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The capacity of finite Abelian group codes
over symmetric memoryless channels

G. Como and Fabio Fagnani

Abstract—The capacity of finite Abelian group codes over
symmetric memoryless channels is determined. For certain im-
portant examples, such asm-PSK constellations over AWGN
channels, with m a prime power, it is shown that this capacity
coincides with the Shannon capacity; i.e. there is no loss in
capacity using group codes. (This had previously been known
for binary linear codes used over binary-input output-symmetric
memoryless channels.) On the other hand, a counterexample
involving a three-dimensional geometrically uniform constellation
is presented in which the use of Abelian group codes leads to a
loss in capacity. The error exponent of the average group code
is determined, and it is shown to be bounded away from the
random-coding error exponent, at low rates, for finite Abelian
groups not admitting Galois field structure.

Keywords: non-binary constellation, geometrically uniform
constellation,m-PSK, group codes, Shannon capacity, error
exponent, channel coding theorem.

I. I NTRODUCTION

It is a well-known fact that binary linear codes suffice to
reach capacity on binary-input output-symmetric channels[1],
[2], [3]. Moreover, by averaging over the ensemble of linear
codes, the same error exponent is achieved as by averaging
over the ensemble of all codes. The same has been proven
to hold true [4] for group codes over finite Abelian groups
admitting Galois field structure.

In this paper we investigate the same question for group
codes employed over non-binary channels exhibiting symme-
tries with respect to the action of a finite Abelian groupG.
The main example we have in mind is the additive white
Gaussian noise (AWGN) channel with input set restricted to
a finite geometrically uniform (GU) constellation [5] (m-PSK
for instance) and with possibly hard- or soft-decision decoding
rule. In [6] it was conjectured that group codes should suffice
in this case to achieve capacity exactly as in the field case. On
the other hand, in [4] it was conjectured that group codes do
not achieve the random-coding exponent if the groupG does
not admit Galois field structure. To our knowledge, there has
not been any progress towards any of these directions.
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[30].
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However, interest in group codes has not decreased in these
years. Indeed, they provide the possibility to use more spec-
trally efficient signal constellations while keeping many good
qualities of binary linear codes. More specifically, on the one
hand, group codes have congruent Voronoi region, invariant
distance profiles, and enjoy the uniform error property. On the
other hand, the nice structure of the corresponding minimal
encoders, syndrome formers and trellis representations makes
group codes appealing for low-memory encoding and low-
complexity iterative decoding schemes. We refer to [7]–[20]
and references therein for an overview of the many research
lines on group codes which have been developing during
recent years. Observe that coset codes over finite fields allow
to achieve capacity and the random-coding error exponent of
any memoryless channel [2]. However, whenever the group
structure does not match the symmetry of the channel (e.g.
binary coset codes on2r-PSK AWGN channels, forr > 2),
or if the channel is not symmetric, coset codes in general fail
to be GU, do not enjoy the uniform error property, and have
non-invariant distance profiles.

Recently, group codes have made their appearance also in
the context of turbo concatenated schemes [21], [22] and of
low-density parity-check (LDPC) codes [23], [24], [25], [26].
In the binary case an important issue, for these types of high-
performance coding schemes, is the evaluation of the gap to
Shannon capacity, as well as the rate of convergence to zero
of the word and bit error rate. For regular LDPC codes such
gaps have been evaluated quite precisely [23], [27], [28] and it
has been shown that, when the density parameters are allowed
to increase, these schemes tend to attain the performance of
generic binary linear codes. In [24], [25] the authors extend
such an analysis to LDPC codes over the cyclic groupZq,
but they have to restrict themselves to the case of primeq.
We believe that, without first a complete understanding of our
original question, namely if group codes do themselves allow
to reach capacity and the correct error exponent, LDPC codes
over general Abelian groups cannot be properly analyzed,
since it can not be understood whether the gap to capacity is
due to the group structure or to the sparseness of the syndrome
representation. In [29], a fundamental analysis of LDPC codes
over Abelian groups is proposed, based on the general results
for group codes presented in this paper.

Our work focuses on the case of finite Abelian groups
and is organized as follows. In Section II we introduce all
relevant notation, we briefly resume Shannon-Gallager theory
concerning the capacity and error exponents of memoryless
channels and basic concepts concerning GU constellations,and
we formally state the main question whether group codes can
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achieve capacity of a symmetric channel.
In Section III we consider memoryless channels which are

symmetric with respect to the action of cyclic groupsZpr of
prime power order, and we determine (in a computationally
effective way) the capacity achievable by group codes over
such channels. This capacity is called theZpr -capacity and
equals the minimum of the normalized Shannon capacities of
the channels obtained by restricting the input to all non-trivial
subgroups ofZpr . The results are contained in Theorem 5
which is an inverse coding theorem for group codes and in
Theorem 7 which exhibits an average result working on the
ensemble of group codes. The error exponent for the average
group code is determined as well. It is shown that forr >
1, the averageZpr -code is bounded away from the random-
coding exponent at least at low rates, confirming a conjecture
of Dobrushin [4].

In Section IV, we show that for thepr-PSK AWGN channel,
theZpr -symmetric capacity and the classical Shannon capacity
do coincide so that group codes allow to achieve capacity in
this case. This proves a conjecture of Loeliger [6].

In Section V we present a counterexample based on a three-
dimensional GU constellation where instead the two capacities
are shown to differ one from each other. It remains an open
problem whether using non-Abelian generating groups the
Shannon capacity can be achieved in this case.

Finally, in Section VI we generalize the theory to channels
symmetric with respect to the action of arbitrary finite Abelian
generating groups.

II. PROBLEM STATEMENT

In this section all relevant notation and definition are intro-
duced, and a formal statement of the problem is presented.

A. Notation

Throughout the paper the functionsexp : R → R and log :
(0, +∞) → R have to be considered with respect to the same,
arbitrary chosen, basea ∈ (1, +∞), unless explicit mention
to the contrary. For a subsetA ⊆ B, 1A : B → {0, 1} will
denote the indicator function ofA, defined by1A(x) = 1 if
x ∈ A, 1A(x) = 0 if x /∈ A.

For two groupsG andH we will write G ≃ H to mean they
are isomorphic, whileH ≤ G will mean thatH is a subgroup
of G. Unless otherwise stated, we shall use the multiplicative
notation for a generic groupG, with 1G denoting the null
element. When restricted to Abelian case we shall switch to
the additive notation with0 denoting the null element.

Given a finite setA, we shall consider the simplexP(A) :=
{θ : A → [0, +∞)|

∑

a θ(a) = 1} of probability measures on
A. The discrete entropy functionH : P(A) → R is defined by
H(θ) := −

∑

θ(a)>0 θ(a) log θ(a). Similarly, for a continuous
spaceB we shall denoteP(B) the set of probability densities
onB and define the entropy functionH : P(B) → [−∞, +∞]
by H(µ) := −

∫

B µ(x) log µ(x)dx. Given x ∈ AN , its
A-type (or empirical frequency) is the probability measure
θA(x) ∈ P(A) given byθA(x) := 1

N

∑

1≤i≤N 1{xi}. Define
the set of types of allN -tuples byPN (A) := θA(AN ), and let
PN(A) := ∪NPN (A) be the set of allA-types. The number

of A-types |PN (A)| =
(N+|A|−1

|A|−1

)

is a quantity growing
polynomially fast inN . Instead, the set ofN -tuples of a given
type θ, denoted by

AN
θ :=

{

x ∈ AN s.t. θA(x) = θ
}

,

has cardinality
∣

∣AN
θ

∣

∣ =
(

N
Nθ

)

:= N !
/
∏

a(Nθ(a))! growing
exponentially fast withN .

B. Coding theory for memoryless channels

Throughout the present paper, stationary memoryless chan-
nels (MCs) will be considered, which are described by a triple
(X ,Y, W ), where X is the input set,Y is the output set
and, for everyx in X , W ( · |x) is a probability density on
Y describing the conditional distribution of the output given
that the inputx has been transmitted. The input setX will
always be assumed finite, while the output setY will often
be identified with then-dimensional Euclidean spaceRn.
Nevertheless, all the results presented in this paper continue
to hold whenY is a discrete space as well; in this case, it is
simply needed to replace Lebesgue integrals with sums over
Y. 1

We shall consider theN -th extension of an MC(X ,Y, W ),
having input setXN and output setYN and transition prob-
ability densitiesWN (y|x) =

∏N
j=1 W (yj |xj). This motivates

the name memoryless, the various transmissions being proba-
bilistically independent once the input signals have been fixed.

As usual, a block-code is any subsetC ⊆ XN , while a
decoder is any (measurable) mappingD : YN → C. A
coding scheme consists of a pair of a code and a decoder.
N is the block-length, whileR = log |C|/N will denote the
transmission rate.

The probabilistic model of transmission is obtained by
assuming that the transmitted codeword is a random variable
(r.v.) X uniformly distributed overC, and that the channel-
output r.v.Y has conditional probability densityWN ( · |X)
given X. An error occurs when the outputY is incorrectly
decoded, i.e. it is the event{D(Y ) 6= X}. The error proba-
bility of the coding scheme(C,D) is therefore given by

pe(C,D) :=
1

|C|

∑

x∈C

pe(C,D|x) ,

wherepe(C,D|x) :=
∫

YN 1C\{x}(D(y))WN (y|x)dy is the
error probability conditioned to the transmission of the code-
word x.

It is well known that, given a codeC, the decoder mini-
mizing the error probability is the maximum-likelihood (ML)
oneDML (y) := argmaxx∈C WN (y|x), solving cases of non-
uniqueness by assigning toDML (y) a valuex ∈ C arbitrarily
chosen from the set of maxima ofWN (y|x). Throughout
the paper we will always assume that ML-decoding is used,
and use the notationpe(C) andpe(C|x) for pe(C,DML) and
pe(C,DML|x) respectively.

