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Abstract—The error exponent of Markov channels with feed-
back is studied in the variable-length block-coding settig. Bur-
nashev’s classic result is extended to finite-state ergodMarkov
channels. For these channels, a single-letter charactestion of
the reliability function is presented, under the assumption of
full causal output feedback, and full causal observation ofthe
channel state both at the transmitter and at the receiver sid.
Tools from stochastic control theory are used in order to trat
channels with inter-symbol interference. Specifically, te convex-
analytic approach to Markov decision processes is adopteci
order to handle problems with stopping time horizons inducel
by variable-length coding schemes.

Index Terms—Channel coding with feedback, finite-state
Markov channels, error exponents, Markov decision process,
variable-length block codes.

I. INTRODUCTION

causal state knowledge both at the transmitter and at the
receiver end, the reliability function has the form

R
: C
In (1), R denotes the transmission rate, measured with respect
to the average number of channel uses. The capétignd
the coefficientD are quantities which will be defined as so-
lutions of finite-dimensional optimization problems invivig
the stochastic kernel describing the FSMC. The former will
turn out to equal the maximum, over all choices of the channel
input distributions as a function of the channel state, & th
conditional mutual information between channel input amel t
pair of channel output and next channel state given the curre
state, whose marginal distribution coincides with the el
ergodic state measure (see (6)). The latter will insteadlequ

EB(R)_D< ) ., Re(0,0). 1)

The role of feedback in channel coding is a long studighie average, with respect to the induced ergodic state mesasu
problem in information theory. In 1956, Shannon [28] provedf the Kullback-Leibler information divergence betweere th
that noiseless causal output feedback does not increase jdiet channel output and next state distributions assediéd

capacity of a discrete memoryless channel (DMC). Feedbatle pair of most distinguishable choices of a channel input
though, can help in improving the trade-off between religbi Symbol as a function of the current state (see (14)).

and delay of DMCs at rates below capacity. This trade-off The problem of characterizing error exponents of mem-
is traditionally measured in terms of error exponents; itt,fa oryless channels with feedback has been addressed in the
since Shannon’s work, much research has focused on studyiitfgrmation theory literature in a variety of different fre-

error exponents of channels with feedback. Burnashev [&prks. Particularly relevant are the choice of block versus
found a simple exact formula for the reliability functioncontinuous transmission, the possibility of allowing wedte-

(i.e. the highest achievable error exponent) of a DMC witlength coding schemes, and the way delay is measured. In
perfect causal output feedback in the variable-length Kklocfact, much more than in the non-feedback case, these choices

coding setting. The present paper deals with a general

itead to very different results for the error exponent of DMCs

tion of Burnashev’s result to a certain class of channedgbeit not altering the capacity value. In continuous traiss
with memory. Specifically, we shall provide a simple singlesion systems information bits are introduced at the encoder

letter characterization of the reliability function of fieistate

and later decoded, individually. Continuous transmissiith

Markov channels (FSMCs), in the general case when intéeedback was considered by Horstein [19], who was probably
symbol-interference (I1Sl) is present. Under mild ergagtici the first showing that variable-length coding schemes can pr
assumptions, we will prove that, when one is allowed vaeablvide larger error exponents than fixed-length ones. Regentl
length block-coding with perfect causal output feedbac#t artontinuous transmission with fixed delay has attractedwede
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attention in the context of anytime capacity [27]. In thippa
however, we shall restrict ourselves to block transmission
which is the framework considered by the largest part of the
previous literature.

In block transmission systems, the information sequence is
partitioned into blocks of fixed length which are then enabde
into channel input sequences. When there is no feedback
these sequences need to be of a predetermined, fixed length.
When there is feedback, instead, the availability of common
information shared between transmitter and receiver mikes
possible to use variable-length schemes. Here, the trasgmi
itime is allowed to dynamically depend on the channel output
sequence. It is known that exploiting the possibility ofngsi



variable-length block-coding schemes guarantees highsgaresult to FSMCs. As an example, channels with memory,
in terms of the attainable error exponent. In fact, Dobnushand FSMCs in particular, model transmission problems where
[13] showed that the sphere-packing upper bound still holfEding is an important component, like in wireless communi-
for fixed-length block-coding schemes over symmetric DMGsation. Information theoretic limits of FSMCs both with and
even when perfect output feedback is causally available thvithout feedback have been widely studied in the literatwee
encoder (a generalization to non-symmetric DMCs was ackfer to the classic textbooks [15], [36] and referencesethe
dressed first in [18] and then in [31]). Even though fixed-tangfor overview of the available literature (see also [16]).dt
block-coding schemes with feedback have been studied (&®®wn that the capacity is strongly affected by the hypdthes
[39], [12]), the aforementioned results pose severe caimir about the nature of the channel state information (CSI) both
on the performance such schemes can achieve. Moreoaemilable at the transmitter and at the receiver side. In par
no closed form for the reliability function at all rates idicular, while output feedback does not increase the capaci
known for fixed-length block coding with feedback, but fowhen the state is causally observable both at the transmitte
the very special class of symmetric DMCs with positive zer@and at the receiver side (see [32] for a proof, first noted in
error capacity (cf. [9, pag. 199]). It is worth to mention ttha[28]), it generally does so for different information patts.
the situation can be different for infinite-input channdisr In particular, when the channel state is not observableet th
the additive white Gaussian noise channel (AWGNC) wittransmitter, it is known that feedback may help improving
average power constraint, Shalkwijk and Kailath [30] pivecapacity by allowing the encoder to estimate the channtd sta
that a doubly exponential error rate is achievable by fixefB2]. However, in this paper only the case when the channel
length block codes. However, when a peak power constragtate is causally observed both at the transmitter and at the
to the input of an AWGNC is added, then this phenomenaaceiver end will be considered. Our choice is justified by
disappears as shown in [37]. At the same time it is also knowlme aim to separate the study of the role of output feedback
that, if variable-length coding schemes are allowed, then tin channel state estimation from its effect in allowing bett
sphere-packing exponent can be beaten even when no outplidbility versus delay tradeoffs for variable-lengthodi-
feedback is available but for a single bit used only onces Thioding schemes.
situation is traditionally referred to as decision feedband In [32] a general stochastic control framework for evalogti
was studied in [14] (see also [9, pag. 201]). the capacity of channels with memory and feedback has been
A very simple exact formula was found by Burnasheintroduced. The capacity has been characterized as thiosolu
[6] for the reliability function of DMCs with full causal of a dynamic-programming average-cost optimality equmatio
output feedback in the case of variable-length block-cgdirfExistence of a solution to such an equation implies inforomat
schemes. Burnashev’s analysis combined martingale thestgbility [17]. Also lower bounds a la Gallager to the error
arguments with more standard information-theoretic tdbis exponents achievable with fixed-length coding schemes are
remarkable that in this setting the reliability functiorkisown, obtained in [32]. In the present paper we follow a similar
in a very simple form, at any rate below capacity, in shampproach in order to characterize the reliability functimin
contrast to what happens in most channel-coding problems f@riable-length block-coding schemes with feedback. Sarch
which the reliability function can be exactly evaluatedyoat exponent will be characterized in terms of solutions toaiart
rates close to capacity. Another important point is that thdarkov decision processes (MDPs). The main new feature
Burnashev exponent of a DMC can dramatically exceed tpesed by variable-length schemes is that we have to deal
sphere-packing exponent; in particular it approachesaigpa with average cost optimality problems with a stopping time
with nonzero slope. horizon, for which standard results in MDP theory cannot
Thus, variable-length block-coding appears a naturahggett be used directly. We adopt the convex-analytic approach [4]
for transmission over channels with feedback. In fact, #nd use Hoeffding-Azuma inequality in order to prove a
has already been considered by many authors after [6].s&ong uniform convergence result for the empirical measur
simple two-phase iterative scheme achieving the Burnashmocess. (See [21] for results of a similar flavour in the dnit
exponent was introduced by Yamamoto and Itoh in [38%tate finite-action setting.) This allows us to find suffitien
More recently, low-complexity variable-length block-éod conditions on the tails of a sequence of stopping times
schemes with feedback have been proposed and analyzetbinthe solutions of the average-cost optimality problems t
[25]. The works [33] and [34] dealt with universality issyesasymptotically converge to the solution of the correspogdi
addressing the question whether the Burnashev exponent tdimite-horizon problems, for which stationary policiesea
be achieved without exact knowledge of the statistics of th@own to be optimal.
channel but only knowing it belongs to a certain class of The rest of this paper is organized as follows. In Sect. Il
DMCs. In [2] a simplification of Burnashev’s original prod][ causal feedback variable-length block-coding schemes for
is proposed, while [23] is concerned with the charactemat FSMCs are introduced, and capacity and reliability functio
of the reliability function of DMCs with feedback and costare defined as solution of optimization problems involving t
constraints. In [26] low-complexity schemes for FSMCs witlstochastic kernel describing the FSMC. The main result of
feedback are proposed. However, to the best of our knowledtgee paper is then stated in Theorem 1. In Sect. Ill we prove
no extension of Burnashev’s theorem to channels with memag upper bound to the reliability function of FSMCs with
has been considered so far. feedback and variable-length block-coding. The main tesful
The present work deals with a generalization of Burnashevtsgat section is contained in Theorem 2 which generalizes Bur



nashev’s result [6]. Sect. IV is of a technical nature andsdea Throughout the paper we shall restrict ourselves to FSMCs
with Markov decision processes with stopping time horizonsatisfying the following ergodicity assumption.
Some .stochas.uc cqntrol techniques are _rewewed and the m,&"ssumption 1. For every f : S — X the stochastic matrix
result is contained in Theorem 3 which is then used to proye . . . : _
. T ) is irreducible, i.e. for every;, so € S there exists some

that the bound of Theorem 2 asymptotically coincides wit . 2

- . . > 1 such that(Q%)s, s, > 0, whereQ’; denotes the product
the reliability function (1). In Sect. V a sequence of S|mple]c o 2o :
. : o Q¢ with itself ¢ times.
iterative schemes based on a generalization of Yamamoto-
Itoh’s idea [38] is proposed and its performance is analyzedAssumption 1 can be relaxed or replaced by other equiv-
showing that this sequence is asymptotically optimal imter alent assumptions. Here we limit ourselves to observe that i
of attainable error exponents. Finally, in Sect. VI an esipli involves theS-marginals{ Ps} of the Markov channel only.

example is studied. Sect. VIl presents some conclusions dvidreover, it is easily testable, since it requires a finitenber

points out to possible topics for future research. of finite directed graphs to be strongly connected. Sincetak
a convex combination does not reduce the support, Assumptio
Il. STATEMENT OF THE PROBLEM AND MAIN RESULT 1 guarantees that for every deterministic stationary golic
A. Stationary ergodic Markov channels 7w : S — P(X) the stochastic matrig), is irreducible. Then,

Throughout the papef’, Y, S will respectively denote the Perron-Frobenius theorem [10, pag. 58] guarantees that

channel input, output and state spaces. All are assumed@e has a unique stationary distribution A(S) which will
be finite. be denoted byu..

