, for everyε in (0, 1

2 ),

− log pe (Φ, T,Ψ)

≤
D

C
Cε(Φ, T ) +Dε(Φ, T ) −

D

C
log |W| (1 − α) − β ,

(38)
where

α := ε+
pe(Φ, T,Ψ)

ε
, β := log

λε

4
−
D

C
H(ε) . (39)

Proof: LetW1 be aGτε
-measurable subset of the message

setW satisfying (36). We define the binary sequential decoder
Ψ̃ε = (ψ̃ε,t), where

ψ̃ε,t(s,y) := 1W1(ψ(s,y)) , s ∈ St+1,y ∈ Yt .

We can lower bound the error probabilitypτε
of the com-

posite hypothesis test̃Ψε conditioned onGτε
using Lemma 4

and (36), obtaining

− log pτε
+ log λε

4 ≤ E

[

∑

τε<t≤T

d
(

St,Υ
1{W∈W1}

t

)

∣

∣Gτ

]

.

Observe that the error event of the decoderΨ is implied by
the error event of̃Ψε, so that in particular

pe(Φ, T,Ψ) = E

[

P

(

Ŵ 6= W
∣

∣Gτε

)]

≥ E

[

P

(1{Ŵ∈W1}
6= 1{W∈W1}

∣

∣Gτε

)]

= E[pτε
]

Since the functionx 7→ − log x is decreasing and convex on
the interval(0, 1], we get

Dε(Φ, T ) ≥ E

[

E

[

∑

τε<t≤T

d
(

St,Υ
1{W∈W1}

t

)

| Gτε

]]

≥ E [− log pτε
] + log λε

4

≥ − log E [pτε
] + log λε

4

= − log pe(Φ, T,Ψ) + log λε
4 ,

(40)
the last inequality in (40) following from the Jensen inequality.
The claim now follows by taking a linear combination of (40)
and (31).

In the memoryless case (|S| = 1), Burnashev’s original
result (see (4.1) in [6], or (12) in [2]) can be recovered from
(38) by optimizing over the channel input distributionsΥt,
Υ

0
t , andΥ

1
t .

In order to prove Part 1 of Theorem 1 it remains to consider
infinite sequences of variable-length coding schemes with
vanishing error probability and to show that asymptotically
the upper bound in (38) reduces to the Burnashev exponent
EB(R). This involves new technical challenges which will be
the object of next section.

IV. M ARKOV DECISION PROCESSES WITH STOPPING TIME

HORIZONS

In this section we shall recall some concepts about Markov
decision processes which will allow us to asymptotically
estimate the termsCε(Φ, T ) and Dε(Φ, T ) respectively in
terms of the capacityC, defined in (6), and the Burnashev
coefficientD, defined in (14), of the FSMC.

The main idea consists in interpreting the maximization of
Cε(Φ, T ) andDε(Φ, T ) as stochastic control problems with
average-cost criterion [1]. The control is the channel input
distribution chosen as a function of the available feedback
information and the controller is identified with the encoder.
The main novelty these problems present with respect to those
traditionally addressed by MDP theory consists in the fact
that, as a consequence of considering variable-length coding
schemes, we shall need to deal with the situation when the
horizon is neither finite (in the sense of being a deterministic
constant) nor infinite (in the sense of being concerned with
the asymptotic normalized average running cost), but rather
it is allowed to be a stopping time. In order to handle this
case we adopt the convex-analytic approach, a technique first
introduced by Manne in [20] (see also [11]) for the finite-state
finite-action setting, and later developed in great generality by
Borkar [4].

In Sect. IV-A we shall first reformulate the problem of
optimizing the termsCε(Φ, T ) and Dε(Φ, T ) with respect
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to the causal encoderΦ. Then, we present a brief review of
the convex-analytic approach to Markov decision problems in
Section IV-B, presenting the main ideas and definitions. In
Sect. IV-C we will prove a uniform convergence theorem for
the empirical measure process and use this result to treat the
asymptotic case of the average-cost problem with stopping
time horizon. The main result of this section is contained in
Theorem 3, which is then applied in Sect. IV-D together with
Theorem 2 in order to prove Part 1 of Theorem 1.

A. Markov decision problems with stopping time horizons

We shall consider a controlled Markov chain overS, with
compact control spaceU := P(X ), the space of channel input
distributions. Letg : S × U → R be a continuous (and thus
bounded, sinceU = P(X ) is compact) cost function; in our
applicationg will coincide either with the mutual information
costc defined in (5) or with the information divergence costd
defined in (9). We prefer to consider the general case in order
to deal with both problems at once.

The evolution of the system is described by a state sequence
S = (St), an output sequenceY = (Yt) and a control
sequenceU = (Ut). If at time t the system is in stateSt = s
in S, and a controlUt = u in U is chosen according to some
policy, then a costg(s, u) is incurred and the system produces
the outputYt = y in Y and moves to next stateSt+1 = s+
in S according to the stochastic kernelQ(s+, y| s, u), defined
in (3). Once the transition into next state has occurred, a new
action is taken and the process is repeated.

At time t, the controlUt is allowed to be anEt-measurable
r.v., where Et = σ(St

1,Y
t−1
1 ) is the encoder’s feedback

observation at timet; in other words we are assuming that
Ut = πt

(

St
1,Y

t−1
1

)

for some map

πt : St × Yt−1 → U .

We define afeasible policyπ as an infinite sequence(πt)
of such maps. Once a feasible policyπ has been chosen, a
joint probability distributionPπ for state, control and output
sequences is well defined; we will denote byEπ the corre-
sponding expectation operator.

Let τ be a stopping time for the filtrationG = (Gt)
(recall thatGt = Et+1 describes the encoder’s feedback and
state information at timet + 1), and consider the following
optimization problem: maximize

1

Eπ[τ ]
Eπ

[

∑

1≤t≤τ

g
(

St, πt(S
t
1,Y

t−1
1 )

)

]

(41)

over all feasible policiesπ = (πt) such thatEπ[τ ] is finite.
Clearly, in the special case whenτ is almost surely constant

(41) reduces to the standard finite-horizon problem which
is usually solved with dynamic-programming tools. Another
special case is whenτ is geometrically distributed and inde-
pendent of the processesS, U andY . In this case (41) reduces
to the so-called discounted problem which has been widely
studied in the stochastic control literature [1]. However,what
makes the problem non-standard is that in (41)τ is allowed
to be an arbitrary stopping time for the filtrationG, typically
dependent on the processesS, U andY .

B. The convex-analytic approach

We review some of the ideas of the convex-analytic ap-
proach following [4].

A feasible policyπ is said to be stationary if the current
control depends on the current state only and is independent
from the past state and output history and of the time, i.e. there
exists a mapπ : S → U such thatπt(s

t
1,y

t−1
1 ) = π(st)

for all t. We shall identify a stationary policy as above with
the mapπ : S → U itself. It has already been noted in
Sect. II-A that, for every stationary policyπ, the stochastic
matrix Qπ describing the state transition probabilities under
π (see 4) is irreducible, so that existence and uniqueness
of a stationary distributionµπ in P(S) are guaranteed. It
follows from the Perron-Frobenious theorem [10] that, if
a stationary policyπ is used, then the normalized running
cost 1

n

∑n
t=1 g(St, π(St)) convergesPπ-almost surely to the

ergodic average
∑

s∈S

µπ(s)g(s, π(s)). Define

G := max
π:S→U

∑

s∈S

µπ(s)g(s, π(s)) . (42)

Observe that the optimization in the righthand side of (42) has
the same form of those in the definitions (5) and (14) of the
capacity and the Burnashev coefficient of an ergodic FSMC.
Notice that compactness of the spaceUS of all stationary
policies and continuity of the costg(s, π(s)) and of the
invariant measureµπ as functions of the stationary policyπ
guarantee the existence of maximizer in (42).

