
TURIN POLYTECHNIC

First School of Engineering
M.Sc. Mathematical Engineering

Local Coordination-Global Congestion

Network Dynamics

Supervisors:
Fabio Fagnani

Giacomo Como

Roberto Lucchetti

Candidate:
Gianluca Brero



Introduction

In 1994, being inspired by the El Farol bar in Santa Fe, New Mexico, the
economist Brian W. Arthur introduced the following problem (Arthur [3]):

�N people decide independently each week whether to go to a bar that o�ers
entertainment on a certain night. For correctness, let us set N at 100. Space is
limited, and the evening is enjoyable if things are not too crowded - speci�cally,
if fewer than 60 percent of the possible 100 are present. There is no sure way to
tell the numbers coming in advance; therefore a person or an agent goes (deems
it worth going) if he expects fewer than 60 to show up or stays home if he expects
more than 60 to go.�

By introducing network structure above problem can be re�ned as follows. Ev-
ery agent is represented by a node of the network and edges connecting nodes
represent friend relationships:
I'm interested in going to the bar in case my friends will be there; however a
too crowded place is discouraging me to get there.
Above new situation can be seen as an instance of a more general problem.
To introduce this new general problem we need to de�ne �externality� as any
situation in which the welfare of an individual if a�ected by the actions of other
individuals without a mutually agreed-upon compensation (Easley et al. [11]).
For example, bene�ts for a single user of a social networking website are directly
related the total number of users. His welfare is increased by each new user even
though no explicit compensation accounts for this. Externalities can be of the
positive type as above or negative, i.e. road users in an urban tra�c situation.
Problem de�nition is now as follows.
Agents have positive externalities from directly connected neighbours while at
the same time su�er negative externality from the totality of the agents within
the network.
In the sequel we will refer to this situation as a local coordination and global con-
gestion case. Among possible applications the case presented in Mayer and Sinai
paper (see [5]) about an air tra�c problem can be considered: in hub airport the
dominating hub airline might increase his marginal pro�ts simply adding new
market connections, each of them exponentially increasing connecting routes
of the hub airline. However those bene�ts may be equated by marginal costs
due to consequent major delays. A certain degree of delay is then necessarily
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expected to represent the equilibrium outcome of an hub airline.
Within the paper this case has been de�ned as tragedy of commons and can be
extended to each situation where individuals su�er the inconvenience of sharing
public services with many other people in order to share common time with
colleagues, friends and relatives. Other application cases are given herein.
Companies often bene�t in case cost-reducing innovations are adopted by sup-
pliers or other business partners. Nevertheless too many adopters may give rise
to a negative externality.
Similarly, when choosing a location �rms may prefer clusters with other �rms in
order to bene�t from sharing local indivisible facilities. A congestion problem
can arise in case of excess of cluster increase with the consequent reduction of
the initial advantage of sharing the same location. Also social sciences o�er
similar application cases, i.e. the adoption of particular behaviors or beliefs, by
young people aiming to be member of unique and exclusive groups.
Game theory can now be introduced to model the situation of local coordination
and global congestion described above. Agents are seen as players involved in
two games: the �rst with neighbouring connected players, the second with the
total population. With reference to our initial El Farol problem following as-
sumptions will be adopted. Players share the same two strategies. Furthermore
they have no individual behavior. When evaluating a context single player does
not care about who has a certain strategy. He only considers two percentages:
the number of players having this strategy over the total number of neighbouring
players and over the total number of players. Given those percentages there are
no di�erences in single player's behavior when taking decisions. Above assump-
tion about homogeneity of players never precludes that they may have a certain
inertia in changing strategy. For example in El Farol case a player already in
the bar can be in�uenced by the same fact of staying in the bar when taking
his decision.
Results presented herein will deal with large size N of population. Traditional
game-theory analyses deal with games in a static perspective: all con�gurations
of strategies are evaluated the general assumption being that players follow
some Nash equilibrium of the game at hand. Here because of the large number
of players involved we approach the games in a dynamical perspective: at each
time step a randomly selected player can adjust his strategy according to the
current situation. We will consider how strategy con�gurations will result in
long time perspective. As dynamic perspective is now introduced further anal-
ysis could be performed. Still remain to understand how players are currently
re�ning their strategy. To sum up selected player will ground his decision on
following data:

• the percentage of neighbouring players having a given strategy over the
total of neighbouring players;

• the percentage of neighbouring players having a given strategy over the
total of players;

• the current strategy of the player.
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Players will behave in a probabilistic way on the base of above three inputs.
This `myopic' character of the players who evaluate only present situation of
strategies when taking their decision, let us study our dynamic in a Markov
Chains perspective. In the sequel strategy updates will be characterized in such
a way that our Markov Chains will be irreducible and aperiodic. This will allow
us to study their limiting time behavior through their unique invariant proba-
bility measure forgetting about initial conditions.
The thesis will procede as follows: in the �rst chapter we introduce the mathe-
matical model of our dynamic and of the games on which this dynamic is based.
We will then present particular tools for studying its behavior.
The second chapter will be focused on a particular type of coordination on a
complete graph structure. The way players consider the congestion e�ect can be
very general: interesting results emerge from their `inertia' in changing strate-
gies. This inertia will not be present in third chapter. Here, the peculiarity of
our dynamics is that every player will be equally predisposed to the two strate-
gies he can assume. In particular, given a certain strategy con�guration, we
de�ne its symmetric form as the situation where each player has the opposite
strategy. In third chapter we will assume that the probability that the selected
player adopts a strategy under a certain strategy con�guration will be equal to
the probability that he adopts the other in the symmetric case. We call this
situation `symmetry of strategies'. We will provide results regarding network
structures made of one and two complete connected components.
In the last chapter we will conclude with simulations based on the outcomes of
chapters two and three.
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Chapter 1

Games and Markov Chains

1.1 Games on Network

Let G = (V, E) be an undirected graph with a �nite set of vertices V of cardinality
N . Self loops won't be considered in our work.
Nodes will represent players: for every player v we de�ne the set of its neighbors
as

Nv = {w ∈ V s.t. {v, w} ∈ E}

which has cardinality dv.
Furthermore, every player v has a set of strategies X with generic element sv.
Given a strategy con�guration s = (s1, . . . , sN ) ∈ XV we de�ne a function

uv,G : XV → R

such that uv,G(s1, . . . , sN ) measures the satisfaction of player v if the strategy
con�guration s gets realized. uv,G is called player v's payo� function.

De�nition 1.1.1. Given an undirected graph G with N nodes, a game on G is
a set

B = {X , u1,G , . . . , uN,G}. (1.1)

In our work we deal with games with a binary set of strategies, namely

X = {0, 1}.

Furthermore, we assume that the way the graph a�ects our game is that every
player is only in�uenced by its neighborhood. This assumption and the ho-
mogeneity of players leads us to the following simpli�cations: given a positive
integer P , let

FP =

{
k

P
: k = 0, . . . , P

}
(1.2)
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be a discrete set contained in the interval [0, 1]. Given a node v ∈ V and a
strategy con�guration s = (s1, . . . , sN ), we de�ne v's local fraction of players
adopting strategy one as

fvloc =
1

dv

∑
w∈Nv

sw ∈ Fdv . (1.3)

Then
uv,G(s1, . . . , sN ) = psv (fvloc).

Notice that, with this simpli�cation, every player is characterized by its current
strategy and its position in the network G. All the information required for
the de�nition of game B is given by G and by the two payo� functions p0 and
p1. We will be then interested in de�ning these payo� functions for our local
coordination and global congestion games.
Given a positive integer P , let KP be the complete graph with M vertices. In
case G = K2 the payo�s can be provided through a matrix A ∈ RX×X such
that, given s, s′ ∈ X ,

Ass′ = ps(s
′).

These binary games are the base for more complex situations. Indeed if we
consider an arbitrary set of nodes V and two players v, w ∈ V, we say that they
coordinate if they play a binary game with

Acoor =

(
1 0
0 1

)
and anticoordinate if they play a binary game with

Acong =

(
0 1
1 0

)
.

The concept of local coordination that we adopt in our work directly follows
from the binary coordination game. In this situation, a player v plays a uni�ed
coordination game with respect to all his neighborhood: the payo�s of such
uni�ed game will be averages of the ones related to the binary coordination
games corresponding to each edge involving v.
In particular, given a strategy s ∈ X , the local coordination payo� will be

pls(f
v
loc) = Acoors0 (1− fvloc) +Acoors1 fvloc ∀s ∈ X . (1.4)

Similarly, a global congestion game is a uni�ed anticoordination game that a
vertex v plays with all the other vertices. This `globality' can be obtained
by considering the neighborhood of a complete graph KN . Given a strategy
con�guration s = (s1, . . . , sN ) we de�ne, for every v ∈ V,

fv =
1

N − 1

∑
w∈V \{v}

sw ∈ FN−1. (1.5)
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The payo�s of the global congestion game will be

pls(f
v) = Acongs0 (1− fv) +Acongs1 fv ∀s ∈ X . (1.6)

Notice that, once a topology is speci�ed, our games will be well de�ned. From
now on we will assume every player to be involved in this two games of local
coordination and global congestion. The way this involvement occurs and the
players behave will be discussed case by case.

1.2 The Dynamic

Once de�ned the games we should de�ne the dynamic that describes how they
are played. It proceeds as follows: at every discrete time step t ∈ N a player v is
randomly selected and adopts a new strategy in a probabilistic way depending
on its current one and the payo�s of the local coordination and global congestion
games he is involved in. In particular, let fvloc(t) and f

v(t) be the local and global
fraction of strategy one players for node v at time t: pls(t) and p

g
s(t) will be their

associated local coordination and global congestion payo�s. Given s ∈ X and
the function

Φ̃s : [−1, 1]2 → [0, 1], (1.7)

our player v currently adopting strategy s will have strategy 1 at the time step
t+ 1 according to the probability

Φ̃s(p
l
1(t)− pl0(t), pg1(t)− pg0(t)). (1.8)

To be coherent with the payo�s we will assume Φ̃s non decreasing in its variables.
Since from (1.4)

pl1(t)− pl0(t) = 2fvloc(t)− 1

and from (1.6)
pg1(t)− pg0(t) = 1− 2fv(t),

we can simplify the notation by de�ning a function Φs such that

Φs(f
v
loc(t), f

v(t)) = Φ̃s(p
l
1(t)− pl0(t), pg1(t)− pg0(t)).

This will be non decreasing in its �rst variable and non increasing in its second
one. For an operative simpli�cation in the sequel we will assume some regular-
ities on Φs. The de�nition is formalized as follows.