1In fact, all the results hold true whenY is a Borel space [31] and
integrations are carried on with respect to an abstractσ-finite reference
measure, with respect to which all conditioned output measures are absolutely
continuous.
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In order to state the classical channel-coding theorem we
are only left with defining the capacity and the random-coding
exponent of an MC(X ,Y, W ). The former is defined as

C := max
p∈P(X )

∑

x∈X

p(x)

∫

Y

W (y|x) log
W (y|x)

∑

z∈X

p(z)W (y|z)
dy .

(1)
The latter is instead given, forR ∈ [0, log |X |], by

E(R) := max
0≤ρ≤1

max
p∈P(X )

(E0(ρ, p) − ρR) , (2)

where, for everyρ ∈ [0, 1] andp ∈ P(X ),

E0(ρ, p) := − log





∫

Y

(

∑

x∈X

p(x)W (y|x)
1

1+ρ

)1+ρ

dy





(3)
A well-known fact (see [2], [3]) is that

E(R) > 0 ⇔ R < C . (4)

Moreover the random-coding exponentE(R) is continuous,
monotonically decreasing and convex in the interval[0, C),
while the dependence of bothC andE(R) on the channel is
continuous.

Given a design rateR ∈ [0, log |X |] and blocklengthN ,
the random-coding ensemble is obtained by considering a
random collectionCN of ⌈exp(RN)⌉ possibly non-distinctN -
tuples, sampled independently fromXN , each with distribu-
tion

⊗

1≤j≤N µ∗, where µ∗ in P(X ) is the optimal input

distribution in (2). pe(CN )
R

will denote the average error
probability with respect to such a probability distribution.

We can now state Shannon-Gallager coding theorem for
MCs.

Theorem. Assume a MC(X ,Y, W ) is given, having capacity
C and random-coding exponentE(R). It holds

(a)
pe(CN )

R
≤ exp(−NE(R)) .

In particular this implies that the average error prob-
ability tends to0 exponentially fast forN → +∞,
provided that the rate of the codes is kept belowC.

(b) For everyR > C there exists a constantAR > 0 inde-
pendent ofN such that for any coding scheme having
rate not smaller thanR, we have thatpe(C) ≥ AR.

C. Symmetric memoryless channels and group codes

In this paper we shall focus on MCs exhibiting symmetries,
and on codes matching such symmetries.

In order to formalize the notion of symmetry, a few concepts
about group actions need to be recalled. Given a finite group
G, with identity 1G, and a setA we say thatG acts onA if,
for every g ∈ G, it is defined a bijection ofA denoted by
a 7→ ga, such that

h(ga) = (hg)a ∀h, g ∈ G , ∀a ∈ A .

In particular we have that the identity map corresponds to1G

and the maps corresponding to an elementg and its inverse
g−1 are the inverse of each other. The action is said to be

transitive if for everya, b ∈ A there existsg ∈ G such that
ga = b. The action is said to be simply transitive if the element
g above is always unique inG. If G acts simply transitively
on a setA, it is necessarily in bijection withA, a possible
bijection being given byg 7→ ga0 for any fixed a0 ∈ A.
Finally, the action of a groupG on a measure spaceA is said
to be isometric if it consists of measure-preserving bijections.
In particular, whenA is a finite set, all group actions are
isometric. WhenA = Rn instead this is a real restriction and
is satisfied if the mapsa 7→ ga are isometries ofRn, i.e. maps
preserving the Euclidean distance.

Definition 1. Let G be a group. A MC(X ,Y, W ) is said to
be G-symmetricif

(a) G acts simply transitively onX ,
(b) G acts isometrically onY,
(c) W (y|x) = W (gy|gx) for everyg ∈ G, x ∈ X , y ∈ Y.

The simplest example of symmetric MC is the following
one, while a much richer family of symmetric MCs based on
GU signal constellations will be presented in Sect.II-D.

Example 1 (m-ary symmetric channel). Consider a finite
set X of cardinality m ≥ 2 and someε ∈ [0, 1]. The m-
ary symmetric channelis described by the triple(X ,X , W ),
whereW (y|x) = 1 − ε if y = x and P (y|x) = ε/(m − 1)
otherwise. This channel returns the transmitted input symbol
x as output with probability1− ε, while with probabilityε a
wrong symbol is received, uniformly distributed over the set
X \ {x}. The special casem = 2 corresponds to the BSC.
The m-ary symmetric channel exhibits the highest possible
level of symmetry. Indeed, it isG-symmetric for every group
G of order |G| = m. To see this, it is sufficient to observe
that every group acts simply and transitively on itself. Notice
that wheneverm = pr for some primep and positive integer
r, the groupG can be chosen to beZr

p which is compatible
with the structure of the Galois fieldFpr .

A first property ofG-symmetric channels is that, for both
their Shannon capacityC and their random-coding exponent
E(R), the maximizing probability distributionp ∈ P(X ) in
the variational definitions (1) and (2) can be chosen to be the
uniform distribution over the input setX .

Since the input of a G-symmetric MC can be identified with
the group G itself, block codes for such channels are subsets
C ⊆ GN . However, it is natural to consider a subclass of
codes matching the symmetry of the channel: they are known
as group codes.

Definition 2. For a finite groupG, a G-code is a subgroup
C ≤ GN .

G-codes enjoy many properties when used overG-
symmetric MCs. In particular, [5] they have congruent Voronoi
(ML-decoding) regions, and invariant distance profiles. Asa
consequence, the uniform error property (UEP) holds true,
namely the error probability does not depend on the trans-
mitted codeword:pe(C|x) = pe(C|x

′) for every x, x′ in C.

Another important property is that their ML-error probabil-
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ity of a G-code can be bounded by a function of its type-
spectrum only. For a codeC ⊆ GN and a typeθ in P(G), let
SC(θ) :=

∣

∣C ∩ GN
θ

∣

∣ be the number of codewordsx of C of
type θ. The following estimation is proved using techniques
similar to those in [32]. It will be used in Sect.III-B while
proving the direct coding theorem forZpr -codes.

Lemma 3. Let G be a finite group,(G,Y, W ) a G-symmetric
MC, andC ⊆ GN a code such that1GN ∈ C. Then

pe(C|1GN ) ≤ 1
|G|N

∑

z∈GN

∫

YN

W
1

1+ρ

N (y|z)

(

∑

θ∈PN (G)
θ 6=δ1G

SC(θ)

( N

Nθ)

∑

x∈GN
θ

W
1

1+ρ

N (y|zx)

)ρ

dy .

(5)

Proof See Appendix A.

Observe that Lemma 3 does not assumeC to be aG-code.
However, whenC is a G-code, (5) provides an estimate to
pe(C) by the UEP.

A fundamental question arising is whetherG-codes allow
to achieve the capacity of aG-symmetric MC. This is known
to be the case for binary linear codes over binary-input output-
symmetric channels. Moreover, as shown in [4], the same
continues to hold true whenever the groupG has the property
that every elementg in G has the same order, i.e. whenG
is isomorphic toZr

p for some primep and positive integer
r. However, in [6] Loeliger conjectured thatZm-codes should
suffice to achieve capacity on them-PSK AWGN channel even
for non-primem. In this paper Loeliger’s conjecture will be
proved to be true form equal to a prime power. More in
general, the capacity achievable byG-codes overG-symmetric
channels will be characterized for any finite Abelian groupG,
and a counterexample will be presented showing that, whenG
is not isomorphic toZr

p, G-codes may fail to achieve Shannon
capacity.

D. Geometrically uniform signal constellations

A finite n-dimensionalconstellationis a finite subsetS ⊂
Rn spanningRn; i.e. everyx ∈ Rn can be written asx =
∑

s∈S αss with αs ∈ R. We shall restrict ourselves to the
study of finite constellationsS ⊂ Rn with barycenter0, i.e.
such that

∑

s∈S s = 0: these minimize the average per-symbol
energy over the class of constellations obtained one from the
other by applying isometries.

We denote byΓ(S) its symmetry group, namely the set
of all isometric permutations ofS with the group structure
endowed by the composition operation. ClearlyΓ(S) acts on
S. S is said to begeometrically uniform (GU)if this action is
transitive; a subgroupG ≤ Γ(S) is a generating groupfor S
if for every s, r ∈ S a uniqueg ∈ G exists such thatgs = r,
namely ifG acts simply transitively onS. It is well known that
not every finite GU constellation admits a generating group
(see [33] for a counterexample). However in what follows we
will always assume that the constellations we are dealing with,
do admit generating groups, and, actually, Abelian ones.
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Fig. 1. 8-PSK constellation with the two labelingsZ8 andD4.

Let S be a finiten-dimensional GU constellation equipped
with a generating groupG. Define theS-AWGN channelas
then-dimensional unquantized AWGN channel with input set
S, outputRn, and Gaussian transition densities given by

W (y|x) =
1

(2πσ2)n/2
e−

||y−x||2

2σ2 .

The S-AWGN channel isG-symmetric.
A well-known fact (see [7]) is that every finite GU constel-

lation S lies on a sphere. With no loss of generality we shall
assume the radius of such a sphere is unitary.

The above construction ofG-symmetric channels with a
finite GU constellationS as input can be extended to a
much wider class of channels. Indeed, one could consider the
hard-decoded version of theS-AWGN channel, obtained by
quantizing the output over the Voronoi regions ofS through
the map

Q : R
n → S Q(x) = argmin

s∈S
||x − s|| .

Moreover, all the theory can be generalized to MCs having
a GU finite constellationS as input and transition densities
W (y|x) which are functions of the Euclidean distance||y−x||
only. As an example, one can consider the Laplacian channel
with transition probability densities given by

W (y|x) =
λnΓ(n/2)

2πn/2Γ(n)
e−λ||x−y|| ,

whereλ > 0 is a parameter andΓ(t) :=
∫ +∞

0
xt−1e−xdx is

the well-known Euler’sΓ function.
In the following we present some examples of finite GU

constellations admitting Abelian generating group. With start
with the simplest example, provide by a binary constellation.

Example 2 (2-PAM). The 2-PAM constellation is defined by

K2 := {1,−1} .

It is trivial to see thatΓ(K2) ≃ Z2 is a generating group
for K2. It is also possible to show thatK2 is the only one-
dimensional GU constellation. �

We now pass to them-PSK constellation which is the main
practical example of finite GU constellation.