We now consider stationary randomized policies. These are
defined as maps̃π : S → P(U), whereP(U) denotes the space
of probability measures onU , equipped with its Prohorov
topology, i.e. the topology induced by weak convergence (see
[3, Ch.2]). If π̃ is a stationary randomized policy, we shall
use the notatioñπ( · |s) for the probability measure inP(U)
associated bỹπ to the states ∈ S. To any stationary random-
ized policyπ̃ the following control strategy is associated: if at
time t the state isSt, then the controlUt is randomly chosen
in the control spaceU with conditional distribution given the
available informationEt = σ(St

1,Y
t−1
1 ) equal to π̃( · |St).

Observe that there are two levels of randomization. The control
space itself has already been defined as the space of chan-
nel input probability distributionsP(X ), while the strategy
associated to the stationary randomized policyπ̃ chooses a
control at random with conditional distributioñπ( · |St) in
P(U) = P(P(X )). Of course randomized stationary policies
are a generalization of deterministic stationary policies, since
to any deterministic stationary policyπ : S → U it is possible
to associate the randomized policỹπ( · |s) = δπ(s). To any
randomized stationary policỹπ : S → P(U) we associate
the stochastic matrix describing the associated state transition
probabilities

Qπ̃(s+| s) :=

∫

U

Q(s+| s, u)π̃(du|s) . (43)

Similarly to the case of stationary deterministic policies, it is
not difficult to conclude that, sinceQπ̃ can be written as a
convex combination of a finite number of stochastic matrices
Qf , with f : S → X , all of which are irreducible, thenQπ̃
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K

P(S× U)

K
e

ηπ
*

Fig. 2. A schematic representation of the optimization problem (??). The
large triangular space is the infinite dimensional ProhorovspaceP(S × U).
Its gray-shaped subset represents the close convex setK of all occupation
measures. The set of extreme points ofK is Ke and corresponds to the
set of all occupation measures associated to stationary deterministic policies.
The optimal value of the linear functionalη 7→ 〈η, g〉 happens to be achieved
on Ke and thus corresponds to the occupation measureη∗

π associated to an
optimal deterministic stationary policyπ∗ : S → P(X ).

itself is irreducible and thus admits a unique invariant state
distributionµπ̃ in P(S).

Now, consider the space of joint probability measures
P(S × U); we shall denote the action ofη ∈ P(S × U) on a
continuous functionh : S × U → R by

〈η, h〉 :=

∫

S×U

h(s, u)dη(s, u) .

The following definition of occupation measure is at the heart
of the convex-analytical approach.

Definition 5. For every stationary (randomized) policỹπ :
S → P(U) the occupation measure of̃π is ηπ̃ in P(S × U)
defined by

〈ηπ̃, h〉 :=
∑

s∈S

µπ̃(s)

∫

U

h(s, u)π̃(du|s) , ∀h ∈ Cb(S×U)

whereµπ̃ in P(S) is the invariant measure of the stochastic
matrixQπ̃, whileCb(S×U) is the space of bounded continuous
maps fromS × U to R.

The occupation measureηπ can be viewed as the long-time
empirical frequency of the joint state-control process governed
by the stationary (randomized) policyπ. In fact, for every
timen, we can associate to the controlled Markov process the
empirical measureυn which is aP(S×U)-valued r.v. sample-
path-wise defined by

〈υn, h〉 :=
1

n

∑

1≤t≤n

h(St, Ut) , ∀h ∈ Cb(S × U) . (44)

Observe thatυn is a probability measure on the product space
S × U , and is itself a r.v. since it is defined as a function of
the joint state control random process(St

1,U
t
1).

If the process is controlled by a stationary (randomized)
policy π and the initial state is distributed accordingly toµπ,
then, for any continuous functionh ∈ Cb(S × U), the time
average〈υn, h〉 converges almost surely to the ergodic average

〈ηπ, h〉 =

∫

S×U

h(s, u)dηπ(s, u) ,

the by the ergodic theorem. Therefore, at least in this case,we
have

lim
n

υn = ηπ Pπ − a.s , (45)

where the convergence of the empirical measure sequence
(υn) to the occupation measureηπ is intended in the weak
sense.7

We shall denote byK the set of the occupation measures
associated to all the stationary randomized policies, i.e.

K := {ηπ̃ | π̃ : S → P(U)} ⊆ P(S × U), (46)

and byKe the set of all occupation measures associated to
stationary deterministic policies

Ke := {ηπ |π : S → U} ⊆ P(S × U) .

It is known (see [4]) that bothK andKe are closed subsets
of P(S × U). MoreoverK is convex andKe coincides with
the set of extreme points ofK. Furthermore, it is possible to
characterizeK as the the set of zeros of the continuous linear
functionalF : P(S × U) → [−1, 1]S,

Fs(η) := η({s},U) −

∫

S×U

QS(s | j, u)dη(j, u) ,

8 i.e. (see [4])

K = {η ∈ P(S × U) : F (η) = 0} . (47)

In fact, it is possible to think of||F (η)|| 9 as a measure of
how far theS-marginal of a measureη in P(S × U) is from
being invariant for the state process.

If one were interested in optimizing the infinite-horizon
running average cost

lim inf
n

1

n
Eπ

[

∑

1≤t≤n

g(St, Ut)
]

= lim inf
n

Eπ [〈υn, g〉]

over all (randomized) stationary policiesπ, then (45), (46)
and (47) would immediately lead to the following linear
programming problem:

max
η∈K

〈η, g〉 = max
η∈P(S×U):

F (η)=0

〈η, g〉 .

We notice that, sinceU is compact andS is finite,P(S×U) is
compact in the Prohorov metric [3] (i.e. sequentially compact
under weak convergence). Thus, bothK andKe are compact.
Hence, since the map

P(S × U) ∋ η 7−→ 〈η, g〉 ∈ R

is continuous (in the Prohorov topology), it achieves its
maxima both onK andKe Moreover, such a map is linear
so that these maxima do coincide, i.e. the maximum overK

7Recall that a sequence of probability measures(νn) on a topologi-
cal spaceA is said to be weakly convergent to someν ∈ P(A) if
limn

R

A
f(a)dνn(a) =

R

A
f(a)dν(a) for all bounded and continuos test

functionsf ∈ Cb(A).
8Here η({s},U) =

R

U
η({s}, u)du denotes theS-marginal ofη evalu-

ated ins.
9Here and throughout the rest of the paper||x|| := maxi |xi| will denote

the L∞-norm of a vectorx
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is achieved in an extreme point. Thus we have the following
chain of equalities

G = max
π:S→U

∑

s∈S

µπ(s)g(s, π(s))

= max
π:S→U

〈ηπ, g〉

= max
η∈Ke

〈η, g〉

= max
η∈K

〈η, g〉

= max
η∈P(S×U):

F (η)=0

〈η, g〉 .

(48)

Hence, the optimal occupation measureη∗ is induced by a
stationary deterministic policyπ∗, and is therefore given by:

〈η∗, h〉 =
∑

s∈S

µπ∗(s)h(s, π∗(s)) , h ∈ Cb(S × U) ,

whereµπ∗ ∈ P(S) is the invariant state distribution induced
by the policyπ∗. Observe that in the last term in (48) both the
constraints and the object functionals are linear. This indicates
(infinite-dimensional) linear programming as a possible ap-
proach for computingG, alternative to the dynamic program-
ming ones based on policy or value iteration techniques [1],
[4]. Moreover, it points out to an easy way to generalize the
theory taking into account average cost constraints (see [23]
where the Burnashev exponent of DMCs with average cost
constraints is studied). In fact, in the convex-analytic approach
these merely translate into additional constraints for thelinear
program.

C. An asymptotic solution to Markov decision problems with
a stopping time horizon

It is known that, under the ergodicity and continuity as-
sumptions we have made,G defined in (42) is the sample-path
optimal value for the infinite horizon problem with costg not
only over the set of all stationary policies, but also over the
larger set of all feasible policies (actually over all admissible
policies, see [4]). This means that, for every feasible policy
π = (πt),

lim sup
n

1

n

∑

1≤t≤n

g
(

St, πt(S
t
1,Y

t−1
1 )

)

≤ G , Pπ − a.s. .