Definition 1. A stationaryMarkov channeis described by: B. Capacity of ergodic FSMCs
o« a stochastic kernel consisting of a family . . . .
To any ergodic FSMC we associate the mutual information

{P(-,|s,2) e P(ExV)|seS,ze X} of joint e
probability measures ovef x Y, indexed by elementsCOSt functionc : § x P(¥) — R,

of S and X’; c(s,u) = I(X;Y,5:]S=y5s)
. an initial state distributiony in P(S). = 2u(@)P(st,yls z)log s 5((,:)35?(!3‘?33 S
As it will become clear, the quantity’(s;,yl|s,z) corre- ner (5)

sponds to the conditioned joint probability that the negtest and define its capacity as
is s and the current output ig, given that the current state

is s and the current input is. C:=maxI(X;Y,54]5) = dnax > tix(s)e(s, m(s))
For a channel as in Def. 1, let s€S (6)
Ps(sy|s,x) = ZyP(S+,y| $,T) In the definitions (5) and (6) the terni$éX; S, Y| S = s) and
ye

I(X;S51,Y]| S) respectively denote the mutual information be-
tweenX and the pai(S;,Y) whenS = s, and the conditional
mutual information (see [8]) betweeX and the pairS;,Y)
%iven S, whereS is anS-valued random variable (r.v.) whose
marginal distribution is given by the stationary measprg

is an X'-valued r.v. whose conditional distribution giveéh
is described by the policy, while S andY are respectively
P(sy,yls,z) = Ps(sy|s)Py(yls,x). (2) anS-valued r.v. and &-valued r.v. whose joint conditional
|i§tribution givenX and S is described by the stochastic
ernel P(S.,Y]| S, X). Observe that the mutual information
cost functiore is continuoug overS x P(X), and takes values

in the bounded interveD, log | X|] .

Py(yls,2) = 5 Plsy,yls2)
sy ES
be the S-marginals and they-marginals respectively. A
Markov channel is said to have no ISl if, conditioned on th
current state, the next state is independent from the durr
input and output, i.e. if the stochastic kernel factorizes a

We shall consider the associated stochastic kerng
{Qs(-]s,u)} and {Q(-, -|s,u)} where, for the states
sy,s € S, the outputy € Y, and the input distribution

u € P(X), The quantityC' defined above is known to equal the capacity
Qs+ yls,w) = 3 Plsy,yls z)u(z) of the ergodic Markov channel we are considering when
Qs(si|s,u) = mix Ps(ss | s, 2)u(z). 3 perfe_ct causal CSl is available at bot.h t_ransmission enitls, w
TEX or without output feedback [32]. It is important to observe
We shall use the notation that, due to the presence of ISl the polieyplays a dual role
in the optimization problem (5) since it affects both the oalt
Qn = (Qs (s | S’W(S)))S,S+GS 4 information coste(s, m(s)) = I(X;54,Y|S = s) as well as

for the state-transition stochastic matrix induced by a mdpe ergodic channel state distributipn with respect to which
7 : S — P(X) (the latter will be referred to as a deterministi¢he former is averaged.

stationary policy). With a common abuse of notation, for anyzThroughout the paper, finite sets will be considered equippéh the

map f : § — X we shall write@); in place ofQs, . ! complete topology, finite-dimensional spaces equippedh Wit Euclidean
topology, and product spaces with the product topology.ddefor instance,
IHere and throughout the paper, for a measure spdc#) we shall denote the continuity of the functionc : S x P(X) — R is equivalent to the
Dirac’s delta probability measure centered in a paint A by dq, i.e., for  continuity of the functionsu — c(s,u) over the simplexP(X), for all
BeB,d.,(B)=1ifa€ B,andéq(B) =01if a ¢ B. s€S.



In the case when there is no ISI, i.e. when (2) is satisfie

this phenomenon disappears. In fact, since the invariaat m X S YIX S, R
sure p is independent from the policy, we have that (6) W — ﬂ S PO iS %) Y—_ — W
reduces to t t
c = Zu(s) Inaxc(s Dx) Y, Delay
= Zu(s)maxI(X,Y|S: s), (7)
s px

Fig. 1. Information patterns for variable-length blocldowy schemes on a

where in the rightmost side of (7nax,, I(X;Y|S = s) FSMC with causal feedback and CSI.
coincides with the capacity of the DMC with inpit, output
Y, and transition probabilitie®y- (- |s, - ). The simplest case
of FSMCs with no ISl is obtained when the state sequencel¢fine the Burnashev coefficient of a Markov channel as
an i.i.d. exogenous process, i.e. when

Pls ] 5,) = (s )Py (o5, ) = S D el (14)

e ’ mS=P(X) (g5

In this case, (6) reduces to the capacity of a DMC with input
spacex’ := X -the set of all maps frons to X-, output Notice thatD is finite iff (13) holds.

space)’ := § x Y -the Cartesian product & and Y-, and Moreover, a standard convexity argument allows one to

transition probabilities given by argue that both the suprema in (9) and in (14) are achieved
NN , in some corner points of the simpléX(X’). More precisely,
(y'l2") = u(s) Py (yl 5,2°(s)) ®)  for (9), this follows immediately from the convexity of the

wherey’ = (sy,y). Observe the difference with respect td&ullback-Leibler divergenceD (v1||v2) in v [8, Th. 2.7.2],
the case when the state is causally observed at the traesmafld the linearity of Q(-, -|[s,u’) in u’. For (14), one
only, whose capacity was first found in [29]. While the inpu¢an invoke [5, Lemma 5.3] guaranteeing the convexity of
spaces of the equivalent DMCs do coincide, the output spatecs H=(s)d(s,m(s)) in Q(-, -|[s,u), and again observe

is larger, as we assume that the state is causally observdBf Q(. - [|s,u) is linear inu. Hence, we have
also at the receiver end.

Finally, notice that, when the state space is trivial (.BeW D = max 3 py, (s)P(s., 9] S,fa(S))log%
|S| = 1), (6) reduces to the well-known formula for the farfo 5,57,y

capacity of a DMC. = max ¥ pus, (5)D (P(r |5, fa(s)IIPC 15, fu(3))) |

fa7fb S
N (15)

C. Burnashev coefficient of FSMCs where the maximum is taken over all functiofis f, € X'S.
Consider now the cost functiah: S x P(X) — [0, +-o0] Similarly to what has been already noted for the role
d — supD o o / of the policy = in the optimization problem (6), it can

(5,2) " QG -1, )llQC-, -[5,u) be observed that, due to the presence of ISI, the map

= sup 3. Q(s+,y|s,u)1og%, ) has a dual effect in the maximization in (15) since it af-
u Y5y fects both the Kullback-Leibler information divergencesto

where D(vy||v2) denotes the Kullback-Leibler information? (P(+, - |5, fa(s))I[ P(-, -|s, fs(s))) and the ergodic state

divergence between two probability measurgsandv,. For Measureuy, . Notice the asymmetry with the role of the map
eachs € S, it is useful to consider the set f» whose associated invariant state measure instead does not

come into the picture at all in the definition of the coeffitien
Zs:={(s4,y) € SxY|Ir € X: P(sy,yls,x) >0} (10) D. Once again, in the absence of ISI, (15) simplifies to

of all channel state and output pairs which can be achieved

from the states, and the quantity D=> p(s s) max D (P(-, -[s,2a)[| P(-, [ 5,2)) -
seS a,T

As 1= min{P(s+,y|s,:v)’:v€X, (s1+,7) EZS}. (11)
We observe that in the memoryless case (i.e. wisén= 1)
the coefficientD coincides with the Kullback-Leibler infor-
mation divergence between the output measures assoociated t
the pair of most distinguishable inputs, the quantity orédly
denoted with the symbal’; in [6]. When the state space is
A :=min{\| s € S}, (12) nontrivial (S| > 1), and the channel state process forms an
i.i.d. sequence independent from the channel input, then th
is strictly positive, i.e. Burnashev coefficienb reduces to that of the equivalent DMC
. with enlarged input spac&’ = XS, output spac@”’ = Sx ),
A0 — o = Ssuf d(s,u) < too. (13) and transition probabilities defined in (8).

Observe that\, = 0 iff there exists a paif(sy,y) € S x Y
which is reachable from by some but not all possible inputs
x € X. It follows that, the cost functior is bounded and
continuous ovelS x P(X) if and only if



D. Causal feedback encoders, sequential decoders, and miairthis paper will be meant to hol&-almost surely, thought

result this may not always be explicitly stated.

Definition 2. A causal feedback encoderthe pair of a finite  pefinition 3. A transmission timd” is a stopping time for the

message set and a sequence of maps receiver filtration F, i.e. itis {1,2,...,c0}-valued r.v. such
¢ = (W, (o W xS x Y — X)teN) _ (16) that, the even{T < t} is F;-measurable for each time

With Def. 2, we are implicitly assuming that perfect Chaml_)eﬁmuon 4. A sequential decoddor for a causal feedback

nel state knowledge as well as perfect output feedback aerréCOde@ as in (16) is a sequence of maps

available at the encoder side. U = (1/% St Yt /\/l)
Given a stationary Markov channel and a causal feedback o _

encoder as in Def. 2, we shall consider a probability spaceFor a transmission timg’ and a sequential decodér, the

(9, A,P). The corresponding expectation operator will bestimated message is

denoted byE, while, for an eventd € A, A = Q\ A will s T < T

denote the complementary event, ahg : Q — {0,1} will W= d4r (S1,Y1) - (20)

denote its indicator function, defined liyy(a) = 1if a € A, Notice that with Def.s 3 and 4 we are assuming that perfect

La(a) =0if a ¢ A. We assume that the following r.v.s are:aysal state knowledge is available at the receiver. Iripdat

- (19)

defined over((2, A, P): the fact that the transmitter’s feedback and the receiver's
« a)W-valued r.v.W describing the message to be transsbservation patterns are nested allows one to use a variable
mitted; length scheme.
 a sequenceX = (X;) of X-valued r..s (the channel The triple(®, T, ¥) consisting of a causal feedback encoder
input sequence); ®, a transmission tim&' and a sequential decoder, is called
« a sequencey” = (Y;) of Y-valued r.v.s (the channela variable-length block-coding scheme. Its error proligtii
output sequence); given by
» asequence = (S;) of S-valued r.v.s (the channel state pe(®, T, 1) := P (W ” W) _
sequence).
We shall consider the time orderirig Following Burnashev’s approach we shall consider the ex-

pected decoding tim&[T] as a measure of the delay of the
scheme(®, T, ¥) and accordingly define its rate as
and assume that-a.s.

log |W)|

P(W =w)=1/W|,  P(S1 =s|W)=pu(s), R(®,T,¥) = E[T]

P(Xe = x’ WSE XY ) = 5¢t(W,S§,Y1H)(x)’ We are now ready to state our main result. It is formulated
P(Siy1 =5,Y; = y‘ W,8t, Y XT) = P(S,y]St,Xt) . In an asymptotic setting, considering infinite sequences of
(17) variable-length block-coding schemes with asymptoticaye
It is convenient to introduce the following notation for theate below capacity and vanishing error probability.
observation available at the encoder and decoder side. I]:_%r 1 Fo Rin (0.C
everyt we define ther-fields &, := o (S%,Y,'™"), describing eorem L. Forany & in 0,€) _
the feedback observation available at the encoder side, and) any infinite sequencg®™,T(), (")) of variable-

W, 51, X1,Y1,52, X0, Y, ...,

F, = o(S!,Y}), describing the observation available at  length block-coding scheméssuch that
the decoder._ Not_lce that the ftu_ll1 observation availablehat t lim p, (q)(n)’T(n)7 \I}(n)) -0
encoder at time is o(W, S1,Y; ). Clearly n (21)

liminf R (@, 7™M ¥™) > R,
{0,Q}=&=FC&HCFC...CA. (18) "

In particular, we end up with two nested filtrations:
F = (ft)tZO and& = (5,5),520.

satisfies

1
i - (n) pn) ()

Observe that, while the spa¢®, .4) and the filtrationg F;) hmnsup E[T(™)] log pe ((I) T W ) < Ep(R).
and (£;) depend on the message 36t and on the channel (22)
state, input and output sefs X and only, 4 the probability ~ 2) there exists an infinite sequen¢@™, 7™ ¥(™) of
measureP does depend on the stochastic kerReflescribing variable-length block-coding schemes satisfying (21)
the channel, as well as on the encodeMany of statements and such that:

Different time orderings would lead to similar results: fiostance the
time orderingW, So, X1, 51, Y1, X2, S2, Y2, ... can be handled by consid- . 1 (n) pn) g(n)
ering the stochastic kerndlP(s,y|s—,z)} describing the joint probability llg—m log pe (‘1) , TV W ) = Fp(R),

distribution of the current state and output given the mpnesistate and the
current input.