Example 3 (m-PSK). For any integerm ≥ 2, defineξm :=
ei 2π

m . Them-PSK constellation is

Km :=
{

ξk
m, 1 ≤ k ≤ m

}

.
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Fig. 2. (a)Z6-labelled2-PAM×3-PSK; (b)Z8-labelledK
β
8

constellation.

Clearly S is two-dimensional form ≥ 3. It can be shown
that Γ(Km) ≃ Dm, whereDm is the dihedral group with2m
elements.Km admitsZm, i.e. the Abelian group of integers
modulo m, as generating group. Whenm is even there is
another generating group (see [5], [6]): the dihedral group
Dm/2, which is non-commutative form ≥ 6. It follows that
the m-PSK-AWGN channel is bothZm-symmetric and (for
evenm) Dm/2-symmetric. The constellationK8 with the two
possible labelingsZ8 and D4 is reported in Fig.1. �

Next example shows how higher dimensional GU con-
stellations can be obtained as Cartesian product of lower
dimensional ones. This constellation will be considered in
Sect.VI, to show how theG-capacity can be evaluated for
Abelian group codes of order which is not the power of a
prime.

Example 4 (Cartesian product constellation). For any integer
m > 2 consider the family of three-dimensional GU constel-
lations parameterized byβ ∈ (0, +∞)

Kβ
m×2 :=

{

1
√

1 + β2

(

ξk
m, (−1)lβ

)

| 0 ≤ k ≤ 2, l = 0, 1

}

.

Fig.2(a) shows the special casem = 3. It’s easy to show that
Zm×Z2 is a generating group forKβ

m×2; notice that, for odd
m, Zm × Z2 ≃ Z2m. Thus, for oddm, AWGN channels with
input m-PSK×2-PAM areZ2m-symmetric. �

Finally we provide an example of an ’effectively’ three-
dimensional constellation, i.e. one which is not obtained as
the Cartesian product of lower-dimensional ones. This con-
stellation will be used as a counterexample in Sect.V.

Example 5 (3-D constellation). For evenm > 2 we introduce
the family of three-dimensional GU constellations, parameter-
ized byβ ∈ (0, +∞)

Kβ
m =

{(

√

1

1 + β2
ξk
m,

√

β2

1 + β2
(−1)k

)

, 1 ≤ k ≤ m

}

.

An example withm = 8 is shown in Fig.2(b): observe that
even-labeled points and odd-labeled ones have an offset of
π/4. It can be shown that, similarly to the constellations
Km, the the constellationsKβ

m have two different generating
groups,Zm andDm/2; so,Kβ

m-AWGN channels are bothZm-
symmetric andDm/2-symmetric. �

III. T HE CODING THEOREM FORZpr -CODES ON

Zpr -SYMMETRIC MEMORYLESS CHANNELS

Given a primep and a positive integerr, let (Zpr ,Y, W )
be aZpr -symmetric MC, whose input has been identified with
the groupZpr itself with no loss of generality. For1 ≤ l ≤ r,
consider the MC(pr−lZpr ,Y, W ) obtained by restricting the
input of the original MC to the subgrouppr−lZpr . We shall
denote byCl the Shannon capacity of such a channel, and by
El(R) its error exponent.

Definition 4. TheZpr -capacityof the MC(Zpr ,Y, W ) is

CZpr := min
1≤l≤r

r

l
Cl ;

its Zpr -error exponent is

EZpr (R) := min
1≤l≤r

El

(

l

r
R

)

.

It is easily observed thatEZpr (R) > 0 if and only if
R < CZpr . In the rest of this section the quantityCZpr will
be shown to be exactly the capacity achievable byZpr -codes
over the Zpr -symmetric MC (Zpr ,Y, W ). In particular, in
Sect.III-A it will be proven that reliable transmission with Zpr -
codes is not possible at any rate beyondCZpr . In Sect.III-B
instead, a random-coding argument will be used in order to
show thatZpr -codes of arbitrarily small error probability exist
at any rate belowCZpr , and thatEZpr (R) is a lower bound
to the error exponent of the averageZpr -code of rateR.
Sect.III-C will deal with issues of tightness ofEZpr(R).

A. The converse coding theorem forZpr -codes

Let C ≤ ZN
pr be someZpr -code of lengthN and rateR.

Standard algebraic arguments (see [14] for instance) allowto
show that

C ≃
⊕

1≤s≤r

Z
Ks

ps ,

for some nonnegative integersKs satisfying

1

N

∑

1≤s≤r

sKs log p = R .

For every1 ≤ l ≤ r, we consider the codeCl := C∩pr−l
Z

N
pr

obtained by restricting the original codeC to the subgroup
pr−lZN

pl . This is tantamount to considering only those code-
words ofC of order not exceedingpl. It follows that

Cl ≃
⊕

1≤s<l

Z
Ks

ps

⊕

l≤s≤r

Z
Ks

pl .

By denoting the rate of the sub-codeCl by Rl, we get

Rl = 1
N

∑

1≤s<l

sKs log p + 1
N

∑

l≤s≤r

lKs log p

≥ 1
N

∑

1≤s<l

l
rsKs log p + 1

N

∑

l≤s≤r

s
r lKs log p

= l
rR .

(6)

We now apply the inverse channel coding theorem to the
codeCl and to the MC(pr−lZpr ,Y, W ) obtained by restricting
the input of the original MC to the subgrouppr−l

Zpr . Recall-
ing thatCl denotes the Shannon capacity of such a channel,
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we get that, ifRl > Cl, then the error probability of the code
Cl is bounded away from zero by some constant independent
of the blocklengthN . SinceCl ⊆ C, and since both areZpr -
codes, by the UEP we get that

pe(C) = pe(C|0) ≥ pe(Cl|0) = pe(Cl) .

It thus follows that, if Rl > Cl, then the error probability
of the originalZpr -codeC itself is bounded away from zero
independently from its block-length.

By repeating the argument above for all1 ≤ l ≤ r and
using (6), the following theorem is proved.

Theorem 5. Let (Zpr ,Y, W ) be aZpr -symmetric MC; denote
its Zpr -capacity byCZpr . Then, for every design rateR >
CZpr there exists a constantAR > 0 such that

pe(C) ≥ AR ,

for everyZpr -codeC of rate not smaller thanR.

B. A coding theorem forZpr -codes

Theorem 5 provides a necessary condition for reliable
transmission usingZpr -codes onZpr -symmetric channels: for
this to be possible the rate needs not exceed theZpr -capacity
CZpr . However, it is not clear at all whether any rate below
CZpr can actually be achieved by means ofZpr -codes. In
principle there could be other algebraic constraints coming into
the picture which have been overlooked in our analysis. In fact,
we will see that this is not the case: the conditionR < CZpr

will be shown to be sufficient for reliable transmission using
Zpr -codes over aZpr -symmetric MC.

Given a design rateR in (0, log pr), we introduce theZpr -
code ensemble as follows. For every block-lengthN , we
set L := ⌊(1 − R

log pr )N⌋, and consider a random parity-
check operatorΦN uniformly distributed over the the set
hom(ZN

pr , ZL
pr ) of all homomorphisms fromZN

pr to ZL
pr .

Finally, let CN := kerΦN be the randomZpr -code obtained
as the kernel ofΦN , i.e. the set of all thoseN -tuples x

in ZN
pr such thatΦNx = 0. Observe that the rate ofCN

is deterministically not smaller thanR. We are interested in
estimating the average error probabilitype(CN ) of the parity-
check ensemble ofZpr -codes of design rateR.

A first step in our analysis consists in evaluating the average
type-spectrum. For any typeθ in P(Zpr ), let SN (θ) :=
SCN

(θ) be the number of codewords in the random codeCN

of type θ. We have

SN (θ) =
∑

x∈(Zpr )N
θ

1CN
(x) =

∑

x∈(Zpr )N
θ

1{ΦN x=0} . (7)

The expected value ofSN (θ) can be evaluated as follows.

Lemma 6. For everyθ in PN (Zpr ), the average type spectrum
of the parity-check ensemble ofZpr -codes of design rateR is
given by

SN (θ) =

(

N

Nθ

)

p−Ls(θ)

where, forθ in P(Zpr ), s(θ) denotes the smallest integerl ≥ 0
such thatθ(a) = 0 for all a /∈ pr−lZpr .

Proof Consider the standard basis{δi}1≤i≤N of ZN
pr . Then,

an equivalent condition forΦN to be uniformly distributed
over hom(ZN

pr , ZL
pr ) is that the r.v.sΦNδi, 1 ≤ i ≤ N , are

mutually independent and uniformly distributed overZL
pr .

Let us now fix anN -tuple x of type θ ∈ PN(Zpr ). From
the definition ofs(θ) it follows thatxj belongs topr−s(θ)

Zpr

for all 1 ≤ j ≤ N , and thatxi /∈ pr−s(θ)−1Zpr for some
1 ≤ i ≤ N . It follows that the r.v.Xi := xiΦNδi is
uniformly distributed overpr−s(θ)ZL

pr , while the r.v.X−i :=
∑

j 6=i xjΦNδj takes values inpr−s(θ)ZL
pr and is independent

from Xi. Therefore,ΦNx =
∑

1≤i≤N xiΦNδi = Xi + X−i

is uniformly distributed overpr−sZL
pr . So, in particular,

P(ΦNx = 0) = p−Ls(θ).
Hence, for any typeθ in PN (Zpr ) we have

E [SN (θ)] =
∑

x∈(Zpr )N
θ

P(ΦNx = 0) =

(

N

Nθ

)

p−Ls(θ) ,

the first equality above following from (7) and the linearityof
expectation.

Lemma 6 and Lemma 3 allow us to prove the following
fundamental estimation on the average error probability ofthe
parity-check ensemble ofZpr -codes.

Theorem 7. Let (Zpr ,Y, W ) be a Zpr -symmetric MC, and
let EZpr (R) be itsZpr -error exponent. Then the average error
probability of theZpr -code ensemble of design rateR satisfies

pe(CN ) ≤ r exp
(

−NEZpr (R)
)

.

