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Abstract. Ensembles of regular low-density parity-check codes over any finite Abelian group
G are studied. The nonzero entries of the parity matrix are randomly chosen, independently and
uniformly, from an arbitrary label group of automorphisms of G. Precise combinatorial results are
established for the exponential growth rate of their average type-enumerating functions with respect
to the code-length N . Minimum Bhattacharyya-distance properties are analyzed when such codes are
employed over a memoryless G-symmetric transmission channel. In particular, minimum distances
are shown to grow linearly in N with probability one, and lower bounds are provided for the typical
asymptotic normalized minimum distance. Finally, some numerical results are presented, indicating
that the choice of the label group strongly affects the value of the typical minimum distance.
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1. Introduction. Low-density parity-check (LDPC) codes have received a huge
amount of attention in the last years. It is indeed the family of high-performance
codes for which the deepest theoretical insight has been achieved. Their definition
is quite simple: they are those binary-linear codes which can be described as kernels
of matrices over the binary field Z2 with a “small” number of nonzero elements.
Since the pioneering work [19], two streams of research are easily recognizable in the
literature on LDPC codes. On the one hand, structural properties of such codes have
been investigated: distance-spectra, minimum distances, and also capacity estimations
under maximum-likelihood (ML) decoding [28, 29, 25, 37, 25, 26, 9, 15, 33]. On the
other hand, they have been studied coupled with the well-known iterative decoding
schemes [34, 35, 42, 31, 43, 24, 36, 14].

The need to use transmission channels with higher spectral efficiency naturally
leads one to consider nonbinary codes and nonbinary LDPC codes. A typical example
is provided by the m-PSK Gaussian channel. This is a channel accepting as possible
input any element in the set m-PSK := {e 2π

m li | 1 ≤ l ≤ m}, while the received
output is obtained by adding a homogeneous, zero-mean, two-dimensional Gaussian
variable. When m is an integer power of 2—a case which is particularly relevant in
practice—in principle binary codes can be used for transmission over this channel.
Using any fixed bijection λ : Zr

2 → 2r-PSK, binary-linear codes can be mapped into
codes on the alphabet 2r-PSK. The problem with this type of code is that, if r > 2,
for any possible choice of λ they will not possess many of the symmetry properties
that binary-linear codes enjoy on binary symmetric channels: Voronoi regions will not
be congruent, Euclidean distance profiles will depend on the reference codeword, and
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the uniform error property will not hold. As a consequence the theoretical analysis
becomes quite hard and design-criteria optimization exceedingly complicated; in [22,
4, 5] an average-coset approach has been adopted in order to overcome this problem.
Actually, for such an input set, a much better candidate group structure is provided by
the cyclic group Zm. Indeed, if we consider the natural map λ : Zm → m-PSK (with

λ(l) = e
2πil
m ), any subgroup C ⊆ ZN

m yields, through the embedding λ, a code over
m-PSK possessing congruent Voronoi regions and invariant distance profiles [18, 27].
These codes (as well as the subgroups they come from) are called Zm-codes. All
of this construction can be generalized to a broader family of transmission channels
exhibiting symmetry with respect to the action of a finite group G, which will be
called G-symmetric channels, and to a family of codes with group structure which
will be called G-codes.

Zm-codes have been widely studied in the past (see, for instance, [3]). A remark-
able fact is that, since Zm is a commutative ring, they can be represented, as in the
binary case, as images or kernels of matrices with coefficients in Zm. In this paper we
are particularly interested in kernel representations: given a matrix Φ in ZL×N

m ,

C := {x ∈ ZN
m | Φx = 0}

is obviously a Zm-code. Regular LDPC Zm-codes can easily be constructed by consid-
ering syndrome matrices with a fixed amount of nonzero elements both on each row
and on each column and, as in the binary case, randomly selecting nonzero positions
through a random-permutation approach. An interesting difference with respect to
the binary case is the way to choose the nonzero elements of Φ. In this paper we will
consider many different possibilities. Among them, we consider the so-called unla-
belled ensemble, where nonzero elements are all equal to 1, and the uniformly labelled
ensemble, where nonzero elements are instead, each one independently, chosen to be
any possible invertible element in the ring Zm with uniform probability. We will see
that the latter ensemble will outperform the former. Of course our results could be
extended to irregular LDPC ensembles, where the fraction of rows and columns with
different amounts of nonzero entries (degree profile) is fixed, although this extension
will not be considered here. Nonbinary LDPC codes have been considered for binary-
input channels as well (see [32], for instance). In this case, they allow us to introduce
a new design parameter, the choice of the nonzero entries in the parity matrix, to be
optimized jointly with the degree profile.

LDPC codes over nonbinary alphabets were already introduced and studied in
Gallager’s seminal work [19]. Precisely, Gallager considered regular ensembles of
LDPC Zm-codes with all nonzero entries equal to 1 (unlabelled ensembles in our ter-
minology); he studied their Hamming distance-spectra and provided bounds for their
error probabilities under ML and suboptimal iterative decoding over some highly sym-
metric channels. More recently, after the rediscovery of Gallager codes in the 1990s,
LDPC codes over nonbinary fields, both for binary and nonbinary channels, have re-
ceived a considerable amount of attention by researchers. In [13], the authors show
empirical evidence that, appropriately choosing the values of the nonzero entries in the
parity-check matrix, LDPC codes over the Galois field F2r perform better than the
corresponding binary LDPC codes when used over binary-input output-symmetric
channels. LDPC codes over F2r for binary-input output-symmetric channels have
also been studied in [32] following a density-evolution approach. The works [4, 5, 17]
contain quite a complete theoretical analysis of LDPC codes over finite fields for
nonbinary channels considering both ML and belief-propagation decoding. Average
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type-spectra of regular LDPC ensembles over Zp in the special case when p is prime,
and more in general over Fpr , have been studied in [17, 4]. In this case the structural
theory of binary LDPC codes generalizes in an almost straightforward way. In par-
ticular it has been shown, using expurgation techniques and results from [39], that
average type-spectra provide lower bounds to the typical error exponent of these en-
sembles and that this exponent can be made arbitrarily close to the random-coding
one by allowing the density of the parity matrix to grow while keeping the rate con-
stant. Finally the recent works [8, 30, 38] investigate the possibility of using hybrid
nonbinary LDPC codes over multiple groups.

However, in the case of algebraic structures which are not fields (e.g., Zm with
nonprime m), the available theoretical results are very few. In [4], average type-
spectra of unlabelled ensembles of LDPC Zm-codes have also been studied in the case
when m is not prime, but there are no results on minimum Euclidean distances. In
the papers [40, 1, 44] the case when m is not prime has been considered but mainly
from an iterative-decoding perspective. Computer simulations have been reported
in [40, 44] showing that, when mapped over the m-PSK constellation, LDPC Zm-
codes guarantee better performance than their binary counterparts.

When m is not prime, the lack of field structure implies that the theory of Zm-
codes itself (with no restriction on the density of their kernel representation) is not
as simple as in the linear case. This issue has been addressed in [10, 11], where
the capacity achievable by Zm-codes (and more in general by Abelian group codes)
over symmetric channels—called Zm-capacity—has been characterized in terms of the
capacities of the channels obtained by restricting the input to all nontrivial subgroups
of Zm (see (2.5) in section 2.3). For the m-PSK constellation (when m is an integer
power of a prime) it has been proved that Zm-codes achieve capacity, while this is
no longer the case for other possible geometrically uniform constellations. Type-
spectra and minimum distances of ensembles of Zm-codes have been studied in [12],
where it has been shown that the typical Z8-code asymptotically achieves the Gilbert–
Varshamov bound of the 8-PSK AWGN channel. The study of the properties of
group-code ensembles gives insight into the theory of LDPC codes over groups, since
it allows one to distinguish between the possible loss in performance due to the group
structure and the one due to the sparseness of the syndrome representation.

In this paper we will study in detail average type-spectra and minimum Bhatta-
charyya-distances of regular LDPC ensembles over any finite Abelian group G, in
which the nonzero entries of the parity-check operator are randomly sampled, inde-
pendently and uniformly, from an arbitrary group F of automorphisms of G (briefly
F -labelled ensembles), generalizing all of the results in [19, 13, 17, 4]. This extension
passes through the use of mathematical tools which do not show up in the binary
case: group characters, arithmetic concepts (Möbius inversion formula, Ramanujan
sums), combinatorial techniques (Cayley graphs), and convex-analytical techniques.

As a first result, we will find exact expressions in terms of combinatorial formulas
for the average type-spectra of regular F -labelled ensembles of LDPC codes over G; see
Theorem 3.5. For the unlabelled ensemble of LDPC codes over Zm, we will show that
our results for average type-spectra coincide with those obtained in [19, 4], while for
LDPC codes over finite fields the results of [13, 17, 4] will be recovered. Theorem 3.5
is instead completely original, to the best of our knowledge, for the uniformly labelled
ensemble of LDPC codes over Zm, for which the average type-spectrum has an elegant
expression in terms of Ramanujan sums. Coupling this analysis with an ad hoc
analysis for the low-weight average type-enumerating functions, we will finally propose
upper bounds to the probability distribution of the minimum Bhattacharyya distance
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[6]. This will allow us to show that minimum distances grow linearly in N with
probability one (see Theorems 5.1 and 5.2): in the coding terminology this means
that such codes are asymptotically good with probability one. More precisely, we
obtain almost sure lower bounds on the asymptotic normalized minimum distance of
the LDPC ensembles. These bounds are defined as the solution of (|G|−1)-dimensional
optimization problems. Proving the tightness of these bounds would require second-
moment estimations for the type-enumerating functions and is a problem left for
future research. However, concentration results available in the literature for the
Hamming distance-spectra of regular ensembles of binary LDPC codes (see [33]) make
us optimistic about the tightness of our bounds for regular ensembles of LDPC G-
codes as well. Finally, we will present some numerical results for the average distance-
spectra showing how strongly the choice of the label group F affects the value of the
typical minimum distance. In particular, we will show that, for the 8-PSK AWGN
channel, the distance properties of the uniformly labelled ensemble of LDPC Z8-codes
are significantly better than those of the unlabelled ensemble. This is confirmed by
Monte Carlo simulations of these codes which we have run, and it agrees with some
of the simulation results reported in [4].

The remainder of this paper is organized as follows. Section 2 is devoted to a
formal introduction of all of the fundamental concepts: G-symmetric channels and
the associated Bhattacharyya distance, Abelian group codes and their capacity, and
LDPC code ensembles over Abelian groups. In section 3 we study the average type-
enumerating functions of these ensembles, and we determine their exact growth rate,
namely the so-called average type-spectrum: the main result is Theorem 3.5. Section 4
is a technical one devoted to a detailed probabilistic analysis of low-weight codewords:
the main result is Theorem 4.6. Using the results of sections 3 and 4 we are able to
prove, in section 5, a probabilistic lower bound on the growth of minimum Euclidean
distances for the LDPC ensembles when the block-length N goes to infinity; see Theo-
rems 5.1 and 5.2. Finally, in section 6 we report some numerical simulations showing
that the uniformly labelled ensemble of LDPC Z8-codes definitely outperforms the
unlabelled one on the 8-PSK AWGN channel, and we draw some final conclusions.
An appendix completes the paper, containing some of the most technical proofs and
a technical lemma on semicontinuous functions.

2. The coding setting.

2.1. Notation. Throughout the paper N, Z, R, C will denote the usual number
sets. With R+ (Z+) we will indicate the set of nonnegative reals (integers). If z
is in C, then z∗ is its conjugate. The functions log and exp are to be considered
with respect to a fixed base a > 1. Conventionally, inf(∅) = +∞, sup(∅) = −∞.
For any subset B ⊆ A, B := A \ B will denote the complement of B in A, while
1B : A → {0, 1} will denote the indicator function of B, defined by 1B(a) = 1 if
a belongs to B and 1B(a) = 0 otherwise. For a finite set A, L2(A) will denote
the vector space of all C-valued functions on A, equipped with the Hermitian form
〈f , g〉 =

∑
a∈A f(a)g(a)∗. For a function f in L2(A) we shall indicate by supp(f) :={

a ∈ A
∣∣f(a) 
= 0

}
the support of f . Given f , g ∈ L2(A), f · g ∈ L2(A) will denote

their pointwise product, while we define fg :=
∏

a∈supp(f) f(a)g(a). We consider the

simplex P(A) of probability measures on A, P(A) := {θ : A → R+|
∑

a θ(a) = 1}.
Given a subset B ⊆ A, we shall use the notation θ(B) :=

∑
b∈B θ(b). For a in A,

δa in P(A) will be the probability measure concentrated on a. The entropy function
H : P(A) :→ R and the Kullback–Leiber distance D (·||·) : P(A) × P(A) → [0,+∞]
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are defined, respectively, by

H(θ) := −
∑

a∈supp(θ)

θ(a) log θ(a), D (θ||θ′) :=
∑

a∈supp(θ)

θ(a) log
θ(a)

θ′(a)
.