De�nition 1.2.1. (Local Coordination-Global Congestion interaction kernels)
A Local Coordination-Global Congestion interaction kernel for a strategy s ∈ X
is a function

Φs : [0, 1]2 → [0, 1] Φs ∈ C1([0, 1]2)

that satis�es following conditions:

8



• ∂Φs
∂x1

(x1, x2) ≥ 0 in [0, 1]2 (local coordination);

• ∂Φs
∂x2

(x1, x2) ≤ 0 in [0, 1]2 (global congestion).

In the sequel we will simply use the term interaction kernels when referring
to Local Coordination-Global Congestion interaction kernels.
Our dynamic can be modeled as a discrete time Markov Chain on the global
con�guration space XV . The transition probability matrix P will be such that
given s and s′ ∈ XV , Ps,s′ = 0 if s and s′ di�er in more than one component.
Otherwise, if s and s′ di�er in the only component v we de�ne

• Ps,s′ =
1

N
Φ0

 1

dv

∑
w∈Nv

sw,
1

N − 1

∑
w∈V \{v}

sw

 if sv = 0 and sv′ = 1;

• Ps,s′ =
1

N

1− Φ1

 1

dv

∑
w∈Nv

sw,
1

N − 1

∑
w∈V \{v}

sw

 if sv = 1 and

sv′ = 0.

To complete the de�nition of the stochastic matrix P we set Ps,s = 1−
∑
s′ 6=s

Ps,s′ .

Let S(t) be the random variable representing the strategy con�guration at time
t. The sequence (S(t))t≥0 will be a Markov Chain with conditional probabilities

P(S(t+ 1) = s′|S(t) = s) = Ps,s′ .

Notice that our dynamic will be well de�ned once provided a network G, two
interaction kernels Φ0 and Φ1 and an initial condition S(0).
To study the limiting time behavior of our players, we will consider the states
of our Markov Chains for large t. In the sequel we will always deal with cases
where

0 < Φs(x1, x2) < 1 ∀(x1, x2) ∈ [0, 1]2. (1.9)

This implies that aperiodic and irreducible Markov Chains will be matters of our
studies. In particular, each of them will have a unique limiting time behavior
independent from the initial condition. This limiting time behavior coincides
with the unique invariant probability measure of the Markov Chain (see Levin
et al.[8]).

1.3 Mean Field Markov Chains

Let d be a divisor of N . in the sequel we will assume that every graph underlying
our dynamics will be a union of d complete connected components KM , where

M =
N

d
; each connected component represents a group of players.

Given the homogeneity of the players, we can convey all the information of a
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general state s ∈ XV of P in the fraction of players adopting strategy 1 in each
connected component. Given a strategy con�guration s and j ∈ {1, . . . , d} let
sj ∈ XM be the vector that keeps trace of the strategies of the players of the
j-th connected component: ∀i ∈ {1, . . . ,M}, sji will be the strategy of the i-th
player of the j-th group.
For every sj ∈ XM we de�ne

fj =
1

M

M∑
i=1

sji ∈ FM .

Furthermore, consider a general positive integer P > 0. Given any f ∈ FP , let

f−s =
(
f − s

P

) P

P − 1
∈ FP−1

be the fraction of strategy 1 players represented by f with the esclusion of a
node with strategy s. Given the original Markov Chain process of strategies in
XV one can consider the corresponding process ρ(t) ∈ F dM

ρ(t) = (f1(t), . . . , fd(t)).

This process is also a Markov Chain on F dM : given f = (f1, . . . , fd) and f ′ =

(f ′1, . . . , f
′
d) ∈ F dM we set

Qf,f ′ = 0 if ||f − f ′||1 >
1

M
.

Otherwise, if f and f ′ di�ers of
1

M
in the component j then

Qf,f ′ =


1

d
(1− fj)Φ0 (fj,−0, f−0) if f ′j = fj +

1

M

1

d
fj (1− Φ1 (fj,−1, f−1)) if f ′j = fj −

1

M

(1.10)

where f =
1

d

d∑
j=1

fj ∈ FN . To conclude

Qf,f = 1−
∑

f ′∈FdM\{f}

Qf,f ′ .

By construction we have that

P
(
ρ(t+ 1) = f ′

∣∣ρ(t) = f
)

= Qf,f ′ . (1.11)

This shows that (ρ(t))t≥0 is a Markov Chain with transition probability ma-
trix given by Q. Furthermore we can easily observe that Q will inherit the
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irreducibility and the aperiodicity of P : as in the original Markov Chain, its
limiting time behavior will coincides with its invariant probability.
At a computational level Q is much simpler than P . Indeed there exists a pos-
itive scalar λ such that the state space of Q grows polynomially in N while the
state space of P has cardinality 2N . The advantage of working with Q is also
theoretical: it allows us to study the behavior of its associated random process
for large N with the tools presented in following section.

1.4 Kurtz's Approximation

In this section we will introduce a useful method to study the behavior of the
Mean Field Markov Chains when the number N of players is large. We will
then denote such Markov Chains by (ρ(N)(t))t≥0, their conditional probability

matrices as Q(N) and their invariant probability measures as µ(N).
Consider F (N) : FM × FN → R

F (N)(fj , f) = fjΦ1(fj,−1, f−1) + (1− fj)Φ0(fj,−0, f−0)− fj

where j ∈ {1, . . . ,M}.
We have that

E[ρ(N)(t+ 1)|ρ(N)(t)] = ρ(N)(t) +
1

N

d∑
j=1

ejF
(N)
(
ρ
(N)
j (t), ρ(N)(t)

)

where ρ(N)(t) =
1

d

d∑
j=1

ρ
(N)
j (t) and (ej)j=1...d is the canonical base of Rd.

This means that ρ(N)(t) evolves according to the following dynamic:

ρ(N)(t+ 1) = ρ(N)(t) +
1

N

d∑
j=1

ejF
(N)
(
ρ
(N)
j (t), ρ(N)(t)

)
+

1

N

d∑
j=1

ejnj(t) (1.12)

where nj(t) are random variables such that E[nj(t)|ρ(N)(t)] = 0. They measure
how much the real process departs from its conditioned average. If we consider a
continuous time rescaling by de�ning ρ̃(N)(τ) = ρ(N)(bτNc) where τ ∈ [0,+∞),
dynamic (1.12) can be rewritten as

ρ̃(N)
(
τ +N−1

)
− ρ̃(N) (τ)

N−1
=

d∑
j=1

ejF
(N)
(
ρ̃
(N)
j (τ), ρ̃(N)(τ)

)
+

d∑
j=1

ej ñj(τ)

where ñj(τ) = nj(bτNc) and ρ̃(N)(τ) =
1

d

d∑
j=1

ρ̃
(N)
j (τ).
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Theorem 1.4.1. (Kurtz's theorem)
Suppose that F (N) converges uniformly to a Lipschitz continuous function
F : [0, 1]2 → R i.e. ∀ε > 0 ∃N0 ∈ N s.t.

|F (N)(fj , f)− F (fj , f)| < ε ∀N ≥ N0, ∀(fj , f) ∈ FM × FN . (1.13)

Assume that lim
N→+∞

ρ(N)(0) = p
0
∈ [0, 1]d and let z : R → [0, 1]d be the vector

whose components zj are the solutions of the Cauchy problem{
żj(τ) = F (zj(τ), z(τ))
zj(0) = p

0,j

∀j ∈ {1, . . . , d} (1.14)

where z(τ) =
1

d

d∑
j=1

zj(τ).

Then ∀ε > 0 ∃ c1, c2 > 0 such that ∀N ∈ N and ∀T > 0

P
(

sup
0≤t≤T

||ρ(N)(τ)− z(τ)|| ≥ ε
)
≤ c1e−c2N

ε2

T .

Notice that, given j ∈ {1, . . . , d}, zj represents the continuous fraction of
players that adopts strategy 1 in the j-th connected component. In the sequel,
we will refer to

żj(τ) = F (zj(τ), z(τ)) ∀j ∈ {1, . . . , d} (1.15)

as Kurtz's system of ODE.
Theorem (1.4.1) can be applied to our case. Indeed F (N) converges uniformly
to F : [0, 1]→ R,

F (x1, x2) = x1Φ1(x1, x2) + (1− x1)Φ0(x1, x2)− x1

that, given the hypotesis on our interaction kernel, belongs to C1([0, 1]). This
implies that for any initial condition in p

0
∈ [0, 1]d Kurtz's system of ODE

admits a unique solution.
This continuous approximation is extremely e�ective since it allows us to study
our discrete dynamics through di�erential equations on the compact set [0, 1]d.
However, notice that Kurtz's theorem utility is restricted to small periods of
time. To study the limiting time behavior of our dynamics we consider the result
presented hereafter. When N is large, this provides us important informations
about the invariant probability µ(N) through Kurtz's system of ODE.

Lemma 1.4.2. Let (µ(N))+∞N=N0
be the sequence of stationary distributions for

the mean �eld Markov Chain Q(N). Furthemore, let R ∈ [0, 1]d be the set
of recurrent points of the related Kurtz's system of ODE. Given any open set
O ⊂ Rd containing cl(R),

lim
N→+∞

µ(N)(O) = 1.
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More informations regarding lemma (1.4.2) can be found in section 12B in
Hofbauer et al. [9].
Since in this thesis we will treat large populations of players, continuous ap-
proximations will be fundamental. As we will see in next chapter lemma (1.4.2)
can be re�ned when G = KN . Indeed, in this case, we have a closed formula
for the invariant probability measure. This formula will allow us to restrict
the set of recurrent points to the one of the locally stable equilibria of Kurtz's
ODE. Furthermore, in case this set has a positive measure, we will see how µ(N)

will be distributed there in the particular case presented. On the other hand,
lemma (1.4.2) will play a key role in chapter three, where more than one group
of players will be taken into account.
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Chapter 2

Voter Coordination

2.1 Interaction Kernels

In this chapter we will deal with interaction kernels that combine coordination
and congestion e�ects in the following way: with a probability p ∈ (0, 1) the
player acts in a coordination perspective, while, with a probability 1−p, he will
consider the congestion in�uence.
If he will take into account the coordination game he will adopt strategy 1 with
a probability equal to the fraction of strategy 1 players in his neighborhood.
This is the case of voter coordination: the interpretation is that the selected
player chooses randomly an edge and copies the strategy of the linked node.
The probability to adopt strategy 1 when considering the congestion situation
can be very general: it will depend not only on the related payo�s but also on
the current strategy of the selected player. In the sequel we will see that in
case our players are very `lazy' (i.e. there are situations where no changes of
strategy are possible for congestion e�ects) the invariant probability measures
will assume particular distributions.
In this chapter we will consider a unique topology G = KN : this implies that
concepts of locality and globality will not be present and, given a node v,
fvloc = fv. The interaction kernels (1.2.1) will then depend on the unique vari-
able z. They will assume the form

Φs(z) = pz + (1− p)gs(z) (2.1)

where
gs : [0, 1]→ [0, 1], gs ∈ C1([0, 1])

is the congestion function related to strategy s. gs(z) represents the probabil-
ity that a strategy s player adopts strategy 1 under congestion e�ects when a
fraction z of players is assuming strategy 1. In particular we want

• ġs(z) ≤ 0 ∀z ∈ [0, 1] (congestion e�ect);

• gs(0) > gs(1) to avoid trivial cases.
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This graph structure implies that our Mean Field Markov Chains will be de�ned

on the state space FN . In particular, since Q
(N)
f,f ′ = 0 if |f − f ′| > 1

N
we can use

following notation for the only positive non diagonal elements of the transition
matrix:

q+(N)(f) = Q
(N)

f,f+ 1
N

, q−(N)(f) = Q
(N)

f,f− 1
N

.