Proof For all 1 ≤ s ≤ r let

Cs
N := {0}

⋃

(

CN

⋂

(

⋃

s(θ)=s(Zpr )N
θ

))

be the sub-code ofCN consisting of the all-zero codeword
and of all the codewords ofCN whose typeθ is such that
s(θ) = s. Observe thatCs

N ⊆ pr−sZN
pr . By the UEP and the

union bound we have

pe(CN ) = pe(CN |0) ≤
∑

1≤s≤r

pe(Cs
N |0) . (8)

For every1 ≤ s ≤ r and0 ≤ ρ ≤ 1, by applying Lemma 3
to the codeCs

N and the MC(pr−sZpr ,Y, W ), then the Jensen
inequality and Lemma 6, we get,

pe(Cs
N |0)

≤ 1
psN

∑

z

∫

YN

W
1

1+ρ

N (y|z)

(

∑

θ

SN (θ)

( N
Nθ)

∑

x

W
1

1+ρ

N (y|z+x)

)ρ

dy

≤ 1
psN

∑

z

∫

YN

W
1

1+ρ

N (y|z)

(

∑

θ

SN (θ)

( N
Nθ)

∑

x

W
1

1+ρ

N (y|z+x)

)ρ

dy

≤ 1
psN

∫

YN

(

∑

z

W
1

1+ρ

N (y|z)

)(

1
psL

∑

z

W
1

1+ρ

N (y|z)

)ρ

dy

= psρ(N−L)
∫

YN

(

1
psN

∑

z

W
1

1+ρ

N (y|z)

)1+ρ

dy ,

where the summation indexz runs overpr−sZN
pr , θ over types

in PN (Zpr ) such thats(θ) = s, andz over (Zpr )N
θ

, the set
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of type-θ N -tuples. Observe thatpsρ(N−L) ≤ exp(Nρ s
rR)

while, since the channel is stationary and memoryless,

∫

YN

(

1
psN

∑

z

W
1

1+ρ

N (y|z)

)1+ρ

dy

=

(

∫

Y

(

1
ps

∑

z
W

1
1+ρ (y|z)

)1+ρ

dy

)N

Therefore, we get

pe(Cs
N |0) ≤ exp(Nρ

s

r
R − NE0

s (us, ρ)) ,

where E0
s ( · , · ) denotes the Gallager exponent of the MC

(pr−sZpr ,Y, W ) (as defined in (3)) andus is the uniform
distribution overpr−sZpr . Since the MC(pr−sZpr ,Y, W ) is
pr−sZpr -symmetric,us is the optimal input distribution. Then,
by optimizing the exponentE0

s (us, ρ)− ρ s
rR overρ in [0, 1],

we get the error exponentEs(
r
sR), so that

pe(Cs
N |0) ≤ exp

(

NEs

(s

r
R
))

.

The claim now follows by combining the above inequality
with (8), and recalling Def.4.

Standard probabilistic arguments allow us to prove the
following corollary of Theorem 7, estimating the asymptotic
error exponent of the typicalZpr -code.

Corollary 8. Let (Zpr ,Y, W ) be aZpr -symmetric MC ofZpr -
capacity CZpr and Zpr -error exponentEZpr (R). Then, for
every0 < R < CZpr , we have

lim inf
N∈N

−
1

N
log pe(CN ) ≥ EZpr (R) ,

with probability one over theZpr -coding ensemble of design
rate R.

Proof With no loss of generality we can restrict ourselves to
rates0 ≤ R < CZpr , since otherwiseEZpr (R) = 0 and the
claim is trivial aspe(CN ) ≤ 1. For any0 < ε < EZpr (R),
N ∈ N define the event

Aε
N := {pe(CN ) ≥ r exp(−N(EZpr (R) − ε))} ,

By applying Theorem 7 and the Markov inequality, we obtain

P(Aε
N ) ≤ P

(

pe(CN ) ≥ 1
r exp(Nε)pe(CN )

)

≤ r exp(−Nε) .

Then
∑

N P(Aε
N ) ≤

∑

N exp(−Nε) < +∞, and the Borel-
Cantelli lemma implies that with probability one the eventAε

N

occurs for finitely manyN in N. Therefore, with probability
one lim infN − 1

N log pe(CN ) ≥ EZpr (R) − ε. Finally, the
claim follows from the arbitrariness ofε in (0, EZpr (R)).

Corollary 9. Let (Zpr ,Y, W ) be a Zpr -symmetric MC, and
let CZpr be itsZpr -capacity. Then, for all0 ≤ R < CZpr there
exist Zpr -codesC of rate not smaller thanR and arbitrarily
low error probability.

C. On tightness of the error exponent

Theorem 7 provides an exponential upper bound on the
average error probability of the parity-check ensemble ofZpr -
codes on aZpr -symmetric MC. Corollary 8 states that the
same error exponent is asymptotically achieved by a typical
code sequence sampled from theZpr -code ensemble.

A natural question arising is whether these bounds are tight.
We conjecture thatEZpr (R) is the correct error exponent for
the averageZpr -code at any rate0 < R < CZpr , i.e. that

lim
N∈N

−
1

N
log pe(CN ) = EZpr (R) . (9)

No proof of (9) in its generality will be presented here. Rather,
we shall confine ourselves to consider the high-rate and the
low-rate regimes.

Theorem 10.For any non-trivialZpr -symmetric MC, there ex-
ist some0 < R0 ≤ R1 < CZpr such that (9) holds true for the
Zpr -code ensemble of design rateR ∈ (0, R0) ∪ (R1, CZpr ).

Proof First we concentrate on the high-rate regime. For
rates R close enough toCZpr , from the continuity of the
exponentsEs(R), it follows thatEZpr (R) = Es(

s
r R) for one

of the channels(pr−sZpr ,Y, P ) whose normalized capacity
r
sCs coincides with theZpr -capacityCZpr . It is known that
close to capacity the random-coding exponent coincides with
the sphere-packing exponent [2], [3]. Then, by applying the
sphere-packing bound to the sub-codeCN ∩ pr−sZN

pr (whose
rate is not smaller thansrR), we get that, for all ratesR not
smaller than some0 < R1 < CZpr ,

EZpr (R) = Es(
s
r R)

≥ lim sup
N∈N

− 1
N log pe(CN ∩ pr−sZN

pr )

≥ lim sup
N∈N

− 1
N log pe(CN ) .

(10)

We shall now concentrate on showing the validity of (9) in
the low-rate regime. First, observe that at rateR = 0

E1(0) ≤ E2(0) ≤ . . . ≤ Er(0) , (11)

the inequalities above being strict on non-trivialZpr -
symmetric MCs. From the continuity of the error exponents
as functions of the rateR, it follows that for any non-trivial
Zpr -symmetric MC

EZpr (R) = E1(
1
r R) , ∀R ≤ R0 , (12)

for someR0 > 0.
Notice thatCN ∩pr−1ZN

pr coincides with theZp-linear code
ensemble of rate1r R. It is known [34] thatE1(

1
r R) is the

correct error exponent for the averageZp-linear code. In fact,
the arguments developed in [35] in order to prove tightness
of the error exponent for the average code sampled from the
random coding ensemble only require pairwise independence
of the random codewords. In theZp-linear ensemble the events
{x ∈ CN} and{w ∈ CN} are independent wheneverx andw

are linear independent inZN
pr . Since everyx in Zpr has only

p linear dependent elements inZN
pr , the arguments of [35] can

still be used to show that

lim sup
N∈N

−
1

N
log pe(CN ∩ pr−1ZN

pr ) ≤ E1(
1
r R) = EZpr (R) .



8

Then, sincepe(CN ) ≥ pe(CN ∩pr−1ZN
pr ), from (12) it follows

that

lim sup
N∈N

−
1

N
log pe(CN ) ≤ EZpr (R) , ∀R ≤ R0 . (13)

Finally, the claim follows from (10), (13) and Theorem 7.

Notice that, forr ≥ 2, strict inequalities in (11) imply that

EZpr (R) < Er(R) , R ≤ R0 . (14)

Therefore, forr ≥ 2 on any nontrivialZpr -symmetric MC,
the averageZpr -code exhibits poorer performance than the
average code (i.e. a code sampled from the random-coding
ensemble). This result had been first conjectured in [4], where
the author hypothesized that the random-coding exponent of
anyG-symmetric MC is achieved by the averageG-code only
if G ≃ Zr

p for prime p, namely whenG admits Galois field
structure.

However, it can be shown that, at low rates,EZpr (R) is
not the correct error exponent for theZpr -code ensemble. In
fact, similarly to the random-coding ensemble and the linear
coding ensemble [34], it can be shown that at low rates the
error exponent of a typicalZpr -code is higher thanEZpr (R).
This is because the average error probability is affected byan
asymptotically negligible fraction of codes with poor behavior.
In other words, at low rates the bound of Corollary 8 is not
tight. In a forthcoming work we shall show that the typical
Zpr -code achieves the expurgated error exponent on many
Zpr -symmetric MCs of interest, including thepr-PSK AWGN
channel. Since it is known that the random-coding ensemble
does not instead achieve the expurgated error exponent with
probability one, this will show that at low rates hierarchies
for the average and the typical error exponent can be reversed:
while the average random code behaves better than the average
group code, the typical group code exhibits better performance
than the typical random code.

IV. Zpr -CODES ACHIEVE CAPACITY ON THEpr-PSK
AWGN CHANNEL

This section will be focused on thepr-PSK AWGN chan-
nel, for which it will be shown that theZpr -capacityCZpr

coincides with the Shannon capacityC. As a consequence,
Zpr -codes are capacity-achieving for this important family of
symmetric MCs, thus confirming a conjecture of Loeliger [6].