(49)
For a sequence of admissible policies(π(n)), let P(n) and
E(n) denote the probability and expectation operators induced
by π(n). It is known that

G ≥ lim sup
n

1
nE(n)

[

∑

1≤t≤n

g
(

St, π
(n)
t

(

St
1,Y

t−1
1

)

) ]

= lim sup
n

1
nE(n)

[

∑

1≤t≤n

g(St, Ut)
]

,

(50)
i.e. the limit of the optimal values of finite horizon problems
coincides with infinite horizon optimal value. Inequality (50)
can be proven by using dynamic programming arguments
based on the Bellman principle of optimality. As shown in
[32], (50) is useful in characterizing the capacity of channels
with memory and feedback with fixed-length codes. Actually,a

much more general result than (50) can be proved, as explained
in the sequel.

In the convex-analytic approach, the key point in the proof
of (49) consists in showing that, under any, not necessarily
stationary, feasible policyπ, the empirical measure process
(υn) as defined in (44) convergesPπ-almost surely to the set
K. The way this is usually proven is by using a martingale cen-
tral limit theorem in order to show that the finite-dimensional
processF (υn) converges to0 almost surely. The following
is a stronger result, providing an exponential upper bound on
the tails of the random sequence(||F (υn)||).

Lemma 6. For everyε > 0, and for every feasible policyπ

Pπ

(

||F (υn)|| ≥ ε+
1

n

)

≤ 2|S| exp
(

−nε2/2
)

. (51)

Proof: See Appendix A. �

We emphasize the fact that the bound (51) is uniform
with respect to the choice of the feasible policyπ. It is
now possible to drive conclusions on the tails of the running
average cost1n

∑n
t=1 g(St, Ut) based on (51). The core idea

is the following. From (44), we can rewrite the normalized
running cost as

1

n

∑

1≤t≤n

g(St, Ut) = 〈υn, g〉 .

Since the mapη 7→ 〈η, g〉 is continuous overP(S × U), and
G = max{〈η, g〉|η ∈ K}, we have that, wheneverνn is close
to the setK, the quantity〈νn, g〉 cannot be much larger than
G. It follows that, if with high probabilityυn is close enough
toK, then with high probability〈υn, g〉 cannot be much larger
thanG. In order to show that with high probabilityυn is close
to K, we want to use (51). In fact, if for someη in P(S ×U)
the quantity||F (η)|| is very small, thenη is necessarily close
to G. More precisely, we define the functionγ : R

+ → R

γ(ε) := sup
{

〈η, g〉
∣

∣η ∈ P(S × U) : ||F (η)|| ≤ ε
}

.

Clearlyγ is nondecreasing andγ(0) = G. Moreover, we have
the following result.

Lemma 7. The mapγ is upper semicontinuous. (i.e.εn →
ε⇒ lim supn γ(εn) ≤ γ(ε))

Proof: See Appendix A. �

Let us now introduce the random process(Gn)

Gn := sup
t≥n

〈υt, g〉 , n ∈ N .

Clearly the process(Gn) is sample-path-wise non increasing
in n.

Lemma 8. Let (π(n)) be a sequence of feasible policies, and
(τ (n)) be a sequence of stopping times10 such that for every
n E(n)[τ

(n)] <∞, while

lim
n

P(n)

(

τ (n) ≤M
)

= 0 , ∀M ∈ N . (52)

10All the τ (n) are assumed to be stopping times with respect to the filtration
G, i.e. we assume that the event{τ (n) ≤ t} is Gt-measurable for allt and
n, where we recall thatGt = σ(St+1

1 , Y t
1 ).



12

Then

lim
n

P(n) (Gτ (n) > γ(ε)) = 0 , ∀ε > 0 . (53)

Proof: See Appendix A. �

The following result can be considered as an asymptotic
estimate of (41). It consists in a generalization of (50) from
a deterministic increasing sequence of time horizons to a
sequence of stopping times satisfying (52).

Theorem 3. Let (π(n)) be a sequence of feasible policies, and
(τ (n)) be a sequence of stopping times such that for everyn
E(n)[τ

(n)] <∞, while (52) holds true. Then

lim sup
n

1

E(n)

[

τ (n)
]E(n)

[

∑

1≤t≤τ (n)

g(St, Ut)
]

≤ G . (54)

Proof: Let us fix an arbitraryε > 0, and forn ≥ 1 define
the eventAn := {Gτ (n) ≤ γ(ε)}.

By applying Lemma 8, we obtain

E(n)

[

∑τ (n)

t=1 g(St, Ut)
]

= E(n)

[

τ (n)〈υτ (n) , g〉
]

= E(n)

[

τ (n)〈υτ (n) , g〉1An

]

+E(n)

[

τ (n)〈υτ (n) , g〉1An

]

≤ E(n)

[

τ (n)
](

γ(ε)+ gmaxP(n)

(

An

))

where gmax := max {g(s, u)| s ∈ S, u ∈ U}. From (53) we
get

γ(ε) = γ(ε) + gmax lim sup
n

P(n)

(

An

)

≥ lim sup
n

E(n)

[

P

1≤t≤τ(n)

g(St,Ut)

]

E(n)[τ (n)]
.

Therefore (54) follows from the arbitrariness ofε > 0,
and the fact that, as a consequence of Lemma 7, we have
limε↓0 γ(ε) = G .

D. An asymptotic upper bound on the error exponent of a
sequence of variable-length block-coding schemes

We are now ready to step back to the problem of estimating
the error exponent of variable-length block-coding schemes
over FSMCs. We want to combine the result in Theorem 2
with that in Theorem 3 in order to finally prove Part 1 of
Theorem 1.

Let (Φ(n), T (n),Ψ(n)) be a sequence of variable-length
block-coding schemes satisfying (21). Our goal is to prove
that

lim sup
n

− log pe

(

Φ(n), T (n),Ψ(n)
)

E[T (n)]
≤ D

(

1 −
R

C

)

. (55)

A first simple conclusion which can be drawn from Theorem
2, using the crude bounds

c(St,Υt) ≤ log |X | , d(St,Υ
i
t) ≤ dmax , i = 0, 1 ,

is that

lim sup
n

− log pe(Φ(n),T (n),Ψ(n))
E[T (n)]

≤ D
C log |X | + dmax −R(1 − ε) − log λε

4 + D
C H(ε) .

(56)

Thus the error probability does not decay to zero faster than
exponentially with the expected transmission timeE[T (n)].

The core idea to prove (55) consists in introducing a
sequence(εn) of positive reals and showing that both

τ (n) := min
{

T (n), inf
{

t ∈ N
∣

∣Π
(n)
t ≤ εn

}}

, (57)

(whereΠ
(n)
t denotes the MAP error probability of the encoder

Φ(n) given the observationGt) and T (n) − τ (n) diverge in
the sense of satisfying (52). The sequence(εn) needs to be
carefully chosen: we want it to be asymptotically vanishing
in order to guarantee thatτ (n) diverges, but not too fast since
otherwiseT (n) − τ (n) would not diverge. It turns out that one
possible good choice is

εn :=
−1

log pe

(

Φ(n), T (n),Ψ(n)
) .

It is immediate to verify that, iflim
n
pe

(

Φ(n), T (n),Ψ(n)
)

= 0,
then

lim
n
εn = 0 , lim

n

1

εn
pe

(

Φ(n), T (n),Ψ(n)
)

= 0 . (58)

Lemma 9. Let (Φ(n), T (n),Ψ(n)) be a sequence of variable-
length block-coding schemes satisfying (21). For everyn ∈ N,
defineτ (n) as in (57). Then

lim
n

P

(

τ (n) ≤M
)

= 0 , ∀M ∈ N . (59)

Moreover, for any choice of a2W-valuedGτ (n)-measurable
r.v. W(n) such that

λεn ≤ P(W ∈ W(n)) ≤ 1 − λεn ,

we have

lim
n

P
(

T (n)−τ (n)≤M |W ∈ W(n)
)

=0 , ∀M ∈ N . (60)

Proof: See Appendix A. �

Thanks to (59), we can apply Theorem 3 to the mutual
information costc obtaining

lim sup
n

Cεn
(Φ(n), T (n))

E[τ (n)]
= lim sup

n

E

[

∑

1≤t≤τ (n)

c(St,Υt)
]

E[τ (n)]
≤ C.