Substituting Q(N) with its expression (1.10), we have

q+(N)(f) = (1− f)(pf−0 + (1− p)g0(f−0)) ∀f ∈ FN \ {1} (2.2)

and

q−(N)(f) = f(p(1− f−1) + (1− p)(1− g1(f−1))) ∀f ∈ FN \ {0}. (2.3)

Such Markov Chains are called birth and death processes and are extensively
studied in probabilistic literature (see Levin et al. [8]). In this case a closed
formula for the invariant probability measure µ(N) can be found. Indeed, for
each f ∈ FN we de�ne

µ̃
(N)
f =

fN∏
j=1

q+(N)
(
f − 1

N

)
q−(N)(f)

(we set, conventionally, µ̃
(N)
0 = 1).

The invariant probability measure will be

µ
(N)
f =

µ̃
(N)
f∑

f ′∈FN

µ̃
(N)
f ′

. (2.4)

Notice that (2.4) implies that, ∀f ∈ FN \ {1},

µ
(N)
f q+(N)(f) = µ

(N)

f+ 1
N

q−(N)

(
f +

1

N

)
. (2.5)

To study the behavior of the invariant probability when N is large, a result that
re�nes lemma (1.4.2) will be introduced in next section. In particular, it will
tell us that µ(N) can concentrate in a single point or in a interval with positive
Lebesgue measure. These events occur depending on the type on congestion
expressed by g0 and g1. In latter case, the distribution in such interval will be
presented.

2.2 Large Population Behavior

Let z ∈ [0, 1] be the continuous fraction of strategy 1 players. Consider the
transition probabilities q+(N) and q−(N) as de�ned in (2.2) and (2.3) and assume
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that they uniformly converge (in the sense described in (1.13)) to two Lipschitz-
continuous functions q+(z) and q−(z). Furthermore assume that ∃A > 0 and
s ∈ N such that, for every N ∈ N, given f ∈ FN

q+(N)(f) ≥ A(1− f)s, q−(N)(f) ≥ A(f)s. (2.6)

Thanks to these observations J : [0, 1]→ R

J(z) =

∫ z

0

ln
q+(ζ)

q−(ζ)
dζ (2.7)

will be a continuous function on the compact set [0, 1].
Let M be the set of its absolute maxima. Next result says that the invariant
measure concentrates around M when N → +∞. Given δ > 0 we put

Mδ
def
= {x ∈ R : |x− y| ≥ δ ∀y ∈M}.

We have the following.

Lemma 2.2.1. ∀δ > 0, µ(N)(Mδ)→ 0 for N → +∞.

Proof. Consider the sequence of step size functions

ϕ(N)(z) =

N∑
j=1

ln
q+(N)( j−1N )

q−(N)( jN )
1[ j−1

N , jN )(z)

and notice that it converges, for N → +∞, to the function ln
q+(z)

q−(z)
in the

interval (0, 1). Given f ∈ FN ,

1

N
ln
µ
(N)
f

µ
(N)
0

=
1

N

fN∑
j=1

ln
q+(N)( j−1N )

q−(N)( jN )
=

∫ f

0

ϕ(N)(ζ) dζ.

Assumption (2.6) allows to use the dominated convergence theorem and to con-
clude that

lim
N→+∞

1

N
ln
µ
(N)
f

µ
(N)
0

=

∫ f

0

ln
q+(ζ)

q−(ζ)
dζ (2.8)

uniformly in f ∈ [0, 1].

Let f∗ ∈ FN be any absolute maximum point of µ
(N)
f and assume that

f∗ → z∗ ∈ [0, 1] for N → +∞ (this assumption does not entail any loss of
generality since we can eventually work with a subsequence). Because of the
uniformity of convergence it is immediate to test that z∗ is an absolute maximum
point of J(z). Let η > 0 be such that J(z∗) − J(z) ≥ η > 0 for every z ∈ Mδ

and notice that exists N0 ∈ N such that

1

N
ln
µ
(N)
f∗

µ
(N)
0

− 1

N
ln
µ
(N)
f

µ
(N)
0

≥ η

2
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for every N ≥ N0 and for every f ∈Mδ ∩ FN . We can now complete the proof:
for N ≥ N0 and f ∈Mδ ∩ FN we obtain that

1

N
lnµ

(N)
f ≤ 1

N

µ
(N)
f

µ
(N)
0

− 1

N

µ
(N)
f∗

µ
(N)
0

≤ −η
2

which yelds µ
(N)
f ≤ e−Nη/2. Therefore, µ(N)(Mδ) ≤ (N + 1)e−Nη/2 and the

result is proven.

In our case we have that q+(N) and q−(N) uniformly converge to

q+(z) = (1− z)(pz + (1− p)g0(z)) (2.9)

and
q−(z) = z(p(1− z) + (1− p)(1− g1(z))). (2.10)

Notice that both (2.9) and (2.10) belong to C1([0, 1]). Furthermore, given the
continuity of our congestion functions and the fact that

gs(0) > 0 and gs(1) < 1 ∀s ∈ X ,

∃α > 0 s.t. ∀z ∈ [0, 1]

q+(z) > α(1− z) and q−(z) > αz.

Thank to these observations we can apply lemma (2.2.1) to our case. We can
easily observe that the absolute maxima of J have to be searched among its
stationary points in (0, 1). They will satisfy

h(z) = q+(z)− q−(z) = (1− z)g0(z)− z(1− g1(z)) = 0. (2.11)

Furthermore,

ḣ(z) = (1− z)ġ0(z) + zġ1(z)− (1− (g1(z)− g0(z))). (2.12)

Considering the de�nition of congestion function and that

g1(z)− g0(z) ∈ [0, 1] ∀z ∈ (0, 1),

we have that h is a continuous non increasing function in (0, 1): the solutions
of (2.11) will form a closed interval in (0, 1) and will coincide with the absolute
maxima of J . Given 0 < a ≤ b < 1 we de�ne

I = [a, b] the interval of absolute maxima of J . (2.13)

Thanks to lemma (2.2.1) we have that ∀δ > 0, when N → +∞,

µ(N) (FN ∩ ([0, a− δ] ∪ [b+ δ, 1]))→ 0. (2.14)
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In order to characterize I we notice that, if

g1(z)− g0(z) < 1 ∀z ∈ (0, 1),

then h(z) will decrease in such domain. In this case b = a and I = {a}.
Otherwise I coincides with the z ∈ (0, 1) where g1(z)− g0(z) = 1, i.e. g1(z) = 1
and g0(z) = 0. This latter case veri�es when there are situations where no
changes of strategies due to congestion are possible. In next section we will
investigate how the invariant probability measure will be distributed in I when
b > a for then concluding with �nal results.

2.3 Final Results

Let

aN =
d(N − 1)ae

N
and bN =

b(N − 1)bc+ 1

N
.

Considering that a > 0 and b < 1 we will de�nitely have that aN > 0 and
bN < 1.
Since ∀z ∈ I g1(z) = 1 and g0(z) = 0, given f ∈ FN ∩ I, de�nitions (2.2) and
(2.3) lead us to

q+(N)(f) = q−(N)(f) = pf(1− f)
N

N − 1
.

Iterating (2.5) we have

µ
(N)
f =

(1− aN )aN
(1− f)f

µ(N)
aN ∀f ∈ FN ∩ I. (2.15)

Following lemmas derive from relation (2.15) and the fact that I has a positive
measure: the �rst one states that, for every f ∈ FN ∩I, the invariant probability
measure µ

(N)
f has to decrease at least in the order of

1

N
when N grows. In the

second one we will show that, since

q+(N)(f) ≥ q−(N)(f) if f ≤ b

and
q−(N)(f) ≥ q+(N)(f) if f ≥ a,

the invariant probability measure of every �xed interval I ′ ⊂ [0, 1] is uniformely
bounded by the length of such interval.

Lemma 2.3.1. Suppose that the interval I = [a, b] de�ned in (2.13) is such
that a < b. Then ∃ c > 0 such that, for su�ciently large N ,

µ
(N)
f ≤ c

N
∀f ∈ FN ∩ I.
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Proof. Assume N large enough to have FN ∩ I 6= ∅. Fix f ∈ FN ∩ I. Given
(2.15), ∀f ′ ∈ FN ∩ I,

µ
(N)
f ′ =

(1− f)f

(1− f ′)f ′
µ
(N)
f .

On the other hand, the fact that µ(N) is a probability measure implies

µ
(N)
f (1− f)f

bNN∑
f ′N=aNN

1

(1− f ′)f ′
≤ 1. (2.16)

Let

e = max

{∣∣∣∣a− 1

2

∣∣∣∣ , ∣∣∣∣b− 1

2

∣∣∣∣} <
1

2
.

∀g ∈ FN ∩ I we have
1

(1− g)g
≥ 4

and

(1− g)g ≥
(

1−
(

1

2
+ e

))(
1

2
+ e

)
> 0.

Thesis follows by considering that, from (2.16), ∃c′ > 0 :

µ
(N)
f c′(bN − aN + 1)N ≤ 1.

Lemma 2.3.2. Suppose that the interval I = [a, b] de�ned in (2.13) is such
that a < b. Then, for su�ciently large N , ∃ k > 0 :

µ(N)(I ′) ≤ k|I ′| ∀I ′ ⊆ [0, 1].

Proof. Assume N large enough to have FN ∩ I 6= ∅. Let f ∈ FN . Thanks to

lemma (2.3.1) if f ∈ FN ∩ I then ∃c > 0 : µ
(N)
f ≤ c

N
.

If f < aN we de�ne q+m = min
z∈[0,a]

q+(z) > 0 and

c1 =
q−(a) + 1

q+m/2
c < +∞.

Given a su�ciently large N , q+(N)(f) ≥ q+m
2

and q−(N)(aN ) ≤ q−(a) + 1.

Considering that

q−(N)(g) ≤ q+(N)(g) ∀g ∈ [0, b] ∩ FN

we obtain

µ
(N)
f =

 aNN−1∏
i=fN+1

q−(N)
(
i
N

)
q+(N)

(
i
N

)
 q−(N)(aN )

q+(N)(f)
µ(N)
aN ≤

q−(N)(aN )

q+(N)(f)
µ(N)
aN ≤

c1
N
.
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With a similar reasoning we can see that if f > bN then µ
(N)
f <

c2
N

where

c2 =
q+(b) + 1

q−m/2
c < +∞

and
q−m = min

f∈[b,1]
q−(f) > 0.