Given x ∈ AN , its A-type (or empirical frequency) is the probability measure
θA(x) ∈ P(A) given by [θA(x)] (a) = 1

N |{1 ≤ i ≤ N : xi = a}|. Define the set of
types of all N -tuples by PN (A) := θA(AN ), and let PN(A) :=

⋃
N PN (A) be the set

of all A-types. The number of A-types |PN (A)| =
(
N+|A|−1
|A|−1

)
is a quantity growing

polynomially fast in N . Instead, the set of N -tuples of a given type θ, denoted by

AN
θ :=

{
x ∈ AN such that (s.t.) θA(x) = θ

}
,

has cardinality growing exponentially fast with N . More precisely, for θ ∈ PN(A),
consider the set Nθ := {N : Nθ(a) ∈ N ∀a ∈ A} which is infinite since |A|N ⊆ Nθ.
Then, for every N ∈ Nθ, we have

∣∣AN
θ

∣∣ =
(
N
Nθ

)
:= N !

/∏
a(Nθ(a))!, and Stirling’s

formula implies that

(2.1)
∣∣AN

θ

∣∣ ≤ exp(N H(θ)), lim
N∈Nθ

1

N
log
∣∣AN

θ

∣∣ = H(θ).

2.2. Symmetric channels. A memoryless channel (MC) is described by a finite
input set X , an output set consisting of a σ-finite measure space Y = (Y,B, ν), and a
family of transition probability densities P (·|x) on Y indexed by the possible inputs
x in X . Such a channel will be denoted by (X ,Y, P ). In the applications there are
essentially two possibilities: either Y is finite and ν is simply the counting measure
(and in this case P (·|x) are simply probabilities on Y), or Y is an n-dimensional
Euclidean space and ν is the corresponding Lebesgue measure. Keeping this more
abstract formalism will allow us to cover both cases at once.

We now recall the concept of a group action. Given a finite group G with identity
1G and a (finite) set A, we say that G acts on A if, for every g in G, it is defined
as a map from A to A denoted by a �→ ga, such that 1Ga = a for all a in A and
h(ga) = (hg)a for all h, g in G and a in A. The action of G over A is said to be
(simply) transitive if for every a, b ∈ A there exists one (and only one) element g of G
such that ga = b. If the action is simply transitive, G and A are clearly in bijection:
g �→ ga0, where a0 is some fixed reference element in A.

Given a σ-finite measure space Y = (Y,B, ν), we say that the group G acts
isometrically on Y if it is defined as an action of G on Y consisting of measurable
bijections such that

(2.2) ν(gA) = ν(A) ∀A ∈ B, ∀g ∈ G.

Notice that in the case, when Y is a finite set, (2.2) is trivially always verified so that
in this case all actions are isometric. Instead, in the case when Y = Rn, (2.2) is a real
restriction and is verified if the maps y �→ gy are isometries of Rn.

Definition 2.1. An MC (X ,Y, P ) is said to be G-symmetric if the following
hold:

(a) there exists a simply transitive action of G on X ;
(b) there exists an isometric action of G on Y;
(c) P (y|x) = P (gy|gx) for every g ∈ G, every x ∈ X , and ν-almost every y ∈ Y.



6 GIACOMO COMO AND FABIO FAGNANI

It follows from (a) that the input X of a G-symmetric MC and the group G are in
bijection: we will often tend to identify them. In this paper we will exclusively consider
the case when G is a finite Abelian group. We present a few fundamental examples.

Example 1 (binary-input output-symmetric channels). Consider the case when
G  Z2. Z2-symmetric channels are known in the coding literature as binary-input
output-symmetric (BIOS) channels. Typical examples are the binary symmetric chan-
nel (BSC) and the binary erasure channel (BEC). By considering r consecutive uses of
a BIOS channel (X ,Y, P ), one obtains a Zr

2-symmetric MC with input set X r, output
space Yr, and product transition probabilities P (y|x) :=

∏
1≤k≤r P (yk|xk).

Example 2 (m-ary symmetric channel). Consider a finite set X of cardinality
m ≥ 2 and some ε ∈ [0, 1]. The m-ary symmetric channel is described by the triple
(X ,X , P ), where P (y|x) = 1 − ε if y = x and P (y|x) = ε/(m − 1) otherwise. This
channel returns the transmitted input symbol x as output with probability 1−ε, while
with probability ε a wrong symbol is received, uniformly distributed over the set X \
{x}. The special case m = 2 corresponds to the BSC. The m-ary symmetric channel
was considered by Gallager [19, sect. 5] to evaluate the performance of nonbinary
LDPC codes. It exhibits the highest possible level of symmetry. Indeed, it is G-
symmetric for every group G of order |G| = m. To see this, it is sufficient to observe
that every group acts simply and transitively on itself. Notice that whenever m = pr

for some prime p and positive integer r, the group G can be chosen to be Zr
p, which

is compatible with the structure of the Galois field Fpr .
Example 3 (geometrically uniform AWGN channels). An n-dimensional constel-

lation is a finite subset S ⊂ Rn spanning Rn. We denote with Iso(S) its symmetry
group, i.e., the group of those isometries of Rn mapping S into S itself. A constella-
tion S is said to be geometrically uniform (GU) if there exists a subgroup G of Iso(S)
whose action on S is simply transitive. Such a G is called a generating group for S:
for every s ∈ S the mapping λs : G → S defined by λs : g ∈ G �→ gs ∈ S is a bijection
called isometric labeling.

Given a GU constellation S ⊂ Rn with generating group G, define the S-AWGN
channel as the n-dimensional unquantized AWGN channel with input set S, output Rn

with the usual Borel–Lebesgue measure structure, and transition probability densities
given by P (y|x) = N(y − x), where N(x) = (2πσ2)−n/2e−||x||2/2σ2

is the density of
an n-dimensional diagonal Gaussian random variable. Now let S′ be another GU
constellation such that S ⊆ S′ and G is isomorphic to a subgroup of Iso(S′). Let
us introduce the quantization map over the Voronoi regions of S′ q : Rn → S′,
q(x) = argmins∈S′ ||x−s|| (resolving nonuniqueness cases by assigning to q(x) a value
arbitrarily chosen from the set of minima). We define the (S, S′)-AWGN channel as
the MC obtained by applying q to the output of the S-AWGN channel. Note that the
special case S = S′ coincides with the so-called hard decoding rule. It is easy to see
that both the S-AWGN channel and the (S, S′)-AWGN channel are G-symmetric.

The simplest example of a GU constellation is the so-called one-dimensional an-
tipodal constellation {−1, 1}, admitting Z2 as a generating group. Another example
is given by m orthogonal equal-energy signals: in this case the symmetry group co-
incides with the permutation group Sm, and any group of order m is a generating
group. A two-dimensional example is the m-PSK constellation already introduced in
section 1. Notice that the symmetry group of the m-PSK is isomorphic to Dm, the
dihedral group with 2m elements. m-PSK always admits cyclic generating group Zm.
When m is even, the m-PSK also admits a generating group isomorphic to Dm/2,
which is non-Abelian for all m ≥ 6. Notice that the only cases when m-PSK has
a generating group admitting Galois field structure are when m is prime or m = 4.
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In fact, when m = 2r with r ≥ 3 or m = pr with p ≥ 3 prime and r ≥ 2, Zr
p is

not isomorphic to any subgroup of Dm and thus cannot be a generating group for
m-PSK.

Consider an MC (X ,Y, P ) and two input elements x, x′ in X . The Schwarz
inequality gives

0 ≤
∫
Y

√
P (y|x)P (y|x′)dν(y) ≤

∫
Y
P (y|x)dν(y)

∫
Y
P (y|x′)dν(y) = 1.

Moreover, the first of the previous inequalities holds as an equality iff P ( · |x)P ( · |x′) =
0 ν-almost everywhere. Instead, the second inequality is equality iff P (·|x) = P (·|x′) ν-
almost everywhere, which means that actually x and x′ have indistinguishable outputs.
Throughout this paper we will assume that 0 <

∫
Y
√
P (y|x)P (y|x′)dν(y) < 1 for

every x 
= x′. While there is no loss of generality in the latter part of this assumption,
the former excludes from our analysis the class of channels whose 0-error capacity is
strictly positive. To any MC we can associate a function

Δ : X × X → R+ , Δ(x, x′) := − log

∫
Y

√
P (y|x)P (y|x′)dν(y).

This function is usually called the Bhattacharyya distance (or simply Δ-distance) of
the channel. Δ is symmetric: Δ(x, x′) = Δ(x′, x); moreover, Δ(x, x′) = 0 iff x = x′.
The Bhattacharyya distance can be extended to direct products in a natural way.
Given x,x′ in XN , we put Δ(x,x′) =

∑N
i=1Δ(xi, x

′
i). The minimum Δ-distance of

a code C ⊆ XN is defined as

dmin(C) := min{Δ(x,x′)
∣∣ x,x′ ∈ C, x 
= x′}.

If the MC (X ,Y, P ) is G-symmetric, it is easy to verify that Δ(gx, gx′) = Δ(x, x′)
for all x, x′ in X and g in G. Identifying X with G as usual, we can introduce the
so-called Bhattacharyya weight:

δ : G → R+, δ(x) := Δ(x, 1G), x ∈ G.

In this way we have Δ(x, x′) = δ(x−1x′).
In the case of a BIOS channel, we have that

Δ(x,x′) =
∑

1≤i≤N

δ(xi − x′
i) = δ(1) |{1 ≤ i ≤ N : xi 
= x′

i}| ∀x,x′ ∈ XN ;

i.e., the Δ-distance is proportional to the Hamming distance (the number of different
entries of two strings).

For the m-ary symmetric channel of Example 2 we obtain

Δ(x,x′) = − log

(
εm−2
m−1 +

√
(1−ε)ε
m−1

)
|{1 ≤ i ≤ N : xi 
= x′

i}| ∀x,x′ ∈ XN ,

so that, once again, the Δ-distance is proportional to the Hamming distance.
Finally, for the S-AWGN channel of Example 3, by considering any isometric

labeling λs : G → S, we obtain

Δ(x,x′) =

N∑
k=1

− log

∫
Rn

e−(||y−λs(xk)||2+||y−λs(x
′
k)||2)/4σ2

(2πσ2)n/2
dy

=
log e

8σ2

N∑
k=1

||λs(xk) − λs(x
′
k)||2 ;

i.e., the Bhattacharyya distance is proportional to the squared Euclidean distance.
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2.3. Group codes and type-enumerating functions. When transmitting
over an MC which is symmetric according to Definition 2.1, a natural class of codes
to be considered is that of group codes. A G-code of length N is any subgroup of the
direct group product GN . Group codes are generalizations of binary-linear codes (the
latter correspond to the case G  Z2). In fact, G-codes enjoy many of the properties
of binary-linear codes. For instance, when a G-code C is employed on a G-symmetric
MC, ML decision regions (Voronoi regions in the Gaussian case) are congruent, and
then the error probability does not depend on the transmitted codeword: this is called
the uniform error property [18].

For every G-code C of length N we now introduce some combinatorial quanti-
ties characterizing its performance. The type-enumerating function of a G-code C is
defined as

WC : P(G) → Z+, WC(θ) :=
∑

x∈GN
θ

1C(x) ∀θ ∈ P(G),

where GN
θ is the set of N -tuples of type θ. Notice that since C is a subgroup of GN ,

1GN is always a codeword so that WC(δ1G
) = 1.

Assume we have fixed a G-symmetric MC (X ,Y, P ), and let δ be its associated
Bhattacharyya weight. The minimum Δ-distance of a G-code C of length N is a
function of its type-enumerating function:
(2.3)
dmin(C) = min{δ(x) | x ∈ C \ {0}} = N inf

{〈δ,θ〉∣∣θ ∈ P(G) \ {δ0} : WC(θ) > 0
}
.

Type-enumerating functions and minimum Bhattacharyya distances play an impor-
tant role in the estimation of the ML decoding error probability of G-codes over
G-symmetric MCs. For instance, the so-called union-Bhattacharyya bound, for the
error probability of a G-code C of length N , can be written in the form

(2.4) pe(C) ≤
∑

θ∈P(G)

WC(θ) exp (−N〈δ,θ〉) .

Bounds tighter than (2.4) can be obtained for the error probability of G-codes over
G-symmetric channels based on variations of the Gallager bound [20, 39].

Observe that both (2.3) and (2.4) do not generally hold when a G-code is em-
ployed on an MC which is not G-symmetric. While this is not an issue for the highly
symmetric channels considered in Example 2, it does matter for the symmetric chan-
nels introduced in Example 3. As a concrete example, one may think of the 8-PSK
Gaussian channel: in this case, while both (2.3) and (2.4) are true for Z8-codes, for
a Z3

2-code C, and a fortiori for a F8-linear code, neither (2.3) nor (2.4) holds. In
fact, the type-enumerating function of a Z3

2-code is not sufficient for characterizing its
performance on the 8-PSK Gaussian channel. In order to overcome this problem, an
average coset ensemble approach needs to be used [22, 4, 5].