(61)
Similarly, (60) allows us to apply Theorem 3 to the information
divergence costd, obtaining

lim sup
n

Dεn
(Φ(n), T (n))

E[T (n) − τ (n)]
≤ D . (62)

Therefore, by applying (61) and (62) first, and then Theorem
2, we get

D ≥ lim sup
n

1
E[T (n)]

(

D
CCεn

(Φ(n), T (n)) +Dεn
(Φ(n), T (n))

)

≥ lim sup
n

− 1
E[T (n)]

log pe(Φ
(n), T (n),Ψ(n))

+D
C

log |W(n)|
E[T (n)]

(1 − αn) + βn

E[T (n)]

≥ D
CR+ lim sup

n
− 1

E[T (n)]
log pe

(

Φ(n), T (n),Ψ(n)
)

whereαn and βn are defined as in (39), and the last step
follows from (58). Hence, we have proved (22).
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γ n  (1−γ)n

Transmission Phase Confirmation Phase

Fig. 3. One epoch in the generalized Yamamoto-Itoh scheme: atotal length
n is divided into two phases: a transmission one of lengthn̂ = ⌈γn⌉ and a
confirmation one of lengtĥn = ⌊(1 − γ)n⌋.

V. A N ASYMPTOTICALLY OPTIMAL SCHEME

In this section we propose and analyze a sequence of
variable-length block-coding schemes with feedback asymp-
totically achieving the Burnashev exponentEB(R), thus prov-
ing Part 2 of Theorem 1.

The proposed scheme can be viewed as a generalization of
the one introduced by Yamamoto and Itoh in [38] and consists
of a sequence of epochs. Each epoch is made up of two
distinct fixed-length transmission phases, respectively named
communication and confirmation phase. In the communication
phase the message to be sent is encoded through a block code
and transmitted over the channel. At the end of this phase
the decoder makes a tentative decision about the message sent
based on the observation of the channel outputs and of the
state sequence. As perfect causal feedback is available at the
encoder, the result of this decision is known at the encoder.
In the confirmation phase a binary message, acknowledging
the decoder’s estimation if it is correct, or denying it if itis
wrong, is sent by the encoder through a fixed-length repetition
code-function. The decoder performs a binary hypothesis test
in order to decide whether a deny or an acknowledge message
has been sent. If an acknowledge is detected the transmission
halts, while if a deny is detected the system restarts with a new
epoch, transmitting the same message with the same protocol.

More precisely, we design our scheme as follows. Given
a design rateR in (0, C), let us fix an arbitraryγ in
(R

C , 1). For everyn in N, consider a message setW(n) of
cardinality |W(n)| = exp(⌊nR⌋) and two blocklengthŝn and
ñ respectively defined aŝn = ⌈nγ⌉, ñ := n− n̂.

Fixed-length block-coding for the communication phase
It is known from previous works (see [32] for instance)
that the capacityC of the stationary Markov channel we
are considering is achievable by fixed-length block-coding
schemes. Thus, since the rate of the communication phase is
kept below capacity,

R̂ := lim
n

log |W(n)|

n̂
=
R

γ
< C ,

there exists a sequence of causal encodersΦ̂(n) =
(

W(n), (φ̂
(n)
t )
)

with φ̂
(n)
t : W(n) × St × Yt−1 → X ,

and a corresponding sequence of fixed-length-n̂ decoders
(Ψ̂(n))(notice thatn is the sequence index whilên is the
block-length) with error probability asymptotically vanishing
in n (see [32, Th. 5.3, special case of Sect. 8.1.2]). More
precisely, since the state spaceS is finite, the pairΦ̂(n) and
Ψ̂(n) can be designed in such a way that the probability

P(Ψ̂(n) 6= W |W = w, S1 = s) of error conditioned on the
transmission of any messagew in Wn and of an initial states
approaches zero uniformly with respect both tow ands, i.e.

p(n) := max
w∈W(n)

max
s∈S

P

(

Ψ̂(n) 6= W
∣

∣W = w, S1 = s
)

n→∞
−→ 0 .

(63)
The triple (Φ̂(n), n̂, Ψ̂(n)) will be used in the first phase of
each epoch of our iterative transmission scheme.

Binary hypothesis test for the confirmation phase
For the second phase, instead, we consider a causal binary
input encoderΦ̃(n) based on the optimal stationary policies
of the maximization problem (15). More specifically, for1 ≤
t ≤ n, define

φ̃
(n)
t : {a, b} × St → X , φ̃

(n)
t (m, s) = f∗

m(st) ,

wheref∗
a , f

∗
b : S → X are such that

D =
∑

s∈S

µf∗
a
(s)D (P ( · , · |s, f∗

a (s))||P ( · , · |s, f∗
b (s))) .

Suppose that a confirmation messagem ∈ {a, b} is sent.
Then it is easy to verify that the pair sequence(St+1, Yt)

ñ
t=1

forms a Markov chain over the space of the achievable channel
state output pairs

Z :=
⋃

s Zs =
{

(s+, y)| ∃ s, x : P (s+, y| s, x) > 0
}

, (64)

with transition probability matrix

Pm =
(

Pm(s+, y|s, y−) := P (s+, y|s, f
∗
m(s))

)

.

It follows that a decoder for̃Φ(n) performs a binary hypothesis
test between two Markov chain hypothesis. Notice that for
both chains the transition probabilitiesPm(s+, y|s, y−) do not
depend on the second componenty− of the past state, but on
its first components only, as well as on the full future state
(s+, y).

When the coefficientD is finite, as a consequence of
Assumption 1 and (13), we have that the stochastic matrix
Pm is irreducible overZ, with ergodic measurẽµm ∈ P(Z)
given by

µ̃m(s+, y) :=
∑

s∈S

µfm
(s)P (s+, y| s, fm(s)) , m ∈ {a, b} .

Using known results on binary hypothesis tests for irreducible
Markov chains (see [24], [5] and [10, pagg.72-82]) it is
possible to show that a decoder

Ψ̃(n) : (S × Y)
ñ−1 → {a, b}

can be chosen in such a way that, asymptotically inn, its
type-b error probability achieves the exponent (recall (15))

D =
∑

s∈S

µa(s)D
(

P ( · , · | s, f∗
a (s))||P ( · , · | s, f∗

b (s))
)

=
∑

z,z+

µ̃a(z)Pa(z+| z) log µ̃a(z)Pa(z+| z)
µ̃a(z)Pb(z+| z)

=
∑

s,s+,y−,y
µ̃a(s, y−)P (s+, y| s, f∗

a (s)) log
P (s+,y| s,f∗

a (s))
P (s+,y| s,f∗

b
(s))

while its type-a error probability is vanishing. More specif-
ically, since the state space is finite, we have that, defining
pm(n) as the maximum over all possible initial states of the
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error probability of the pair(Φ̃(n), Ψ̃(n)) conditioned on the
transmission of a confirmation messagem ∈ {a, b}, i.e.

pm(n) := max
s∈S

P

(

Ψ̃(n)
(

Sñ
2 ,Y

ñ−1
1

)

6= m
∣

∣W = m,S1 = s
)

,

we have

lim
n
pa(n) = 0 , lim

n

− log pb(n)

ñ
= D . (65)

When the coefficientD is infinite, then the stochastic matrix
Pa is irreducible over the setZ of reachable state output
pairs (this is because, by Assumption 1 all statess ∈ S are
reachable, while by (10) every state output pair(s+, y) in
Zs is reachable froms), and there exists at least two pairs
(s, y−) and(s+, y) in Z such thatPa(s+, y| s, y−) > 0 while
Pb(s+, y| s, y−) = 0. It follows that a sequence of binary tests
(Ψ̃(n)), with Ψ̃(n) : (S × Y)ñ−1 → {a, b}, can be designed
such that

lim
n
pa(n) = 0 , pb(n) = 0 , n ∈ N . (66)

Such a sequence of tests is given for instance by defining
Ψ(n)(z) equal toa if and only if the(ñ− 1)-tuplez contains
a symbolz− followed by az+. �

Once fixedΦ̂(n), Ψ̂(n), Φ̃(n) andΨ̃(n), the iterative protocol
described above defines a variable-length block-coding scheme
(Φ(n), T (n),Ψ(n)). As mentioned above, the scheme consists
of a sequence of epochs, each of fixed lengthn; in particular
we have

T (n) = nζ(n) ,

where

ζ(n) :=inf
{

k ≥ 1 : Ψ̃(n)
(

Skn
(k−1)n+n̂+1,Y

kn
(k−1)n+n̂+1

)

= a
}

is a positive integer valued r.v. describing the number of
epochs occurred until transmission halts.