Let k = max{c1, c2, c}. ∀I ′ = [l, r] ⊂ [0, 1]

µ(N)(I ′) =

brNc∑
i=dlNe

µ
(N)
i/N ≤ k|I

′|.

Notice that result (2.2.1) and lemma (2.3.2) implies that

bNN∑
fN=aNN

µ
(N)
f → 1 (2.17)

when N grows to in�nity. Indeed given ε > 0, k de�ned in lemma (2.3.2) and a

positive δ <
ε

2k
we have following equality

1 =

b(a−δ)Nc∑
fN=0

µ
(N)
f +

aNN−1∑
fN=d(a−δ)Ne

µ
(N)
f +

+

bNN∑
fN=aNN

µ
(N)
f +

b(b+δ)Nc∑
fN=bNN+1

µ
(N)
f +

+

1∑
fN=d(b+δ)Ne

µ
(N)
f .

From (2.2.1) we can state that there exists an N0 such that the sum from 0 to
b(a− δ)Nc and the one from d(b+ δ)Ne to 1 will be lower than ε−2δk. Lemma
(2.3.2) leads us to (2.17).
We can now introduce the �nal result of this chapter.

Theorem 2.3.3. Consider the Mean Field Markov Chain Q(N) on FN with
associated interaction kernels Φ0 and Φ1 of the form (2.1). Let I be their related
interval de�ned in (2.13) and µ(N) be the invariant probability measure of the
Markov Chain.
(µ(N))N∈N weakly converges to µ∞ on ([0, 1],B([0, 1])) where µ∞ is equal to δa
if b = a and to the absolutely continuous probability measure with density

p(x) = 1I(x)
1

x(1− x)

(∫
I

1

y(1− y)
dy

)−1
if a < b.
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Figure 2.1: µ∞ when I = [0.3, 0.9].

Proof. To prove our theorem we show that

µ(N)(I ′)→ µ∞(I ′) ∀I ′ = [l, r] ⊆ [0, 1].

If I = {a} the thesis is immediately obtained through (2.14).
If a < b let

mN = (1− aN )aNµ
(N)(aN )N.

From (2.17) we have that

mN

N

bNN∑
fN=aNN

1

(1− f)f
→ 1

when N approaches in�nity. Since the function γ(x) =
1

(1− x)x
is Riemann

integrable in [a, b] we have that

mN →

(∫ b

a

1

(1− x)x
dx

)−1
.

Given an interval I ′ ⊆ [0, 1], (2.17) implies that

lim
N→+∞

µ(N)(I ′ \ I)→ 0.

We can limit our study to I ′ = [l, r] ⊆ [a, b]. We have

µ(N)(I ′) =

brNc∑
fN=dlNe

µ
(N)
f = mN

 1

N

brNc∑
fN=dlNe

1

(1− f)f


→
∫ r

l

1

(1− x)x

(∫ b

a

1

(1− y)y
dy

)−1
.

The theorem is proven.
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Chapter 3

Symmetry of Strategies

3.1 Interaction Kernels

In this chapter we will deal with cases where every player that has the opportu-
nity to change strategy considers the two option available without any a priori
preference: the probability to adopt strategy 1 given certain fractions of local
and global strategy 1 players is the same of adopting strategy 0 with equal frac-
tions of local and global strategy 0 players. This implies that our interaction
kernels will be equal to each other and will satisfy following symmetry condition

Φs(1− x1, 1− x2) = 1− Φs(x1, x2) ∀(x1, x2) ∈ [0, 1]2. (3.1)

This leads us to situations where every player is inclined to coordinate with the
local majority and to anticoordinate with the global one. Indeed, by considering
(3.1) and the de�nition of Φs (1.2.1), we obtain

Φs(x1, x2) ≥ 1

2
if (x1, x2) ∈

[
1

2
, 1

]
×
[
0,

1

2

]
and

Φs(x1, x2) ≤ 1

2
if (x1, x2) ∈

[
0,

1

2

]
×
[

1

2
, 1

]
.

The behavior in

[
0,

1

2

]2
and

[
1

2
, 1

]2
depends on the relative weight of coor-

dination with respect to congestion. To measure this weight we introduce a
parameter α varying in an interval A contained in R≥0: the larger the α the
more the coordination preveals on the congestion.
We denote our interaction kernels by Φα and we assume the following regularity
condition

Φα(x1, x2) ∈ C2([0, 1]2 ×A). (3.2)

The α-e�ect translates into

∂Φα

∂α
(x1, x2) ≤ 0 if (x1, x2) ∈

[
0,

1

2

]2
(3.3)
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that, given the symmetry property (3.1), implies

∂Φα

∂α
(x1, x2) ≥ 0 if (x1, x2) ∈

[
1

2
, 1

]2
.

Once de�ned an underlying graph for our dynamics, the purpose of our study
will be to understand how the invariant probability measure of the resulting
Mean Field Markov Chains will be distributed when varying α. In order to
set up a starting point for the growth of α we assume that 0 ∈ A and that no
coordination is present when α = 0:

∂Φ0

∂x1
(x1, x2) = 0 ∀(x1, x2)[0, 1]2. (3.4)

Our study will procede by referring to the following two examples.

Example 3.1.1. In the �rst situation A = [0, 1) and the two games of local
coordination and global congestion will be perceived as a unique coupled game
with payo�s

p1 = αpl1 + (1− α)pg1 = αfvloc + (1− α)(1− fv)

and
p0 = αpl0 + (1− α)pg0 = α(1− fvloc) + (1− α)fv.

Given β > 0, the selected player will turn into strategy 1 according to the prob-
ability

1

1 + e−β(p1−p0)
.

The interpretation is that
1

β
quanti�es the noise that a�ects our player in choos-

ing his more pro�table strategy: whatever the payo�s, if β → 0, Φα → 1

2
.

Previous reasoning leads to the following interaction kernel

Φα(x1, x2) =
1

1 + eβ(α(1−2x1)−(1−α)(1−2x2))
. (3.5)

Example 3.1.2. The second example is inspired by chapter 2: again A = [0, 1)
but the two games of local coordination and global congestion stay separated.
Here α represents the probability that the selected player updates its strategy
according to the local coordination game. Otherwise he will consider the global
congestion e�ect. Given the noise parameter β > 0 we have that the probability
that the selected player will end up in strategy 1 will be

α
1

1 + e−β(p
l
1−pl0)

+ (1− α)
1

1 + e−β(p
g
1−p

g
0)
.

This leads to the following interaction kernel

Φα(x1, x2) = α
1

1 + eβ(1−2x1)
+ (1− α)

1

1 + e−β(1−2x2)
. (3.6)
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In the sequel we will study the dynamics expressed by interaction kernels
(3.5) and (3.6) on di�erent graphs.
We start from G = KN : in this case our Mean Field Markov Chains will be
birth and death processes. This allows us to study the concentration regions of
µ(N) through the re�ned result (2.2.1).
The second topology considered will be G = KN/2 ∪ KN/2. This case will be
studied through its related Kurtz's system of ODE: given lemma (1.4.2) we
know that µ(N) concentrates in the set of its recurrent points in [0, 1]2.
Before moving to the dynamic, some properties of the interaction kernels need
to be highlighted. First we notice that the α-e�ect (3.3) leads to

∂2Φα

∂α∂xi

(
1

2
,

1

2

)
≥ 0 for i = 1, 2. (3.7)

This implies that, as α increases, conditions

∂Φα

∂x1

(
1

2
,

1

2

)
> 1 (3.8)

and
∂Φα

∂x1

(
1

2
,

1

2

)
+
∂Φα

∂x2

(
1

2
,

1

2

)
> 1 (3.9)

will continue to hold once satis�ed. We can then partition A in three susequent
intervals referring to (3.8) and (3.9). In particular we de�ne

α∗ = inf

{
α ∈ A s.t.

∂Φα

∂x1

(
1

2
,

1

2

)
> 1

}
(3.10)

and

α∗∗ = inf

{
α ∈ A s.t.

∂Φα

∂x1

(
1

2
,

1

2

)
+
∂Φα

∂x2

(
1

2
,

1

2

)
> 1

}
(3.11)

where α∗∗ ≥ α∗ for congestion property presented in (1.2.1). Then, considering
the regularity of Φα expressed in (3.2), we have that

• both (3.8) and (3.9) are not satis�ed ∀α ∈ [0, α∗] ∩A;

• only (3.8) is satis�ed ∀α ∈ (α∗, α∗∗] ∩A;

• both (3.8) and (3.9) are satis�ed ∀α ∈ (α∗∗,+∞) ∩A.

Notice that, while second and third cases may not be encountered, the starting
condition (3.4) implies that α∗ > 0. For example, concerning interaction kernels
(3.5) and (3.6), we have that if β ≤ 2 both α∗ and α∗∗ will not belong to A.

Otherwise we have α∗ =
2

β
and α∗∗ =

1

β
+

1

2
.
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2

(a) α > α∗∗.

0 11
2 −

wα
2

1
2 + wα

2

(b) α ≤ α∗∗.

Figure 3.1: Concentration points of µ(N) when G = KN .

3.2 G = KN

As anticipated, we will start from the case G = KN . Let z ∈ [0, 1] be the con-
tinuous fraction of strategy 1 players when N → +∞.
Results are presented in following lemma. This states that, under certain con-
ditions on Φα, the invariant probability measure distribution is characterized
by a phase transition in α∗∗ (see �gure (3.1)). Both interaction kernel (3.5) and
(3.6) �t in this result.

Lemma 3.2.1. Let Φα be an interaction kernel with the properties presented in
section 3.1. Consider the Mean Field Markov Chain obtained from the dynamic
expressed by Φα on the graph G = KN . Assume that ∀α ∈ A∣∣∣∣ ddzΦα(z, z)

∣∣∣∣ increasing for z ∈
[
0,

1

2

]
. (3.12)

Then, as N increases,

• ∀α ∈ [0, α∗∗] ∩ A the invariant probability measure concentrates in the

point z =
1

2
;

• ∀α ∈ (α∗∗,+∞)∩A exists wα ∈ (0, 1) non decreasing in α s.t. the invari-
ant probability measure concentrates in the two equilibria

z =
1

2
± wα

2
.

Proof. As in chapter 2, we de�ne

q+(N)(f) = (1− f)Φα(f−0, f−0) ∀f ∈ FN \ {1}

and
q−(N)(f) = f(1− Φα(f−1, f−1)) ∀f ∈ FN \ {0}.