Throughout this sectionp will be some given prime number,
r a fixed positive integer. The base oflog (and thus of the
entropy functionH) will be p. For m in N, ξm = e

2π
m

i ∈ C

will denote a primitive m-th root of 1. (Zpr , C, W ) will
denote thepr-PSK AWGN channel, with inputX identi-
fied with Zpr , output Y identified with the complex field
C, and transition probability densities accordingly given by
W (y|x) = 1

2σ2 e−||y−ξx
pr ||

2/2σ2

.
Recall that, by Def.4CZpr = min1≤l≤r

r
l Cl, where Cl

is the Shannon capacity of the MC
(

r
l Zpr , C, W

)

, i.e. the
AWGN channel with input restricted to thepl-PSK con-
stellation. Hence, the conditionC = CZpr is equivalent to
rCl ≥ lCr for all 1 ≤ s, l ≤ r. A simple inductive argument
shows that this is in turn equivalent to

qCq+1 ≤ (q + 1)Cq , ∀1 ≤ q ≤ r − 1 . (15)

The rest of section will be devoted to the proof of (15).
The result will be achieved through a series of technical
intermediate steps.

We start by introducing some related probability densities
which will play a key role in the sequel:

• for every1 ≤ q ≤ r, λq in P(C) defined by

λq(y) :=
1

pq

∑

x∈pr−qZpr

W (y|x) =
1

pq

pq−1
∑

j=0

W (yξj
pq |0)

(with the second equality above following from the
symmetry of the MC);

• for every 1 ≤ q ≤ r − 1 and y ∈ C, νq(y) in P(Zp)
defined by

[νq(y)](a) :=
λq(yξa

pq+1)

pλq+1(y)
; (16)

• for every1 ≤ q ≤ r andy ∈ C a probability distribution
ωq(y) in P(pr−q

Zpr ) defined by

[ωq(y)](x) :=
1

pqλq(y)
W (y|x) .

For any1 ≤ q ≤ r, consider thepq-PSK AWGN channel
(pr−qZpr , C, W ). Since it is symmetric, its Shannon capacity
Cq is achieved by a uniform distribution over the input
pr−qZpr . The corresponding output probability density is
given by

∑

x∈pr−qZpr
p−qW (y|x) = λq(y), so that

Cq = H(λq) − H (W (·|0)) . (17)

Therefore (15) is equivalent to

H (W (·|0))+qH(λq+1) ≤ (q+1)H(λq) , 1 ≤ q < r . (18)

The following result relates the entropies of the discrete
probability distributionsωq(y) and νq(y) to those of the
continuous densitiesλq andW ( · |0).

Lemma 11. For every1 ≤ q < r,

H(W ( · |0)) = H(λq) − q +

∫

C

λq(y)H(ωq(y))dy ; (19)

H(λq) = H(λq+1) − 1 +

∫

C

λq+1(y)H(νq(y))dy . (20)

Proof See Appendix B-A.

As a consequence of Lemma 11 we have that (18) is
equivalent to

q

∫

C

λq+1(y)H (νq(y)) dy ≥

∫

C

λq(y)H (ωq(y)) dy , (21)

for all 1 ≤ q ≤ r − 1.
We pass now to the core of the argument which relies on

geometric considerations. For1 ≤ q < r, fix an arbitrary point
y in the output setC, and consider the multiset of likelihood
values for the inputpq-PSK, given by

Wq(y) := {W (y|0), W (y|1), . . . , W (y|pq − 1)}

=
{

W (y|0), W (yξpq |0), . . . , W (yξpq−1
pq |0)

}

.
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Since thepq+1-PSK constellation is the disjoint union ofp
copies of thepq-PSK constellation each rotated by an angle
multiple of 2π

pq+1 , we have

Wq+1(y) =
⋃

0≤j<p

Wq(yξj
pq+1) . (22)

The geometry of thepq+1-PSK constellation implies that the
ordering of the multiset of likelihoodsWq+1(y) satisfies a
fundamental nesting property with respect to the partition(22).
Roughly speaking, this property consists in that all the subsets
Wq(yξj

pq+1) contain the same amount of highest values of the
setWq+1(y). More precisely, ifwk

q,l is thek-th highest value
in Wq(yξl

pq+1 ) for some1 ≤ k ≤ pq and 0 ≤ l ≤ p − 1,

then each of the subsetsWq(yξj
pq+1) contains at leastk −

1 elements not smaller thanwk
q,l. This is formalized in the

following lemma.

Lemma 12. For every1 ≤ q < r and y ∈ Y, there exists a
partition

Wq+1(y) =
⋃

1≤k≤pq

Wk
q (y) ,

where each multisetWk
q (y) = {wk

q,0, w
k
q,1, . . . , w

k
q,p−1} is

such that, for all0 ≤ j, i ≤ p−1, wk
q,j belongs toWq(yξj

pq+1),
and

0 ≤ k < k′ < pq =⇒ wk
q,i(y) ≥ wk′

q,j(y) . (23)

Proof See Appendix B-B.

Observe that, with the notation introduced in Lemma 12,
Wq(yξj

pq+1 ) =
{

w0
q,j ≥ w1

q,j ≥ . . . ≥ wpq−1
q,j

}

. If we consider

the probability distributionωq,j(y) in P(Zpq ) defined by

[ωq,j(y)] (k) :=
1

pqλq(yξj
pq+1 )

wk
q,j ,

we have that the entropiesH (ωq,j(y)) andH
(

ωq(yξj
pq+1)

)

do coincide, asωq(yξj
pq+1 ) and ωq,j(y) simply differ for a

permutation ofZpq .
Consider now thep-adic expansion mapζ : Zpq → Zq

p,
defined as follows: ifs ∈ Zpq is such thats =

∑

0≤k<q ρkpk

for 0 ≤ ρk < p, then ζ(s) := (ρ0, . . . , ρq−1) . It is a
standard fact thatζ is a bijection. LetZ(y, j) be aZpq -valued
random variable with distributionωq,j(y) and letY (y, j) =
(Y1(y, j), . . . , Yq(y, j)) := ζ ◦ Z(y, j) the correspondingZq

p-
valued random variable. For1 ≤ α ≤ q, let δα

q (y, j) ∈ P(Zp)
be the probability distribution ofYα(y, j). A straightforward
computation shows that

[

δα
q (y, j)

]

(s) =
1

pqλq(yξj
pq+1)

pα−1

∑

h=0

pq−α−1−1
∑

h̃=0

wh̃pα+1+spα+h
q,j .

(24)
We can now prove the following upper bound on the entropy

H (ωq,j(y)).

Lemma 13. For every1 ≤ α ≤ q,

H
(

ωq(yξj
pq+1)

)

≤
∑

1≤α≤q

H
(

δα
q (y, j)

)

. (25)

Proof We have

H
(

ωq(yξj
pq+1 )

)

= H (ωq,j(y))=H (Z(y, j))=H (Y (y, j))

≤
∑

1≤α≤q

H (Yα(y, j)) =
∑

1≤α≤q

H
(

δα
q (y, j)

)

where we first used the fact thatY (y, j) = ζ ◦Z(y, j) where
ζ is a bijection, then apply chain rule for entropy, and finally
the conditional entropy bound (see [36] for instance).

The next step of our argument consists in showing that the
probability distributionνq(y) in P(Zp) -as defined in (16)-
is a convex combination ofδα

q (y) for 1 ≤ α ≤ q, so that
-by Jensen inequality- its entropy estimates from above the
corresponding convex combination of the entropies ofδα

q (y).
The proof of Lemma 14 below is based on certain properties
of the so called ’permutahedron’ of a given point in then-
dimensional Euclidean space, which are derived in Appendix
B-C.

Lemma 14. For every1 ≤ α < q < r, andy ∈ C, we have

H





∑

j∈Zp

λq(yξj
pq+1 )

pλq+1(y)
δα

q (y, j)



 ≤ H (νq(y)) . (26)

Proof See Appendix B-C.

We are finally in the position to prove the following funda-
mental result.

Theorem 15. For every positive integerq, let Cq be the
Shannon capacity of thepq-PSK AWGN channel. Then,

qCq+1 ≤ (q + 1)Cq . (27)

Proof Fix an arbitrary outputy ∈ C. By successively applying
(26), the Jensen inequality, and (25), we obtain

qH (νq(y)) =
∑

1≤α≤q

H (νq(y))

≥
∑

1≤α≤q

H

(

∑

j∈Zp

λq(yξj

pq+1
)

pλq+1(y) δα
q (y, j)

)

≥
∑

1≤α≤q

∑

j∈Zp

λq(yξj

pq+1
)

pλq+1(y) H
(

δα
q (y, j)

)

≥
∑

j∈Zp

λq(yξj

pq+1
)

pλq+1(y) H
(

ωq(yξj
pq+1 )

)

Therefore,
∫

C
λq(y)H (ωq(y)) dy

=
∫

C

1
p

∑

j∈Zp

λq(yξj
pq+1 )H

(

ωq(yξj
pq+1 )

)

dy

≤ q
∫

C
λq+1(y)H (νq(y)) dy .

Thus, (21) holds true for all1 ≤ q ≤ r − 1, and this has
previously been shown to be equivalent to the claim.

We summarize the results of the present section in the
following:

Corollary 16. For any primep and positive integerr, the
Zpr -capacity of thepr-PSK AWGN channel coincides with its
Shannon capacity, i.e.CZpr = Cr .

Combining Corollary 16 with Corollary 9, we can finally
state a result first conjectured by Loeliger in [6].
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Corollary 17. Zpr -codes achieve the capacity of thepr-PSK
AWGN channel.

We observe that the step for the validity of the results of this
section is Lemma 12. In fact, while all the other derivationsdo
not depend on the particularZpr -symmetric channel, Lemma
12 heavily relied on the geometry of thepr-PSK constellation.
Hence, for allZpr -symmetric channels for which Lemma 12
holds, Theorem 15 and Corollary 16 continue to be true.
This is for instance the case for hard-decodedpr-PSK AWGN
channels and for thepr-ary symmetric channel of Ex.1.

V. A SYMMETRIC CHANNEL FOR WHICH GROUP CODES DO

NOT ACHIEVE CAPACITY

In the previous section we have shown that for thepr-
PSK AWGN channelZpr -capacity and Shannon capacity do
coincide. At this point the question arising is whether this
is the case for any higher dimensional GU constellation
admitting generating group isomorphic toZpr . In this section
we shall show that the answer is negative in general. In fact,
we shall provide a whole family of counterexamples based on
the three-dimensional constellations introduced in Example 5.
We will prove thatZ2r -capacity of the AWGN channel with
input constrained on some of these constellations is strictly
less than the corresponding Shannon capacity, thus leadingto
an effective algebraic obstruction to the use ofZ2r -codes.