“Indeed, with no loss of generalif can be identified withy) x SN x AN x
VN, and the r.v.9¥, S, X, Y can be identified with the standard projections °Here the sequence indexshould not be confused with the time indgx
to W, SN, XN and YN respectively. nor with the average block-lengfR[7"(™)].

(23)



o if D=+00 attimet+1. G := (G;) will denote the corresponding filtration.
() () g Let
Pe (@ NAQR ):0, YneN. (24) 0, € POV),  6u(w) = P(W = w|Gy).,

Observe that Burnashev’s original result [6] for DMCs can I =1 — max {6y (w)|w € W},
be recovered as a particular case of Theorem 1 when the staderespectively the conditioned probability distributiohthe
space is trivial, i.e|S| = 1. messagéV and the MAP error probability given the feedback
Notice that, whenD = +o0, the first point of Theorem 1 observationg; at timet + 1. Clearly, bothd, andII; are G;-
becomes trivial, while the second point tells us that feebameasurable r.v.s.
coding schemes with zero-error probability exist. As itlwil For each timet, let us consider the classes of decoders
become clear in Sect V, the reason is that +oo iff there D, := {1, : St x Yt — W}, D, := {1, : S'T1 x Yt — W},
exist two states ands., two inputsz; andz, and an output differing because of the possible dependence on the State
y such thatP(s4,y|s,z1) > 0 and P(s4+,y| s, z2) = 0: this It is a well-known fact that the decoder minimizing the error
makes it possible to build a sequence of binary coding schenpeobability overD; is the maximum a posteriori one, defined
whose error probability conditioned on the transmission @y ©

one of the two codewords is identically zero, while the P (S YY) := argmax {0 (w)} . (25)
error probability conditioned on the transmission of thkeot wew
codeword is asymptotically vanishing. SinceD; C Dy, it follows that, for any decodey; € D;, we
have
I11. AN UPPER BOUND ON THE ACHIEVABLE ERROR Pe(®,t,10;) > pe(®,t, 1) = E[IL] .
EXPONENT

The discussion above naturally generalizes from the fixed-
The aim of this section is to provide an upper boungngth setting to the sequential one. Given a transmisgios t

on the error exponent of an arbitrary variable-length block™, observe that, sinc&, C G; for everyt > 0, T is also

coding scheme. A first observation is that, without any losgopping time for the filtratiorg and 7 C Gr. It follows

of generality, we can restrict ourselves to the case wheB that the error probability of any variable-length blockdig

finite, since otherwise the claim (22) is trivially true. Thmin scheme(®, T, ¥), is lower bounded by that of®, T, ¥),

result of this section is contained in Theorem 2 whose proghere ¥ := () is the sequential MAP decoder defined in
will pass through a series of intermediate steps, contaimed(25). Therefore we can conclude that
Lemmas 1, 2, 3, 4 and 5. The results of this section generalize

those in the [6], [33], [34], [23] and [2] to Markov channels, pe (2,T,¥) > E[ll7] , (26)
and the proofs we present are close in spirit to the argumefds any variable-length block-coding scherf®, T', ¥).
developed in these references. In the sequel we shall obtain lower bounds for the righthand

The main idea, borrowed from [6], is to obtain two differengide of (26). In particular, sinc& is uniformly distributed
upper bounds for the error probability. Differently from],[6 over the message s&v and is independent from the initial
[33], [34] and [23], we will follow an approach similar to thestateS;, we have tha(w) = P(W = w) = 1/|W]| for each
one proposed in [2] and look at the behaviour of the maximumessages € W, so thatll, = (|W|—1)/|W|. Moreover, we
a posteriori (MAP) error probability, rather than that obta have the following recursive lower bound foi;.
posteriori entropy. The aforementioned bounds correspond .
two distinct phases which can be recognized in any seqdlenhgmma 1. Given any causal feedback encoderP-a.s.,
transmission scheme and will be the content of Sect.s Ill-A I, > ATy, t>1.
and 111-B. The first one is provided in Lemma 2 whose proof ] .
is based on an application of Fano’s inequality combinedF Proof. Se_e Aé)plendlx A. ider th -
with a martingale argument invoking Doob’s optional staypi or everye in (0, 5), we consider the r.v.
theorem. The second bound is given by Lemma 4 whose 7o == min {7, inf {t e N: I, < e}} , (27)
proof combines the use of the log-sum inequality with anoth
application of Doob’s optional stopping theorem. In Sel¢tCl
these two bounds will be combined obtaining Theorem 2.

Sescribing the first time befor§ when the MAP error
probability goes belowe. It is immediate to verify that
is a stopping time for the filtratio. Moreover, the event
{Il,. > ¢} implies the even{r. = T'}, so that an application
A. A first bound on the error probablllty of the Markov inequa"ty and (26) give us

Suppose we are given a causal feedback encddetr P (Il,, > ¢) P{Il, >e}n{r. =T}
(W, {¢:}) as in (16) and a transmission tifieas in Def. 3. : :

The goal is to find a lower bound for the error probability < P(Ir >e¢)
p(®,T,¥) whereV is an arbitrary sequential decoder for < %IE [IT7]
and T'. Our arguments here closely parallel those developed < %pe@,T, ).

in [2, Sect. IV] in the memoryless case.
. It will be convenlept. to define for every time> 0 the o- ~ SWe shall use the convention for the operaiogmax to arbitrarily assign
field G; := &1 describing the encoder’s feedback observatiame of the optimizing values in case of non-uniqueness.



We introduce the following notation for the a posterioriest since it must decide between two classes of probability

entropy
Ty :=H(0:) = ) 6;(w)log(w),
wew

Observe that, since the initial statg is independent from the
messagél/, then

t>0.

Ty =log|WV).

From Fano’s inequality [8, Th. 2.11.1,pag. 39] it followsth
the eventd := {II,. < e} implies that

I'.. <H(e) +elog|WV].

Hence, sincd’;. < log|W)|, the expected value df,, can be
bounded from above as follows:
AP (7)

E[T,.] E [T, |A]P(A) +E Iy,
P(A) (H(e) + elog|W|) + P (Z) log |W)|
H(e) + (¢ + 1pe(®, T, V)) log W] .

<

<
(28)
We now introduce, for every timg aP(X)-valued r.v. Y,
describing the channel input distribution induced by theseh
encoderd at timet:

Yi(z) =P (X; = 2[&) =P (¢:(W, S1,Y™") = 2[&) .
(29)
Notice thatY; is an&;-measurable r.v., i.e. equivalently it is
a function of the pair( S, Y 1).

The following result relates three relevant quantitiesrcha
acterizing the performances of any variable-length bIoc}g—1 ::D(

coding scheme: the cardinality of the message )4&tthe

error probability of the coding scheme, and the the mutual

information costc (5) incurred up to the stopping time:

C.(®,T) := E[ R rt)} .

1<t<r.

(30)
Lemma 2. For any variable-length block-coding schem
(®,T,¥) and any0 < ¢ < %, we have

CIJ,T,\IJ)>

C.(9,T) > (1—5— Pe ( - log|W| — H(e). (31)

Proof: See Appendix A.

laws for the proces$S,Y’) rather than between two single
laws. Define } 5
W= 4r (ST Y7).

For everyt, we define theP(X)-valued random variables
Y? and Y} by

Yi(z) =P (X; =2|WeW;, &),

The r.v. XY? (respectivelyY;) represents the channel input
distribution at timet induced by the encoddr when restricted
to the message subsgt, (resp.V;). Notice that

Y =0,_10WV)Y} + 60,1 (W)Y} .

Forr < ¢t andi = {0,1}, define theg,-conditioned
probability distributionv., € P (S**! x Y*) of the channel
state and output pairSi*, ;) given {IW € W;}:

Vi_’t(s,y) =P (.S’f+1 =sY =y|lWe Wl-,gr) .

T

Observe that both the random measurgsandv,’, put mass
only on those sequences, y) € S**+! x V' such thats’ ' =
St andy] = Yy

Let now 7 be another stopping time for the filtratia,
such thatr < T Then,v? , andv] ;. are well-defined a§ -
measurable random measures ondkeeld G1. Therefore, we
can consider their Kullback-Leibler information diverges

reX, 1=0,1.

v (ST
Ly:=D (VE,T”V}—,T) =E |:10g % WeWy, g7:|
T, T 1 » T 1
R T v
I/T7T||I/T7T) =K {log o (51T+17Y1T) Wews, G,

(33)
Observe that botly and L; areG,.-measurable r.v.s.

In the special case when bothand T are deterministic
constants, an application of the log-sum inequality wohlovgs
that, for 4 0,1, L; can be bounded from above by the

eQT—conditionaI expected value of the sum of the information

divergence costd (S;, X¢) incurred from timer + 1 to 7.

It turns out that the same is true in our setting where hoth
andT are stopping times for the filtratio@, as stated in the
following lemma, whose proof requires, besides an apptinat
of the log-sum inequality, a martingale argument invoking
Doob’s optional stopping theorem.