It is a well-known result in information theory [20] that binary-linear codes
allow one to achieve the capacity of any BIOS channels. More in general, lin-
ear codes over the Galois field Fpr are known to achieve the capacity of any Zr

p-
symmetric channel [16]. A similar result was conjectured in [27] for G-codes on
G-symmetric MCs. In [11], the capacity CG achievable by G-codes on G-symmetric
MCs has been characterized for any finite Abelian group G. When G is cyclic of order
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m = p
rm1
1 p

rm2
2 . . . p

rms
s , for distinct primes p1, . . . , ps, it has been shown that

(2.5) CZm = max
α∈P({1,...,s})

min
l|m,l>1

Cps∑
1≤j≤s

α(j)
rlj
rmj

≤ C,

where Cl denotes the Shannon capacity of the Zl-symmetric channel obtained by
restricting the input of the original channel to the subgroup m

l Zm. It has been shown
in [11] that for a wide class of G-symmetric channels, including the pr-PSK Gaussian
channel (for prime p) both with quantized and unquantized output, G-capacity CG

and Shannon capacity C do coincide, while this is no longer the case for other G-
symmetric channels.

2.4. LDPC codes over Abelian groups. For any finite Abelian group G,
we now describe the ensembles of LDPC G-codes which will be considered in this
paper. For every given degree pair (c, d) in N2, we consider the set of admissible
block-lengths N(c,d) := {N ∈ N s.t. d | Nc}, and for every N in N(c,d) we define
L = Nc/d. Consider the c-repetition operator

(2.6) RepN
c : GN → GNc, (RepN

c x)i = x�i/c�,

where �x� denotes the lowest integer not below x, and the d-check summation operator

(2.7) SumN
d : GNc → GL, (SumN

d x)i =

id∑
k=i(d−1)+1

xk.

Consider the group of permutations on Nc elements, SNc, and let Π′
N be a random

variable uniformly distributed over SNc. Moreover, consider a subgroup F of Aut(G),
the automorphism group of G, and let (Λj)1≤j≤Nc be a family of independent ran-
dom variables identically distributed uniformly on F , independent of Π′

N . Define the
random diagonal automorphism Π′′

N ∈ Aut(GNc) by (Π′′
Nx)j := Λjxj for 1 ≤ j ≤ Nc.

Finally, for every N ∈ N(c,d) define the random syndrome homomorphism

(2.8) ΦN : GN → GL, ΦN := SumN
d Π′

NΠ′′
N RepN

c

and the associated random G-code CN := ker ΦN . This is called the (c, d)-regular
F -labelled ensemble. F will be called the label group. The two extreme cases F = {1}
and F = Aut(G) will be referred to, respectively, as the unlabelled and the uniformly
labelled (c, d)-regular ensembles.

The reason for considering only automorphisms as possible labels, avoiding the
use of noninvertible labels, is clarified by the following proposition. For any group H,
we denote the set of endomorphisms of H by End(H).

Proposition 2.2. Assume that, for all N ∈ N(c,d), ΦN : GN → GL is de-
fined as in (2.8) with Π′

N uniformly distributed over SNc and Π′′
N ∈ End(GNc) is

defined by (Π′′
Nx)j := Λjxj for 1 ≤ j ≤ Nc, where (Λj) are independently and identi-

cally distributed according to some probability distribution μ ∈ P(End(G)) such that
supp(μ) � Aut(G). Then, for all k ∈ G\{0} such that Λk = 0 for some Λ ∈ supp(μ)

P(dmin(ker ΦN ) ≤ δ(k)) ≥ 1 − (1 − μ(Λ)c)
N N→∞−→ 1.

Proof. Consider Λ ∈ supp(μ) \ Aut(G), and k ∈ ker Λ \ {0}. For 1 ≤ s ≤ N , let
eks ∈ GN be the N -tuple with all-zero entries but the sth one, which is equal to k. If
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Λj = Λ for all (s − 1)c + 1 ≤ j ≤ sc, then Π′′
N RepN

c eks = 0, so that ΦNeks = 0, and
dmin(ker ΦN ) ≤ δ(k). Since the events

EN
s :=

⋂
(s−1)c+1≤j≤sc

{Λj = Λ}

are independent for 1 ≤ s ≤ N and all have probability 1 − μ(Λ)c, it follows that

P(dmin(ker ΦN ) ≤ δ(k)) ≥ P

⎛
⎝ ⋃

1≤s≤N

EN
s

⎞
⎠ = 1−(1 − P

(
EN

s

))N
= (1 − μ(Λ)c)

N
.

We wish to underline the fact that the proof of Proposition 2.2 strongly relied
on the independence assumption we made for the labels Λj . Indeed, by introducing
proper dependence structures for the random labels which allow us to avoid certain
configurations, it is possible to consider ensembles of LDPC G-codes with noninvert-
ible labels as well. This possibility will not be considered in the present paper but
will be explored in a future work.

As LDPC G-codes are special G-codes admitting sparse kernel representation,
they suffer from all of the limitations in performance of G-codes. In particular, the ca-
pacity they can achieve on a G-symmetric channel is upper bounded by the G-capacity
of that channel. This explains why the authors of [4] had to restrict themselves to
prime values of m while studying LDPC Zm-codes, albeit the average type-spectra
they obtained for the unlabelled ensemble did not need such an assumption. In fact,
they noticed that for nonprime m “expurgation is impossible” and LDPC Zm-codes
result “bounded away from the random-coding spectrum.” The same restriction to
prime values of m (or more in general to groups G admitting Galois field structure)
was required both in [4] and [17] in order to study the uniformly labelled ensemble.

In this paper regular ensembles of F -labelled LDPC G-codes will be studied for
any finite Abelian group G. In particular we will find estimations for their average
type-enumerating functions WCN

(θ) and explicit combinatorial formulas for their av-

erage type-spectra defined as the limit of N−1 logWCN
(θ). Coupling this analysis with

an ad hoc analysis of the type-enumerator functions for small weight codewords, we
will finally propose upper bounds to the repartition function of the minimum normal-
ized distance 1

N dmin(CN ). This will allow us to show that, if c > 2, minimum distances
grow linearly in N with high probability. We will also show that the typical minimum
distance (more precisely the lower bound on it—conjectured to be tight—provided
by the average type-spectra) of the uniformly labelled LDPC ensemble is significantly
larger than the typical minimum distance of the corresponding unlabelled ensemble.

In [10] it was claimed that, for any m, the (c, d)-regular ensemble allows one to
achieve a nonzero capacity over any Zm-symmetric channel, and that this capacity can
be made arbitrarily close to the Zm-capacity of the channel, if the parameters (c, d)
are allowed to grow. In fact, the same is true for the uniformly labelled ensembles
as well; see section 6.2. This implies that LDPC Zm-codes allow one to achieve the
Shannon capacity of a Zm-symmetric channel whenever Zm-codes do. While explicit
proofs of these facts will not be given here due to the lack of space, they can be
obtained from the combinatorial results of sections 3 and 4 using standard upper-
bounding techniques for the average error probability of group codes [20, 39]. Similar
reasonings can be made for minimum distances and error exponents of LDPC codes. In
particular, minimum Bhattacharyya distances of Zm-codes have been studied in [12].
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3. Average type-spectra of LDPC G-codes. In this section we first present
some considerations on semidirect-product group actions. Then in section 3.2 we
introduce LDPC codes in a slightly more general setting, and we show how regular
F -labelled ensembles of LDPC G-codes introduced in section 2.4 can be cast in this
framework. In section 3.3 we prove the main result, Theorem 3.5, characterizing
the average type-spectra of regular F -labelled ensembles. Finally, in section 3.4 we
show how previous results in the literature can be recovered as particular cases of
Theorem 3.5, and we provide an explicit formula for the average type-spectrum of the
uniformly labelled ensemble over the cyclic group, which is instead an original result.

3.1. Group actions. We recall here some basic facts about semidirect group ac-
tions; the reader is referred to the standard textbook [23] for further details. Assume
that a group F acts on a set A. A subset B ⊆ A is said to be F -invariant if fb ∈ B for
every b ∈ B and f ∈ F . Clearly, if B is F -invariant, F acts on B as well. For every
a in A, the relative orbit Fa := {b ∈ A s.t. b = fa for some f ∈ F} is F -invariant
and its action on it is transitive. The set of orbits is denoted by A/F and called the
quotient of A by the action of F . There is a canonical surjection πF : A → A/F
which associates an element a with the orbit it belongs to. Given a ∈ A, we define
its stabilizer as StabF (a) := {f ∈ F s.t. fa = a}. The well-known class formula gives
|F | = |Fa| · |StabF (a)|.

If A and B are sets and the group F acts on A, a map φ : A → B is said to be
F -invariant if φ(fa) = φ(a) for every a ∈ A and f ∈ F . As an example, the canonical
surjection πF : A → A/F is an F -invariant map. Suppose we have an F -invariant map
φ : A → B; then it is immediate to see that we can define a map φ̃ : A/F → B such
that φ = φ̃ ◦ πF . Notice that if it happens that φ is onto and moreover φ(a) = φ(a′)
iff Fa = Fa′, then the map φ̃ is a bijection, and thus A/F and B are in one-to-one
correspondence. We will often use this fact in order to characterize quotient spaces.

We now introduce an example which will play a fundamental role in our future
derivations. Given any set A, the permutation group SN acts naturally on AN : given
a ∈ AN and σ in SN , we define σa ∈ AN by (σa)j = aσ−1(j). Orbits can easily be

described using types. Given a, b ∈ AN , it is immediate to see that

∃ σ ∈ SN : σa = b ⇔ θA(a) = θA(b).

This says that the subsets AN
θ of type-θ N -tuples are exactly the orbits for the action

of the permutation group SN on AN , and we have a natural bijection AN/SN 
PN (A) (obtained through the mapping a �→ θA(a)).

Now suppose we are given an action of a group F on the set A. This extends
to a componentwise action of FN on AN with the orbit set AN/FN  (A/F )N . We
would like to combine this action with the action of the permutation group on AN ,
and the way to do this is as follows: we consider the semidirect product

SN � FN , (σ1, g1)(σ2, g2) = (σ1σ2, (σ
−1
2 g1)g2)

and the action on AN given by (σ, g)a = σ(ga).
We now want to characterize the set of orbits of this semidirect action. Notice

that the map πF : A → A/F induces a natural map π�
F : P(A) → P(A/F ), where

[π�
Fθ](Fa) =

∑
b∈Fa θ(b). It is easy to see that the following diagram commutes:

(3.1)

AN πFN

→ (A/F )N

↓ θA ↓ θA/F

PN (A) π�
F→ PN (A/F )



12 GIACOMO COMO AND FABIO FAGNANI

(i.e., θA/F ◦ πFN = π�
F ◦ θA).

In what follows we will use the notation υA,F = θA/F ◦πFN and call υA,F (a) the
(A,F )-type of a. The (A,F )-type is exactly what is needed to describe orbits with
respect to the action of the semidirect group SN�FN . Indeed, it is immediate to check
that PN (A/F ) is in bijection with the quotient AN/(SN �FN ): given a, b ∈ AN , we
have that

∃(σ, g) ∈ SN � FN s.t. (σ, g)a = b ⇔ υA,F (a) = υA,F (b).

If υ ∈ PN (A/F ), we will use the notation AN
υ := {a ∈ AN | υA,F (a) = υ}. Using the

fact that υA,F = θA/F ◦ πFN we obtain that

(3.2) |AN
υ | =

(
N
Nυ

) ∏
α∈A/F

|π−1
F (α)|Nυ(α).

Now define ON
υ := {θ ∈ PN (A) s.t. π�

F (θ) = υ}. For every given υ ∈ P(A/F ), and
N in N, we have

(3.3) AN
υ =

⋃
θ∈ON

υ

AN
θ ,

the union being disjoint. Notice that we also have
∣∣ON

υ

∣∣ =∏α∈A/F |π−1
F (α)|Nυ(α).

3.2. A general framework for LDPC ensembles over Abelian groups.
Fix an infinite subset N ⊆ N, a group U , two sequences of finite Abelian groups Z(N)

and Y (N) (with N ∈ N ), and two sequences of homomorphisms

ΞN
o : UN → Z(N), ΞN

i : Z(N) → Y (N).

Consider, moreover, a sequence IN of subgroups of Aut(Z(N)), and assume that the
actions of IN on Z(N) satisfy the following property: there exists a fixed finite set A
and a sequence of invariant maps ΘN : Z(N) → P(A) such that x, y ∈ Z(N) are in
the same orbit iff ΘN (x) = ΘN (y). In this way the quotient space Z(N)/IN can be
naturally identified with the image of ΘN inside P(A).

Now let ΠN be a sequence of random variables uniformly distributed over IN .
For every N ∈ N define

(3.4) ΦN := ΞN
i ΠNΞN

o .

The triple (ΞN
o ,ΞN

i , IN ) is called an interconnected ensemble, while (ker ΦN ) will
be the random code sequence associated with the ensemble. The set A will be called
the interconnection type alphabet of the ensemble.

Now consider the type-enumerating function WN (θ) for the ensemble. By taking
the expectation with respect to our probability space, we get

(3.5) WN (θ) = E

[ ∑
x∈UN

θ

1{0}(ΦNx)

]
=
∑

x∈UN
θ

P(ΦNx = 0).

Put Z
(N)
υ := Θ−1

N (υ), and define the following sets: for every υ ∈ P(A), θ ∈ P(U)
(3.6)

Zi,N
υ :=

{
w∈Z(N)

υ | ΞN
i w =0

}
, Uo,N

θ,υ := {x∈UN | θU (x) = θ, ΘN (ΞN
o x) = υ}.
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We have the following simple result.
Proposition 3.1. For every θ in PN (U)

(3.7) WN (θ) =
∑

υ∈P(A)

|Uo,N
θ,υ ||Zi,N

υ |
|Z(N)

υ |
.