The following result characterizes the asymptotic perfor-
mance of the sequence of schemes(Φ(n), T (n),Ψ(n)). Its
proof uses arguments similar to those in [34, Sect. III.B].

Theorem 4. For every design rateR in (0, C), and everyγ
in (R

C , 1), it holds

lim
n

log |W(n)|

E[T (n)]
= R (67)

and

• if D < +∞

lim
n

− log pe(Φ
(n), T (n),Ψ(n))

E[T (n)]
= D(1 − γ) , (68)

• if D = +∞

pe(Φ
(n), T (n),Ψ(n)) = 0 , n ∈ N . (69)

Proof: We introduce the following notation. First, for
everyk ∈ N:

• êk :=
{

Ψ̂
(

S
(k−1)n+n̂+1
(k−1)n+1 ,Y

(k−1)n+n̂
(k−1)n+1

)

6= W
}

is the
error event in the communication phase of thek-th epoch;

• ẽk :=
{

Ψ̃
(

Skn
(k−1)n+n̂+2,Y

kn−1
(k−1)n+n̂+1

)

6= 1êk

}

is the
error event in confirmation phase of thek-th epoch.

Clearly, we have

P(êk|F(k−1)n) ≤ p(n) , P(ẽk|F(k−1)n+n̂) ≤ p1êk
(n) .

The transmission halts at the end of the first epoch in which
an acknowledge messagea is detected at the end of the con-
firmation phase, i.e. the first time either a correct transmission
in the communication phase is followed by the successful
transmission of an acknowledge message in the confirmation
phase, or an incorrect transmission in the communication
phase is followed by an undetected transmission of a deny
messageb in the confirmation phase. It follows that we can
rewrite ζ(n) as

ζ(n) = inf
{

k ∈ N s.t. (êk ∩ ẽk) ∪ (êk ∪ ẽk)
}

.

We claim that

P(ζ(n) ≥ k) ≤ (p(n) + pa(n))
k−1

. (70)

Indeed (70) can be shown by induction. It is clearly true for
k = 1. Suppose it is true for somek in N; then

P
(

ζ(n) > k
)

= P
(

ζ(n) > k|ζ(n) ≥ k
)

P
(

ζ(n) ≥ k
)

= P(ζ(n) ≥ k)P
(

êk+1 ∩ ẽk+1|ζ(n) ≥ k
)

+P(ζ(n) ≥ k)P
(

ẽk+1 ∩ êk+1|ζ
(n) ≥ k

)

≤ (p(n) + pa(n)) P(ζ(n) ≥ k)

≤ (p(n) + pa(n))
k
.

Thusζ(n) is stochastically dominated by the sum of a constant
1 plus a r.v. with geometric distribution of parameterp(n) +
pa(n). It follows that its expected value can be bounded

1 ≤ E[ζ(n)]
=

∑

t≥1

P
(

ζ(n) ≥ t
)

≤
∑

t≥1

(p(n) + pa(n))
t−1

= 1
1−p(n)−pa(n) .

Hence, from (63) and (65) we have

lim
n

E[ζ(n)] = 1 . (71)

From (71) it immediately follows that

lim
n

log |W(n)|

E[T (n)]
= lim

n

log (exp(⌈nR⌉))

nE[ζ(n)]
= R .

Moreover, transmission ends with an error if and only if an
error happens in the communication phase followed by a type-
b error in the confirmation phase, so that, the error probability
of the overall scheme(Φ(n), T (n),Ψ(n)) can be bounded as
follows

pe

(

Φ(n), T (n),Ψ(n)
)

= P
(

eζ(n) ∩ ẽζ(n)

)

=
∑

t≥1

P
(

et ∩ ẽt ∩ {ζ(t) = t}
)

=
∑

t≥1

P
(

et ∩ ẽt ∩ {ζ(n) ≥ t}
)

=
∑

t≥1

P
(

et ∩ ẽt

∣

∣ζ(n) ≥ t
)

P(ζ(n)≥ t)

≤ p(n)pb(n)
∑

t≥1

P(ζ(n) ≥ t)

≤ p(n)pb(n)
κn

,
(72)
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Fig. 4. a FSMC with binary state spaceS = {G, B} and binary input/output
spaceX = Y = {0, 1}: notice that the state transition probabilities are
allowed to depend on the current input (ISI).

whereκn := 1−p(n)−pa(n). WhenD is infinite, (72) directly
implies (69). WhenD is finite, from (63), (65), (71) and (72)
it follows that

D (1 − γ) ≥ lim inf
n

1

n
κn log

κn

pb(n)

= lim inf
n

− log pe(Φ
(n), T (n),Ψ(n))

nE[ζ(n)]

= lim inf
n

− log pe(Φ
n, Tn,Ψ

n)

E[T (n)]
,

which proves (68).

It is clear that (23) follows from (68) and the arbitrariness
of γ in

(

R
C , 1

)

, so that Part 2 of Theorem 1 is proved.
We end this section with the following observation. It

follows from (70) that the probability that the proposed trans-
mission scheme halts after more than one epoch is bounded by
p(n) + pa(n), a term which is vanishing asymptotically with
n. Then, even if the transmission time is variable, it exceeds
n with probability which is asymptotically small inn. As also
observed in [23] for memoryless channels, this is a desirable
property from a practical viewpoint. Observe the difference
with respect to the fixed-length block-coding setting, when
the transmission time is required to be almost surely constant
for all fixed n ∈ N: in this case, as already mentioned in
Sect. I, the error exponent with feedback is upper bounded by
the sphere-packing exponent (see [13], [31]).

VI. A N EXPLICIT EXAMPLE

We consider a FSMC as in Fig. 4, with state spaceS =
{G,B}, input and output spacesX = Y = {0, 1} and
stochastic kernel given by:

P (s+, y|s, x) = PS(s+|x, s)PY (y|x, s) ,

PS(B|G, 0) = α0 , PS(B|G, 1) = α1 ,

PS(G|B, 0) = β0 , PS(G|B, 1) = β1 ,

PY (1|G, 0) = PY (0|G, 1) = pG ,

PY (1|B, 0) = PY (0|B, 1) = pB ,

where0 < pG < pB < 1
2 , andα0, α1, β0, β1 ∈ (0, 1). For

any stationary policyπ : S → P({0, 1}), the ergodic state
measure associated toπ can expressed explicitly:

µπ(B) =
ξα

ξα + ξβ
, µπ(G) = 1 − µπ(B) ,
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0.75

0.9

γ
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0.4
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0.46

0.48

0.5
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γ

[π(G)](0)
[π(B)](0)

Fig. 5. In the top picture, the capacity of the FSMC of Fig. 4 for values of the
parameterspG = 0.001, pB = 0.1, α0 = 1−β0 = 0.7, α1 = 1−β1 = γ,
is plotted as a function ofγ in (0, 1). In the bottom picture, for the same
values of the parameters, the optimal policyπ∗ : {G, B} → P({0, 1}) is
plotted as a function ofγ in (0, 1).

where ξα := α0[π(G)](0) + α1[π(G)](1) and ξβ :=
β0[π(B)](0)+β1[π(B)](1). The mutual information costs are
given by

c(G, u)=H
(

u(1)α1 + u(0)α0

)

+ H
(

u(1)pG + u(0)(1 − pG)
)

−H(pG) − (uG H(α1) + u(0)H(α0)) ,

c(B, u)=H
(

u(1)β1 + u(0)β0

)

+ H
(

u(1)pB + u(0)(1 − pB)
)

−H(pB) − (u(1)H(β1) + u(0)H(β0)) ,

H denoting the binary entropy function. The information
divergence costs instead are given by

d
(

G, δf0(G)

)

= D
(

pG||1 − pG) +D(αf0(G)||αf1(G)

)

,

d(B, δf0(B)) = D
(

pB||1 − pB) +D(αf0(G)||αf1(G)

)

,

where, forx, y in [0, 1], D(x||y) := x log x
y +(1−x) log 1−x

1−y .