B. A lower bound to the error probability of a compositd-emma 3. Let7 andT" be stopping times for the filtratiog

binary hypothesis test

We now consider a particular binary hypothesis testin
problem which will arise while proving the main result, and

provide a lower bound on its error probability. The stepshe
are similar to those in [2, Sect. lll] and [34, Sect. IlI].
Suppose we are given a causal feedback encdder

such thatr < T, and consider a nontrivial binary partition
of the message set as in (32). Then, et 0, 1,

g
L; < E[ S d(S. X | WewnG.|. (34
r T<t<T
Proof: See Appendix A. O

Suppose now thatV; is a G,.-measurable random variable

(W, (¢¢)). Consider a non-trivial binary partition of the MeStaking values ir2"’ \ {0, W}, the class of non-trivial proper

sage set

W =WoUW, , Won Wy =0, Wo, W1 # 0, (32)

a stooping timel for the filtrationg, and a sequential binary
hypothesis testr = (v : St x Y — {0,1}) between the
two hypothesis{WW € Wy} and {W € W;}. Following the

common statistical terminology, we shall cdlla composite

subsets of the message ¥t In other words, we are assuming
that; is a random subset of the messageldetdeterminis-
tically specified by the paifS7**, Y;"). The following result
provides a lower bound on the error probability of the binary
test U conditioned on ther-field G,

pr=P (W # Liwew}| g,) :



Lemma 4. Let  be any causal encoder, and and 7' be Observe that the error event of the decoders implied by
stopping times for the filtratiog such thatr < T'. Then, for the error event ofl_, so that in particular
every2"-valuedG,-measurable vV, we have

1 p pe(®.7,)
E[ Z d(St’-rt{Wewl}) |g7_:| Zlogz—long, (35)

E [P W;AW]QTE)}

T<t<T > EP 1{VV€W1} 7 ]l{WGWl}‘ g"'i)}
. = Elp~.]
where Z := min {HT(WO) ,HT(Wl)}.
_ i Since the functionr — —logx is decreasing and convex on
Proof: See Appendix A. U the interval(0, 1], we get
C. Burnashev bound for Markov channels D.(®,T) > E[E[ Y d (St, 'rf{Wewﬂ) |gT€”
Lemma 5. Let ® be a causal feedback encoder afida Te<tsT \
ission i i > E[-logp..|+log 7
transmission time. Then, for evefy< ¢ < 1/2 there exists < 4
a g,.-measurable random subsgY; of the message sév, > —logE[p,.] + log ¢
whose a posteriori error probability satisfies N : *
= _ Ae
1 e > 6. (W) = Ae. (36) = —logpe(®,T,¥) +log %, (40)
Proof: See Appendix A. O the lastinequality in (40) following from the Jensen inelijya
To a causal encoddr and a transmission tim&, for every The claim now follows by taking a linear combination of (40)
0 < e < 1/2 we associate the quantity and (31). [ |
D.(®,T) = sup IE{ 3 d(ghxf{wewﬂ)} In the memoryless casdS| = 1), Burnashev’s original
Wi Gr, —meas. ro<t<T result (see (4.1) in [6], or (12) in [2]) can be recovered from
re<BW e 6521 xe (38) by optimizing over the channel input distributions;,

(37) Y?, andY;.

equal to the maximum, over all possible choices of a non-In order to prove Part 1 of Theorem 1 it remains to consider
trivial partition of the message séty as a deterministic infinite sequences of variable-length coding schemes with
function of the joint channel state output procéS$ ", Y,*)  vanishing error probability and to show that asymptoticall
stopped at the intermediate time, of the averaged sum of the upper bound in (38) reduces to the Burnashev exponent
the information divergence costls(St, Tﬂ{wewl}) incurred Eg(R). This involves new technical challenges which will be
between times. +1 and7". Intuitively D.(®,T') measures the the object of next section.
maximum error exponent achievable by the encoblevhen
transmitting a binary message between timesnd 7. IV. M ARKOV DECISION PROCESSES WITH STOPPING TIME

Based on Lemma 2 and Lemma 4, we will now prove the HORIZONS
main result of this section, consisting in an upper bound on _ .
the largest error exponent achievable by variable-lenigttki In this section we shall recall some concepts about Markov

coding schemes with perfect causal state knowledge andibut SCISION Processes which will allow us to asyr_nptotl_cally
feedback. stimate the term&.(®,7) and D.(®,T) respectively in

terms of the capacity”, defined in (6), and the Burnashev
Theorem 2. Consider a variable-length block-coding schemeoefficientD, defined in (14), of the FSMC.

(®,T, ). Then, for every in (0, 1), The main idea consists in interpreting the maximization of
“logpe (®, T, W) C.(®,T) and DE.(@ZT) as stochastic Control problems with
average-cost criterion [1]. The control is the channel tnpu
D D distribution chosen as a function of the available feedback
< =CAP,T)+ D(®,T) — =logW|(1—a) -1, , . L o :
- C e ) e ) C ogWI(1-a)=5 information and the controller is identified with the encode

(38) The main novelty these problems present with respect tethos

traditionally addressed by MDP theory consists in the fact
a=¢c+ Pe(2,T,9) , B :=log e _D H(e). (39) that, as a consequence of considering varia.\ble-.lengtmgodi
€ 4 C schemes, we shall need to deal with the situation when the
Proof: Let W) be ag.. -measurable subset of the messaggorizon is neither finite (in the sense of being a deternimist
setWV satisfying (36). We define the binary sequential decodgpnstant) nor infinite (in the sense of being concerned with
Ve = (¢c,¢), where the asymptotic normalized average running cost), but rathe
is,t(S,y) = 1, (U(s,y)), seSTHlye)t. it is allowed to be a stopping t|me. In order to handle '[hI.S
- case we adopt the convex-analytic approach, a technique firs
We can lower bound the error probabiliy, of the com- introduced by Manne in [20] (see also [11]) for the finitetsta
posite hypothesis tesk. conditioned ong,, using Lemma 4 finjte-action setting, and later developed in great geitgray
and (36), obtaining Borkar [4].
Liw In Sect. IV-A we shall first reformulate the problem of
d (S, x, ") g, . > p
2. ( bt ) ]g } optimizing the termsC.(®,T) and D.(®,7) with respect

where

—longE—i—log% < IE{
Te<t<T



to the causal encode&r. Then, we present a brief review ofB. The convex-analytic approach

the convex-analytic approach to Markov decision problems i \yie review some of the ideas of the convex-analytic ap-
Section IV-B, presenting the main ideas and definitions. B}oach following [4].

Sect. IV-C we will prove a uniform convergence theorem for 5 faasible policyr is said to be stationary if the current

the empirical measure process and use this result to treat {6 depends on the current state only and is independent

asymptotic case of the average-cost problem with StOPPiRgm the past state and output history and of the time, igreth

time horizon. The main result of this section is contained if\ists 5 mapr : S — U such thatm(st,y'™!) = (s,)

Theorem 3, which is then applied in Sect. IV-D together with, o1 4 \we shall identify a stationary policy as above with
Theorem 2 in order to prove Part 1 of Theorem 1. the mapr : S — U itself. It has already been noted in

Sect. II-A that, for every stationary policy, the stochastic
A. Markov decision problems with stopping time horizons matrix . describing the state transition probabilities under

We shall consider a controlled Markov chain ovgrwith 7 (See 4) is irreducible, so that existence and uniqueness
compact control spadé := P(X), the space of channel inputOf a stationary distributionu, in _73(8) are guaranteed. It_
distributions. Letg : S x ¢ — R be a continuous (and thusfollows from the Perron-Frobenious theorem [10] that, if
bounded, sincé/ = P(X) is compact) cost function; in our & stauongry policyr is used, then the normalized running
applicationg will coincide either with the mutual information COSt ;- 21—, 9(St, 7(St)) convergesP-almost surely to the
coste defined in (5) or with the information divergence cdst €rgodic average) pr(s)g(s, (s)). Define
defined in (9). We prefer to consider the general case in order s€s

to deal with both problems at once. G := max Z pr(8)g(s,m(s)). (42)
The evolution of the system is described by a state sequence mS—U T

§ = (5), an output sequenck” = (¥;) and a control o oo that the optimization in the righthand side of (42 h

sequencd) = (U,). If at time the system is in Staté, = s 0 came form of those in the definitions (5) and (14) of the
in S, and a control/; = v in U is chosen according to some

: . capacity and the Burnashev coefficient of an ergodic FSMC.
policy, then a cosy(s, u) is incurred and the system prOOIUCe?\lotice that compactness of the spddé of all stationary
the outputY; = y in )Y and moves to next stat€,,; = s

. ; X . policies and continuity of the cosj(s,n(s)) and of the
in S according to the stochastic kerr@(s, y| s, u), defined . : : : .
: e A invariant measurgs,. as functions of the stationary poli
in (3). Once the transition into next state has occurredyva n ir y policy

action is taken and the process is repeated %uarantee the existence of maximizer in (42).
At time . the controlt, is allowed to be arzlf “measurable We now consider stationary randomized policies. These are
’ T e defined as maps : S — P(U), whereP (i) denotes the space
rv., where& = o(Si, Y ") is the encoders feedback

observation at tim€; in other words we are assumin that)]c probability measures o#/, equipped with its Prohorov
t i1\ £ 9 opology, i.e. the topology induced by weak convergence (se
Uy =m (S1,Y] ") for some map

[3, Ch.2]). If 7 is a stationary randomized policy, we shall
mStx Yt S iy use the notatiori( - |s) for the probability measure i®(U/)

) . . o associated byt to the states € S. To any stationary random-

We define afeasible policyr as an infinite sequencer:) jzeq policy# the following control strategy is associated: if at

of such maps. Once a feasible poliayhas been chosen, ame ¢ the state isS;, then the control; is randomly chosen
joint probability distributionP’ for state, control and outputp the control spacéf with conditional distribution given the

sequences is well defined; we will denote By the corre- 5\ qilable informations, = o(S!,Y;~!) equal to7(-|S;).

sponding expectation operator. o Observe that there are two levels of randomization. Therobnt
Let 7 be a stopping time for the filtratioh = (G:) gpace itself has already been defined as the space of chan-
(recall thatG, = £+, describes the encoder's feedback a”ﬁgl input probability distributions?(X'), while the strategy
stat_e _mfo_rma'uon at time + 1_), and consider the following associated to the stationary randomized policghooses a
optimization problem: maximize control at random with conditional distributiofi( - |S;) in
1 ¢ el PU) = P(P(X)). Of course randomized stationary policies
E[7] E"[ Z g (St’m(sl’ Yy ))] (41) are a generalization of deterministic stationary policgsce
tstsr to any deterministic stationary policy: S — U it is possible
over all feasible policiesr = (7;) such thati[r] is finite.  to associate the randomized poligy - [s) = 6, (). To any
Clearly, in the special case wheris almost surely constant randomized stationary policy : S — P(U) we associate
(41) reduces to the standard finite-horizon problem whighe stochastic matrix describing the associated statsitiam
is usually solved with dynamic-programming tools. Anothgsrobabilities
special case is when is geometrically distributed and inde-
pendent of the process@s U andY . In this case (41) reduces Q#(s4]s) == / Q(s4+|s,u)w(duls) . (43)
to the so-called discounted problem which has been widely u
studied in the stochastic control literature [1]. Howewenat Similarly to the case of stationary deterministic policigds
makes the problem non-standard is that in (41} allowed not difficult to conclude that, sinc€: can be written as a
to be an arbitrary stopping time for the filtratigh typically convex combination of a finite number of stochastic matrices
dependent on the processgsU andY. Q¢, with f : § — X, all of which are irreducible, the)
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the by the ergodic theorem. Therefore, at least in this case,
have
P(Sx U) lim v, = N, P, —a.s, (45)

where the convergence of the empirical measure sequence
(v,) to the occupation measurg, is intended in the weak
sense’

We shall denote byX the set of the occupation measures
associated to all the stationary randomized policies, i.e.