Proof. If x ∈ Uo,N
θ,υ , using the fact that IN acts transitively on Z

(N)
υ and the class

formula, we obtain

P(ΦNx = 0) = P(ΠNΞN
o x ∈ Zi,N

υ ) =
|Zi,N

υ ||StabIN (ΞN
o (x))|

|IN | =
|Zi,N

υ |
|Z(N)

υ |
.

Now using (3.5), (3.7) follows immediately.
We now frame the LDPC ensembles introduced in section 2 into this more general

setting. We use the notation introduced in section 2.4. Given (c, d) ∈ N2 and N ∈
N(c,d), consider L = Nc/d. Take U = G, Z(N) = GNc, Y (N) = GL. Also, take

ΞN
o = RepN

c , ΞN
i = SumN

d , IN = SNc�FNc. The ensemble (RepN
c ,SumN

d , SNc�FNc)
is the (c, d)-regular F -labelled ensemble. The type alphabet in this case is simply
A = G/F .

Irregular ensembles can be framed into this setting by simply modifying the rep-
etition and the sum operators. Also other interesting cases can be obtained by con-
sidering the interconnections among the inner and outer encoder done through some
vector structured channels and allowing only independent permutations on the various
channels. Finally, hybrid nonbinary LDPC codes can be considered in this framework
by replacing the product group UN with the product of copies of different Abelian
groups UN

1 × · · · × UN
k .

However, we will now focus on the evaluation of the type-spectra of the regular
F -labelled LDPC G-code ensembles. This will be done in the following subsection by
explicitly calculating the three terms entering in the formula (3.7).

3.3. The average type-spectrum of the (c, d)-regular F -labelled ensem-
ble. In order to prove the main result of this section we will use some generating
function techniques. For a finite set A, consider the ring of complex-coefficient multi-
variable polynomials (briefly multinomials) C[A]. Given p ∈ C[A] and k ∈ ZA

+, we de-
note by �p(z)�k the coefficient of the term zk in p(z), i.e., p(z) =

∑
k∈ZA

+
�p(z)�k zk.

In particular, we will consider type-enumerating multinomials, i.e., homogeneous-
degree multinomials of the form p(z) =

∑
θ∈PN (A) �p(z)�Nθ zNθ, where each co-

efficient �p(z)�Nθ equals the number of N -tuples a ∈ AN of A-type θ, satisfying
certain properties. The easiest case is provided by the multinomial (

∑
a∈A za)

N =∑
θ∈PN (A)

(
N
Nθ

)
zNθ, simply enumerating the N -tuples of different A-types. The fol-

lowing result, proved in [9], characterizes the asymptotic growth rate of the coefficients
of powers of enumerating multinomials.

Theorem 3.2. Let A be a finite set and p(z) ∈ R+[A] be a homogeneous-degree,
nonnegative, real-coefficient multinomial. For all θ ∈ PN(A) and z ∈ P(A) such that
supp(z) = supp(θ), we have

(3.8)
⌊
p(z)N

⌋
Nθ

≤ p(z)N

zNθ
, lim

N∈Nθ

1

N
log
⌊
p(z)N

⌋
Nθ

= inf
z∈P(A):

supp(z)=supp(θ)

log
p(z)

zθ
.
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Moreover, the left-hand side of (3.8) is a concave (and thus upper semicontinuous)
[−∞,+∞)-valued function on P(A).

Observe that, by considering p(z) =
∑

a za, (2.1) can be deduced from Theo-
rem 3.2.

The first type-enumerating multinomial which we will need in our derivations is
the one enumerating the 0-sum d-tuples over a finite Abelian group G:

βd(z) ∈ C[zg, g ∈ G], βd(z) :=
∑

g1,...,gd

1{0}

(
d∑

k=1

gk

) ∏
1≤k≤d

zgk .

By introducing the group Ĝ of characters of G, i.e., homomorphisms of G in the
multiplicative group C∗ of nonzero complex numbers, it is possible to find an explicit
expression for βd(z) as stated in the following lemma.

Lemma 3.3. For every finite Abelian group G and d ∈ N

βd(z) =
1

|G|
∑
χ∈Ĝ

(∑
g∈G

zgχ(g)

)d

.

Proof. The inversion formula for the discrete Fourier transform (see [41, p. 168])
f(g) = 1

|G|
∑

χ〈f, χ〉χ(g), applied to f = δ0 ∈ L2(G), gives 1
G

∑
χ χ(g) = 1{0}(g).

Then

βd(z) =
∑

g1,...,gd

1{0}

( ∑
1≤k≤d

gk

) ∏
1≤k≤d

zgk

=
∑

g1,...,gd

1
|G|
∑
χ

χ

( ∑
1≤k≤d

gk

) ∏
1≤k≤d

zgk

= 1
|G|
∑
χ

∑
g1,...,gd

∏
1≤k≤d

χ (gk) zgk

= 1
|G|
∑
χ

(∑
g

zgχ(g)
)d

.

Recall that, given any subgroup F of Aut(G) and a degree pair (c, d) in N2,
the (c, d)-regular F -labelled ensemble of LDPC G-codes is described by the triple(
RepN

c ,SumN
d , SNc � FNc

)
. Let πF : G → G/F be the canonical projection on the

quotient and π�
F : P(G) → P(G/F ) be the associated action on probabilities. Also,

define

(3.9) ϕ : G/F → N, ϕ(q) =
∣∣π−1

F (q)
∣∣

to be the map giving the cardinalities of the orbits of G under the action of F .
Consider some admissible block-length N in N(c,d). Formula (3.2) shows that

|Z(N)
υ | =

(
Nc
Ncυ

)
ϕNcυ for every υ ∈ PNc(G/F ). Moreover, in this case |Uo,N

θ,υ | =(
N
Nθ

)
1{π�

F θ}(υ). Substituting into (3.7), and defining υ := π�
Fθ, we obtain

(3.10) WN (θ) =

(
N

Nθ

)(
Nc

Ncυ

)−1

ϕ−Ncυ|Zi,N
υ |.
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It remains to evaluate the enumerating weights |Zi,N
υ | relative to the check summation

operator. In order to do that, we introduce the multinomial

(3.11) αF,d(t) ∈ C[tq, q ∈ G/F ], αF,d(t) :=
1

|G|
∑
χ∈Ĝ

⎛
⎝ ∑

q∈G/F

1

ϕ(q)

∑
g∈q

χ(g)tq

⎞
⎠

d

and present the following result, stating that the Lth power of αF,d(t) is the type-
enumerating multinomial of the normalized weights |Zi,N

υ |/ϕNcυ.
Lemma 3.4. For every N ∈ N(c,d)

(3.12)
∑

υ∈PNc(G/F )

|Zi,N
υ |

ϕNcυ
tNcυ = (αF,d(t))

L
.

Proof. First, consider the type-enumerating multinomial B(z) ∈ C[zg, g ∈ G] for

the kernel of the inner homomorphism ΞN
i = SumN

d . Since any x in GNc belongs to
ker SumN

d iff it is the concatenation of L 0-sum d-tuples, from Lemma 3.3 we have

B(z) = (βd(z))
L
. Now consider the map

Ψ : C[zg, g ∈ G] → C[tq, q ∈ G/F ], Ψ : p(z) �→ p(tπF (g), g ∈ G).

It follows from (3.3) that, for all υ in P(G/F ), we have
(3.13)

|Zi,N
υ |

ϕNcυ
=
∑

θ∈ONc
υ

�B(z)�Ncθ

ϕNcυ
=

∑
υ∈PNc(G/F )

�ΨB (t)�Ncυ

ϕNcυ
=

∑
υ∈PNc(G/F )

⌊
ΨB

(
t

ϕ

)⌋
Ncυ

.

Thus, the claim follows by observing that ΨB (t/ϕ) = (Ψβd (t/ϕ))
L

= αF,d(t)
L.

We are now ready to prove the main result of this section, stating that the average
type-spectrum of the (c, d)-regular F -labelled ensemble of LDPC G-codes is given by

(3.14) Γ(F,c,d)(θ) := H(θ) +
c

d
inf

t∈P(G/F ):

supp(t)=supp(π�
F θ)

{
logαF,d(t) + dD

(
π�
Fθ||t)} .

From Theorem 3.2 it follows that the spectrum Γ(F,c,d)(θ) is an upper semicontinuous

function on the probability simplex P(G). Notice that, by choosing t = π�
Fθ, we

immediately obtain the estimate

Γ(F,c,d)(θ) ≤ c

d
logαF,d

(
π�
Fθ
)

+ H(θ).

Theorem 3.5. For the (c, d)-regular F -labelled ensemble of LDPC G-codes

lim
N∈Nθ∩N(c,d)

1

N
logWN (θ) = Γ(F,c,d)(θ).

Proof. From (3.10), by recalling that Nc = Ld and υ = π�
Fθ, we get

1

N
logWN (θ) =

1

N
log

(
N

Nθ

)
+

c

d

1

L
log

|Zi,N
υ |(

Ld
Ldυ

)
ϕLdυ

.
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From (2.1) we have lim 1
N log

(
N
Nθ

)
= H(θ). Then we can first apply Lemma 3.4 and

then Theorem 3.2 (notice that (3.12) with L = 1 implies that αF,d(t) has nonnegative
real coefficients and homogeneous degree), obtaining

lim
N

1

L
log

|Zi,N
υ |(

Ld
Ldυ

)
ϕLdυ

= lim
N

1

L
log

⌊
αF,d(t)

L
⌋
Ldυ(

Ld
Ldυ

)
ϕLdυ

= inf
t∈P(G/F ):

supp(t)=supp(υ)

{
log

αF,d (t)

tdυ
− dH (υ)

}
.

3.4. Special cases of Theorem 3.5. Now we particularize Theorem 3.5 to
some important special cases, showing that all previously known results can be reob-
tained, while new interesting cases can be studied as well.

3.4.1. LDPC codes over Galois fields. Suppose G  Zr
p for some prime

number p and positive integer r. First, let F coincide with the whole automorphism
group Aut(Zr

p), which is isomorphic to the general linear group of r × r invertible

matrices on Zp. In this case the probability that an N -tuple x in GN belongs to

the random LDPC code CN = ker
(
SumN

d ΠN RepN
c

)
depends only on the Hamming

weight (i.e., number of nonzero entries) of x. Indeed, it is easily seen that the action
of Aut(Zr

p) on Zr
p has only two orbits: one containing the zero element only and one

containing all of the nonzero elements of Zr
p. Thus, the quotient space is G/F =

{q0, q1}, with ϕ(q0) = 1, ϕ(q1) = pr − 1. Moreover, since all nontrivial characters are
orthogonal to the trivial one χ0 ≡ 1, it follows that

∑
g∈q1

χ(g) = −χ(0) = −1 for all

χ ∈ Ĝ \ {χ0}. Then the average type-spectra of the (c, d)-regular Aut(Zr
p)-labelled

ensemble of LDPC Zr
p-codes are given by

(3.15)

Γ(Aut(Zr
p),c,d)(θ) = H(θ) + c

d inf
t∈(0,1)

{
log

(
1
pr + pr−1

pr

(
1 − pr

pr−1 t
)d)

+ dD(λ||t)
}
,

where λ := 1 − θ(0) and D(λ||t) := λ log λ
t + (1 − λ) log 1−λ

1−t .

Now consider the case G  Zr
p again, but now with label group F  F∗

pr , the
multiplicative group of nonzero elements of the Galois field Fpr . Observe that F∗

pr

can always be identified with a subgroup (proper if r > 1) of Aut(Zr
p). Nevertheless,

the action of F∗
pr on Zr

p has the same two orbits as the action of the whole Aut(Zpr )
on Zr

p. This shows that the (c, d)-regular F ∗
pr -labelled ensemble has the same average

type-spectrum of the Aut(Zr
p)-labelled ensemble, i.e.,

(3.16) Γ(F∗
pr

,c,d)(θ) = Γ(Aut(Zr
p),c,d)(θ) ∀θ ∈ P(Zr

p).

The expression (3.15) coincides with the spectrum of the F∗
pr -labelled ensemble

obtained in [4, 17]. We observe that in [32] it was numerically observed that the
density-evolution dynamical system [34] exhibits the same threshold value for the
F∗
pr -labelled and the Aut(Zr

p)-labelled ensembles over the BEC. Formula (3.16) shows
that these ensembles have identical average type-spectra.

3.4.2. Unlabelled LDPC ensembles over cyclic groups. We now consider
the case when G  Zm and F = {1}. In this case, the characters of Zm are given

by χk(h) := e
2π
m hki for h, k ∈ Zm, while, trivially, the quotient space Zm/F coincides
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with Zm itself and ϕ ≡ 1 (see (3.9)). It follows that

α{1},d(t) = βd(t) = 1
m

∑
1≤k≤m

⎛
⎝ ∑

1≤h≤m

e
2π
m hkizh

⎞
⎠

d

.