Notice that q+(N)(f) and q−(N)(f) uniformely converges in [0, 1] (in the sense
described in (1.13)) to

q+(z) = (1− z)Φα(z, z)

and
q−(z) = z(1− Φα(z, z)).

Since
0 < Φα(z, z) < 1 ∀z ∈ [0, 1]
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Figure 3.2: Solutions of Φα (z, z) = z.

we can use lemma (2.2.1) to state that the invariant probability measure of
our Markov Chains will concentrate in the absolute maxima of the continuous
function J : [0, 1]→ R

J(z) =

∫ z

0

ln
q+(ζ)

q−(ζ)
dζ.

Substituting q+ and q− with their de�nitions we see that such absolute maxima
belong to the interval (0, 1) and are stationary point of J . Notice that the
derivative of J in (0, 1) has the sign of the function

Φα(z, z)− z. (3.13)

Since Φα(0, 0) > 0 (and, by symmetry, Φα (1, 1) < 1), hypotesis (3.16) implies
that ∀α ∈ A such that

d

dz
Φα(z, z)

∣∣∣∣
1
2 ,

1
2

=
∂Φα

∂x1

(
1

2
,

1

2

)
+
∂Φα

∂x2

(
1

2
,

1

2

)
≤ 1

z =
1

2
will be the unique stationary point of J and it will be an absolute

maximum (see �gure 3.2).
Otherwise it becomes a local minimum and ∃wα ∈ (0, 1) such that

z =
1

2
± wα

2

will be the only two local maxima of J in (0, 1). Considering symmetry property
(3.1) we have that they will be two absolute maxima since

Φα
(

1

2
+
wα
2
,

1

2
+
wα
2

)
= Φα

(
1

2
− wα

2
,

1

2
− wα

2

)
.

Furthermore, for (3.3), if α2 > α1

Φα1

(
1

2
− wα1

2
,

1

2
− wα1

2

)
≥ Φα2

(
1

2
− wα1

2
,

1

2
− wα1

2

)
.

This implies that wα will grow in α and the two absolute maxima will be further

and further away from
1

2
.
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Notice that hypotesis (3.16) required in lemma (3.2.1) does not cover the

situation of interaction kernel (3.5) with α =
1

2
. Here

Φα(z, z) =
1

2
∀z ∈ [0, 1].

However, the result can be easily extended to this particular case. Indeed here

α < α∗∗ and from (3.13) we have that the unique maximum of J is z =
1

2
.

3.3 G = KN/2 ∪KN/2

We now move to the case G = KN/2 ∪KN/2. Let z1 and z2 be the continuous
fraction of strategy 1 players in the �rst and the second connected component.

The global fraction of them will be represented by variable z, i.e. z =
z1 + z2

2
.

Again, we start with introducing a theorem that collects the results that will
be proven in the sequel. This theorem states that, under certain conditions,
the invariant probability measure distribution is characterized by two phase
transitions in α∗ and α∗∗ (see �gure (3.3)). Again, these results are �tted by
the two interaction kernels (3.5) and (3.6).

Theorem 3.3.1. Let Φα be an interaction kernel with the properties presented
in section 3.1. Consider the Mean Field Markov Chain obtained from the dy-
namic expressed by Φα on the graph G = KN/2 ∪KN/2. Assume that Φα repre-
sents strong congestion, i.e.

∂Φα

∂x2
(x1, x2) < 0 for (x1, x2) ∈ [0, 1]2. (3.14)

Furthermore suppose that

Φα
(
x1,

1

2

)
strictly convex in

[
0,

1

2

]
(3.15)

and ∣∣∣∣ ddzΦα(z, z)

∣∣∣∣ increasing for z ∈
[
0,

1

2

]
. (3.16)

Then, as N grows,

• ∀α ∈ [0, α∗] ∩ A the invariant probability measure concentrates in the

unique point (z1, z2) =

(
1

2
,

1

2

)
;

• ∀α ∈ (α∗, α∗∗] ∩ A, in addition to the point presented in previous step,
∃yα ∈ (0, 1) non decreasing in α s.t. the invariant probability measure can

also concentrate into two antidiagonal equilibria (z1, z2) =

(
1

2
± yα

2
,

1

2
∓ yα

2

)
;
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Figure 3.3: Concentration points of µ(N) when G = KN/2 ∪KN/2.

• ∀α ∈ A, α > α∗∗, in addition to the points presented in previous step,
∃wα ∈ (0, yα] non decreasing in α such that the invariant probability mea-

sure can also concentrate in (z1, z2) =

(
1

2
± wα

2
,

1

2
± wα

2

)
and in the

region(
1

2
+
wα
2
,

1

2
+
yα
2

)
×
(

1

2
,

1

2
+
wα
2

)
∪
(

1

2
− yα

2
,

1

2
− wα

2

)
×
(

1

2
,

1

2
− wα

2

)
∪

(
1

2
,

1

2
+
wα
2

)
×
(

1

2
+
wα
2
,

1

2
+
yα
2

)
∪
(

1

2
,

1

2
− wα

2

)
×
(

1

2
− yα

2
,

1

2
− wα

2

)
.

3.3.1 Mean Field System

Given an interaction kernel Φα the Kurtz's system of ODE (1.15) associated to
our dynamic will be the following{

ż1 = Φα(z1, z)− z1
ż2 = Φα(z2, z)− z2.

(3.17)

Results presented in theorem (3.3.1) are derived by considering lemma (1.4.2)
introduced in the �rst chapter. We will be then interested in studyng the set
of recurrent points of (3.17) in [0, 1]2. Congestion property introduced in the
interaction kernels de�nition (1.2.1) will be fundamental in this study since it
makes our system competitive in its domain. This implies that every trajec-
tory in [0, 1]2 will converge to an equilibrium: the set of recurrent points will
then be the union of such equilibria (see theorem 3.22 by Cañada et al. [6]).
Furthermore, given two initial conditions p1 and p2 ∈ [0, 1]2 such that

p1,z1 ≤ p2,z1 and p1,z2 ≥ p2,z2

and their associated solution trajectories (ϕt(p1))t≥0 and (ϕt(p2))t≥0 it follows

ϕt,z1(p1) ≤ ϕt,z1(p2) and ϕt,z2(p1) ≥ ϕt,z2(p2) ∀t ≥ 0 (3.18)
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(see Muller [1] and Kamke [2]).
The other fundamental property of system (3.17) is that it has two invariant
subsets coinciding with the two diagonals of the square [0, 1]2. Indeed, if we
consider the variable z1 − z2, we obtain the equation

ż1 − ż2 = Φα(z1, z)− Φα(z2, z)− (z1 − z2)

that implies that the diagonal z1 − z2 = 0 is an invariant subset for system
(3.17).
On the other hand, considering the variable z1 + z2, we obtain

ż1 + ż2 = Φα(z1, z) + Φα(z2, z)− (z1 + z2).

Since symmetry property (3.1) implies that

Φα
(

1− z1,
1

2

)
= 1− Φα

(
z1,

1

2

)
,

we have that the antidiagonal z1 + z2 = 1 is another invariant subset for system
(3.17) in [0, 1]2.
Let w = z1 + z2 − 1 be the diagonal variable and y = z1 − z2 the antidiagonal
one. If we introduce

R =
{

(w, y) ∈ R2 s.t. |w + y| ≤ 1
}

(3.19)

system (3.17) can be rewritten on this domain as follows:{
ẇ = fw(w, y)
ẏ = fy(w, y)

(3.20)

where

fw(w, y) = Φα
(

1

2
+
w + y

2
,

1

2
+
w

2

)
+ Φα

(
1

2
+
w − y

2
,

1

2
+
w

2

)
− w − 1

and

fy(w, y) = Φα
(

1

2
+
w + y

2
,

1

2
+
w

2

)
− Φα

(
1

2
+
w − y

2
,

1

2
+
w

2

)
− y.

Notice that, for every value of w ∈ [−1 + y, 1− y], fw is an even function with
respect to y. Furthermore, since symmetry property (3.1) implies

Φα
(

1

2
− w + y

2
,

1

2
− w

2

)
= 1− Φα

(
1

2
+
w + y

2
,

1

2
+
w

2

)
and

Φα
(

1

2
− w − y

2
,

1

2
− w

2

)
= 1− Φα

(
1

2
+
w − y

2
,

1

2
+
w

2

)
,
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Figure 3.4: Solutions of Φα
(
x1,

1

2

)
= x1.

we have that, for every y ∈ [−1 +w, 1−w], fw is an odd function with respect
to w.
With a similar reasoning we obtain that, for every value of w ∈ [−1 + y, 1− y],
fy is an odd function in y and an even function in w for every value of y ∈
[−1 + w, 1− w].
We procede with considering the equilibria of our system in the two diagonal
invariant subsets. A natural conjecture emerging from simulations at the end
of next chapter states that the invariant probability measure will concentrate
only in the locally stable equilibria: stability aspects will be then highlighted.
Results obtained in these two cases will be fundamental for studying the general
situation in [0, 1]2 presented at the end of the chapter.

3.3.2 Antidiagonal Invariant Subset

Consider our system in the form (3.20). The antidiagonal equilibria character-
ized by w = 0 will satisfy the equation

Φα
(

1

2
+
y

2
,

1

2

)
=

1

2
+
y

2
for y ∈ [−1, 1]. (3.21)

We will be then interested in considering how Φα
(
x1,

1

2

)
grows in x1.

Since Φα
(

0,
1

2

)
> 0 (and, by symmetry, Φα

(
1,

1

2

)
< 1), hypothesis (3.15)

implies that ∀α ∈ A such that

∂Φα

∂x1

(
1

2
,

1

2

)
≤ 1

equation (3.21) will have the unique solution y = 0 (see �gure (3.4)). On the

other hand, if
∂Φα

∂x1

(
1

2
,

1

2

)
> 1, ∃yα ∈ (0, 1) such that

(w, y) =

(
0,

1

2
± yα

2

)
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will be the only two others antidiagonal equilibria for our system. Symmetry
property (3.1) implies that

∂Φα

∂x1

(
1

2
+
yα
2
,

1

2

)
=
∂Φα

∂x1

(
1

2
− yα

2
,

1

2

)
and concavity condition (3.15) yelds to

∂Φα

∂x1

(
1

2
+
yα
2
,

1

2

)
< 1. (3.22)

Furthermore, considering that for (3.3) if α2 > α1 then

Φα1

(
1

2
− yα1

2
,

1

2

)
≥ Φα2

(
1

2
− yα1

2
,

1

2

)
,

yα will not decrease in α.
As anticipated, we will be interested in studying the stability of these antidiag-
onal equilibria: since w = 0 is an invariant subset for our system,

fw(0, y) = 0 ∀y ∈ [−1, 1].

This means that the term
∂fw
∂y

is null when w = 0. On the other hand, given

the symmetries of fy, we have that
∂fy
∂w

is an odd function with respect to w.