. . . o K:={nz|7:8—>PU)} CP(SxU), (46)

Fig. 2. A schematic representation of the optimization @b (??). The
large trianr?ulardSpage is the infinite Cti]imelnsiorlal Proh:é’tﬂclflép(s xU). and by K. the set of all occupation measures associated to
Its gray-shaped subset represents the close convek sef all occupation . e .
measures. The set of extreme points §fis K. and corresponds to the stationary deterministic pOlICIeS
set of all occupation measures associated to stationaeyndietistic policies.

The optimal value of the linear functiongl— (n, g) happens to be achieved K. := {777r | T8 — L{} - P(S X Z/l) :
on K. and thus corresponds to the occupation measgrassociated to an .
optimal deterministic stationary policy* : S — P(X). It is known (see [4]) that botlK and K. are closed subsets

of P(S x U). MoreoverK is convex andk, coincides with
the set of extreme points df’. Furthermore, it is possible to
itself is irreducible and thus admits a unique invariantestacharacterize” as the the set of zeros of the continuous linear

distribution ez in P(S). functional F : P(S x U) — [-1,1]5,

Now, consider the space of joint probability measures
P(S x U); we shall denote the action of € P(S x /) on a Fs(n) ==n({st,U) - / Qs(s]j,uw)dn(j,v),
continuous functiorh : S x U — R by Sxu

8 i.e. (see [4])

hyi= [ hsadn(s.w).
Sxu K={nePSxU):F(n)=0}. (47)
The following definition of occupation measure is at the hea]

r L : : 9
of the convex-analytical approach. n fact, it is possible to think of|F(n)|| ® as a measure of

how far theS-marginal of a measurg in P(S x U) is from
Definition 5. For every stationary (randomized) policy : being invariant for the state process.

S — P(U) the occupation measure af is iz in P(S x U) If one were interested in optimizing the infinite-horizon
defined by running average cost

(nz, h) ::Zuﬁ(s)/uh(s,u)fr(dub), Yhe C(SxU) limninf%Eﬂ[ > g(St,Ut)] = lim inf Ex [(v,, 9)]

sES 1<t<n

wherep; in P(S) is the invariant measure of the stochasti©ver &ll (randomized) stationary policies then (45), (46)
matrix Qz, whileC (S x{) is the space of bounded continuoudnd (47) would immediately lead to the following linear

maps fromS x U to R. programming problem:;
The occupation measurg. can be viewed as the long-time max(n,g) = max (n,g).
empirical frequency of the joint state-control processagoed neK "GIZD(S:Z):

by the stationary (randomized) policy. In fact, for every
time n, we can associate to the controlled Markov process thée notice that, sinc# is compact and is finite, P(S xU) is
empirical measure,, which is aP (S x)-valued r.v. sample- compact in the Prohorov metric [3] (i.e. sequentially costpa
path-wise defined by under weak convergence). Thus, béthand K. are compact.
. Hence, since the map
(U, ) =~ > h(SiUr),  VheC(SxU). (44)

1<t<n

PExU)>n+— (n,9) €ER

Observe that,, is a probability measure on the product spac'g af(?r:gnggtl;]sog; ?ne d ;ror/l%rroevo\fgrposlﬁgz); ':n:d}'se\lliiza':s
S x U, and is itself a r.v. since it is defined as a function o ¢ ’ P

the joint state control random proces!, U?). so that these maxima do coincide, i.e. the maximum dver

If the process is controlled by a stationary (randomized)7recall that a sequence of probability measufes,) on a topologi-
policy = and the initial state is distributed accordinglygq, cal spaceA is said to be weakly convergent to some € P(A) if

then, for any continuous functioh € C,(S x U), the time limy, [, f(a)dvn(a) = [, f(a)dr(a) for all bounded and continuos test
! ! functions f € C,(A).

averag€uv,, h) converges almost surely to the ergodic averagesyere n({shU) = [, n({s}, u)du denotes theS-marginal ofn evalu-
ated ins.

9 . .
h) = his.uw)d S.U Here and throughout the rest of the paplar|| := max; |z;| will denote
{10, 1) /qu (5, u)dnn(s, ), the L>°-norm of a vectore
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is achieved in an extreme point. Thus we have the followinguch more general result than (50) can be proved, as exglaine

chain of equalities in the sequel.
_ In the convex-analytic approach, the key point in the proof
G = max S%;s pr(s)g(s,m(s)) of (49) consists in showing that, under any, not necessarily

= max (n,9) stationary, feasible policyr, the empirical measure process
e S—U (vy,) as defined in (44) converg®s.-almost surely to the set

= max(n,g) K. The way this is usually proven is by using a martingale cen-
neke (48)  tral limit theorem in order to show that the finite-dimension

= 171706&;(((77,9) processF(v,,) converges tad almost surely. The following

_ max  (1,g). is a stronger result, providing an exponential upper boumd o
nEP(SXU): the tails of the random sequen@¢F(v,,)||).

F(n)=0

Lemma 6. For everye > 0, and for every feasible policy
Hence, the optimal occupation measuye is induced by a

stationary deterministic policy*, and is therefore given by: P, (IIF(vn)II >+ l) < 2|8 exp (_n52/2) . (51)
n

(0" h) =D e (5)h(s,7 (), h € Col(S < U), Proof: See Appendix A. O
s€s _ _ _ S We emphasize the fact that the bound (51) is uniform
where .- € P(S) is the invariant state distribution inducedwith respect to the choice of the feasible poliay It is
by the policyn*. Observe that in the last term in (48) both theiow possible to drive conclusions on the tails of the running
constraints and the object functionals are linear. Thigcatés average cost > | g(S;, Uy) based on (51). The core idea

(infinite-dimensional) linear programming as a possible aps the following. From (44), we can rewrite the normalized
proach for computing-, alternative to the dynamic program-unning cost as

ming ones based on policy or value iteration techniques [1], 1

[4]. Moreover, it points out to an easy way to generalize the - Z g(St,Us) = (Un, g) .
theory taking into account average cost constraints (s8g [2 " iS<n

where the Burnashev exponent of DMCs with average ¢
constraints is studied). In fact, in the convex-analytipragch
these merely translate into additional constraints forithear
program.

Bhce the map) — (n, g) is continuous oveP (S x U), and
G = max{(n, g)| n € K}, we have that, whenevet, is close
to the setK, the quantity(v,,, g) cannot be much larger than
G. It follows that, if with high probabilityv,, is close enough
to K, then with high probabilitfv,,, g) cannot be much larger
C. An asymptotic solution to Markov decision problems witthanG. In order to show that with high probability,, is close
a stopping time horizon to K, we want to use (51). In fact, if for somgin P(S xU)

It is known that, under the ergodicity and continuity asthe quantityl|F(n)]| is very small, them is necessarily close
sumptions we have madé, defined in (42) is the sample-pathf® G- More precisely, we define the function: R™ — R

optimal value for the infinite horizon problem with caghot e cPSxU) : |IF <

only over the set of all stationary policies, but also oves th 7€) = sup {{n.9)| ( ) IF@)ll <<}
larger set of all feasible policies (actually over all adsitide Clearly~ is nondecreasing angd0) = G. Moreover, we have
policies, see [4]). This means that, for every feasible gyoli the following result.

™ = (), Lemma 7. The map~y is upper semicontinuous. (i.e,, —

1 ims
1imsup— Z g (Shwt(si’}/ltfl)) S G, Pﬂ- —a.s.. £ = hm5upn 7(571) S 7(5))
o S Proof: See Appendix A. O

o . (49) Let us now introduce the random proce€ss, )
For a sequence of admissible policies™), let P, and
E(,) denote the probability and expectation operators induced G, = sup(vy, g), n € N.

by (") It is known that tzn

) n 3 Clearly the proces$G,,) is sample-path-wise non increasing
G > hmnsup %E(n){ >og (St,wg ) (Sf,Ylt 1))} in n.

1<t<n
= limsup %E(n){ S g(Se, Ut)] , Lemma 8. Let (7(™)) be a sequence of feasible policies, and
" 1<tzn (50) (7(™)) be a sequence of stopping tim&ssuch that for every
: - : - : E(ny[r™ , While
i.e. the limit of the optimal values of finite horizon problemn (7] < o0, whi
coincides with infinite horizon optimal value. Inequality0) lim P, (T(n) < M) —0 VMeN. (52)

can be proven by using dynamic programming arguments

based on the Beliman prlnC|pIe of optlmallty. As shown in 10A]l the (™) are assumed to be stopping times with respect to the filtratio

[32], (50) is useful in characterizing the capacity of chalsn ¢ ¢ we assume that the evefit(™) < t} is G;-measurable for alt and
with memory and feedback with fixed-length codes. Actually,», where we recall thag: = o(Si 1!, Y}t).
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Then Thus the error probability does not decay to zero faster than
. _ exponentially with the expected transmission tifig (™)].
hinp(") (Gron > 7(e)) =0, ve>0. (53) The core idea to prove (55) consists in introducing a
Proof: See Appendix A. O sequencée,) of positive reals and showing that both
The following result can be considered as an asymptotic ) . (n) (n)
estimate of (41). It consists in a generalization of (50)fro T mm {T ’mf{t € N| L™ < E”}} ’ (57)
a deterministic increasing sequence of time horizons to

a (n) -
sequence of stopping times satisfying (52). (wherell;™ denotes the MAP error probability of the encoder

o™ given the observatio,) and 7™ — 7(™) diverge in
Theorem 3. Let (7(™)) be a sequence of feasible policies, anthe sense of satisfying (52). The sequeiicg) needs to be
(7(™) be a sequence of stopping times such that for ewerycarefully chosen: we want it to be asymptotically vanishing
E () [7™] < 0o, while (52) holds true. Then in order to guarantee that™ diverges, but not too fast since
otherwiseT™) — (") would not diverge. It turns out that one

lim sup WE(n) { Z 9(St, Ut)} <G. (54) possible good choice is
n (n) [T ] 1St§‘r(") _1
Proof: Let us fix an arbitrary > 0, and forn > 1 define En i= log p. (@), T("), w(m) ~
the eventd,, := {G,. < ~(e)}.
By app|y|ng Lemma 8’ we obtain It is immediate to Verify that, iﬁmpe (‘I)(n), T(n), \I/(n)) =0,

() then
IE(n) [Zt:l g(St7 Ut)} = IE(n) [T(n) <UT(") ) g)]

= E(n) [T(n) <’U.,.(n) N g)]lAn}
(n) ) g(n) iable-
+E () [T(n) <v7<n),g>]lm} Lemma 9. Let (&™), 7™ ¥'\™) be a sequence of variable

- length block-coding schemes satisfying (21). For evegyN,
< Ey[T™] (7(e) + gmaxPin) (An))  definer™ as in (57). Then

where gmax = max{g(s,u)|s € S,u € U}. From (53) we lim P (T(n) < M) —0, VMeN. (59)
get n

1
lme, =0, lim—p, (cI><">,T<">, \11<">) —0. (58)

v(E) = (€) + gmax lim sup Py (An) Moreover, for any choice of &"V-valued G_.,-measurable
rv. W such that

E(n) |: > g(St-,Ut):|
Aep SP(W e W) <1 - )y,

1<t<r(n)
E(n) [7()]

Y

lim sup
n

Therefore (54) follows from the arbitrariness ef > 0, We have

and the fact that, as a consequence of Lemma 7, we hﬁM@P(T(n)_T(n)SM|W c W(")):O, VM eN. (60)
lim.)gv(e) =G. m "
Proof: See Appendix A. O

, Thanks to (59), we can apply Theorem 3 to the mutual
D. An asymptotic upper bound on the error exponent of ;a¢;rmation cost: obtaining

sequence of variable-length block-coding schemes

We are now ready to step back to the problem of estimating (&), T IE{ > (iESt, Y,)
the error exponent of variable-length block-coding schemgm sup —=2—— '~ — limsup Istsr
over FSMCs. We want to combine the result in Theorem 2 » E[r(™)] n E[r()]
with that in Theorem 3 in order to finally prove Part 1 o
Theorem 1.