Then the average type-spectrum takes the following form:
(3.17)

Γ({1},c,d)(θ) = H(θ) +
c

d
inf

z∈P(Zm)
supp(z)=supp(θ)

{
log

(
1

m

∑
k

(∑
h

e
2π
m hkizh

)d)
+ dD

(
θ||z)}.

The above spectrum coincides with the one obtained in [4] (see also [19, p. 49]).

3.4.3. Uniformly labelled ensembles over cyclic groups. Finally, consider
the case when G  Zm again, but this time with F isomorphic to Z∗

m, the multiplica-
tive group of units of Zm. Notice that Z∗

m acts by multiplication on the ring Zm.
It is immediate to see that two a, b ∈ Zm are in the same orbit with respect to this
group action iff (m, a) = (m, b), where (k, h) denotes the greatest common divisor of
two naturals k and h. The quotient space Zm/Z∗

m can be identified with the set of
divisors of m, Dm := {l ∈ N s.t. l | m}. We have |Z∗

m| = ϕ(m), where ϕ : N → N,
ϕ(n) =

∣∣{m ∈ N s.t. m ≤ n, (n,m) = 1
}∣∣, is the Euler ϕ-function. The projection

map is

πZ∗
m

: Zm → Dm, πZ∗
m

(a) =
m

(m, a)
.

Notice that, for every l ∈ Dm, the orbit π−1
Z∗
m

(l) coincides with m
l Z∗

m and it is in

bijection with Z∗
l through the map h �→ m

l h. Then ϕ(l) = |π−1
Z∗
m

(l)| = |Z∗
l | = ϕ(l).

In order to evaluate the average-type spectra of the (c, d)-regular Z∗
m-labelled

ensemble of LDPC Zm-codes, it is convenient to introduce the so-called Ramanujan
sums

rl(k) :=
∑
j∈Z∗

l

e
2π
l jki, l, k ∈ N.

The Ramanujan sums are well known in number theory and can be explicitly evaluated
in terms of both the Euler ϕ-function and Möbius function:

μ : N → Z, μ(n) =

⎧⎨
⎩

1 if n = 1,
0 if p2 | n for some prime p,
(−1)k if m = p1p2 . . . pk for distinct primes pi.

For every l, k ∈ N it holds [21, p. 237] that

(3.18) rl(k) = μ

(
l

(l, k)

)
ϕ(l)

ϕ
(

l
(l,k)

) .
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We can now explicitly evaluate the multinomial αZ∗
m,d(t), obtaining

αZ∗
m,d(t) = 1

m

∑
1≤k≤m

⎛
⎝∑

l|m

1
ϕ(l)

∑
j∈Z∗

l

e
2π
l jkitl

⎞
⎠

d

= 1
m

∑
1≤k≤m

⎛
⎝∑

l|m

1
ϕ(l)rl(k)tl

⎞
⎠

d

= 1
m

∑
k|m

ϕ
(
m
k

)⎛⎝∑
l|m

μ( l
(l,k) )

ϕ( l
(l,k) )

tl

⎞
⎠

d

.

It follows that the average type-spectrum of the (c, d)-regular Z∗
m-labelled LDPC

ensemble of Zm-codes is given by
(3.19)

Γ(Z∗
m,c,d)(θ) = H(θ) +

c

d
inf
t

{
log

(
1

m

∑
k|m

ϕ
(m
k

)(∑
l|m

μ( l
(l,k) )

ϕ( l
(l,k) )

tl

)d)
+ dD

(
πZ∗

m
θ||z)},

where the above infimum has to be considered with respect to all t in P(Dm) such
that supp(t) = supp(πZ∗

m
θ). Of course, when m is prime, formula (3.19) reduces to

(3.15). In particular, when m = 2, (3.15), (3.17), and (3.19) coincide. For nonprime
m instead, (3.19) is novel, to the best of our knowledge.

4. On low-weight type-spectra. In this section we will deal with estimations
of the average type-spectra of the regular F -labelled LDPC G-code ensembles for G-
types very close to the all-zero type δ0. We will consider the variational distance on
P(G), ||θ − θ′|| := supB⊆G{θ(B) − θ′(B)}.

Recall that, since we are dealing with LDPC G-codes, the all-zero N -tuple is
always a codeword. Then WN (δ0) = 1 deterministically, i.e., for any realization of
ΠN in the interconnection group SNc � FNc. Hence clearly Γ(F,c,d)(δ0) = 0. The
main result of this section is that there exists a punctured neighborhood of δ0 in
P(G), over which the spectra Γ(F,c,d)(θ) are strictly negative. Actually, much more
precise results will be derived, characterizing the exact rate of decay (asymptotically
in N) of the sum of the average enumerating coefficients over all G-types θ such that
0 < ||θ − δ0|| < 2

d .
Throughout this section we will often use the following notation: for a, t in N we

define the discrete intervals Iat := [(t − 1)a + 1, ta] ∩ N. Notice that, given a degree
pair (c, d), for every admissible block-length N in N(c,d) we have

{
1, 2, . . . , Nc

}
=⋃

1≤t≤L Idt =
⋃

1≤s≤N Ics .

4.1. An upper bound to low-weight spectra. We start by deriving an upper
bound to low-weight type-enumerating coefficients for the inner encoder |Zi,N

θ | :=∣∣GNc
θ ∩ ker SumN

d

∣∣.
Lemma 4.1. Let (c, d) be a degree pair, and let N ∈ N(c,d). For every θ in

PNc(G) such that

(4.1) ||θ − δ0|| ≤ 2

d
,

we have

(4.2)
∣∣∣Zi,N

θ

∣∣∣ ≤ ( L

�w/2�
)(�w/2� d

w

)(
w

ω

)
,
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where ω ∈ NG\{0} is defined by ω(k) := Ncθ(k), and w :=
∑m−1

k=1 ω(k) is the number
of nonzero entries in an Nc-tuple of type θ.

Proof. Let y in GNc
θ be any Nc-tuple of type θ. A necessary condition for y to

be in ker SumN
d is that each of the first L intervals Idt contains either none or at least

two nonzero entries of y. It follows from (4.2) that
∣∣{t ≤ L :

∣∣supp(y) ∩ Idt
∣∣ ≥ 2

}∣∣ ≤
�w/2�, while, for any choice of a dissection 1 ≤ t1 < · · · < tw/2� ≤ L (notice that

(4.1) implies w/2 ≤ L), we have |{y ∈ GNc
θ : supp(y) ⊆ ⋃w/2�

j=1 Idtj}| ≤
(
dw/2�

w

)(
w
ω

)
.

It follows that

|Zi,N
θ | ≤

∣∣∣∣∣∣
⋃

1≤t≤L

{
y ∈ GNc

θ :
∣∣supp(y) ∩ Idt

∣∣ 
= 1
}∣∣∣∣∣∣

≤
∣∣∣∣∣∣

⋃
1≤t1<···<t�w/2�≤L

⎧⎨
⎩y ∈ GNc

θ : supp(y) ⊆
w/2�⋃
j=1

Itj

⎫⎬
⎭
∣∣∣∣∣∣

≤
(

L

�w/2�
)(

d �w/2�
w

)(
w

ω

)
.

We now obtain an estimation for the average low-weight type-enumerators.
Lemma 4.2. Let (c, d) be a degree pair, F ≤ Aut(G), and N ∈ N(c,d). For every

θ ∈ PN (G) satisfying (4.1) the average type-enumerator function of the (c, d)-regular
F -labelled ensemble satisfies

(4.3) WN (θ) ≤
(

N

Nθ

)(
L

�w/2�
)( w

2L

)w
,

where w := Nc(1 − θ(0)).
Proof. Consider the projection map πF : G → G/F and the associated map for

types π�
F : G → G/F . Define υ := π�

Fθ, and u ∈ ZG/F\{0}
+ by u(k) = Ncυ(k).

Also, for every θ′ in P(G), define ω′ in ZG\{0}
+ by ω′(k) := Ncθ′(k). Notice that∑

θ′∈ONc
υ

(
w
ω′
)

=
(

w
Ncu

)
ϕNcυ. From (3.10), (3.13), and (4.2) we get

WN (θ) =

(
N

Nθ

)(
Nc

Ncυ

)−1

ϕ−Ncυ
∑

θ′∈ONc
υ

|Zi,N
θ′ |

≤
(

N

Nθ

)(
Nc

w

)−1 (
L

�w/2�
)(�w/2� d

w

)(
w

Ncu

)−1

ϕ−Ncυ
∑

θ′∈ONc
υ

(
w

ω′

)

=

(
N

Nθ

)(
L

�w/2�
)(

Nc

w

)−1(�w/2� d
w

)

=

(
N

Nθ

)(
L

�w/2�
)�w/2�d(�w/2�d− 1) . . . (�w/2�d− w + 1)

Ld(Ld− 1) . . . (Ld− w + 1)

≤
(

N

Nθ

)(
L

�w/2�
)( w

2L

)w
.

A first consequence of Lemma 4.2 is the following upper bound on the average
type-spectra of the F -labelled LDPC ensembles.

Proposition 4.3. For every degree pair (c, d) such that c ≥ 3 we have

Γ(F,c,d)(θ) ≤ fc,d (x) ∀θ : ||θ − δ0|| ≤ 2

d
,
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where x := 1 − θ(0), and

fc,d(x) := H(x) + x log(|G| − 1) + c
d H

(
d
2x
)

+ cx log
(
d
2x
)
,

with H(x) := −x log x− (1 − x) log(1 − x) denoting the binary entropy.
Proof. From (4.3) it follows that, for every ||θ − δ0|| < 2

d , for the F -labelled
(c, d)-regular ensemble we have

1

N
logWN (θ) ≤ 1

N
log

(
N

Nθ

)
+

1

N
log

(
L⌊

xN c
2

⌋)+
1

N
log

(
cNx

2L

)cNx

N∈N(c,d)−→ H(θ) +
c

d
H

(
d

2
x

)
+ +cx log

(
d

2
x

)

≤ H(x) + x log(|G| − 1) + cx log

(
d

2
x

)
.

It is easy to see that, whenever c > 2, d
dxfc,d

∣∣
x=0

= −∞. Therefore, Proposi-
tion 4.3 implies that the spectra Γ(F,c,d)(θ) are strictly negative in a sufficiently small
punctured neighborhood of δ0 in P(G). In section 5 this fact will be used in order
to show that the minimum Δ-distance grows linearly with N with high probability.
Here we derive more precise estimations for the average type-enumerating functions.

Proposition 4.4. Let F be any subgroup of Aut(G), (c, d) a degree pair, and
N ∈ N(c,d). There exists a positive constant K such that the type-enumerator function
of the (c, d)-regular F -labelled ensemble satisfies∑

2
N ≤||δ0−θ||≤ 2

d

WN (θ) ≤ KN2−c.

Proof. For every N in N(c,d) we define the quantities

gw(N) :=
∑

||δ0−θ||= w
N

WN (θ), w ∈ N.

For θ in PN (G) define ω as in Lemma 4.1. For all w = 2, . . . ,
⌊

2
dN
⌋
, (4.3) implies

gw(N) ≤
∑

θ(0)=N−w
N

(
N

Nθ

)(
L⌊
cw2
⌋)(wc

2L

)wc

=

(
L⌊
cw2
⌋)(wc

2L

)wc
(
N

w

)
(|G|−1)w =: g′w(N).

We have, for every 2 ≤ w ≤ �2dN�,

g′w+2(N)

g′w(N)
≤ (|G|−1)2

(
N − w

w

)2
(
L− ⌊cw2 ⌋⌊
cw2
⌋
2L

)c(
1 +

2

w

)(w+2)c

≤ (|G|−1)2(3e)2cN2−c.

It follows that if c ≥ 3, then there exists N0 in N such that, for all N in N(c,d) such

that N ≥ N0,
g′
w+2(N)

g′
w(N) ≤ 1

2 for all 1 ≤ w ≤ ⌊ 2
dN
⌋
. Then we have

∑
2
N ≤||δ0−θ||≤ 2

d

WN (θ) ≤ g′2(N)

� 2
dN�∑
w=2

2−w+g′3(N)

� 2
dN�∑
w=2

2−w ≤ 2g′2(N)+2g′3(N) ≤ KN2−c

for some positive constants K ′,K ′′,K, all independent of N .
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4.2. On weight-one codewords. We now derive a more precise estimation of
the average enumerating functions for G-types of N -tuples with all but one entry
equal to zero. Fixed any N in N, k in G we define the G-type

τk :=

(
1 − 1

N

)
δ0 +

1

N
δk ∈ PN (G),

and we look for upper bounds on the average spectra WN (τk) for the (c, d)-regular F -
labelled LDPC ensembles. We will show how these estimations depend on the choice
of F among the subgroups of the automorphism group Aut(G).

We start with a few elementary considerations about closed walks and cycles in
directed graphs. A closed walk of length n in a directed graph G = (V,E) (where V
is a finite set and E ⊆ V 2) is a Zn-labelled string of vertices v ∈ V Zn such that any
two consecutive vertices are adjacent, i.e., (vk, vk+1) ∈ E for all k ∈ Zn. A cycle of
length n is a closed walk v ∈ V Zn such that vk 
= vj for all k 
= j ∈ Zn. A self-loop
is a cycle of length 1. Every closed walk v of length n is the concatenation of k
cycles v1, . . . ,vk such that the sum of the lengths of v1, . . . ,vk equals n. Observe
that in general k ≤ n, while k ≤ �n/2�, provided that the directed graph G contains
no self-loops.