In Fig. 5 and Fig. 6 the special case whenpG = 0.001,
pB = 0.1, α0 = 1−β0 = 0.7 andα1 = 1−β1 = γ is studied
as a function of the parameterγ in (0, 1). In particular in Fig. 5
the capacity and the optimal policyπ : S → X are plotted as
a function ofγ. Notice that forγ = 0.7 the channel has no
ISI and actually coincides with a memoryless Gilbert-Elliot
channel: for that value the optimal policy chooses the uniform
distribution both in the good stateG as well as in the bad state
B. For values ofγ below 0.7 (resp. beyond0.7), instead, the
optimal policy puts more mass on the input symbol 1 (resp.
the symbol 0) both in stateG and stateB, and it is more
unbalanced in stateB. In Fig. 6 the Burnashev coefficient of
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Fig. 6. The thick solid line is a plot of the Burnashev coefficientD (evaluated
with natural log base) of the FSMC of Fig. 4 for the same valuesof the
parameters as in Fig. 5.

the channel is plotted as a function of the parameterγ, as
well as the the values of the ergodic Kullback-Leibler cost
corresponding to the four possible policiesf0 : {G,B} →
{0, 1}. Observe as the minimum value ofD is achieved for
γ = 0.7; in that case all the four non trivial policiesf0, f1
give the same value of the Kullbak-Leibler cost.

Finally it is worth to consider the simple non-ISI case when
α0 = α1 = β0 = β1. In this case the state ergodic measure
is the uniform one on{G,B}. Notice by a basic convexity
argument we get that its capacityC and Burnashev coefficient
D satisfy

C = 1 − 1
2 H(pG) − 1

2 H(pB)

> 1 − H
(

1
2pG + 1

2pB

)

=: C̃ ,
(73)

D = 1
2D (pG||1 − pG) + 1

2D(pB ||1 − pB)

> D
(

1
2pG + 1

2pB||1 − 1
2pB − 1

2pG

)

=: D̃ .
(74)

In (73) and (74)C̃ and D̃ correspond respectively to the
capacity and the Burnashev coefficient of memoryless bi-
nary symmetric channel with crossover probability equal to
the ergodic average of the crossover probabilitiespB and
pG. Such a channel is introduced in practice when channel
interleavers are used in order to apply to FSMCs coding
techniques designed for DMCs. While this approach reduces
the decoding complexity, it is well-known that it reduces the
achievable capacity (73) (see [16]). Inequality (74) showsthat
this approach causes also a significant loss in the Burnashev
coefficient of the channel.

VII. C ONCLUSION

In this paper we studied the error exponent of FSMCs with
feedback. We have proved an exact single-letter characteriza-
tion of the reliability function for variable-length block-coding
schemes with perfect causal output feedback, generalizingthe
result obtained by Burnashev [6] for memoryless channels.

Our assumptions are that the channel state is causally observ-
able both at the encoder and the decoder and the stochatic
kernel describing the channel satisfies some mild ergodicity
properties.

As a first topic for future research, we would like to extend
our result to the case when the state is either observable at the
encoder only or it is not observable at neither side. We believe
that the techniques used in [32] in order to characterize the
capacity of FSMCs with state not observable may be adopted
to handle our problem as well. The main idea consists in
studying a partially observable Markov decision process and
reduce it to a fully observable one with a larger state space.
However, an extension of the results of in Sect. IV is needed,
as there we explicitly exploited the finiteness of the state space
in our proofs. Finally, it would be interesting to consider the
problem of finding universal schemes which do not require
exact knowledge of the channel statistics but use feedback in
order to estimate them.
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APPENDIX

For the reader’s convenience all statements are repeated
before their proof.

For t ≥ 1 we will use the notationνt ∈ P(S × Y),
νt(s, y) := P (St+1 = s, Yt = y| Et) for the conditioned prob-
ability distribution of the pair(St+1, Yt) given the feedback
observationEt = Gt−1. Since, due to the assumption (17) on
the causality of the channel and of the encoder,(W,St

1,Y
t−1
1 )

and (St+1, Yt) are conditionally independent given(St, Xt),
for all w ∈ W an application of the Bayes rule gives us

θt(w)νt(St+1, Yt)=θt−1(w)P (St+1, Yt|St, φt(w,S
t
1,Y

t−1
1 )).

(75)

Lemma 1. Given any causal feedback encoderΦ, for every
t ≥ 1

Πt ≥ λΠt−1 a.s.

Proof: From (17) it follows that, for channel state/output
pair (St+1, Yt) to be observed with non-zero probability after
the stateSt, it is necessary that(Yt, St+1) ∈ ZSt

, where the
ZSt

is the set of channel state and output pairs which are
reachable from the stateSt - see (10). It follows that, almost
surely, for all timet and for any messagew in W ,

λ ≤ λSt

= min {minx P (s+, y|St, x) | (s+, y) ∈ ZSt
}

≤ minx P (St+1, Yt|St, x)
≤ P

(

St+1, Yt|St, φt(w,S
t
1,Y

t−1
1 )

)

.

Sinceνt(St+1, Yt) ≤ 1, using (75) and the inequality above,
we have

θt(w) ≥ νt(St+1, Yt)θt(w)
= P

(

St+1, Yt|St, φt(w,S
t
1,Y

t−1
1 )

)

θt−1(w)
≥ λθt−1(w) .
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Let W̌ := ψ̌t(S
t+1
1 ,Y t

1 ). It follows that

Πt = P
(

W̌ 6= W
∣

∣Gt

)

=
∑

w∈W\{W̌}

θt(w)

≥
∑

w∈W\{W̌}

λθt−1(w)

≥ λΠt−1 ,

thus showing the claim.

Lemma 2. For any variable-length block-coding scheme
(Φ, T,Ψ) and any0 < ε < 1

2 , we have

Cε(Φ, T ) ≥

(

1 − ε−
1

ε
pe (Φ, T,Ψ)

)

log |W| − H(ε) .

Proof: We introduce the r.v.s

Vn := Γn +
∑

1≤t≤n

c (St,Υt) , n ≥ 0 ,

First, we prove that(Vn,Gn)n≥0 is a martingale. Indeed,
Vn is Gn-measurable, sinceΓn is, and so do bothSt andΥt

for every1 ≤ t ≤ n. Using (75), it follows that

c (Sn,Υn) =
∑

x,y,s+

Υn(x)P (s+, y|s, x) log P (s+,y|s,x)
P

zΥn(z)P (s+,y|s,z)

= E

[

log P (Sn+1,Yn|Sn,Xn)
νn(Sn+1,Yn)

∣

∣Gn−1

]

= E

[

log θn(W )
θn−1(W )

∣

∣Gn−1

]

= E
[

Γn−1 − Γn

∣

∣Gn−1

]

.

Hence,

E
[

Vn− Vn−1

∣

∣Gn−1

]

=E
[

Γn− Γn−1+ c (Sn,Υn)
∣

∣Gn−1

]

= 0 .