For some positive integerr, we consider the family of GU
constellationsKβ

2r , parameterized byβ ∈ [0, +∞) and defined
by

Kβ
2r :=

{

xk :=
√

1
1+β2

(

e
2π
2r ki, (−1)kβ

)

, 1 ≤ k ≤ 2r
}

.

Observe thatKβ
2r is three-dimensional forβ > 0, and recall

that the symmetry group ofKβ
2r is isomorphic to the dihedral

group D2r , and thatKβ
2r admits two non-isomorphic gener-

ating groups: the cyclic oneZ2r and the dihedral oneD2r−1 .
Let us fix a standard deviation valueσ > 0, and consider the
corresponding family ofKβ

2r -AWGN channels
(

Kβ
2r , R3, W

)

,

whoseZ2r -capacity will be denoted byCZ2r (β). For 1 ≤ s ≤
r, C2s(β) will denote the capacity of the AWGN channel with
input restricted to the sub-constellation{xk2r−s | 1 ≤ k ≤ 2s},
so that

CZ2r (β) = min
1≤s≤r

r

s
C2s(β) .

We start our analysis by considering the limit caseβ =
0. In this caseK0

2r coincides with anR3 embedding of the
2r-PSK constellation and it is clearly not three-dimensional
since it does not spanR3. Since orthogonal components of
the AWGN are mutually independent, for every1 ≤ s ≤ r,
C2s(0) coincides with the Shannon capacity of the2s-PSK-
AWGN channel. Thus, all the results of Sect.IV hold true: in
particular, theZ2r -capacity and the Shannon capacity coincide,
i.e.

CZ2r (0) = C2r (0) . (28)

Similar arguments can be applied, for every givenβ > 0,
to the sub-constellation

{(

√

1
1+β2 e

2π

2r−1
ki,
√

β2

1+β2

)

, 1 ≤ k ≤ 2r−1

}

0 0.5 1 1.5 2 2.5 3
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

β

C
8

3/2 C
4

Fig. 3. Shannon capacity andZ8-capacity of K
β
8

-AWGN channel as
functions ofβ. It can be seen asCZ8

(β) = min
˘

C8(β), 3

2
C4(β)

¯

coincides
with C8(β) only for values ofβ below a certain threshold. The maxima of
C8(β) andC8(β) are achieved for values ofβ close to this threshold, i.e. the
two problems of optimizing respectively Shannon capacity and Z8-capacity
seem to have similar solutions. The optimal values are greater than the 8-
PSK-AWGN capacity.

coinciding with a three-dimensional embedding of a rescaled
2r−1-PSK. Applying the results of the previous section, we
get that

(r − 1)C2s(β) ≥ sC2r−1(β) , 1 ≤ s ≤ r − 1 . (29)

Thus, for everyβ ∈ (0, +∞), in order to check whether
C2r (β) andCZ2r (β) do coincide, one is only left to compare
the two capacitiesC2r (β) andC2r−1 (β).

If we now let the parameterβ go to +∞, the constellation
Kβ

2r approaches anR3-embedding of the 2-PAM constellation,
with the 2r−1 even-labeled points{x2k| 1 ≤ k ≤ 2r−1}
collapsed into the point(0, 1), and the odd labeled ones
{x2k−1| 0 ≤ k ≤ 2r−1} into the point (0,−1). Let us
define this limit constellation asK∞ := {(0, 1), (0,−1)}.
Notice that, for every finite standard deviation valueσ > 0,
the Shannon capacity of theK∞-AWGN channel is strictly
positive, while C2r−1(∞) = 0, since it is the capacity of
an MC with indistinguishable inputs. A continuity argument
yields the following result.

Proposition 18. For every finite varianceσ2 > 0 and any
integerr ≥ 2, the family ofKβ

2r -AWGN channels satisfies

lim
β→∞

C2r (β) = C(∞) > 0 , lim
β→∞

CZ2r (β) = 0 .

Proof See Appendix C.

Theorem 5 and Proposition 18 have the following immediate
consequence.

Corollary 19. For all varianceσ2 > 0, there exists a positive
finite β such that, for anyβ > β, Z2r -codes do not achieve
Shannon capacity of theKβ

2r -AWGN channel.

On the other hand, it can be proved that(r − 1)C2r (0) <
rC2r−1 (0) , for all r > 2. Then, by a continuity argument it
can be shown that instead, for sufficiently small values ofβ,
C2r (β) = CZ2r (β), so thatZ2r -codes do achieve capacity of
the Kβ

2r -AWGN channel. Fig.3 refers to the case2r = 8: the
normalized Shannon capacityC8(β) andC4(β) are plotted as
a functions of the parameterβ (Montecarlo simulations).
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VI. A RBITRARY FINITE ABELIAN GROUP

A. The algebraic structure of finite Abelian groups

In order to generalize the results of Sect.III, some basic
facts about the structure of finite Abelian groups need to be
recalled. We refer to standard textbooks in algebra ([37] for
instance) for a more detailed treatment.

Let M be a finite Abelian group. Givenµ ∈ N define the
following subgroups ofM :

µM = {µx | x ∈ M} , M(µ) = {x ∈ M | µx = 0} .

It is immediate to verify thatµM = {0} if and only if M(µ) =
M . Define

µM :=min{µ ∈ N|M(µ) = M} = min{µ ∈ N|µM = {0}} .

Write µM = pr1

1 · · · prs
s where p1 < p2 < · · · < ps

are distinct primes andr1, . . . , rs are non-negative integers,
existence and uniqueness of such a decomposition being
guaranteed by the fundamental theorem of algebra. It is a
standard fact thatM admits the direct sum decomposition

M = M(p
r1
1

) ⊕ · · · ⊕ M(prs
s ) . (30)

EachM(p
ri
i ) is a Zp

ri
i

-module and, up to isomorphisms, can
be further decomposed, in a unique way, as a direct sum of
cyclic groups

M(p
ri
i ) = Z

ki,1
pi

⊕ Z
ki,2

p2
i

⊕ · · · ⊕ Z
ki,ri

p
ri
i

. (31)

The sequenceσM = (p1, . . . , ps) will be called the spectrum
of M , the sequencerM = (rM

1 , . . . , rM
s ) the multiplicity and,

finally, the double indexed sequence

kM =
(

ki,j |1 ≤ i ≤ s , 1 ≤ j ≤ rM
i

)

will be called the type ofM . It will be convenient often
to use the following extension:ki,j = 0 for j > rM

i .
Given a sequence of primesσ = (p1, . . . , ps), we will say
that M is σ-adapted ifσM is a subsequence ofσ. Notice
that, once the sequence of primesσ has been fixed, allσ-
adapted Abelian groups are completely determined by their
type (which includes the multiplicitiesrM

i with the agreement
that some of them could be equal to0). We will denote by
Mk the finite Abelian group having typek.

Notice that ifM is a finite Abelian group with typek and
N ∈ N, the Abelian groupMN has the same spectrum and
multiplicity of M and typeNk.

If M andL are finite Abelian groups andφ ∈ Hom(M, L),
thenφ(M(µ)) ⊆ L(µ) andφ(µM) ⊆ µL for everyµ ∈ N. It
follows thatφ is surely non-injective ifM is not σL-adapted
or if any of the multiplicities inM is strictly larger than the
corresponding inL.

B. The inverse channel coding theorem for AbelianG-codes

Suppose now we have fixed, once for all, a finite Abelian
group G having spectrumσG = (p1, . . . , ps), multiplicity
rG = (rG

1 , . . . , rG
s ) and typekG. Consider aG-codeM ≤ GN

of rate R = 1
N log |M |. Clearly M is σG-adapted and

rM
i ≤ rG

i for all 1 ≤ i ≤ s, since otherwise the immersion of

M in GN would not be injective. ThenM can be decomposed
as illustrated above in (30) and (31). Let us fix now a matrix

l =
(

li,j ∈ Z
+ | 1 ≤ i ≤ s , 1 ≤ j ≤ rG

i

)

such thatli,j ≤ j for every i and j. We will say thatl is an
rG-compatible matrix. Define

M(l) =
⊕

1≤i≤s

⊕

1≤j≤rG
i

p
j−li,j

i Z
ki,j

pj
i

. (32)

An immediate consequence of the previous considerations is
that

M(l) ⊆ GN
l , Gl :=

⊕

1≤i≤s

∑

1≤j≤rG
i

p
j−li,j

i G(pj
i )

.

These inclusions automatically give information theoretic con-
straints to the possibility of reliable transmission usingthis
type of codes. Denote byRl the rate ofM(l) and by Cl

the capacity of the subchannel having as input alphabet the
subgroupGl. Then, a necessary condition forpe(M) not to
be bounded away from0 by some constant independent of
N is thatRl ≤ Cl for everyrG-compatiblel. This does not
give explicit constraints yet to the ratesR at which reliable
transmission is possible usingG-codes. For this, some extra
work is needed using the structure of the Abelian groupsM(l).
Notice that

Rl =
1

N

∑

1≤i≤s

∑

1≤j≤rG
i

li,jki,j log pi .

It is useful introduce the following probability distribution on
the pairs(i, j):

αi,j =
jki,j log pi

log |M |
.

From the above definition, and recalling thatlog |M | = RN ,
we haveki,j =

RNαi,j

j log pi
.

Denote now byP(rG) the space of probability distributions
(αi,j) on the set of pairs(i, j) with 1 ≤ i ≤ s and1 ≤ j ≤ rG

i .
We introduce the following definition.

Definition 20. Let G be a finite Abelian group of spectrum
σG = (p1, . . . , ps) and typekG. Let (G,Y, W ) be a G-
symmetric MC. For eachrG-compatible matrixl, let Cl be
the capacity of the MC(Gl,Y, W ). The G-capacityof the
MC (G,Y, W ) is

CG := max
α∈P(rG)

min
l6=0

rG−comp.