<C.

(61)
%imilarly, (60) allows us to apply Theorem 3 to the informoati

Let (& 7 ¥() be a sequence of variable—lengthdlvergence cosi, obtaining
-codi isfvi i (n) (n)
block-coding schemes satisfying (21). Our goal is to prove Jim sup D, (o™ T™) <D. (62)
that n o E[TM — 1)
—log pe (®™, ™) yn) i ;
Jim sup ogp ( ) <p(1- R . (55) Therefore, by applying (61) and (62) first, and then Theorem
n E[T(™)] 2, we get

A first simple conclusion which can be drawn from Theoremp > limsup S Tl(n) (%an (@), 7)) + D, (&), T(n)))
2, using the crude bounds n o BT

> limsup — =—=r=log pe (@), T ()

c(St, Yt) <log|X], d(S;, Y1) < dpax, 1 =0,1, E[T()]
is that C "E[T™)] n) T T
1o () p(n) g D i 1 (n) (n) yn)
lim sup : gpe(E[T(f)F] L)) 2 cR"'hmnSUP Emn)]lOgPe (‘I) , TV )
< élongl + dmax — R(1 — ¢) — log 28 + Z H(e) where «,, and g,, are defined as in (39), and the last step

.(56) follows from (58). Hence, we have proved (22).
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P(&" £ W|W = w,S, = s) of error conditioned on the
transmission of any messagein W,, and of an initial state

Transmission Phase Confirmation Phase approaches zero uniformly with respect bothut@ands, i.e.
| | |
I T 1

n):= max maxP (¥ WIW=w5 =s) =30.
¥ nO [1-y)nO p(n) weW seé‘( AW ! ) ©3)

i D) 4 P(n) i i i
Fig. 3. One epoch in the generalized Yamamoto-ltoh schert@ahlength The trlple ((I) ' \Ij ).WIH be us.ed. in the first phase of
n is divided into two phases: a transmission one of lengte [yn] and a €ach epoch of our iterative transmission scheme.

firmati f lengtth = | (1 — : . . ! .
contirmation one ot ieng L2 =] Binary hypothesis test for the confirmation phase

For the second phase, instead, we consider a causal binary
input encoder®(™ based on the optimal stationary policies

} i of the maximization problem (15). More specifically, for<
In this section we propose and analyze a sequence ;of ., yefine

variable-length block-coding schemes with feedback asymp o ()
totically achieving the Burnashev expondiy (R), thus prov- ¢ : {a,b} x 8" — X, ¢y (m,8) = [r(se),
ing Part 2 of Theorem 1. here f*. f* - S — X are such that

The proposed scheme can be viewed as a generalizatior\lNofe fa fi - !
the one introduced by Yamamoto and Itoh in [38] and consists D = Zuf; ($)D(P(-, - |8, fa( NP+, - |8, f5(9))) -
of a sequence of epochs. Each epoch is made up of two SES

distinct fixed-length transmission phases, respectiveiyed Suppose that a confirmation messagec {a,b} is sent.

communication and confirmation phase. In the communicati§an it is easy to verify that the pair sequeriSe,1,Y;)™,

phase the message to be sent is encoded through a block G8fQs 3 Markov chain over the space of the achievable channel
and transmitted over the channel. At the end of this phagge output pairs

the decoder makes a tentative decision about the message sen

based on the observation of the channel outputs and of thé := U, Zs = {(s+,¥)| s,z : P(sy,y|s,x) >0}, (64)
state sequence. As perfect caL_Js_aI f(_eedback is availableatvbith transition probability matrix

encoder, the result of this decision is known at the encoder.

In the confirmation phase a binary message, acknowledging P, = (Pm(er,yls,yf) = P(S+,y|57f;;(5))) .

the decoder’s estimation if it is correct, or denying it ifist ~

wrong, is sent by the encoder through a fixed-length repatitilt follows that a decoder fob(™) performs a binary hypothesis
code-function. The decoder performs a binary hypothesis téest between two Markov chain hypothesis. Notice that for
in order to decide whether a deny or an acknowledge mess&géh chains the transition probabilitié%, (s, y|s, y—) do not
has been sent. If an acknowledge is detected the transmisglepend on the second compongntof the past state, but on
halts, while if a deny is detected the system restarts witbva nits first component only, as well as on the full future state
epoch, transmitting the same message with the same proto€e}, v).

More precisely, we design our scheme as follows. Given When the coefficientD is finite, as a consequence of
a design rateR in (0,C), let us fix an arbitraryy in Assumption 1 and (13), we have that the stochastic matrix
(g, 1). For everyn in N, consider a message st of P, is irreducible overZ, with ergodic measurg,,, € P(Z2)
cardinality W™ | = exp(|nR]) and two blocklengths, and given by

n respectively defined a8 = , N i=mn—n. _
1 respectively k= fon(509) == 3 () P(sstl s, fnls)) . € {ab).
Fixed-length block-coding for the communication phase s€ES

It is known from previous works (see [32] for instancelsing known results on binary hypothesis tests for irreblieci

that the capacityC' of the stationary Markov channel wemarkov chains (see [24], [5] and [10, pagg.72-82]) it is
are considering is achievable by fixed-length block-codingbssible to show that a decoder
schemes. Thus, since the rate of the communication phase is

V. AN ASYMPTOTICALLY OPTIMAL SCHEME

T (n) . n—1
kept below capacity, T (S x )" = {a, b}
. . log|W™| R can be chosen in such a way that, asymptotically:jnits
R:= h}}l — 5 5 <C, type-b error probability achieves the exponent (recall (15))

D = %;SN@(S)D(P(w'|S,f;(8))||P(', 15, £5(s))

[l (o (2)Py(z4| 2
S fia(2)Pa(z4] 2) log elall2)

there e>A<ists a sequence of causal encodéfs) =
(W (M) with ¢ = WM x 8§t x 1o A,

and a corresponding sequence of fixed-lengtidecoders Z,z 4 i
(U(™)(notice thatn is the sequence index whilg is the = > ﬂa(s,y_)P(s+,y|s,f;(s))log%m
block-length) with error probability asymptotically vahing S5+.Y—y

in n (see [32, Th. 5.3, special case of Sect. 8.1.2]). Momehile its type« error probability is vanishing. More specif-
precisely, since the state spaSeis finite, the paird(™ and ically, since the state space is finite, we have that, defining
¥ can be designed in such a way that the probabilipy,(n) as the maximum over all possible initial states of the
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error probability of the paif®(, ¥(™) conditioned on the Clearly, we have
transmission of a confirmation messagec b}, i.e. . -
{a, b} P(éx|Fir-1ym) < p(n), P(er| Fr—1yn+n) < p1., (n).

Pm(n) = max P (‘i’(n) (S5, Y1) £m|W =m, S = S) ,  The transmission halts at the end of the first epoch in which
an acknowledge messages detected at the end of the con-

we have firmation phase, i.e. the first time either a correct transiois
1 : T )
lim pa(n) = 0, lim og~pb(n) -D (65) in the _communlcatlon phase is followed py the suc_cessful
n n n transmission of an acknowledge message in the confirmation

When the coefficienD is infinite, then the stochastic matrixphase, or an incorrect transmission in the communication
P, is irreducible over the sef of reachable state outputphase is followed by an undetected transmission of a deny
pairs (this is because, by Assumption 1 all states S are messageé in the confirmation phase. It follows that we can
reachable, while by (10) every state output p@ir,y) in rewrite ¢™ as
Z is reachable froms), and there exists at least two pairs (n) _ S — }

(s,y_) and (s, y) in Z such thatP, (s, y| s,y_) > 0 while ¢ = inf {k € N st (exné) U U |

Py(s4,y|s,y—) = 0. It follows that a sequence of binary testdVe claim that

T), with () : (S it b}, can be designed n -

ety ey (Ex I = {a0) . P 2 ) < (o) +pa(e) T (70)
Indeed (70) can be shown by induction. It is clearly true for

limp,(n) =0,  py(n) =0, neN. (66) % = 1. Suppose it is true for somein N; then
P (¢ > E[¢™) = k)P (¢ > k)

Such a sequence of tests is given for instance by definin@(g(") > k)

(") (2) equal toa if and only if the (72 — 1)-tuple z contains R —
= P > KP ) >k
a symbolz_ followed by az, . O (¢ = k) (ek“ M| = )

o - P(¢™ > k)P (érp1Neé ") >k
Once fixedd™, ¥(™ &) and W (™) the iterative protocol TR 2 R)P (i1 0 G |C 2 K)
described above defines a variable-length block-codingraeh < (p(n) + pa(n)) P(C™ > k)
(@™, 7 @) As mentioned above, the scheme consists K
. ) . < (p(n) +pa(n))
of a sequence of epochs, each of fixed lengtlin particular

we have Thus(¢(™ is stochastically dominated by the sum of a constant
T = p¢™ 1 plus a r.v. with geometric distribution of paramején) +
pa(n). It follows that its expected value can be bounded
where
- . 1 < E[™)]
¢ i=inf{k > 150 (SE s Y s ) = o) =SB > )
t>1
is a positive mteger_ valued_r.v_. describing the number of < ¥ (p(n)+pa(n))t—l
epochs occurred until transmission halts. t>1
The following result characterizes the asymptotic perfor- = m-

mance of the sequence of schem@s™, 7 W) |ts

< , Hence, from (63) and (65) we have
proof uses arguments similar to those in [34, Sect. I11.B].