Given a finite Abelian group G and a subset S of G, we denote by G(G,S)
the directed Cayley graph with vertex set G and edge set {(g, g + s)| g ∈ G, s ∈ S}.
It is straightforward that closed walks v of length n in an Abelian Cayley graph
G(G,S) starting in any fixed vertex g ∈ G (i.e., such that v0 = g) are in one-to-one
correspondence with 0-sum n-tuples x in Sn.

For a subset S ⊆ G and a positive integer n, consider a closed walk v of length n
in G. By the previous considerations, v is the concatenation of k(v) cycles. We put
b(S, n) equal to the maximum of k(v) over all possible closed walks v of length n in
G(G,S), with the agreement that b(S, n) = 0 whenever no closed walk in G(G,S) has
length n. The reason for this notation becomes evident with the following result.

Lemma 4.5. Let F be any subgroup of Aut(G), (c, d) a degree pair, and N ∈
N(c,d). Then, for all k in G, the type-enumerator function of the (c, d)-regular F -
labelled ensemble satisfies

(4.4) WN (τk) ≤ N

(
L

b(Fk, c)

)[
b(Fk, c)

L

]c
.

Proof. Define υ := π�
F τk ∈ P(G/F ). Let y be any element of GNc

υ . Then for

SumN
d y = 0 in GL it is necessary that

∑
1≤j≤Nc yj = 0 in G. Since y ∈ GNc

υ has

exactly c nonzero entries all belonging to Fk, it follows that
∣∣Zi,N

υ

∣∣ = 0 iff there are
no closed walks of length c in the Cayley graph G(G,Fk). Then (4.4) immediately
follows in the case b(Fk, c) = 0.

Now assume that there exist closed walks of length c in G(G,Fk). By the previous
considerations, each such walk decomposes in at most b(Fk, c) cycles. If we consider
the intervals Idt , for 1 ≤ t ≤ L, and put supp(y) ∩ Idt := {jt1, jt2, . . . , jtnt

}, we have

(
SumN

d y
)
t
=
∑
j∈Id

t

yj =
∑

1≤i≤nt

yjti ∀ 1 ≤ t ≤ L.

Therefore, if SumN
d y = 0, then it is necessary that v ∈ GZnt , vl :=

∑
1≤i≤l yjti is a

closed walk in G(G,Fk) for all t such that supp(y) ∩ Idt is nonempty. It follows that
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supp(y) ∩ Idt is nonempty for at most b(Fk, c) values of t. Therefore, by taking into
account the

(
L

b(Fk,c)

)
possible choices of b(Fk, c) intervals out of L possible ones, the(

b(Fk,c)
c

)
choices of c positions out of b(Fk, c)d available ones, and the ϕ(Fk)c choices

of an ordered c-tuple with entries from the orbit Fk, we get

∣∣Zi,N
υ

∣∣ = ∣∣ker SumN
d ∩GNc

υ

∣∣ ≤ ( L

b(Fk, c)

)(
b(Fk, c)d

c

)
ϕ(Fk)c.

Then from (3.10) it follows that

WN (τk) =
N
∣∣Zi,N

υ

∣∣(
Nc
c

)
ϕ(Fk)c

≤ N(
Nc
c

)( L

b(Fk, c)

)(
b(Fk, c)d

c

)

≤ N

(
L

b(Fk, c)

)[
b(Fk, c)

L

]c
.

4.3. Main result. Building on the results of sections 4.1 and 4.2, we are now
ready to present the main result of this section. For a subgroup F of Aut(G) and a
positive integer c we define

(4.5) a(F, c) := 1 − c + max ({1} ∪ {b(Fk, c)| k ∈ G \ {0}}) ,

where we recall that b(S, c) was defined in section 4.2 as the minimum number of
cycles in G(G,S) of total length c, with the agreement that b(S, c) = 0 when no closed
walk in G(G,S) has length c.

Before stating the main result, we need a simple property of a(F, c). For every
k 
= 0, Fk does not contain 0, so that there are no self-loops in G(G,Fk), and then
b(Fk, c) ≤ �c/2�. It immediately follows that

(4.6) 2 − c ≤ a(F, c) ≤ 1 − �c/2�.

Theorem 4.6. For every degree pair (c, d) such that c ≥ 3, and every subgroup F
of Aut(G), there exists a positive constant K such that for the (c, d)-regular F -labelled
ensemble it holds that ∑

0<||δ0−θ||≤ 2
d

WN (θ) ≤ KNa(F,c), N ∈ N(c,d).

Proof. First, we consider weight-one types. From (4.4) we have

∑
θ(0)=N−1

N

WN (θ) ≤
∑

k∈G\{0}
N

(
L

b(Fk, c)

)
b(Fk, c)c

Lc
≤ K ′ ∑

k∈G\{0}
N1+b(Fk,c)−c ≤ K ′|G|Na(F,c)

for some positive constant K ′. The claim then follows by combining Proposition 4.4
with the previous estimation and observing that a(F, c) ≤ 2 − c ≤ −1.

Now we explicitly evaluate a(F, c) for the three examples studied in the previous
section.

Example 4. Consider the case when G  Zr
p and either F  Aut(Zr

p) or F  F∗
pr .

In both cases Fk = Zr
p \ {0} for all k ∈ Zr

p \ {0}. Then G(Zr
p, Fk) = G(Zr

p,Z
r
p \ {0})

is the complete graph with pr vertices. It follows that G(Zr
p,Z

r
p \ {0}) contains closed

walks of any length n ≥ 2 whenever pr 
= 2, while G(Z2, {1}) contains closed walks
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of even length only. Therefore, for G  Zr
p with pr 
= 2, a(F, c) = 1 − �c/2� for all c,

while for G  Z2, a(F, c) = 1 − c/2 for even c and 2 − c for odd c.
Example 5. Consider the unlabelled ensemble over the cyclic group, i.e., G  Zm

with F = {1}. If (m, c) = 1, then m|ck iff m|k. Then, for all k ∈ Zm \{0}, the Cayley
graph G(Zm, Fk) = G(Zm, {k}) has no closed walks of length c. In this case clearly
a({1}, c) = 2 − c.

Then consider the case when (m, c) > 1, and let lpcf(c,m) be the smallest prime
common factor between c and m. Consider any k in Zm \ {0} such that G(Zm, {k})
has a closed walk of length c, i.e., such that m | ck. The length of the shortest such

walk is given by m
(m,k) = (m,ck)

(m,k) = ( m
(m,k) , c). Thus, m

(m,k) | c, while clearly m
(m,k) | m.

But (m, k) < m, so that necessarily the shortest cycle in G(Zm, {k}) m
(m,k) is not less

than lpcf(m, c), with equality iff k ∈ m
lpcf(m,c)Zm \ {0}. Thus, b({k}, c) = c

lpcf(m,c)

for k ∈ m
lpcf(m,c)Zm \ {0}, and b({k}, c) < c

lpcf(m,c) for k ∈ Zm \ m
lpcf(m,c)Zm. It

immediately follows that, whenever (m, c) > 1, a({1}, c) = 1 − c + c
lpcf(m,c) .

Example 6. Consider the uniformly labelled ensemble over the cyclic group,
i.e., G  Zm with F  Z∗

m. First, we claim, for n ≥ 2, the following:
• if n is even, then all closed walks in G(Zn,Z∗

n) have even length and there
exists a 2-cycle;

• if n is odd, then there exist both a 2-cycle and a 3-cycle.
To see this, first, since 1,−1 ∈ Z∗

n, (0, 1) is a 2-cycle in G(Zn,Z∗
n), both for even and

odd n. Then consider the case when n is even: clearly all k ∈ Z∗
n are odd, so that the

modulo-n sum of an odd number of elements of Z∗
n cannot be equal to 0 modulo n.

Thus every closed walk in G(Zn,Z∗
n) must be of even length. On the other hand, if n

is odd, then 2 ∈ Z∗
n, so that (0, 2, 1) is a 3-cycle in G(Zn,Z∗

n).
Let us now consider some k ∈ Zm \ {0}. Then, by applying the previous observa-

tion with n = m
(m,k) , one gets that, if c is odd and m

(m,k) is even, there are no closed

walks of length c in G(Zm,Z∗
mk) so that b(Z∗

mk, c) = 0, while otherwise, if c is even
or m

(m,k) is odd, b(Z∗
mk, c) = �c/2�. It thus follows that a(Z∗

m, c) = 1 − �c/2� unless c

is odd and m is an integer power of 2; in the latter case a(Z∗
m, c) = 2 − c.

4.4. Lower bounds on low-weight type-enumerators. In this section we
present some results, of independent interest, which show that the estimations given
by Theorem 4.6 are tight. All of the proofs are deferred to the appendix.

First, we deal with weight-one type-enumerators.
Proposition 4.7. Let (c, d) be a degree pair such that c ≥ 3, and let F be any

subgroup of Aut(G). Then there exists a constant K > 0 such that for all k in G\{0}
such that a(F, c) = 1 − c + b(Fk, c) the type-enumerator function of the (c, d)-regular
F -labelled LDPC ensemble satisfies

(4.7) P (WN (τk) ≥ 1) ≥ KNa(F,c), N ∈ N(c,d).

Finally, we propose a lower bound on weight-two type-enumerators. For every k
in G define

τ̂k :=
1

N
δk +

1

N
δ−k +

N − 2

N
δ0 ∈ P(G).

Proposition 4.8. For every degree pair (c, d) there exists a constant K > 0 such
that for every k in G\{0} the type-enumerator function of the (c, d)-regular F -labelled
LDPC ensemble satisfies

(4.8) P (WN (τ̂k) ≥ 1) ≥ KN2−c ∀N ∈ N(c,d).
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5. Asymptotic lower bounds on the typical minimum distance. Through-
out this section we will assume we have fixed a G-symmetric MC (X ,Y, P ) with as-
sociated Bhattacharyya distance Δ and weight δ, and we study the asymptotics of
the minimum Δ-distance of regular LDPC G-code ensembles.

Given a degree pair (c, d), a natural candidate for the typical normalized minimum
Δ-distance of the (c, d)-regular F -labelled ensemble is the quantity

(5.1) γ(F,c,d) := inf
{〈δ,θ〉∣∣θ ∈ P(G) \ {δ0} s.t. Γ(F,c,d)(θ) ≥ 0

}
.

It turns out that γ(F,c,d) actually is a lower bound on the asymptotic normalized mini-
mum distance for the (c, d)-regular F -labelled ensemble. This does not follow directly
from Theorem 3.5 since limθ→δ0 Γ(F,c,d)(θ) = 0. However, using both Theorems 3.5
and 4.6 the following result can be proved.

Theorem 5.1. Let (c, d) be a degree pair such that a(F, c) < −1. Then for the
(c, d)-regular F -labelled LDPC ensemble the following holds:

P

(
lim inf
N∈N(c,d)

1
N dmin (ker ΦN ) ≥ γ(F,c,d)

)
= 1.

Proof. By (2.3) we have that

1

N
dmin (ker ΦN ) = inf

{
〈δ,θ〉 ∣∣θ ∈ P(G) \ {δ0} s.t. WN (θ) ≥ 1

}
= min

{
κ′
N , κ′′

N

}
,

where for every N in N(c,d) we define

κ′
N := inf

{〈δ,θ〉∣∣ 0 < ||θ − δ0|| < 2
d : WN (θ) ≥ 1

}
,

κ′′
N := inf

{〈δ,θ〉∣∣ ||θ − δ0|| ≥ 2
d : WN (θ) ≥ 1

}
.

Clearly, lim infN
1
N dmin (ker ΦN ) = min {ρ′, ρ′′}, where we put ρ′ := lim infN κ′

N and
ρ′′ := lim infN κ′′

N .
We start by establishing a lower bound on ρ′′. Define Ω :=

{
θ : ||θ − δ0|| ≥ 2

d

}
and, for each x in R, the set

(5.2) Ωx :=
{
θ ∈ Ω ∩ PN(G) s.t. Γ(F,c,d)(θ) < x

}
.

Now consider the quantity η(x) := inf
{〈δ,θ〉∣∣θ ∈ Ω \ Ωx

}
. Since Γ(F,c,d)(θ) is an

upper semicontinuous function of θ and Ω is a closed subset of P(G), standard ana-
lytical arguments (see Lemma 8.1 in the appendix) allow us to conclude that η is a
nondecreasing and lower semicontinuous function.