Second, we observe that(Vn) has uniformly bounded in-
crements since

|Vn−Vn−1| ≤ |c (Sn,Υn) |+|Γn−Γn−1| ≤ log |X |+2 log |W| .

Therefore, we can apply Doob’s optional sampling theorem
[35, Th. 10.10,pag. 100], concluding that

log |W| = E [V0| G0]
= E [Vτε

]

= E [Γτε
] + E

[

∑

1≤t≤τε

c (St,Υt)
]

.
(76)

Finally, combining (76) with (28), we obtain

Cε(Φ, T ) = E

[

∑

1≤t≤τε

c (St,Υt)
]

≥
(

1 − ε− pe(Φ,T,Ψ)
ε

)

log |W| − H(ε) ,

which completes the proof.

Lemma 3. Let τ andT be stopping times for the filtrationG
such thatτ ≤ T , and consider a nontrivial binary partition
of the message set as in (32). Then, fori = 0, 1,

Li ≤ E

[

∑

τ<t≤T

d
(

St,Υ
i
t

)

∣

∣

∣
W ∈ Wi,Gτ

]

. (77)

Proof: We will prove the claim fori = 0. Define

Zt := log

∑

x P (St+1, Yt|St, x)Υ
0
t (x)

∑

x P (St+1, Yt|St, x)Υ1
t (x)

, t ≥ 0 .

11

With probability one, the pair(St+1, Yt) belongs to the
achievable setZSt

, so that, fori = 0, 1,

λ ≤ λSt

≤ minx P (St+1, Yt|St, x)
≤

∑

x P (St+1, Yt|St, x)Υ
i
t(x) ≤ 1 .

As a consequence we have

|Zt| ≤ − logλ . (78)

Now, for s ∈ S, y ∈ Y and i = 0, 1, define the r.v.

∆i
s,y :=

∑

x∈X

Υ
0
t (x)P (s, y|St, x) .

Then, by recalling the definition (9) of the costd, applying
the log-sum inequality [8, pag. 29], we have, fort ≥ 1,

d(St,Υ
0
t ) ≥

∑

y,s,x
Υ

0
t (x)P (s, y|St, x) log

P (s, y|St, x)Υ
0
t (x)

P (s, y|St, x)Υ1
t (x)

≥
∑

y,s
∆0

s,y log
∆0

s,y

∆1
s,y

= E

[

log
∆0

s,y

∆1
s,y

∣

∣

∣
W ∈ W0,Gt−1

]

= E[Zt|W ∈ W0,Gt−1] .
(79)

From (79) it follows that, if we define

Vn :=
∑

1≤t≤n

Zt −
∑

1≤t≤n

d(St,Υ
0
t ) , n ≥ 0 ,

then (Vn,Gn)n≥0 is a submartingale with respect to the
conditioned probability measureP( · |W ∈ W0). Moreover
it follows from (78) (recall that we are assumingλ > 0 and
that this is equivalent to the boundedness of the Burnashev
coefficientD) that (Vn) has uniformly bounded increments:

|Vn+1 − Vn| ≤ |Zn+1|+ |d(Sn+1,Υ
0
Φ,n+1)| ≤ log

1

λ
+ dmax .

Thus, sinceτ ≤ T , Doob’s optional stopping theorem [35,
Th. 10.10] can be applied yielding

E
[

VT − Vτ

∣

∣W ∈ W0,Gτ

]

≤ 0 . (80)

Then the claim follows from (80), upon showing that for every
n ≥ 0

log
ν0

0,n(Sn+1
1 ,Y n

1 )

ν1
0,n(Sn+1

1 ,Y n
1 )

=
∑

1≤t≤n

Zt . (81)

In fact (81) can be verified by induction. It holds true for
n = 0, since12 S1 is independent fromW and soν0

0,0(St) =
ν1

0,0(St). Moreover, assume that (81) holds true for somen.
Then,

n+1
∑

t=1
Zt = log

ν0
0,n(Sn+1

1 ,Y n
1 )

ν1
0,n(Sn+1

1 ,Y n
1 )

+ Zn+1

= log
ν0
0,n(Sn+1

1 ,Y n
1 )

P

x

P (Sn+2,Yn+1|Sn+1,x)Υ0
n+1(x)

ν1
0,n(Sn+1

1 ,Y n
1 )

P

x

P (Sn+2,Yn+1|Sn+1,x)Υ1
n+1(x)

= log
ν0
0,n+1(S

n+2
1 ,Y n+1

1 )

ν1
0,n+1(S

n+2
1 ,Y n+1

1 )
,

11with the conventionlog 0
0

:= 0.
12We use the convention for an empty summation to equal zero.



18

thus proving (81).

Lemma 4. Let Φ be any causal encoder, andτ and T be
stopping times for the filtrationG such thatτ ≤ T . Then, for
every2W-valuedGτ -measurable r.v.W1, we have

E

[

∑

τ<t≤T

d
(

St,Υ
1{W∈W1}

Φ,t

)

∣

∣Gτ

]

≥ log
Z

4
− log pτ ,

whereZ := min
{

θτ (W0) ,θτ (W1)
}

.

Proof: First we will prove the statement whenW1 is
a fixed, non-trivial subset of the message setW . For i, j ∈
{0, 1}, definepi|j := P

(

W̃ = i|W ∈ Wj ,Gτ

)

. We shall now
upper boundL0 defined in (33). From the log-sum inequality
it follows that

L0 = E

[

log
ν0

τ,T (ST+1
τ+2 ,Y T

τ+1)

ν1
τ,T

(ST+1
τ+2 ,Y T

τ+1)

∣

∣

∣
W ∈ W0,Gτ

]

≥ p0|0 log
p0|0

p0|1
+ p1|0 log

p1|0

p1|1

≥ −H(p1|0) − p0|0 log p0|1

≥ − log 2 − p0|0 log p0|1 .

We havepτ = θτ (0)p1|0 + θτ (1)p0|1 ≥ Z p0|1. From Lemma
3 it follows that

E

[

∑

τ<t≤T

d
(

St,Υ
0
t

)

|W ∈W0,Gτ

]

≥ L0

≥ − log 2 − p0|0 log p0|1

≥ − log 2 − p0|0 log pτ

Z .
(82)

An analogous derivation leads to

E

[

∑

τ<t≤T

d
(

St,Υ
1
t

)

|W ∈ W1,Gτ

]

≥ − log 2−p1|1 log
(pτ

Z

)

.

(83)
By averaging (82) and (83) with respect to the posterior
distributionθτ of W givenGτ , we get

E

[

∑

τ<t≤T

d
(

St,Υ
1{W∈W1}

t

)

∣

∣Gτ

]

≥ log
Z

2
−(1−pτ ) log pτ ,

and the claim follows upon observing that

pτ log pτ ≥ −H(pτ ) ≥ log
1

2
.

Lemma 5. Let Φ be a causal feedback encoder andT a
transmission time. Then, for every0 < ε < 1/2 there exists
a Gτε

-measurable random subsetW1 of the message setW ,
whose a posteriori error probability satisfies

1 − λε ≥ θτε
(W1) ≥ λε .

Proof: Suppose first thatΠτε
≤ ε. Then, since clearly

Πτε−1 ≥ ε, by Lemma 1 we have

Πτε
≥ λΠτε−1 ≥ λ ε

It follows that, if we defineW1 := {Ψτε
(Sτε+1

1 ,Y τε

1 )} and
W0 := W \W1, we have

θτε
(W1) = 1−Πτε

≥ 1−ε ≥ λ ε , θτε
(W0) = Πτε

≥ λ ε .

If instead Πτε
> ε, the a posteriori probability of any

messagew in W at time τε satisfies θτε
(w) ≤ 1 − ε.

Then it is possible to constructW1 in the following way.
Introduce an arbitrary labelling ofW = {w1, w2, . . . , w|W|}.
For any 1 ≤ i ≤ |W|, define W(i) = {w1, . . . , wi}.
Set k := inf

{

1 ≤ i ≤ |W| : θτε
(W(i)) ≥ λ ε

}

, and define
W1 = W(k), W0 := W \W1. Then, clearlyθτε

(W1) ≥ λ ε,
while

θτε
(W0) = 1 − θτε

(W(k))
= 1 − θτε

(W(k−1)) − θτε
(wk)

≥ 1 − λ ε− (1 − ε)
≥ λε .