This implies
∂fy
∂w

(0, y) = 0 ∀y ∈ [−1, 1].

Thank to these observations and to the fact that

∂Φα

∂xi

(
1

2
− y

2
,

1

2

)
=
∂Φα

∂xi

(
1

2
+
y

2
,

1

2

)
for i = 1, 2

we have the the jacobian matrix of system (3.20) in every antidiagonal point
(0, y) has the form

Jf (0, y) =


∂Φα

∂x1

(
1

2
+
y

2
,

1

2

)
+
∂Φα

∂x2

(
1

2
+
y

2
,

1

2

)
− 1 0

0
∂Φα

∂x1

(
1

2
+
y

2
,

1

2

)
− 1

 .

The whole situation for the original system (3.17) is presented in following
lemma.

Lemma 3.3.2. Consider the α∗ de�ned in (3.10).
∀α ∈ A s.t. α ≤ α∗ the only antidiagonal equilibrium of system (3.17) will be

(z1, z2) =

(
1

2
,

1

2

)
and it will be locally stable.

∀α ∈ A s.t. α > α∗ ∃yα ∈ (0, 1) non decreasing in α such that

(z1, z2) =

(
1

2
± yα

2
,

1

2
∓ yα

2

)
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will be the only two other antidiagonal equilibria and they will be locally stable.

For these α the center (z1, z2) =

(
1

2
,

1

2

)
will be unstable under antidiagonal

perturbations.

Proof. Since (w, y) = (0, 0) implies (z1, z2) =

(
1

2
,

1

2

)
this will be the only

antidiagonal equilibrium for system (3.17) when α ≤ α∗. The jacobian matrix

of system (3.17) in the center

(
1

2
,

1

2

)
will be equivalent to


∂Φα

∂x1

(
1

2
,

1

2

)
+
∂Φα

∂x2

(
1

2
,

1

2

)
− 1 0

0
∂Φα

∂x1

(
1

2
,

1

2

)
− 1

 .

Considering that congestion property implies
∂Φα

∂x2

(
1

2
,

1

2

)
≤ 0, the center will

be locally stable for α ≤ α∗ and unstable at least under antidiagonal perturba-
tions if α∗ > α. In this case, as previously discussed, system (3.20) will have
the two other antidiagonal equilibria

(w, y) =

(
0,

1

2
± yα

2

)
i.e.

(z1, z2) =

(
1

2
± yα

2
,

1

2
∓ yα

2

)
.

The jacobian matrix of the system computed in these two points will be
∂Φα

∂x1

(
1

2
+
yα
2
,

1

2

)
+
∂Φα

∂x2

(
1

2
+
yα
2
,

1

2

)
− 1 0

0
∂Φα

∂x1

(
1

2
+
yα
2
,

1

2

)
− 1

 .

Inequality (3.22) and congestion property of Φα lead us to the thesis.

3.3.3 Diagonal Invariant Subset

The equilibria on the diagonal y = 0 have to satisfy the equation

Φα
(

1

2
+
w

2
,

1

2
+
w

2

)
=

1

2
+
w

2
for w ∈ [−1, 1]. (3.23)

Notice that this condition is exactly the one related to the stationary points
in (0, 1) of the function J in the monodimensional case. Again, if we consider
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condition (3.16), we obtain that equation (3.23) will have the unique equilibrium
w = 0 ∀α ∈ A such that

∂Φα

∂x1

(
1

2
,

1

2

)
+
∂Φα

∂x2

(
1

2
,

1

2

)
≤ 1.

Otherwise ∃wα ∈ (0, 1) such that (w, y) =

(
1

2
± wα

2
, 0

)
will be two other

diagonal equilibria with

∂Φα

∂x1

(
1

2
± wα

2
,

1

2
± wα

2

)
+
∂Φα

∂x2

(
1

2
± wα

2
,

1

2
± wα

2

)
< 1. (3.24)

Considering that for property (3.3) if α2 > α1 then

Φα1

(
1

2
− wα1

2
,

1

2
− wα1

2

)
≥ Φα2

(
1

2
− wα1

2
,

1

2
− wα1

2

)
,

wα will grow in α so that these two equilibria will be further and further away

from
1

2
.

To study their stability we notice that, for a reasoning similar to the one made for
the antidiagonal case, the jacobian matrix of the system (3.20) in any diagonal
point (w, 0) will be
∂Φα

∂x1

(
1

2
+
w

2
,

1

2
+
w

2

)
+
∂Φα

∂x2

(
1

2
+
w

2
,

1

2
+
w

2

)
− 1 0

0
∂Φα

∂x1

(
1

2
+
w

2
,

1

2
+
w

2

)
− 1

 .

The whole situation for the original system (3.17) is presented in following
lemma.

Lemma 3.3.3. Consider the α∗∗ de�ned in (3.11). ∀α ∈ A s.t. α ≤ α∗∗ the

only equilibrium on the diagonal of system (3.17) will be (z1, z2) =

(
1

2
,

1

2

)
.

Otherwise, ∀α ∈ A s.t. α > α∗∗, ∃wα ∈ (0, 1) non decreasing in α such that

(z1, z2) =

(
1

2
± wα

2
,

1

2
± wα

2

)
will be the only two other diagonal equilibria. They will be always stable under
diagonal perturbations; locally stable if

∂Φα

∂x1

(
1

2
+
wα
2
,

1

2
+
wα
2

)
< 1

and saddle points if
∂Φα

∂x1

(
1

2
+
wα
2
,

1

2
+
wα
2

)
> 1.

Finally, if α > α∗∗ the center (z1, z2) =

(
1

2
,

1

2

)
will be unstable.
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Proof. For the properties of Φα discussed above, if α ≤ α∗∗ (w, y) = (0, 0) i.e.

(z1, z2) =

(
1

2
,

1

2

)
will be the only solution of (3.23). Since in this point the

jacobian matrix of system (3.17) will be equivalent to
∂Φα

∂x1

(
1

2
,

1

2

)
+
∂Φα

∂x2

(
1

2
,

1

2

)
− 1 0

0
∂Φα

∂x1

(
1

2
,

1

2

)
− 1

 .

the center wll be stable under diagonal perturbations for α ≤ α∗∗ and an un-
stable equilibrium for α > α∗∗. In latter case, as previously discussed, equation

(3.23) will have the two others antidiagonal equilibria (w, y) =

(
1

2
± wα

2
, 0

)
i.e.

(z1, z2) =

(
1

2
± wα

2
,

1

2
± wα

2

)
.

The jacobian matrix for the system computed in these two points will be equiv-
alent to
∂Φα

∂x1

(
1

2
+
wα
2
,

1

2
+
wα
2

)
+
∂Φα

∂x2

(
1

2
+
wα
2
,

1

2
+
wα
2

)
− 1 0

0
∂Φα

∂x1

(
1

2
+
wα
2
,

1

2
+
wα
2

)
− 1

 .

Thanks to inequality (3.24) they will be always stable under diagonal perturba-
tions. Furthermore, they will be locally stable if

∂Φα

∂x1

(
1

2
+
wα
2
,

1

2
+
wα
2

)
< 1

and saddle points if
∂Φα

∂x1

(
1

2
+
wα
2
,

1

2
+
wα
2

)
> 1.

Notice that lemmas (3.3.2) and (3.3.3) imply that (z1, z2) =

(
1

2
,

1

2

)
will be

locally stable ∀α ≤ α∗, a saddle point unstable under antidiagonal perturbations
if α∗ < α ≤ α∗∗ and unstable when α > α∗∗.

3.3.4 Out Diagonals Equilibria

We now deal with the equilibria out of the two diagonals. As in previous cases
we start with considering Kurtz's system in its diagonal form (3.20). Given
the symmetries of fw and fy and the set R de�ned in (3.19), every equilibrium
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Figure 3.5: Set T .

(we, ye) ∈ R implies that (−we, ye), (we,−ye), (−we,−ye) ∈ R will be three
other equilibria. We can then limit our study to the region

T = {(w, y) ∈ R s.t. w ≥ 0, y ≥ 0} (3.25)

(see �gure (3.5)) and extend the results in R according to these simmetries.
Given the initial condition p = (pw, py) ∈ T , let (ϕt(p))t≥0 be the corresponding
solution of system (3.20). Considering an equilibrium (we, ye) ∈ T the compet-
itive system condition (3.18) implies that for every t ≥ 0

• if we − ye ≤ pw ≤ we + ye then we − ye ≤ ϕt,w(p) ≤ we + ye;

• if py ≤ ye − we then ϕt,y(p) ≤ ye − we; otherwise if py ≥ ye + we then
ϕt,y(p) ≥ ye + we.

Every equilibrium (we, ye) ∈ T will then determine the following invariant sub-
sets of T (see �gure (3.6)):

• Ie1 = {(w, 0) ∈ T such that we − ye ≤ w ≤ we + ye} always non empty;

• Ie2 = {(0, y) ∈ T such that y ≥ ye + we} always non empty;

• Ie3 = {(0, y) ∈ T such that y ≤ ye − we} empty if ye < we.

Ie1 , I
e
2 and Ie3 provide us constraints that have to be satis�ed by (we, ye)

and that will be fundamental for our �nal result. Indeed, as already mentioned,
given the competitive form of our system, theorem 3.22 by Cañada et al. (see
[6]) implies that every solution trajectory of system (3.20) in R has to converge
to an equilibrium. In particular, if the initial condition belongs to an invariant
subset, it has to be attracted by an equilibrium in the same invariant subset.
Before presenting the results for the original system (3.17), given i ∈ {1, 2},
notice that strong congestion hypothesis (3.14) implies that there cannot be two
equilibria equal in the component zi. Indeed, if we consider the ODE related
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Figure 3.6: Equilibrium (we, ye) with related invariant subsets Ie1 , I
e
2 and Ie3 .

to zi in (3.17), strong congestion property implies that exists at maximum one
ẑ ∈ [0, 1] such that

zi = Φα(zi, ẑ). (3.26)

Lemma 3.3.4. Consider system (3.17) and assume that the interaction kernel
Φα represents strong congestion (3.14). Let α∗ and α∗∗ be the threshold de�ned
in (3.10) and (3.11). Then

• ∀α ∈ [0, α∗] ∩A system (3.17) has the unique equilibrium

(z1, z2) =

(
1

2
,

1

2

)
that is globally stable;

• ∀α ∈ (α∗, α∗∗] ∩ A our system has three equilibria: the center (z1, z2) =(
1

2
,

1

2

)
and the two antidiagonal ones

(z1, z2) =

(
1

2
± yα

2
,

1

2
∓ yα

2

)
with properties discussed in lemma (3.3.2);

• ∀α ∈ (α∗∗,+∞) ∩ A system (3.17) has at least �ve equilibria: the center

(z1, z2) =

(
1

2
,

1

2

)
, the two antidiagonal ones (z1, z2) =

(
1

2
± yα

2
,

1

2
∓ yα

2

)
with properties discussed in lemma (3.3.2) and the two diagonal ones

(z1, z2) =

(
1

2
± wα

2
,

1

2
± wα

2

)
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Figure 3.7: α ∈ [α∗, α∗∗).

of lemma (3.3.3). These two diagonal equilibria will be characterized by
wα ≤ yα. All the other equilibria can only belong to the set(

1

2
+
wα
2
,

1

2
+
yα
2

)
×
(

1

2
,

1

2
+
wα
2

)
∪
(

1

2
− yα

2
,

1

2
− wα

2

)
×
(

1

2
,

1

2
− wα

2

)
∪

(
1

2
,

1

2
+
wα
2

)
×
(

1

2
+
wα
2
,

1

2
+
yα
2

)
∪
(

1

2
,

1

2
− wα

2

)
×
(

1

2
− yα

2
,

1

2
− wα

2

)
.