Let us now fix some arbitrary ε > 0. By successively applying a union bound
estimation, the Markov inequality, Theorem 3.5, and (5.2), we get

P

⎛
⎝ ⋃

θ∈Ω−ε

{WN (θ) ≥ 1}
⎞
⎠≤

∑
θ∈Ω−ε

P (WN (θ) ≥ 1) ≤
∑

θ∈Ω−ε

WN (θ) ≤ exp(−N(ε− f(N))),

with limN f(N) = 0. It follows that
∑

N P
(⋃

θ∈Ω−ε
{WN (θ) ≥ 1} ) < +∞, and

thus the Borel–Cantelli lemma implies that with probability one the event
⋃

θ∈Ω−ε

{WN (θ) ≥ 1} occurs only for finitely many N in N(c,d). Hence,

P (ρ′′ < η(−ε)) ≤ P

⎛
⎝
⎧⎨
⎩

⋃
θ∈Ω−ε

{WN (θ) > 0}
⎫⎬
⎭ i. o. N ∈ N(c,d)

⎞
⎠ = 0 ∀ ε > 0,
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where i. o. stands for infinitely often. Notice that γ(F,c,d) = η(0). Hence, monotonicity
and lower semicontinuity of the function η allow us to conclude that
(5.3)

P
(
ρ′′ < γ(F,c,d)

)
= P (ρ′′ < η(0)) ≤ P

(
ρ′′ < lim

k
η
(− 1

k

))
= lim

k
P
(
ρ′′ < η

(− 1
k

))
= 0.

Now let us consider the term ρ′. By sequentially applying a union bound estima-
tion, the Markov inequality, and Theorem 4.6, we get for every N in N(c,d)

(5.4) P

⎛
⎝ ⋃

0<||θ−δ0||< 2
d

{WN (θ) ≥ 1}
⎞
⎠ ≤

∑
0<||θ−δ0||< 2

d

WN (θ) ≤ KNa(F,c),

where K is a positive constant independent of N . Since a(F, c) < −1, we get

∑
N

P

⎛
⎝ ⋃

0<||θ−δ0||< 2
d

{
WN (θ) ≥ 1

}⎞⎠ ≤ K
∑
N

Na(F,c) < +∞.

By the Borel–Cantelli lemma we get that the event
⋃

0<||θ−δ0||< 2
d
{WN (θ) ≥ 1} occurs

only for finitely many N in N(c,d) with probability one. This yields P (ρ′ = +∞) = 1,
which, together with (5.3), implies the claim.

We have proved the previous theorem under the assumption a(F, c) < −1. In
fact, for c = 2 it is known, since Gallager’s work [19], that deterministically the
minimum distance cannot grow faster than logarithmically with the block-length N .
From (4.6) it follows that if c ≥ 5, then a(F, c) < −1 for any F , and if c = 3,
then a(F, c) = −1 for any F , while, when c = 4, a(F, c) < −1 for some choices
of F . However, one can weaken the assumption a(F, c) < −1 requiring only that
a(F, c) < 0 (thus including the cases c = 3 and c = 4 for some F ). In these cases,
γ(F,c,d) still gives an asymptotic lower bound for the normalized minimum distances
1
N dmin (ker ΦN ) in a weaker probabilistic sense. In fact, a more detailed analysis
enlightens a nonconcentration phenomenon. In order to describe it, first, for every
degree pair (c, d) and every subgroup F of Aut(G), we define the following quantity:
(5.5)

ζ(F,c) :=

{
min{δ(k)| k ∈ G \ {0} : a(F, c) = 1 − c + b(Fk, c)} if a(F, c) 
= 2 − c,

min{(2 − b(Fk, c))δ(k)| k ∈ G \ {0}} if a(F, c) = 2 − c.

We have the following result.
Theorem 5.2. Let (c, d) be a degree pair such that a(F, c) = −1. Then

lim
N∈N(c,d)

P

(
1

N
dmin (ker ΦN ) ≥ γ(F,c,d)

)
= 1.

Moreover, if the random variables ΠN defining the (c, d)-regular unlabelled LDPC
ensemble are mutually independent, we have

P

(
lim inf
N∈N(c,d)

dmin (ker ΦN ) = ζ(F,c)

)
= 1.

Theorem 5.2 is proved in the appendix. The probabilistic interpretation is as
follows. In the case a(F, c) = −1, with probability one, the sequence of the unnormal-
ized minimum distances (dmin (ker ΦN )) contains a subsequence converging to ζ(F,c).
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Thus, while with increasing probability the minimum Δ-distance is growing linearly
with the block-length N , almost surely a subsequence with constant minimum dis-
tance shows up. We observe that, for irregular binary LDPC ensembles, even more
evident nonconcentration phenomena are known to arise; see [15, 31].

6. Numerical results. In this section we present some numerical results for the
minimum distances of the LDPC ensembles which have been studied in this paper.
We focus on a particular channel, the Z8-symmetric 8-PSK AWGN channel, and we
compare the average distance-spectra of the regular unlabelled and uniformly labelled
LDPC Z8-code ensembles. Our results indicate a strong superiority of the uniformly
labelled (i.e., the one with label group F  Z∗

8) ensemble with respect to the unlabelled
one (i.e., F = {1}). Then we compare these results with some contradicting analysis of
the average error probability of these ensembles and discuss how this seeming paradox
can be explained by invoking so-called expurgation arguments.

6.1. Numerical results for the average distance-spectra. Let us start with
some general considerations. Suppose we are given any ensemble of G-codes with av-
erage type-spectrum Γ(θ). Let γ := inf {〈θ, δ〉|θ ∈ P(G) \ {δ0} s.t. Γ(θ) ≥ 0} be its
designated typical normalized minimum distance which we are interested in comput-
ing. Notice that Γ is a map defined over the (|G| − 1)-dimensional simplex P (G)
and therefore in general of difficult visualization whenever |G| > 2. It is then con-
venient and natural to introduce the average distance-spectrum as a one-dimensional
projection of Γ:
(6.1)
Υ : [0,max{δ(x)|x∈G}]→ [−∞,+∞), Υ(t) := sup

{
Γ(θ)

∣∣θ∈P(G) : 〈δ,θ〉= t
}
.

It is immediate to verify that γ = inf {t ∈ [0,max{δ(x)|x ∈ G}] : Υ(t) ≥ 0}. Notice
also that, for |G| = 2 and |G| = 3, all Bhattacharyya distances are proportional to the
Hamming distance, so that the average distance spectrum Υ is independent (up to a
rescaling factor) of the chosen G-symmetric channel. For |G| ≥ 4 instead, Υ really
depends on the choice of the Bhattacharyya distance Δ.

In Figure 6.1 the average distance-spectra of two regular LDPC Z8-code ensembles
are reported. We considered the Bhattacharyya distance Δ of the 8-PSK AWGN
channel and normalized it in such a way that max{δ(x)|x ∈ Z8} = Δ(0, 4) = 1. In
each picture a degree pair (c, d) is fixed. The dash-dotted curve is the graph of the
distance-spectrum Υ({1},c,d)(t) of the (c, d)-regular unlabelled LDPC ensemble, while
the solid curve is the graph of the distance-spectrum Υ(Z∗

8 ,c,d)
(t) of the (c, d)-regular

uniformly labelled LDPC ensemble.
As a reference two dotted curves are also plotted in each picture. The one taking

the value 0 for t = 0 is the distance spectrum of the binary (c, d)-regular LDPC
ensemble Υ2

(c,d)(t). It is straightforward to check that it is a lower bound for the
distance spectrum of any Z8-LDPC ensemble: it suffices to restrict the optimization
in (6.1) to Z8-types θ supported on the binary subgroup 4Z8.

The second dotted curve instead, taking value 1
2 log 1

2 for t = 0, corresponds to
the distance-spectra of the Z8-code ensemble (with no sparsity constraints) of the
same rate R = 1

2 log 8. This ensemble is defined as a sequence of kernels of random

homomorphisms (ker ΦN ), each ΦN being uniformly distributed over Hom(ZN
8 ,ZN/2

8 ),

the group of all homomorphisms from ZN
8 to ZN/2

8 , with no sparsity constraint. Z8-
code ensembles of codes are a natural generalization of the traditional linear-coding
ensembles over finite fields [20, 2] and have been considered in [10] and [11] in order to
characterize the capacity achievable by Abelian group codes over symmetric channels.
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Fig. 6.1. Bhattacharyya distance spectra of (c, d)-regular LDPC ensembles over Z8 for the
8-PSK AWGN channel: the solid curve corresponds to the uniformly labelled ensemble, the dash-
dotted one corresponds to the unlabelled ensemble, and the two dotted curves correspond, respectively,
to the Z8-linear ensemble and to the binary LDPC ensemble.



28 GIACOMO COMO AND FABIO FAGNANI

In [12] their average type-spectra have been characterized; for the Z8-code ensemble
of rate 1

2 log 8 this is given by

ΓZ8
(θ) := H(θ) − 1

2
log l8(θ), l8(θ) :=

8

gcd (supp (θ))
.

Notice that ΓZ8
(θ) is an upper semicontinuous function over the simplex P(Z8), and

its discontinuities correspond to types supported on the subgroups 2Z8 and 4Z8. In
fact a salient point is easily recognizable in the graphs reported around the abscissa
t = 0.05, corresponding to the intersection between the average spectrum of the bi-
nary subchannel and that of the Z8-subchannel. This salient point occurs before the
curve crosses the t-axis, which is coherent with the fact, proved in [12], that the typ-
ical normalized minimum distance of the Z8-code ensemble equals the corresponding
Gilbert–Varshamov bound. In other words, while for low values of t the distance spec-
trum of the Z8-code ensemble is dominated by the term corresponding to the smallest
nontrivial subgroup (a phenomenon generally observable for Abelian group code en-
sembles), the value of the typical minimum distance is determined by types which are
not supported in any proper subgroup of Z8 (this is instead related to the particular
constellation chosen, although it is conjectured to be true for many constellations of
interest).

Analogous considerations can be made about the LDPC distance-spectra based on
the simulations reported. In particular, for distances close to 0, the average distance-
spectra of both the unlabelled and the uniformly labelled Z8-LDPC ensembles are
dominated by the binary-subgroup supported types. However, these components do
affect the value of the typical normalized minimum distances (γ({1},c,d) and γ(Z∗

8 ,c,d)
,

respectively) only for low values of the degrees (c = 3, 4). For all of the other values of
the parameters, the typical minimum distance is instead determined by types which
are not supported in any proper subgroup of Z8. Another observation which can
be made is that, not surprisingly, as the values of the degrees (c, d) are increased
while keeping their ratio constant, the distance-spectra of both the unlabelled and
the uniformly labelled ensembles approach the one of the Z8-linear ensemble.

However, the most important conclusion which can be drawn from the graphics
reported concerns the different behaviors of the unlabelled and the uniformly labelled
ensembles. Indeed, it appears evident that the latter drastically outperforms the for-
mer at the distance level. In particular, already for relatively low values of the degrees
(c = 8, d = 16) the uniformly labelled ensemble typical minimum distance γ(Z∗

8 ,c,d)

is very close (practically equal) to the Gilbert–Varshamov bound. For the same val-
ues of the degrees instead, the unlabelled ensemble suffers from a remarkable gap;
this gap seems to be slowly filled up as the values of the degrees are increased, but
it still remains significant for relatively high values of c and d. This indicates that
structural properties of these two ensembles are remarkably different. Some prudence
is nevertheless justified by the fact that ours are only lower bounds on the typical
asymptotic normalized minimum distance, while, as already mentioned in the intro-
duction, a concentration result for the type-spectra is needed in order to prove their
tightness. However, while this phenomenon appears here only at the distance level,
computer simulations of the performance of these codes reveal that a drastic superi-
ority of the labelled ensemble with respect to the unlabelled one is evident also under
belief-propagation decoding. We observe that this is coherent with Monte Carlo simu-
lations reported in [4], where the labelled ensemble was shown to be closer to capacity
than the unlabelled ensemble.
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6.2. The average word error probability of the LDPC codes ensembles.
In our analysis of the minimum distance properties of LDPC G-code ensembles, the
quantities ζ(F,c) show up as an almost sure lim inf for the unnormalized minimum dis-
tance only when a(F, c) = −1. However, these quantities characterize the asymptotic
ML average performance of these ensembles for all values of a(F, c).

For instance, let us consider in some detail the case G  Zpr for some prime p
and some positive integer r. Let us fix an admissible degree pair (c, d), and denote

by pe(CN )
(F,c,d)

the average ML error probability of the (c, d)-regular F -labelled en-
semble of LDPC Zpr -codes over an arbitrary Zpr -symmetric MC. Then it is possible
to show that there exists a threshold (1 − c

d ) log pr < C(F,c,d) < log pr such that, for
every Zpr -symmetric channel whose Zpr -capacity (2.5) exceeds C(F,c,d), the average

error probability pe(CN )
(F,c,d)

goes to zero in the limits of large N . Moreover, if one
considers an increasing sequence of degree pairs (cn, dn) with a given designed rate
(1 − cn

dn
) log pr converging to R, then the corresponding LDPC thresholds C(cn,dn,F )

converge to R.
More precisely, it is possible to show that over any Zpr -symmetric channel whose

Zpr -capacity exceeds C(F,c,d) we have

(6.2) K1N
a(F,c) ≤ pe(CN )

(F,c,d) ≤ K2N
a(F,c)

for some positive constants K1,K2 both independent of N . Moreover, it can be proved
that

(6.3) lim sup
N∈N(c,d)

pe(CN )
(F,c,d)

Na(F,c)
≤ K3 exp(ζ(F,c))

for some positive constants K3 independent of the channel (and thus from Δ). The
results (6.2) are known in the binary case (see [29]); (6.2) was presented in [10] for
the unlabelled LDPC ensemble. Proofs of (6.2), (6.3) in their full generality can be
gathered coupling the estimations of section 4 with the standard bounding techniques
used in [28, 39, 29, 4] and will be given elsewhere.