Lemma 6. For everyε > 0, and for every feasible policyπ

Pπ

(

||F (υn)|| ≥ ε+
1

n

)

≤ 2|S| exp
(

−nε2/2
)

.

Proof: Let us fix an arbitrary admissible policyπ. For
everys in S consider the following random process:

Zs
0 := 0 , Zs

1 := 0 ,

Zs
n := (n− 1)Fs(υn−1) + 1{Sn=s} − 1{S1=s} , n ≥ 2 .

We have

Zs
n = (n− 1)υn−1 ({s},U) + 1{Sn=s} − 1{S1=s}

−(n− 1)
∫

S×U QS(s | j, u)dυn−1(j, u)

=
n
∑

t=2

1{St=s} −
n
∑

t=2

Q(s |St−1, Ut−1)

=
n
∑

t=2

(1{St=s} − Eπ

[1{St=s}|Et−1

])

.

It is immediate to check thatZs
n is En-measurable. Moreover

Eπ[Zs
n+1|En] = Zs

n , ∀n ≥ 0 ,

so that(Zs
n, En,Pπ)n≥0 is a martingale. Moreover,(Zs

n) has
uniformly bounded increments since|Zs

1 − Zs
0 | = 0, while

∣

∣Zs
n+1 − Zs

n

∣

∣ =
∣

∣1{Sn+1=s} − Eπ

[1{Sn+1=s}|En

]
∣

∣ ≤ an+1 ,

where an = 1 for n ≥ 2. It follows that we can apply
Hoeffding-Azuma inequality [22], obtaining

Pπ

(

|Zs
n+1| ≥ εn

)

≤ 2 exp

(

−ε2n2

2
∑n+1

k=2 ak

)

= 2 exp

(

−ε2

2
n

)

.

By simply applying a union bound, we can argue that

Pπ

(

||F (υn)|| ≥ ε+ 1
n

)

= Pπ

(

max
s

∣

∣Zs
n+1 + 1{S1=s} − 1{Sn+1=s}

∣

∣ ≥ εn+ 1
)

≤ Pπ

(
⋃

s∈S{
∣

∣Zs
n+1

∣

∣ ≥ εn}
)

≤
∑

s∈S

Pπ

(
∣

∣Zs
n+1

∣

∣ ≥ εn
)

≤ 2|S| exp
(

− ε2

2 n
)

,

which concludes the proof.

Lemma 7. The mapγ is upper semicontinuous. (i.e.εn →
ε⇒ lim supn γ(εn) ≤ γ(ε))
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Proof: As γ is nondecreasing, with no loss of generality
we can restrict ourselves to consider the case whenεn ↓ ε, so
that limn γ(εn) exists. SinceS × U is compact, the Prohorov
spaceP(S × U) is compact as well [3]. Thus, since the map
η 7→ ||F (η)|| is continuous, the sublevel{||F (η)|| ≤ ε} is
compact. It follows that for everyn there existsηn in P(S×U)
such that||F (ηn)|| ≤ εn and

γ(εn) = sup
{

〈η, g〉
∣

∣η : ||F (η)|| ≤ εn

}

= 〈ηn, g〉 .

Since P(S × U) is compact we can extract a converging
subsequence(ηnk

); defineη := lim
k

ηnk
. Clearly,

||F (η)|| = lim
k

||F (ηnk
)|| ≤ lim

k
εnk

= ε .

It follows that

γ(ε) = sup
{

〈η, g〉
∣

∣η ∈ P(S × U) : ||F (η)|| ≤ ε
}

≥ 〈η, g〉
= lim

k
〈ηnk

, g〉

= lim
n
γ(εn) ,

thus proving the claim.

Lemma 8. Let (τ (n)) be a sequence of stopping times for the
filtration F and(π(n)) be a sequence of feasible policies such
that E(n)[τ

(n)] <∞ for everyn and (52) holds true. Then

lim
n

P(n) (Gτ (n) > γ(ε)) = 0 , ∀ε > 0 .

Proof: For everyε > 0, using a union bound estimation
and (51) we get,

P(n)

(

Gt > γ
(

ε+ 1
t

))

= P(n)

(

⋃

s≥t

{

〈υs, g〉>γ
(

ε+ 1
t

)}

)

≤
∑

s≥t

P(n)

(

〈υs, g〉 > γ
(

ε+ 1
t

))

≤
∑

s≥t

P(n)

(

〈υs, g〉 > γ
(

ε+ 1
s

))

≤ 2|S|
∑

s≥t

exp
(

−sε2/2
)

= 2|S|
exp(−tε2/2)

1−exp(−ε2/2)
(84)

It follows that for everyM in N we have for the events

An :=
{

Gτ (n) > γ
(

ε+ 1
M

)}

, Bn :=
{

τ (n) ≥M
}

P(n)(An) = P(n) (An ∩Bn) + P(n)

(

An ∩Bn

)

≤
∑

s≥M

P(n)

(

An ∩ {τ (n) = s}
)

+ P(n)

(

Bn

)

≤
∑

s≥M

P(n)

(

Gs > γ
(

ε+ 1
M

))

+ P(n)

(

Bn

)

≤
∑

s≥M

2|S|
exp(−sε2/2)
1−exp(−ε2/2) + P(n)

(

Bn

)

=
2|S| exp(−Mε2/2)
(1−exp(−ε2/2))2

+ P(n)

(

Bn

)

.

Thus, it follows from (52) that

lim sup
n

P(n) (An) ≤
2|S| exp

(

−Mε2/2
)

(1 − exp (−ε2/4|S|2))2
,

and by the arbitrariness ofM in N we get the claim.

Lemma 9. Let (Φ(n), T (n),Ψ(n)) be a sequence of variable-
length block-coding schemes satisfying (21). For everyn ∈ N,
defineτ (n) as in (57). Then

lim
n

P

(

τ (n) ≤M
)

= 0 , ∀M ∈ N .

Moreover, for any choice of a2W-valuedGτ (n)-measurable
r.v. W(n) such that

λεn ≤ P(W ∈ W(n)) ≤ 1 − λεn ,

we have

lim
n

P
(

T (n)−τ (n)≤M |W ∈ W(n)
)

=0 , ∀M ∈ N .

Proof: From Lemma 1 we have thatP-a.s.

Π
(n)

T (n) ≥ Π
(n)

τ (n)λ
T (n)−τ (n)

≥ λεnλ
T (n)−τ (n)

.

For M,n ∈ N, define the eventsBn := {T (n) − τ (n) ≤ M},
Fn := {W ∈ W(n)},

pe

(

Φ(n), T (n),Ψ(n)
)

≥ E

[

Π
(n)

T (n) |Bn

]

P (Bn)

≥ λεnλ
M

P (Bn)

≥ λεnλ
M

P (Bn ∩ Fn)

= λεnλ
M

P (Bn|Fn) P (Fn)

≥ λ2ε2nλ
M

P (Bn|Fn) .

It follows that

P (Bn|Fn) ≤ λ−M−2 pe

(

Φ(n), T (n),Ψ(n)
)

ε2n

n→∞
−→ 0 ,

thus showing (60).
In order to show (59), suppose first thatΠ

(n)

τ (n) ≤ εn. Then,

|W(n)| − 1

|W(n)|
λτ (n)

≤ Π
(n)

τ (n) ≤ εn . (85)

For every fixedM in N, define the eventFn := {τ (n) ≤M}.
From (60) and (85), it follows that

P (Fn) ≤ P

(

Fn ∩
{

Π
(n)

τ (n) ≤ εn

})

+ P

(

Π
(n)

τ (n) > εn

)

≤ P

(

|W(n)|−1
|W(n)|

λM ≤ εn

)

+ P
(

τ (n) = T (n)
)

n→∞
−→ 0 .
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