Cl

∑

1≤i≤s

∑

1≤j≤rG
i

li,j

j αi,j

, (33)

wherel 6= 0 means thatli,j 6= 0 for somei, j.

It clearly follows from our previous considerations thatCG

is an upper bound to reliable transmission usingG-codes.
More precisely, we have the following result which is an
immediate consequence of the inverse channel coding theorem.

Theorem 21. Consider aG-symmetric channel and letCG

be its G-capacity. Then, for every rateR > CG there exists
a constantAR > 0, such that the the error probability of any
G-codeC of rate R satisfies

pe(C) ≥ AR .
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C. A coding theorem for AbelianG-codes

Given a design rateR and a splittingα ∈ P(rG), for each
block-lengthN ∈ N define

(hN )i,j =

⌈

RN(1 − αi,j)

j log pi

⌉

Let VhN
be the Abelian group having spectrumσG and type

hN . Consider a sequence of independent r.v.sΦN uniformly
distributed overHom(GN ,VhN

). Let CN := ker(ΦN ) be
the corresponding sequence of randomG-codes. We shall
refer to such a random code construction as theG-coding
ensemble of design rateR and splittingα. Notice thatCN

has rate deterministically not smaller thanR. Let pe(CN )
(R,α)

denote the word error probability averaged over this ensemble.
Theorem 7 admits the following generalization.

Theorem 22. Let (G,Y, W ) be aG-symmetric MC. For every
R ∈ [0, log |G|[, α ∈ P(rG),

pe(CN )
(R,α)

≤
∑

l6=0

rG−compatible

exp (−NEl (Rl))

whereEl(R) is the error exponent of the MC(Gl,Y, W ), and

Rl := R
∑

1≤i≤s

∑

1≤j≤ri

li,j
j

αi,j .

By choosingαG ∈ P(rG) such that

CG = min
l6=0

rG−comp.

Cl

∑

1≤i≤s

∑

1≤j≤rG
i

li,j

j αi,j

one has thatminl6=0 El(Rl) > 0 for all R < CG. Therefore,
Theorem 22 has the following corollary.

Corollary 23. Let (G,Y, W ) be a G-symmetric MC ofG-
capacityCG. Then, for every rate0 < R < CG, there exists a
G-codeC of rate not smaller thanR and arbitrarily low error
probability.

Finally, for 0 < R < C, it is possible to optimize the error
exponent over all splittingsα in P(rG). This leads to the
following definition of theG-coding error exponent of a MC
(G,Y, W ):

EG(R) = max
α∈P(rG)

min
l6=0

rG−comp.

El



R
∑

1≤i≤s

∑

1≤j≤rG
i

li,j
j

αi,j



 .

(34)
By letting αG(R) in P(rG) be an optimal splitting in the
maximization above, and using arguments similar to the proof
of Corollary 8, the following corollary can be proved.

Corollary 24. Let (G,Y, W ) be a G-symmetric MC ofG-
capacity CG and G-coding exponentEG(R). Then, for all
0 < R < CG we have

lim inf
N∈N

−
1

N
log pe(CN ) ≥ EG(R) ,

with probability one over theG-coding ensemble of design
rate R ad optimal splittingαG(R).

D. Examples

In the sequel, three examples will be presented with explicit
computations ofCG for Abelian groupsG with particular
algebraic structure. First we examine groups admitting Galois
field structure, showing as in this case theG-capacityCG

coincides with the Shannon capacityC, as follows from
classical linear coding theory.

Example 6. Suppose thatG ≃ Z
k
p for some primep and

positive integerk. Thus

σG = (p) , rG = (1) .

Consequently, the onlyrG-compatiblel is given byl = 1
and therefore we have that in this caseCG = C, EZr

p
(R) =

E(R). In other words,Zr
p-codes achieve both the capacity and

the random-coding exponent of everyZpr -symmetric MC. This
had first been shown in [4]. In fact, in this case it is known
that linear codes over the Galois fieldFpr suffice to achieve
capacity random-coding exponent.

However, GU constellations admitting a generating group
which is isomorphic toZr

p are affected by a constraint on
their bandwidth efficiency. In fact, ifS is an n-dimensional
GU constellation admittingZk

p as generating group, then
standard arguments using group representation theory allow
to conclude that

n ≥

{

k, if p = 2 ;
2k, if p ≥ 2 .

In the next example we show that whenG = Zpr Def.20
reduces to Def.4 of Section III.

Example 7. Let G ≃ Zpr . We want to show that

CG = min
l=1,...,r

r

l
Cl .

Notice first that in this caseσG = (p) and rG = r. A vector
l = (l1, . . . , lr) is rG-compatible if and only iflj ≤ j for
everyj = 1, . . . , r. Notice now that

Gl =
∑

1≤j≤r

pj−lj G(pj) =
∑

1≤j≤r

pr−lj Zpr = pr−l∗
Zpr ,

wherel∗ := max
1≤j≤r

lj . Hence,Cl = Cl∗ .

Notice now thatP(rG) simply consists of the probability
distributionsα = (α1, . . . , αr). Suppose we are given some
α in P(rG). We have that

min
l6=0

rG−comp.

Cl

∑

1≤j≤r

lj
j αj

=
r

min
ρ=1

Cρ
1

max
l6=0 rG−comp.

l∗=ρ

∑

1≤j≤r

lj
j αj

.

Now,

max
l6=0 rG−comp.

l∗=ρ

∑

1≤j≤r

lj
j

αj ≥
ρ

r

and equality holds true if and only ifαr = 1 and αj = 0 for
everyj 6= r. Hence,

CZpr = min
1≤ρ≤r

r

ρ
Cρ , αZpr = (0, . . . , 0, 1) .

�
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Fig. 4. The optimal splitting for the Cartesian product constellation K
β
2×3

as a function ofβ.

Finally, the following example concerns one of the Cartesian
product GU constellations introduced in Ex.4.

Example 8. Now consider theKβ
2×3 constellation introduced

in Example 4. Consider aKβ
2×3-AWGN channel. It is easy

to show that the independence of orthogonal components
of the Gaussian noise imply that the capacityC6(β) of
such a channel is equal to the sum of the capacities of its
two subchannels,C2(β) and C3(β). This fact allows us to
explicitly write down the optimal splitting, i.e. theα ∈ P(rG)
solution of the variational problem (33) definingCZ6

, as a
function of the parameterβ.

SinceZ6 ≃ Z2 × Z3, we have thats = 2, p1 = 2, p2 = 3,
and rG =

(

rG
1 , rG

2

)

= (1, 1). (33) reduces to

CZ6
(β) = max

α∈P({2,3})
min

{

C2(β)

α2
,
C3(β)

α3
, C6(β)

}

.

We claim that, for everyβ ∈ (0, +∞), CZ6
(β) = C6(β) and

the optimal splitting is given by

αZ6(β) =
(

αZ6

2 (β), αZ6

3 (β)
)

= 1
C6(β)(C2(β), C3(β)) .

Indeed we have that

C6(β) ≥ CZ6
(β)

= max
α∈P({2,3})

min
{

C6(β), C2(β)
α2

, C3(β)
α3

}

≥ min

{

C6(β), C2(β)

α
Z6
2

(β)
, C3(β)

α
Z6
3

(β)

}

= C6(β) .

In Fig.4 αZ6

2 (β) is plotted: notice how the optimal split-
ting follows the geometry of the constellation asα2(β) is
monotonically increasing inβ with lim

β→0
αZ6(β) = (0, 1) (

asβ goes to0 K2×3(β) collapses onto constellationK3) and
lim

β→+∞
αZ6(β) = (1, 0) (asβ goes to+∞ K2×3(β) collapses

onto constellation 2-PAM). �

VII. C ONCLUSION

In this paper we analyzed the information-theoretical limits
of Abelian group codes over symmetric memoryless channels.
Our results generalize the classical theory for binary linear
codes over binary-input symmetric-output channels. The main
example we have in mind is the AWGN channel with input

restricted over a geometrically uniform constellationS admit-
ting G as generating group and either soft or quantized output.
We have characterized the threshold value for the rates at
which reliable transmission is possible withG-codes, which
we called theG-capacityCG. The G-capacity is defined as
the solution of an optimization problem involving Shannon
capacities of the channels obtained by restricting the input to
some of the subgroups ofG. We have shown that at rates below
CG the average ML word error probability of the ensemble of
G-codes goes to zero exponentially fast with the blocklength,
with exponent at least equal to theG-coding exponentEG(R),
while at rates beyondCG the word error probability of anyG-
code is bounded from below by a strictly positive constant. We
have proved that for the AWGN channel with input constrained
on them-PSK constellation (andm the power of a prime) the
G-capacityCG does coincide with the Shannon capacityC,
so that in this case reliable transmission at any rateR < C is
in fact possible using group codes overZm.

Finally, we have exhibited a counterexample whenCG < C:
it consists of the AWGN channel with as input a particular
three-dimensional constellation admittingZm as generating
group.

Among the still open problems we recall:

• giving a full proof thatEG(R) is tight for the average
G-code, and analyzing the error exponent of the typical
G-code;

• extending the theory to non-Abelian groups: indeed, it is
known [8], [6] that GU constellations with Abelian gen-
erating group do not allow to achieve the unconstrained
AWGN capacity.

APPENDIX A
PROOF OFLEMMA 3

For the reader’s convenience, all statements are repeated
before their proof.

Lemma. Let G be a finite group,(G,Y, W ) a G-symmetric
MC, andC ⊆ GN a code such that1GN ∈ C. Then

pe(C|1GN ) ≤ 1
|G|N

∑

z∈GN

∫

YN

W
1

1+ρ

N (y|z)

(

∑

θ 6=δ1G

SC(θ)

( N
Nθ)

∑

x∈GN
θ

W
1

1+ρ

N (y|zx)

)ρ

dy .