_ _ lmE[¢™M] =1. (71)
Theorem 4. For every design rateR in (0,C), and everyy n
in (g, 1), it holds From (71) it immediately follows that
n _log W™ log (exp([nR]))
_log W™ im —2 | iy 28R R
and Moreover, transmission ends with an error if and only if an
) error happens in the communication phase followed by a type-
o if D < oo b error in the confirmation phase, so that, the error proligbili
. —logp. (@™, T w) of the overall schem¢® (™, T(") ¥(™)) can be bounded as
lim E[T™] =D =7, (68 follows
o if D= +00 De (‘I)(n)a T(n)a ‘Il(n)) = P (eq(m N éc(n))
= e (t) =
pe(@W, T W)y =0,  neN. (69) LPlanan{c®=1)
. . . . = & (n)
Proof: We introduce the following notation. First, for = t;P(et né n{¢™ > t})
everyk € N: = SP (e NéE|C™ > )P >t
5 — {§ S(k—l)n-l—ﬁ-l—l Y(k—l)n-ﬁ-ﬁ 4wl is the ;2:1 ( K tk - ) (=21
© & = Y Ph-vntr 0 X-1)n1 < pn)ps(n) X PEC™ > 1)
error event in the communication phase of khth epoch; = b =1 =
o €k = {‘Ij (551?71)n+ﬁ+27Y(§751)1n+ﬁ+1) # l¢, ¢ Is the < %ﬁf(n)v

error event in confirmation phase of tlketh epoch. (72)
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1-p B 1-p
0—S ~ 0—250
>< 1({C B, . ><<
1=—1 a 1=t
1Pg P Toul
Fig. 4. a FSMC with binary state spaSe= {G, B} and binary input/output %
spaceX = Y = {0,1}: notice that the state transition probabilities are O ool
allowed to depend on the current input (ISI). !
wherer,, := 1—p(n)—p.(n). WhenD is infinite, (72) directly "%
implies (69). WhenD is finite, from (63), (65), (71) and (72)
it follows that os2r
1 n 0.5F
D(1—+) > liminf —x,log r
non pp(n)
= logpe (@M, T W)
= liminf
n HE[C(H)] 0.461 ‘
~ i 20T W) f — )10
n E[T™] “l - - [mB))0)
which proves (68). [ | oa2f
It is clear that (23) follows from (68) and the arbitrariness 4 1m0z oam o5 uem o oem 1
of vin (£,1) , so that Part 2 of Theorem 1 is proved. ¥

We end this section with the. fOllOWIhg observation. I‘:ig. 5. Inthe top picture, the capacity of the FSMC of Fig. Aalues of the
follows from (70) that the probability that the proposechsa parametere = 0.001, pg = 0.1, ap = 1— 8o = 0.7, a1 = 1 — B1 = ,

mission scheme halts after more than one epoch is boundedshylotted as a function of in (0,1). In the bottom picture, for the same
ich i ichi i ithvalues of the parameters, the optimal polisy : {G, B} — P({0,1}) is

p(n) + pa(n), a term which is \_/ams_hmgl asymptotlcglly with lotted as a function of, in (0, 1),

n. Then, even if the transmission time is variable, it exceells

n with probability which is asymptotically small in. As also

observed in [23] for memoryless channels, this is a desraljhere ¢, = a,[r(G)](0) + ai[r(G)](1) and & =

property from a pracpcal viewpoint. Obser.ve the .dlﬁerencﬂo[ﬁ(B)](O) + B1[x(B)](1). The mutual information costs are

with respect to the fixed-length block-coding setting, whegiven py

the transmission time is required to be almost surely comsta

for all fixed n € N: in this case, as already mentioned ifg(G>u)=H (u(1)on + u(0)ay) +H§u(1)pG +u(0)(1 - pc))

Sect. |, the error exponent with feedback is upper bounded by —H(pe) — (ug H(an) +u(0) H(aw)) ,
the sphere-packing exponent (see [13], [31]). ¢(B,u)=H (u(1)81 +u(0)6o) + H (u(1)pp + u(0)(1 — pp))
—H(pp) — (u(1) H(S1) + u(0) H(bo)) ,
VI. AN EXPLICIT EXAMPLE H denoting the binary entropy function. The information

We consider a FSMC as in Fig. 4, with state space= divergence costs instead are given by
{G, B}, input and output space&’ = ¥ = {0.1} and (G 6, 6) = D (palll - pa) + Dl ase) »

stochastic kernel given by:
d(B,d5,3)) = D (pplll = pB) + D(ag@llan@)

P(sy,yls,x) = Ps(sy|x,s)P; z,s), )
(5+:ls,2) s(s+le, 8)Py (yle, o) where, forz, y in [0,1], D(z|ly) := zlog { + (1 —z)log t—ﬁ

PS(B|G70):O‘07 PS(B|G31):O‘17
In Fig. 5 and Fig. 6 the special case when = 0.001,

Ps(G|B,0) = fo, Ps(G|B,1) = 1, pg=0.1, a0 =1— 5y =0.7anda; = 1 — ; = v is studied
as a function of the parametetin (0, 1). In particular in Fig. 5

Py (1|G,0) = Py (0|G,1) = pg, the capacity and the optimal poliey: S — X are plotted as

a function of~. Notice that fory = 0.7 the channel has no

Py (11B,0) = Py(0|B,1) = pp, ISI and actually coincides with a memoryless Gilbert-Ellio

channel: for that value the optimal policy chooses the umnifo
distribution both in the good state as well as in the bad state
B. For values ofy below 0.7 (resp. beyond.7), instead, the

where0 < pg < pp < 3, andag, a1, 8o, f1 € (0,1). For
any stationary policyr : S — P({0,1}), the ergodic state

measure associated tocan expressed explicitly: . : .
optimal policy puts more mass on the input symbol 1 (resp.
& - the symbol 0) both in stat€; and stateB, and it is more
pr(B) = g pr(G) = 1= px(B), unbalanced in stat&. In Fig. 6 the Burnashev coefficient of
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Our assumptions are that the channel state is causallywebser
able both at the encoder and the decoder and the stochatic
kernel describing the channel satisfies some mild erggdicit
properties.

As a first topic for future research, we would like to extend
our result to the case when the state is either observahihe at t
encoder only or it is not observable at neither side. We belie
that the techniques used in [32] in order to characterize the
capacity of FSMCs with state not observable may be adopted
to handle our problem as well. The main idea consists in
studying a partially observable Markov decision proces$ an
reduce it to a fully observable one with a larger state space.
However, an extension of the results of in Sect. IV is needed,
as there we explicitly exploited the finiteness of the stptee
in our proofs. Finally, it would be interesting to considbet
problem of finding universal schemes which do not require
exact knowledge of the channel statistics but use feedback i
Fig. 6. The thick solid line is a plot of the Burnashev coeéfitiD (evaluated Order to estimate them.
with natural log base) of the FSMC of Fig. 4 for the same valogshe
parameters as in Fig. 5. ACKNOWLEDGEMENTS
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{0,1}. Observe as the minimum value &f is achieved for

~v = 0.7; in that case all the four non trivial policief, f1

give the same value of the Kullbak-Leibler cost. For the reader’s convenience all statements are repeated
Finally it is worth to consider the simple non-ISI case whehefore their proof.

ap = a1 = [y = P1. In this case the state ergodic measure For ¢ > 1 we will use the notationv; € P(S x V),

is the uniform one on{G, B}. Notice by a basic convexity v:(s,y) := P (Si11 = s,Y; = y| &) for the conditioned prob-

argument we get that its capacityand Burnashev coefficient ability distribution of the pair(S;,1,Y;) given the feedback

D satisfy observatiore;, = G;_,. Since, due to the assumption (17) on

the causality of the channel and of the enco@@f, S%, Y;' 1)

APPENDIX

- _ 1 _1
¢ = 1-3H{pe) -3 H(ps) (73) @nd(Si41,Y:) are conditionally independent givefs;, X,),
>  1-H(ipe+ips) = C, for all w € W an application of the Bayes rule gives us
D = 3$D(pclll —pa)+ 3D(pslll —pB) 0, (w)vi(Sii1,Ye) =0;1(w) P(Syy1, Ye|St, 1 (w, S1, Y1t_(1)))-
- 75
> D(3pc+3p8ll —3p8—3p6) = D

(74) Lemma 1. Given any causal feedback encodeyr for every
In (73) and (74)C and D correspond respectively to thet > 1

capacity and the Burnashev coefficient of memoryless bi- Iy > Allg—y a.S.

nary symmetric channel with crossover probability equal to
the ergodic average of the crossover probabilifigs and
pa. Such a channel is introduced in practice when chanrrﬁ
interleavers are used in order to apply to FSMCs codi
techniques designed for DMCs. While this approach reducr%%:c
the decoding complexity, it is well-known that it reduces th
achievable capacity (73) (see [16]). Inequality (74) shiives
this approach causes also a significant loss in the Burnashev A
coefficient of the channel.

Proof: From (17) it follows that, for channel state/output
ir (St+1, Yz) to be observed with non-zero probability after
e stateS;, it is necessary thaty;, S;1) € Zs,, where the
is the set of channel state and output pairs which are
hable from the stat&, - see (10). It follows that, almost
surely, for all timet and for any message in W,

As,

min {min, P (s4,y| St, z) [ (s4,y) € Zs,}
minzP(St+17}/t|St7I)
P(St-ﬁ—la}/;flSta(bt(wasiayvlt_l)) .

VA VAR | IVAN

VII. CONCLUSION

In this paper we studied the error exponent of FSMCs wifhincer:(Si+1,Y;) < 1, using (75) and the inequality above,
feedback. We have proved an exact single-letter charaateriwe have
tion of the reliability function for variable-length bloetoding 0, (w)
schemes with perfect causal output feedback, generalihimg
result obtained by Burnashev [6] for memoryless channels.

vi(Sit1,Y:)0:(w)
P (Si41,YalSe, ¢y (w, S5, Y7 ™H)) 0,1 (w)
/\thl(w) .

Vv
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Let W := ¢, (ST, Y}). It follows that 1

m, - IP’(W;A W\gt) With probability one, the painS;;1,Y:) belongs to the

achievable segg,, so that, fori =0, 1,

= > 6i(w)
wEW\{W} A< g,
> Z 3 Aet_l(U/) < minm P(St-i—la}/”‘stax)
’wEW\{W} S Zm P(St+1, }/t| St, SC)T% (ZZT) S 1 .
2 )\Htfl )
) _ As a consequence we have
thus showing the claim. ]

|Z:] < —logA. (78)
Lemma 2. For any variable-length block-coding scheme . )
(@, 7, %) and any0 < ¢ < % we have Now, for s € S y € Y andi = 0,1, define the r.v.
1 Aé,y = Z ‘rz(f)('r)P(Svy|StaI) :
C.(2,T) > (1 &~ P (2,7, \IJ)> log |W| —H(e) . X
Then, by recalling the definition (9) of the codt applying

Proof: We introduce the r.v.s the log-sum inequality [8, pag. 29], we have, for 1,

Voi=Tht+ Y c(S,X), n>0, P(s,y| St 2) X7 (x)
d(S;, Y% > Y Y0 Sy, )1 yloe, %) >t
1<t<n ( ts t) - y%;w t('r) (S y| ty L ) 0g P(S,y|St, )T%(l’)
First, we prove tha(V},,G,), -, is a martingale. Indeed, 0 Ag_y
V., is G,-measurable, sincB,, is, and so do botty, and Y, 2 Z;As,yk’g Al
for everyl < t < n. Using (75), it follows that v >y
s1,yls,x = 1Og ’ w S WOa g 1
¢(Sn, Xn) = 3 Ln(x)P(s4,yls,2)log s TP((JPy(‘s;,@)As,z) [ Al = ]
no P(Sn+1,Yn|Sn,Xn - [Zt| we Wo’gt 1]
= ]E 1Og VT:L(Sn«Fl;)/n ’gn 1:| . . . (79)
From (79) it follows that, if we define
= E 1og9 1(W)}g" 1} 0
E [Tt — Dol Gua] = > Zi— Y dS,YY)),  n=>0,
1<t<n 1<t<n

Hence, ) ) )
then (V,,,G,),,~, IS a submartingale with respect to the

E[Vi—Va-1|Gn1] =E [[n—Tno1+¢(Sn, Xn)|Ga-1] = 0. conditioned probability measurg(-|W & Wj). Moreover
Second, we observe th&V,,) has uniformly bounded in- it follows from (78) (recall that we are assuming> 0 and
crements since that this is equivalent to the boundedness of the Burnashev
coefficientD) that (V,,) has uniformly bounded increments:
Vio=Va—1| < [¢(Sn, To) [+Tn—Tn1] < log |X|+2log |W|.