Proof. Consider the system in the diagonal coordinates (w, y).
As anticipated, symmetries of fy and fw allow us to limit our study to the re-
gion T . The results are extended to the domain R by considering that for every
equilibrium (we, ye) ∈ T we have the three others equilibria (we,−ye) (−we, ye)
and (−we,−ye) in R.

If α ∈ [0, α∗] lemma (3.3.2) implies that (w, y) = (0, 0) is the only equi-
librium on the antidiagonal. Every equilibrium (we, ye) ∈ T must ensure that
(0, 0) belongs to its related invariant subset Ie2 . This yields to y

e + we ≤ 0, i.e.
(we, ye) = (0, 0).

(z1, z2) =

(
1

2
,

1

2

)
will then be the only equilibrum for the original system (3.17)

and, since it has to attract every solution trajectory in [0, 1]2, it will be globally
stable.

If α ∈ (α∗, α∗∗] we have the three antidiagonal equilibria described in lemma
(3.3.2). The whole situation in T is presented in �gure (3.7).
Every equilibrium (we, ye) ∈ T must ensure that Ie2 contains the antidiagonal
equilibrium (w, y) = (0, yα). It will then satisfy

yα ≥ ye + we. (3.27)
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Figure 3.8: α > α∗∗.

Furthermore, if ye > we then (we, ye) = (0, yα). Indeed ye > we implies that
(0, yα) has to belong also to Ie3 since (0, 0) cannot attract all the trajectories
starting there. Every equilibrium out of the two diagonals will then satisfy

ye ≤ we. (3.28)

On the other hand, since α ≤ α∗∗ lemma (3.3.3) states that (0, 0) is the unique
equilibrium on the diagonal. Every equilibrium (we, ye) ∈ T must then ensure
(0, 0) ∈ Ie1 i.e.

ye ≥ we. (3.29)

From conditions (3.27), (3.28) and (3.29) we have that every equilibrium out of
the two diagonals must satisfy

we = ye ≤ yα
2
.

In original reference z1 × z2 we have that every equilibrium out of the two
diagonal has to belong to the region(

1

2
,

1

2
+
yα
2

]
×
{

1

2

}
(see �gure(3.7)). Strong congestion property (3.14) and the fact that (z1, z2) =(

1

2
,

1

2

)
is an equilibrium implies that no equilibria out of the two diagonals can

be present when α ∈ (α∗, α∗∗] ∩A.

If α > α∗∗ we have the diagonal bifurcation described in lemma (3.3.3). The
whole situation is presented in �gure (3.8). Condition (3.27) continues to hold
for every equilibrium in T and, in particular, for the diagonal one (wα, 0). It
follows that

yα ≥ wα.
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Figure 3.9: Region of possible out diagonals equilibria in T .

On the other hand, with a reasoning analogous to the one made in previous
step, we have that every equilibrium in T out of the two diagonals has to satisfy
(3.28).
Furthermore, the diagonal bifurcation implies that every equilibrium in T must
guarantee (wα, 0) ∈ Ie1 , i.e.

we − ye ≤ wα ≤ we + ye. (3.30)

In the original reference z1 × z2, conditions (3.27), (3.28) and (3.30) imply that
every equilibrium out of the two diagonals must belong to the region[

1

2
+
wα
2
,

1

2
+
yα
2

]
×
[

1

2
,

1

2
+
wα
2

]
(3.31)

(see �gure (3.9)). The strong congestion property (3.14) allows us to discard
the sides of rectangle (3.31).
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Chapter 4

Simulations

In this chapter we will perform some simulations to have an empirical con�rma-
tion of the results previously presented. Let µ(N) be the invariant probability
measure of the Mean Field Markov Chains associated to our dynamics. Since
our results regard the concentration points of µ(N) when N approaches in�nity,
they are valid when our dynamics procede for an in�nite amount of time and
when an in�nite number of players is involved.
As already mentioned, in case the underlying graph G is made of a unique com-
plete connected component, formula (2.4) allows us to compute the invariant
probability measure of the related Mean Field Markov Chain. Considering that
µ(N) already represents the limiting time behavior of our dynamic, we can fo-
cuse only on the size of the underlying graphs. In particular, unless speci�ed,
we will �x

N = 500.

However, to deal with real empirical results, time has to be involved. In this
situation, unless speci�ed, we will simulate the real dynamic described in chapter
1 starting from a random vector for

T = 30000

time steps.
We will procede as follows: �rst we �x a region L made of the unions of the
neighborhoods of concetration points of µ(N). Then we consider the value of
µ(N)(FN ∩L) and the probability q that our dynamic ends in a state belonging
to L. To estimate q we will perform 400 trials and we consider their mean
success q̂400. Thanks to the central limit theorem we have that

q ∈ [q̂400 − 0.05, q̂400 + 0.05]

accordingly to a probability of around 95%.
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4.1 Voter Coordination

In this section simulations will be performed on a complete graph with interac-
tion kernels of the form

Φs(z) = pz + (1− p)gs(z)

where z represents the continuos fraction of strategy one players in the graph.
As proven in chapter 2, the invariant probability measure will concentrate in a
region [a, b] such that 0 < a ≤ b < 1. This region is de�ned by the equation

(1− z)g0(z) = z(1− g1(z)).

To obtain [a, b] we de�ne the congestion functions g0 and g1 as follows:

g0(z) =

{
1

a2
(z − a)2 z ∈ [0, a]

0 z ∈ [a, 1]
(4.1)

and

g1(z) =

 1 z ∈ [0, b]

1− 1

(1− b)2
(z − b)2 x ∈ [b, 1].

(4.2)

The probability p that our player will behave by taking into account the coor-
dination e�ect will be �xed to 0.5. Both cases where a = b and b > a will be
considered.
To deal with single point situation, we set a = b = 0.3 and we consider an
interval

L = [0.3− ε, 0.3 + ε].

In the strict case ε = 0.01 we obtain

• µ(N)(FN ∩ L) = 0.1202;

• q̂400 = 0.1375.

If we increase the tolerance by assuming ε = 0.1 we have

• µ(N)(FN ∩ L) = 0.879;

• q̂400 = 0.88.

The situation is presented in �gure (4.2) at the end of the chapter. On the
other hand, we study the behavior of the Mean Field Markov Chain when the
concentration region is [a, b] with a = 0.3 and b = 0.9. Here we �x

L = [0.3, 0.9].

In this case we have

• µ(N)(FN ∩ L) = 0.8734;
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• q̂400 = 0.881.

The situation is presented in �gure (4.3) at the end of the chapter. From the
histogram we notice that the distribution of the ending states in [a, b] is very
far from the expectations. This situation is caused by the fact that expected
number of times that each player consider the voter coordination is too small.
This voter coordination is what determines the distribution in [a, b]. We then
repeat the simulation in time assuming p = 0.7, N = 150 and T = 50000. As
we can see from �gure (4.4) we have a distribution in [a, b] that is more coherent
with the expectations.

4.2 Symmetry of Strategies

In this section we will present the simulations related to the third chapter. We
will then consider the interaction kernels of the form (3.5) and (3.6) with noise
parameter β = 4. This value of β implies that both α∗ and α∗∗ will belong
to the interval A = [0, 1). In particular, in both cases we have α∗ = 0.5 and
α∗∗ = 0.75.
We will start from G = KN . In this case we will deal with birth and death pro-
cesses. As in previous section, invariant probability measures will be computed
and related simulations in time will be performed.
We will then move to the case G = KN/2 ∪KN/2. In this situation, only simu-
lations in time will be considered.

4.2.1 G = KN

In case G = KN from the lemma (3.2.1) we know that if α ≤ α∗∗ the invari-

ant probability measure concentrates in z =
1

2
. Otherwise, if α > α∗∗, exists

wα ∈ (0, 1) such that the invariant probability measure concentrates in the two

points z =
1

2
± wα

2
. Since both interaction kernels (3.5) and (3.6) are character-

ized by the same α∗∗ = 0.75 we will consider each of them in the two situations
where α = 0.33 and α = 0.93.

Coupled payo�s

We start from interaction kernel (3.5) with α = 0.33. Results are presented in
�gure (4.5).
Assume that

L =

[
1

2
− ε, 1

2
+ ε

]
.

In the strict case with ε = 0.01 we obtain

• µ(N)(FN ∩ L) = 0.3983;
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• q̂400 = 0.395.

Comparing these values with the ones of the voter coordination with a = b = 0.3
we notice that we have a faster convergence of µ(N). If we increase the tolerance
by assuming ε = 0.05 we obtain

• µ(N)(FN ∩ L) = 0.9955;

• q̂400 = 1.

We now move to the case where α = 0.93. From lemma (3.2.1) we know

that the invariant probability measure concentrates in the two points
1

2
± wα

2
where wα ∈ (0, 1). We will then set

L =

[
1

2
+
wα
2
− ε, 1

2
+
wα
2

+ ε

]
∪
[

1

2
− wα

2
− ε, 1

2
− wα

2
+ ε

]
.

In the strict case ε = 0.01 we obtain

• µ(N)(FN ∩ L) = 0.6666;

• q̂400 = 0.6525.

while, if we increase the tolerance with ε = 0.05, we obtain

• µ(N)(FN ∩ L) = 1;

• q̂400 = 1.

These results are presented in �gure (4.6).

Uncoupled payo�s

We will now repeat the same experiments for the interaction kernel (3.6): when
α = 0.33 (see �gure (4.7)) we consider the interval

L =

[
1

2
− ε, 1

2
+ ε

]
.

In the strict case with ε = 0.01 we obtain

• µ(N)(FN ∩ L) = 0.3981;

• q̂400 = 0.3675.