Observe that if F ≤ F ′ ≤ Aut(G), then

(6.4) a(F, c) ≤ a(F ′, c), ζ(F,c) ≥ ζ(F ′,c).

Thus, from the point of view of the average performance, the smaller the label group,
the better the parameters. This stands in contrast with the numerical results pre-
sented in the previous paragraph, indicating that at the distance level the uniformly
labelled ensembles perform much better than their unlabelled counterparts. An ex-
planation for this seeming paradox can be obtained by invoking so-called expurgation
arguments. Indeed, it can be proved that, while the average error probability of the
LDPC ensembles is affected by a vanishingly small fraction of codes with low min-
imum distance and decays to zero only as a negative power of N , almost surely a
sequence of codes sampled from the same ensemble has error probability decreasing
to zero exponentially fast with N . It is this typical exponential behavior that has to
be considered representative of the ensemble, rather than the one of the average error
probability. It is also worth mentioning that the typical error exponent can be esti-
mated in terms of the average type-spectra, using techniques presented in [39]. This
phenomenon is well known in the LDPC code literature [19, 29]; proofs for LDPC
codes over Galois fields can be found in [17, 4].
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7. Conclusions. The following issues are left for future research:
• proving concentration results for the spectra of the LDPC ensembles for in-

stance using a second-order method (see [33]);
• giving an analytical explanation of the different behavior of the labelled and

unlabelled ensembles;
• generalizing the analysis to irregular ensembles following the approach of [15,

31];
• considering generalizations of the so-called stopping sets and pseudoweight

distributions which in the binary case characterize the iterative decoding per-
formance of LDPC codes (see [31, 43, 24]); while the distribution of stopping
sets has been studied for binary LDPC ensembles, the distribution of pseu-
docodewords is unknown even in the binary case.

8. Appendix.

8.1. A semicontinuity lemma. Let E be a compact metric space. It is a
standard fact that any lower semicontinuous function f : E → (−∞,+∞] achieves its
minimum on every closed nonempty subset C of E, i.e.,

(8.1) ∃ x ∈ C s.t. f(x) ≤ f(x) ∀ x ∈ C.

In the proof of Theorem 5.1 we used the following fact.
Lemma 8.1. Let g, h : E → (0,+∞] both be lower semicontinuous. Then

f : R → (−∞,+∞], f(y) := inf
{
g(x)

∣∣x ∈ E s.t. h(x) ≤ y
}

is nonincreasing and lower semicontinuous.
Proof. That f is nonincreasing immediately follows from its definition. In order

to prove semicontinuity, assume we are given a sequence (yn) ⊂ (−∞,+∞] converging
to some y ∈ [−∞,+∞]. We want to show that

(8.2) lim infn f(yn) ≥ f(y).

Observe that with no loss of generality we can restrict ourselves to the case when
yn ≥ min {h(x) |x ∈ E}, since otherwise the set {x ∈ E s.t. h(x) ≤ yn} is empty
and f(yn) = +∞. Since h is lower semicontinuous we have that the sets
{x ∈ E s.t. h(x) ≤ yn} are closed in E. Therefore, since the function g is lower
semicontinuous as well, from (8.1) we have that there exists xn in E such that
f(yn) = g(xn) and h(xn) ≤ yn. Since the space E is compact, from the sequence
(xn) we can extract a subsequence (xnk

) converging to some x in E. From the lower
semicontinuity of h we get

h(x) ≤ lim infk h (xnk
) ≤ lim infk ynk

= y.

It immediately follows that g(x) ≥ f(y). Finally, from the lower semicontinuity of g
we get

lim infn f(yn) = lim infk g (xnk
) ≥ g(x),

which, together with the previous inequality, implies (8.2).

8.2. Proofs for section 4.4. Recall that the interconnection group for the F -
labelled ensemble is SNc � FNc. We will write the random variable ΠN = (Π′

N ,Λ),
where Π′

N is uniformly distributed over SNc and Λ is uniformly distributed over FNc.
For all s = 1, . . . , N , and k ∈ G, let eks in GN be the vector whose components are all
zero but for the sth, which is equal to k.
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8.2.1. Proof of Proposition 4.7. Let k in G \ {0} be such that a(F, c) =
1 − c + b(Fk, c), and define the event EN

s := {eks ∈ ker ΦN}. We have WN (τk) =∑N
s=1 1ker ΦN

(eks) =
∑N

s=1 1EN
s

.

For 1 ≤ t ≤ L, define the random variable Nt := |Π′
N (Ics) ∩ Idt |. Define the event

ẼN
s :=

⋂
1≤t≤L

{Nt = 0} ∪ {Nt > 0 and ∃ closed walk of length Nt in G(G,Fk)}.

It is not hard to check that ẼN
s ⊇ EN

s . Moreover, P(EN
s |ẼN

s ) ≥ |F |−c, since, given
ẼN

s , there exists at least one realization of the c entries Λ(s−1)c+1, . . . ,Λsc in F such

that ΦNeks = 0.
Observe that ΠN (Ics) is uniformly distributed over the class of all subsets of

{1, . . . , Nc} of cardinality c and that there exist at least
(

L
b(Fk,c)

)
possible realizations

of ΠN (Ics) such that, for all 1 ≤ t ≤ L, Nt is either 0 or equals the length of a closed
walk in G(G,Fk). It follows that

(8.3) P(EN
s ) ≥ 1

|F |c P
(
ẼN

s

)
≥ 1

|F |c
(
Nc

c

)−1(
L

b(Fk, c)

)
≥ K ′N b(Fk,c)−c

for some K ′ > 0 independent of N .
We now estimate the probability of the intersections EN

s ∩EN
r for 1 ≤ r 
= s ≤ N .

We have that, given that EN
r occurred, Π′

N (Ics) is uniformly distributed over the class
of subsets of of cardinality c of {1, . . . , Nc} \ Π′

N (Icr). It follows that
(8.4)

P(EN
s |EN

r ) ≤ P(ẼN
s |EN

r ) ≤
(

(N − 1)c

c

)−1(
L

b(Fk, c)

)(
b(Fk, c)d

c

)
≤ K ′′N b(Fk,c)−c

for some K ′′ > 0 independent of N . By applying a union-intersection bound, and
using (8.3) and (8.4), we get

P (WN (τk) ≥ 1) ≥
∑
s

P
(
EN

s

)−∑
r �=s

P
(
EN

s ∩ EN
r

)
≥ K ′Na(F,c) −K ′′N2a(F,c) ≥ KNa(Fk,c),

the last equality holding true for some constant K > 0 and N large enough, since
a(F, c) < 0.

8.2.2. Proof of Proposition 4.8. For 1 ≤ s 
= r ≤ N and 1 ≤ t ≤ L, define
the event

EN
r,s :=

L⋂
t=1

{∣∣ΠN (Icr) ∩ Idt
∣∣ = ∣∣ΠN (Ics) ∩ Idt

∣∣} .
In the unlabelled (c, d)-regular ensemble EN

r,s is sufficient for the N -tuple ekr−eks (whose
G-type is τ̂k) to be in ker ΦN . Indeed, in this case each check ends up summing an
equal amount of entries equal to k and −k. For the F -labelled ensemble it is easy
to see that P

(
ekr − eks ∈ ker ΦN

∣∣EN
r,s

) ≥ |F |−2c, since, given that EN
r,s occurred, for

ΦN (ekr − eks) to be 0 it is sufficient that the 2c corresponding labels equal the identity
automorphism. Thus,

P (WN (τ̂k) ≥ 1) ≥ P

(∑
s>r

1ker ΦN
(ekr − eks) ≥ 1

)
≥ |F |−2cP

(
N⋃
s>r

EN
r,s

)
.
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Now we introduce the events FN
r :=

⋃L
t=1

{∣∣ΠN (Icr) ∩ Idt
∣∣ > d

2

}
. We have

P
(
FN
r

) ≤ L

c∑
a=d/2�+1

(
c

a

)(
d

a

)(
dL

a

)−1

≤ AN−d/2�

for some positive A independent of N and r. Clearly, we have that FN
r implies EN

r,s,

so that P
(
EN

r,s

∣∣FN
r

)
= 0. Instead, we have P(EN

r,s

∣∣FN
r ) ≥ (

(N−1)c
c

)−1 ≥ (cN)
−c

.
Thus, there exist some positive N0 and K ′ such that, for every N ≥ N0,

P
(
EN

r,s

) ≥ P
(
EN

r,s

∣∣FN
r

)
P
(
FN
r

)
≥ (cN)

−c
(
1 −AN−d/2�

)
≥ K ′N−c.

For every unordered triple {q, r, s} ⊆ {1, . . . , N} we consider the event

EN
q,r,s :=

L⋂
t=1

{ ∣∣ΠN (Icq ) ∩ Idt
∣∣ = ∣∣ΠN (Icr) ∩ Idt

∣∣ = ∣∣ΠN (Ics) ∩ Idt
∣∣ }.

We have that

P
(
EN

q,r,s

) ≤ (d− 1)cc!
(
(N−1)c

c

)−1
(d− 2)cc!

(
(N−2)c

c

)−1 ≤ K ′′N−2c

for some positive K ′′ independent of N . For every unordered 4-tuple {p, q, r, s} define

EN
p,q,r,s :=

L⋂
t=1

{ ∣∣ΠN (Icp) ∩ Idt
∣∣ = ∣∣ΠN (Icq ) ∩ Idt

∣∣ = ∣∣ΠN (Icr) ∩ Idt
∣∣ = ∣∣ΠN (Ics) ∩ Idt

∣∣ }.
We have that

P
(
EN

p,q,r,s

) ≤ (d−1)cc!
(
(N−1)c

c

)−1
(d−2)cc!

(
(N−2)c

c

)−1
(d−3)cc!

(
(N−3)c

c

)−1 ≤ K ′′′N−3c

for some positive K ′′ independent of N . It follows that

P (WN (τ̂k) ≥ 1) ≥ |F |−2cP

(⋃
s>r

EN
r,s

)

≥
∑
r<s

P
(
EN

r,s

)− ∑
q<r<s

P
(
EN

q,r,s

)− ∑
p<q<r<s

P
(
EN

p,q,r,s

)
≥ (

N
2

)
K ′N−c − (N3 )K ′′N−2c − (N4 )K ′′′N−3c

≥ KN2−c

for some positive K independent of N and N ∈ N(c,d) large enough.

8.3. Proof of Theorem 5.2. In order to show the first part of the claim, one
follows the steps of the proof of Theorem 5.1 until obtaining (5.3) and (5.4). Then
(5.3) implies that limN P

(
κ′′
N < γ(F,c,d)

)
= 0, while from (5.4), since a(F, c) ≤ −1,

one gets limN P
(
κ′
N < γ(F,c,d)

) ≤ KNa(F,c) = 0.
For the second part of the claim, we first show that

(8.5) P
(
lim inf

N
dmin (ker ΦN ) ≤ ζ(F,c)

)
= 1.
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Indeed, let us first consider the case a(F, c) = −1 > 2 − c. From Proposition 4.7 it
follows that, for every k ∈ G \ {0} such that b(Fk, c) = a(F, c) − 1 + c = c− 2,∑

N∈N(c,d)

P(WN (τk) ≥ 1) ≥
∑

N∈N(c,d)

KNa(F,c) = K
∑

N∈N(c,d)

N−1 = +∞.

We now recall that by assumption (ΠN ) is a sequence of independent random vari-
ables, so that the events {WN (τ̂k) ≥ 1}, for N in N(c,d), are independent. We can
thus apply the converse part of the Borel–Cantelli lemma [7] to conclude that with
probability one the event {WN (τ̂k) ≥ 1} occurs for infinitely many N ∈ N(c,d). It
follows that, for all K ∈ G \ {0} such that b(Fk, c) = c− 2,

(8.6) P
(
lim infN dmin(ker ΦN ) ≤ δ(k)

) ≥ P
( {WN (τ̂k) ≥ 1} i. o. N ∈ N(c,d)

)
= 1,

so that (8.5) follows. The case when c = 3 can be treated similarly using Proposi-
tions 4.7 and 4.8 and the converse part of the Borel–Cantelli lemma.

It remains to prove that lim infN dmin (ker ΦN ) ≥ ζ(F,c) with probability one.
First, consider the case c = 3. For every k such that b(Fk, c) = 0 we have WN (τk) = 0
for every realization of ΠN in the interconnection group SNc � FNc. It follows that
deterministically

dmin(ker ΦN ) ≥ min
{
(2 − 1{1}(b(Fk, c)))δ(k)

∣∣k ∈ G \ {0}} = ζ(F,c).

When c ≥ 4, for every k in G \ {0} such that b(Fk, c) < 2 − c, Lemma 4.5 and
the Borel–Cantelli lemma imply that with probability one {WN (τk) = 0} occurs
only finitely often. Then using an argument similar to that in the proof of Propo-
sition 4.4 it is possible to show that

∑
1
N <||θ−δ0||< 2

d
WN (θ) ≤ KN−2, and then∑

1
N <||θ−δ0||< 2

d
WN (θ) = 0 for all but a finitely many N . This implies (8.5).
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