1
0 p—
Therefore, we can apply Doob’s optional sampling theoren+t — Vol < [Znal +d(Sni1, Yo npa)] < log h\ +

[35, Th. 10.10,pag. 100], concluding that Thus, sincer < T, Doob’s optional stopping theorem [35,
log|W| = E[Vi|Go] Th. 10.10] can be applied yielding
= E[V.] (76) E [Vr — Vo | W € Wy, G,] 0. (80)
— E[.|+E S, Y| . .
F-]+ Lg%rs e (St t)} Then the claim follows from (80), upon showing that for every
Finally, combining (76) with (28), we obtain nz0 0 (Sn+l Y
log 20n 2L 1) Zs . 81
C.(®,T) = E[K; C(St,‘rt):| B LY 1;71 ‘ (81)
> (1 e @) log [W| — H(e), In fact (81) can be verified by induction. It holds true for
_ n =0, since'? S, is independent from¥ and sov ,(5;) =
which completes the proof. B} ,(S;). Moreover, assume that (81) holds true for some
Then,

Lemma 3. Let 7 and T' be stopping times for the filtratiog
such thatr < T, and consider a nontrivial binary partition > Z, = log
of the message set as in (32). Then, et 0, 1, =

) Sn+1,Y1n)
T,Y{L) + Znta

0. (
1
Vg (
0 (STTEY) S P(Sng2, Yauy1]Snt1,2) Y0 44 (2)
T
Vg (

N

L; < E[ Z d (Sta ‘rzzt) W eW, QT} . (77) = log STFLY) S P(Snt2,Yog1lSny1,2) YL (x)
T<t<T b 0 n+1(S"+2,Y1"I+1)
Proof: We will prove the claim fori = 0. Define TR ey
Z; = log Zm P(Si41,Y:| S, (E)T?($) £>0 with the conventioriog% = 0.

> P(Si1, Y| S, x) Xl () = 12We use the convention for an empty summation to equal zero.



thus proving (81). ]
Lemma 4. Let & be any causal encoder, and and T' be
stopping times for the filtratiod such thatr < T. Then, for
every2"-valuedG,-measurable vV, we have

Z
E d (S, S |G:| = log = —logp;,
|:T<tZ<T ( ! ) :| 4
where Z := min {6, (W), 0 (W1)}.

Proof: First we will prove the statement whew); is
a fixed, non-trivial subset of the message Bgt For i, j €
{0,1}, definep, ; :== P(W = i| W € W;,G,). We shall now

upper bound’y defined in (33). From the log-sum inequality

it follows that

0 T+1 T
bo = B [log S W e
> Pojolog zz:? + pajolog 21_1(1)
> —H(p1jo) — pojo log poj1
> —log2 — pgologpo1 -

We havep, = 6.(0)pq)o + 6-(1)poj1 > Z poj1- From Lemma
3 it follows that

E[ 5 d(Si,00) |WeWs, 6]
T<t<T

Lo

—log2 —p0|010gp0‘1
—log2 — pgjo log & .
(62)

VIV IV

An analogous derivation leads to

E[ S d(S:01) W e Wi,6:] = —log2-pylog (2.
T<t<T (83)
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If instead II,., > ¢, the a posteriori probability of any
messagew in W at time 7. satisfies@, (vw) < 1 — e.
Then it is possible to construdt); in the following way.
Introduce an arbitrary labelling ofV = {wy,ws, ..., wyy,}.
For any1 < i < |W|, define W) = {wi,...,wi}.
Setk := inf{1<i<|W|:0,.(Wu) = Ae}, and define
Wi = Wy, Wo := W\ Wi. Then, clearlyd, (W;) > e,
while

BTE (WO) = 1- 07'5 (W(k))
= 1-0, (Wy_1)) — 0- (wy)
> 1-Xe—(1-¢)
> e,

|
Lemma 6. For everye > 0, and for every feasible policy
Py <||F(vn)|| >e+ l) < 2[S|exp (—ne?/2) .

n

Proof: Let us fix an arbitrary admissible policy. For
everys in S consider the following random process:

Zy =0, Z7 =0,
Zy = (n—1)Fs(vp_1) + 1{s,—sy — L{s,=s} » n>2.
We have
Zy = (n—Dvu1 ({s},U)+ 15— — Lis,—s

—(TL - 1) fgxl,{ QS(S |.77 u)dvn—l(j7 u)
Lig,=s} — té Q(s]St=1,U-1)

>
t§2
;_:2 (Ls,=s) = Ex [Lgs,=s}|E-1]) -

By averaging (82) and (83) with respect to the posteridris immediate to check that? is £,-measurable. Moreover

distribution@, of W giveng,, we get

E[ 3 d(sut ) g, Zlogg—(l—pr)logpn

T<t<T

and the claim follows upon observing that

1
prlogpr 2 —H(pr) 2 log 5 .

|
Lemma 5. Let & be a causal feedback encoder afida
transmission time. Then, for evefy< ¢ < 1/2 there exists

a G,_-measurable random subsiY; of the message sév,
whose a posteriori error probability satisfies

1-2X2>0, W) > e

Proof: Suppose first thaifl,. < e. Then, since clearly
II,._1 > ¢, by Lemma 1 we have

HTE Z A1_[7'571 Z Ae

It follows that, if we definew; := {V¥, (S7<*', ¥{<)} and
Wo := W\ Wi, we have

0, (W) =1-1II,. > 1-e > Ae, 0. Wy) =11, > Ae.

E‘lr[Zferﬂgn] =Z,,Yn>0,

so that(Z;,, &,,Pxr), . is @ martingale. Moreovet,Z;;) has
uniformly bounded increments sin¢&; — Z§| = 0, while

‘Z’rsl-i-l - Z’rsl’ = ‘]]'{Sn+125} - Eﬂ' []]-{Sn+1:s}|gnH S An41,

wherea,, = 1 for n > 2. It follows that we can apply
Hoeffding-Azuma inequality [22], obtaining

2

—&
:2 _—
) eXp< 2

By simply applying a union bound, we can argue that
Pr (IIF(vn)l| 2 €+ 7)
=P (Insé:lJX }erz-i-l + ]]-{Slzs} - ]].{SnJrl:S}} >en+ 1)
< Pr (Usest|Ziga| = en})
< % P (23] 2 0)
seES
< 2|S|exp (—%n) )

which concludes the proof.

—£2n2

n+1

Pr (1Z541] > en) < 2exp
20 j—2 Ok

Lemma 7. The map~y is upper semicontinuous. (i.e,, —
e = limsup,, y(en) < 7(€))
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Proof: As ~ is nondecreasing, with no loss of generality.emma 9. Let (&) 7(™ ¥(") be a sequence of variable-
we can restrict ourselves to consider the case whepe, so length block-coding schemes satisfying (21). For evegyN,
thatlim, (e,,) exists. SinceS x U is compact, the Prohorov definer(™ as in (57). Then
spaceP (S x U) is compact as well [3]. Thus, since the map ] )

n — [|F(n)|| is continuous, the sublevél|F(n)|| < ¢} is lim P (T =M ) =0, VMEeN.
compact. It follows that for every there exist3y,, in P(SxU)

. w. )
such thatl| F(1.)|| < &, and Moreover, for any choice of " -valued G, .,-measurable

rv. W such that
v(en) = sup{<n,g>’ n: [|[F(n)| < En} = (M, 9) - Aen <P(W € W(n)) <1-)en,

Since P(S x U) is compact we can extract a convergmgve have
subsequenceéy,, ); definen _hmnnk Clearly,
UmP(T™ —7" <MW e W) =0, VM eN.
IF @] = tim || F(,)]] < limen, =« "
Proof: From Lemma 1 we have th&ta.s.
It follows that

H(n) > H ”) /\T( ) _r(n > e AT( ) _p(n )'

v(e) = sup{(n.g)|nePSxU):[|[Fn) <e} =
> (@,9) For M,n € N, define the event®,, := {7 — 7(") < M},
= limr(en), pe (@, T() g™} > E { ™ | By } (Bn)
thus proving the claim. [ | > e, \MP(B,)
. . > 2AMP (B, N F,
Lemma 8. Let (7(™)) be a sequence of stopping times for the Z Aen AP (Bn O Fn)
filtration  and (w("™)) be a sequence of feasible policies such = Aep AP (By|Fo) P (F)
that E,,)[7(™)] < oo for everyn and (52) holds true. Then > A22\MP(B,|F,) .

lim P, (G >(e)) =0, Ve >0. It follows that
((I)(n)’T(")’\I/(")) oo

=20,

Proof: For everye > 0, using a union bound estimation P (B,| F,) < \—M—2Pe
and (51) we get, - &

thus showing (60).
1)) = 41
Py (Ge > (e + 1)) = Py ( s>t{ vs,9) > (e + ) t)}) In order to show (59), suppose first thﬁm) < é&n. Then,
< LB (e g) > (e +4)) W - 1
- 7 (n)
S Z]P)n)(vs,g ’Y(E—F%)) |W(n | - A H F(n) <€n- (85)
< 2|5| > exp (—se?/2) For every fixedM in N, define the evenF,, := {7(™) < M}.
st From (60) and (85), it follows that
_ 2|3|M
- — —e2
T-exp(=e*/2) @ PF) < PR <)) +p (0l >2)
i (n)

It follows that for everyM in N we have for the events < P (Ww(n‘w 1/\M <e ) IP (7-(”> _ T("))
An = {Gr(n) > (E + %)} ) Bn = {T(n) > M} ' -
]P)(n)(An) = P(n) (An N Bn) + P(n) (An ﬂB_n) REFERENCES

< Z P(n) (An N {T(n) = 5}) + P(n) (B_n) [1] A. Arapostathis, V.S. Borkar, E. Fernandez-GaucheraddK. Ghosh
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< Z ]P)(n) (Gs > 'y(a + ﬁ)) + ]P)(n) (Bn) average cost criterion: A survey'SIAM J. Control Optim. vol. 31,
s>M 2 ) pp. 282-344, 1993.
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< 2 2|S|m _HP)(H) ( ) verse of Burnashev's reliability function”, submitted,n[me] av. at
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