If we increase the tolerance by assuming ε = 0.05 we obtain

• µ(N)(FN ∩ L) = 0.9955;

• q̂400 = 995.
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In the case α = 0.93 (�gure (4.8)) we have that the invariant probability measure

concentrates in the two points
1

2
± wα

2
where wα ∈ (0, 1). We will then set

L =

[
1

2
+
wα
2
− ε, 1

2
+
wα
2

+ ε

]
∪
[

1

2
− wα

2
− ε, 1

2
− wα

2
+ ε

]
.

In the strict case ε = 0.01 we obtain

• µ(N)(FN ∩ L) = 0.4668;

• q̂400 = 0.4375,

while, if we increase the tolerance with ε = 0.05, we obtain

• µ(N)(FN ∩ L) = 0.9974;

• q̂400 = 0.9975.

4.2.2 G = KN/2 ∪KN/2

We now move to situations where G = KN/2 ∪KN/2.
In short, from theorem (3.3.1), we have that if α ≤ α∗ the invariant probability
measure concentrates in the center of the square [0, 1]2. If α∗ < α ≤ α∗∗ there
are two other possible points of concentration on the antidiagonal of the square.
If α > α∗∗ the invariant probability measure can concentrate in two other points
on the diagonal and in some regions out of the two diagonals (see �gure (3.6.))
The simulations of this subsection aim to support following conjectures:

• the invariant probability measure can concentrate only in the equilibria of
the Kurtz's System (3.17) that are locally stable;

• in our particular cases, no equilibria out of the diagonals will be present;

• our results are topologically stable: we verify that the addition of a small
percentage of edges that connect the two connected components has a
bounded impact on the limiting behavior of our dynamics. This percentage
is computed with respect to the total number of edges. These new edges
will be called `crossing edges'.

To verify the �rst two suppositions we consider the stable diagonal equilibria
of Kurtz's system (3.17). We then compute q̂400 on a region obtained through
the union of their neighborhoods of radius 0.08 (approximately 2% of the total
area). These equilibria will be

• the center

(
1

2
,

1

2

)
if α ≤ α∗;

• the two antidiagonal equilibria

(
1

2
± yα

2
,

1

2
∓ yα

2

)
described in lemma

(3.3.2) if α∗ ≤ α < α∗∗;
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• the two antidiagonal equilibria

(
1

2
± yα

2
,

1

2
∓ yα

2

)
if α > α∗∗ and if the

two diagonal equilibria

(
1

2
± wα

2
,

1

2
± wα

2

)
described in lemma (3.3.3)

are saddle points;

• the two antidiagonal equilibria

(
1

2
± yα

2
,

1

2
∓ yα

2

)
and the two diagonal

ones

(
1

2
± wα

2
,

1

2
± wα

2

)
in the remaining situation.

From lemma (3.3.3) we know that the two diagonal equilibria, when present,
will be surely saddle points if

∂Φα

∂x1

(
1

2
+
wα
2
,

1

2
+
wα
2

)
> 1 (4.3)

and will be surely locally stable if

∂Φα

∂x1

(
1

2
+
wα
2
,

1

2
+
wα
2

)
< 1. (4.4)

In the sequel we verify that our two cases both satisfy condition (4.3) if α = 0.77
and condition (4.4) ∀α ≥ 0.83.
Since α∗ = 0.5 and α∗∗ = 0.75, the four situations described above will be
respectively tested for α = 0.33, α = 0.58, α = 0.77 and α = 0.93.
To verify the topological stability of our results we add 630 crossing edges to
our graph and we consider the mean success q̂p400 of 400 trials on our perturbed
graph on the same region of the disconnected case. This amount of edges is
chosen in order to have a connected graph with bottleneck ratio equal to 0.01.

Coupled Payo�s

Before presenting the results of the simulations we prove that, given α > α∗∗,

the two diagonal equilibria

(
1

2
+
wα
2
,

1

2
+
wα
2

)
will be saddle points when α =

α1 = 0.77 and locally stable equilibria when α ≥ α2 = 0.83.
We �rst notice that

∂Φα

∂x1
(z, z) =

βα

1 + cosh(β(2α− 1)(1− 2z))
(4.5)

is decreasing when z belongs to

[
1

2
, 1

]
.

Furthermore the concavity of Φα expressed in property (3.16) implies that, given

z̄ ∈
[

1

2
, 1

]
and α > α∗∗, if Φα(z̄, z̄) < z̄ then

1

2
+
wα
2

< z̄ and, viceversa, if

Φα(z̄, z̄) > z̄ then
1

2
+
wα
2
> z̄ (see �gure (4.1)).
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Figure 4.1: Interaction Kernel (3.5): z = ±wα
2

when α = 0.93.

To prove the non stability in α = α1 we use this observation and property (4.5).

In particular we notice that Φα1(0.8, 0.8) < 0.8 and
∂Φα1

∂x1
(0.8, 0.8) > 1.

On the other hand, to prove the local stability when α ≥ α2 we notice that
since Φα2(0.75, 0.75) > 0.75 and wα never decreases in α we have that

1

2
+
wα
2
> 0.75 ∀α ≥ α2.

We conclude by considering (4.5) and that

βα2

1 + cosh(β(2α2 − 1)(1− 2 · 0.75))
<

β

1 + cosh(β(2α2 − 1)(1− 2 · 0.75))
< 1.

The results of the simulations are presented in table (4.1). Images with related
phase plots of the mean �eld system (3.17) can be found at the end of current
chapter. Notice that the mean of the trials ending up in the neighborhood of
a local stable equilibrium on the two diagonals is always high. This happens
expecially when α is large and also equilibria out of the two diagonals can be
present. In the last two cases we can notice that we have trials that end up
in the neighborhood of diagonals equilibria only when these are stable. Finally
we notice that the results related to the perturbed graph are very closed to the
ones related to the disconnected case. We can conclude that the outcome is
consistent with our conjectures.

α
Antidiagonal Diagonal

q̂400
q̂400 q̂p400

q̂p400
equilibria equilibria % diagonal % diagonal

0.33 - - 0.8325 - 0.8325 -
0.58 Stable - 0.8675 - 0.7050 -
0.77 Stable Not Stable 1 0% 0.9975 0%
0.93 Stable Stable 1 36.25% 1 36.5%

Table 4.1: Interaction kernel (3.5): simulation results.
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α
Antidiagonal Diagonal

q̂400
q̂400 q̂p400

q̂p400
equilibria equilibria % diagonal % diagonal

0.33 - - 0.8450 - 0.8375 -
0.58 Stable - 0.6675 - 0.6425 -
0.77 Stable Not Stable 0.9850 0% 0.9825 0%
0.93 Stable Stable 0.9975 32.83% 0.995 12.31%

Table 4.2: Interaction kernel (3.5): simulation results.

Uncoupled Payo�s

As in previuos case we prove that, given α > α∗∗, the two diagonal equilibria(
1

2
+
wα
2
,

1

2
+
wα
2

)
will be saddle points if α = α1 = 0.77 and will be locally

stable when α ≥ α2 = 0.83.
The procedure will be analogous of the previous case by considering the con-
cavity property of Φα (3.16) and the fact that

∂Φα

∂x1
(z, z) =

βα

1 + cosh(β(1− 2z))

is decreasing in

[
1

2
, 1

]
.

In particular, to prove the non stability in α = α1 we notice that since

Φα1(0.65, 0.65) < 0.65 then
1

2
+
wα1

2
< 0.65. The result follows by considering

that
∂Φα1

∂x1
(0.65, 0.65) > 1.

To prove the local stability when α ≥ α2 we consider that Φα2(0.75, 0.75) > 0.75
and wα never decreases in α; we then have that

1

2
+
wα
2
> 0.75 ∀α ≥ α2.

We can conclude by considering that

βα2

1 + cosh(β(1− 2 · 0.75))
<

β

1 + cosh(β(1− 2 · 0.75))
< 1.

The results of the simulations are presented in table (4.2). Images with related
phase plots of the mean �eld system (3.17) can be found at the end of current
chapter. Again, we notice that the results con�rm our conjectures.
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(a) Invariant probability measure. (b) Time simulation: histogram of

400 trials.

Figure 4.2: Voter coordination with concentration point a = 0.3.

(a) Invariant probability measure. (b) Time simulation: histogram of

400 trials.

Figure 4.3: Voter coordination with concentration interval [0.3, 0.9].

Figure 4.4: Voter coordination on N = 150 players with concentration interval
[0.3, 0.9] and p = 0.7: histogram of 400 trials after T = 50000 time steps.
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(a) Invariant probability measure. (b) Time simulation: histogram of

400 trials.

Figure 4.5: Interaction kernel (3.5) on G = KN when β = 4 and α = 0.33.

(a) Invariant probability measure. (b) Time simulation: histogram of

400 trials.

Figure 4.6: Interaction kernel (3.5) on G = KN when β = 4 and α = 0.93.

(a) Invariant probability measure. (b) Time simulation: histogram of

400 trials.

Figure 4.7: Interaction kernel (3.6) on G = KN when β = 4 and α = 0.33.
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(a) Invariant probability measure. (b) Time simulation: histogram of

400 trials.

Figure 4.8: Interaction kernel (3.6) on G = KN when β = 4 and α = 0.93.

(a) Disconnected graph q̂ = 0.8325. (b) Perturbed graph q̂p = 0.8325.

Figure 4.9: Interaction kernel (3.5) with α = 0.33: central equilibrium.
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(a) Disconnected graph q̂ = 0.8375. (b) Perturbed graph q̂p = 0.7050.

Figure 4.10: Interaction kernel (3.5) with α = 0.58: antidiagonal equilibria
locally stable.

(a) Disconnected graph q̂ = 1. (b) Perturbed graph q̂p = 0.9975.

Figure 4.11: Interaction kernel (3.5) with α = 0.77: diagonal equilibria not
stable.

51



(a) Disconnected graph q̂ = 1. Diag-

onal percentage of success 36.5%.

(b) Perturbed graph q̂p = 0.995. Di-

agonal percentage of success 36.25%.

Figure 4.12: Interaction kernel (3.5) with α = 0.93: diagonal equilibria locally
stable.

(a) Disconnected graph q̂ = 0.7925. (b) Perturbed graph q̂p = 0.7975.

Figure 4.13: Interaction kernel (3.6) with α = 0.33: central equilibrium.
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(a) Disconnected graph q̂ = 0.8675. (b) Perturbed graph q̂p = 0.71.

Figure 4.14: Interaction kernel (3.6) with α = 0.58: antidiagonal equilibria
locally stable.

(a) Disconnected graph q̂ = 0.9675. (b) Perturbed graph q̂p = 0.92.

Figure 4.15: Interaction kernel (3.6) with α = 0.77: diagonal equilibria not
stable.
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(a) Disconnected graph q̂ = 0.9975.
Diagonal percentage of success

32.83%.

(b) Perturbed graph q̂p = 1. Diagonal

percentage of success 39, 75%.

Figure 4.16: Interaction kernel (3.6) with α = 0.93: diagonal equilibria locally
stable.
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