Proof We start by recalling the Gallager bound [2]. Given a
MC (X ,Y, W ), and a codeC ⊆ XN , for everyx in C and
ρ > 0 the conditioned word error probability satisfies

pe(C|x) ≤

∫

YN

WN (y|x)
1

1+ρ





∑

z∈C\{x}

WN (y|z)
1

1+ρ





ρ

dy .

From the given codeC we generate the random code
C′ := ZΠC, whereΠ is a r.v. uniformly distributed over the
permutation groupSN (where π ∈ SN acts onx ∈ GN

by permuting its components, i.e.(πx)i := (x)πi) and Z

is a r.v. uniformly distributed overGN , independent from
Π. Throughout the proof we will denote byE[·] the average
operator with respect to such a probabilistic structure.
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The crucial point here is that the average word error prob-
ability of the random codeC′ conditioned to the transmission
of Z is equal to the word error probability ofC conditioned
on the transmission of1GN . In fact, for everyπ ∈ SN we
have that1GN ∈ πC and, since the channel is memoryless
and stationary, the ML-decision regionΛπC for the codeword
1GN in the codeπC coincides withπΛC , whereΛC denotes
the ML-decision region of1GN in the codeC. Thus

pe(πC|1GN ) = 1 −
∫

Λπφ
WN (y|1GN )dy

= 1 −
∫

πΛC
WN (y|1GN )dy

= 1 −
∫

ΛC
WN (y|1GN )dy = pe(C|1GN ) .

Similarly, for anyz ∈ GN we havez ∈ zC and, due to the
G-symmetry of the channel, the ML-decision regionΛzC of
z in zC coincides withzΛC , so thatpe(zC|z) = pe(C|1GN ).
Therefore, we have

E[pe(C
′|Z)] = pe(C|1GN ) . (35)

From (35), by applying the Gallager bound to each realiza-
tion of the random codeC′, and observing that, for anyw ∈ C,
Πw is uniformly distributed over the setGN

θ
of N -tuples of

type θ and independent fromZ, we get

pe(C|1GN ) = E[pe(C
′|Z)]

≤ E

[

∫

YN W
1

1+ρ

N (y|Z)

(

∑

w

W
1

1+ρ

N (y|ZΠw)

)ρ

dy

]

= 1
|G|N

∑

z

∫

YN W
1

1+ρ

N (y|z)E

(

∑

w

W
1

1+ρ

N (y|zΠw)

)ρ

dy

= 1
|G|N

∑

z

∫

YN W
1

1+ρ

N (y|z)

(

∑

θ

SC(θ)

( N

Nθ)

∑

x

W
1

1+ρ

N (y|zx)

)ρ

dy ,

with the summation indexw running overC \ {1GN}, z over
GN , θ overPN(G) \ {δ1G

} andx over GN
θ

.

APPENDIX B
PROOFS FORSECTION IV

A. Proof of Lemma 11

Lemma. For every1 ≤ q < r,

H(W ( · |0)) = H(λq) − q +

∫

C

λq(y)H(ωq(y))dy ;

H(λq) = H(λq+1) − 1 +

∫

C

λq+1(y)H(νq(y))dy .

Proof We have, forK := pr−q
Zpr ,

H (W (·|0)) = −
∫

C
W (y|0) log W (y|0)dy

= − 1
pq

∑

k∈K

∫

C
W (yξk

pr |0) log W (yξk
pr |0)dy

= − 1
pq

∑

k∈K

∫

C
W (y|k) log W (y|k)dy

= −
∫

C
λq(y) log λq(y)dy

−
∫

C
λq(y)

∑

k∈K

(ωq(y))k log(pq(ωq(y))k)dy

= H(λq) − q +
∫

C
λq(y)H (ωq(y)) dy

and

H(λq) = −
∫

C
λq(y) log λq(y)dy

= − 1
p

∑

k∈Zp

∫

C

λq(yξk
pq+1 ) log λq(yξk

pq+1)dy

= −
∫

C

1
p

∑

k∈Zp

λq(yξk
pq+1) log λq+1(y)dy

−
∫

C
λq+1(y)

∑

k∈Zp

λq(yξk

pq+1 )

pλq+1(y) log
λq(yξk

pq+1 )

λq+1(y) dy

= −
∫

C
λq+1(y) log λq+1(y)

−
∫

C
λq+1(y)

∑

k∈Zp

(νq(y))k log(p(νq(y))k)dy

= H(λq+1) − 1 +
∫

C
λq+1(y)H (νq(y)) dy .

B. Proof of Lemma 12

Lemma. For every 1 ≤ q < r and y ∈ C, there exists a
partition

Wq+1(y) =
⋃

1≤k≤pq

Wk
q (y) ,

where each multisetWk
q (y) = {wk

q,0, w
k
q,1, . . . , w

k
q,p−1} is

such that, for all0 ≤ j, i ≤ p−1, wk
q,j belongs toWq(yξj

pq+1 ),
and

0 ≤ k < k′ < pq =⇒ wk
q,i(y) ≥ wk′

q,j(y) .

Proof Since the transition densitiesW (y|x) are decreasing
functions of the Euclidean distance|y − x|, the decreasing
ordering of the setWq+1(y) coincides with the increasing
ordering of the set of distances{|y − ξx

pr |, x ∈ pr−q−1Zpr}.
Definey = ρeθi, ϕj = j 2π

pr for j ∈ pr−q−1Zpr . Then,

|y − ξj
pr |2 = (ρ cos θ − cosϕj)

2 + (ρ sin θ − sin ϕj)
2

= ρ2 + 1 − 2ρ(cos θ cosϕj + sin θ sin ϕj)
= ρ2 + 1 + 2ρ cos(θ − ϕj) .

Let j∗ be the closest input inpr−q−1Zpr to the given outputy,
i.e. j∗ is such that|θ−ϕj∗ | ≤ |θ−ϕj | for all j ∈ pr−q−1Zpr .
Then, either

ϕj∗ ≤ θ ≤ ϕj∗ +
1

2

2π

pq+1
(36)

or
ϕj∗ −

1

2

2π

pq+1
≤ θ ≤ ϕj∗ (37)

hold true. Suppose that (36) holds true, and definem :=
pr−q−1. Then,

cos(θ − ϕj∗) ≥ cos(θ − ϕj∗+1) ≥ cos(θ − ϕj∗−1)
≥ cos(θ − ϕj∗+2) ≥ . . . ≥ cos(θ − ϕj∗−⌊ pq

2
⌋) . (38)

From (38) it follows that, for oddp,

W0
q (y) = {W (y|j∗), W (y|j∗ + m), W (y|j∗ − m),

. . . , W (y|j∗ − ⌊p
2⌋m)}

W1
q (y) = {W (y|j∗ + ⌈p

2⌉m), W (y|(j∗ − ⌈p
2⌉)m),

. . . , W (y|(j∗ + p)m)}

...
Wpq−1

q (y) = {W (y|(j∗ − (⌊pq

2 ⌋ + ⌊p
2⌋)m),

. . . , W (y|m(j∗ − ⌊pq

2 ⌋))} .
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The claim follows, since for everyk, Wk
q (y) contains exactly

one W (y|j) with j belonging to each coset ofpr−qZpr in
pr−q−1Zpr .

The case when (37) holds true instead of (36) is analogous,
while the casep = 2 is much simpler.

C. Proof of Lemma 14

For any subsetK ⊆ R
n, let co(K) denote the convex hull

of K, i.e. the smallest convex subset ofRn containingK. A
polytope is the convex hull of finite setK ⊂ Rn. A general
fundamental result (see [38]) states thatP ⊂ Rn is a polytope
if and only if it is bounded intersection of closed half-spaces.
In the sequel, we shall deal with a special class of polytopes:
given a pointx ∈ Rn, we shall considerco(Snx), i.e. the
convex hull of the set of all component permutations ofx. This
is sometimes called the (generalized) permutahedron ofx. The
next result explicitly characterizesco(Snx) as the intersection
of half-spaces.

Lemma 25. Let w ∈ Rn be such that

w1 ≥ w2 ≥ . . . ≥ wn . (39)

Thenco(Snw) = A, where

A :=
⋂

J







∑

i∈J

xi ≤
∑

1≤i≤|J|

wi







⋂







∑

1≤i≤n

xi =
∑

1≤i≤n

wi







.

Proof In order to prove thatco(Snw) ⊆ A it suffices to note
that, for everyσ ∈ Sn, σx ∈ A. In fact, it is easy to check that,
due to (39), every constraint is satisfied. SinceA is convex it
immediately follows thatco(Snw) ⊆ A.

We now prove the converse inclusion,A ⊆ co(Snw), by
induction. The statement is trivially true forn = 1. Suppose
that the claim is true for everym ≤ n for some n ∈ N

and letw ∈ Rn+1 be such thatw1 ≥ . . . ≥ wn+1. Define
D :=

{

x ∈ Rn+1 :
∑

1≤i≤n+1 xi =
∑

1≤i≤n+1 wi

}

.
For eachJ ⊂ {1, . . . , n + 1}, defineDJ , FJ ⊆ Rn+1 by

DJ :=
{

x :
∑

i∈J xi =
∑

1≤i≤|J| wi

}

and respectively
FJ :=

{

x :
∑

i∈J xi =
∑

n−|J|<i≤n+1 wi

}

. Consider the
facet AJ := D

⋂

DJ

⋂

I 6=J

{

x :
∑

i∈I xi ≤
∑

1≤i≤|I| wi

}

.
We observe that

πJAJ ⊆ BJ , πJcAJ ⊆ CJ , (40)

whereπJ andπJc are the projections ofRn+1 onto the linear
subspaces{xi = 0, i ∈ Jc} and{xi = 0, i ∈ J} respectively,
and

BJ := DJ

⋂

I⊆J







∑

i∈I

xi ≤
∑

1≤i≤|I|

wi







⋂

i∈Jc

{xi = 0}

CJ := FJc

⋂

I⊆Jc







∑

i∈I

xi ≤

|J|+|I|
∑

i=|J|+1

wi







⋂

i∈J

{xi = 0} .

In fact, the former inclusion in (40) is trivial sinceBJ is
defined as the intersection of a subset of the half-spaces whose

intersection definesAJ , while for the latter it suffices to
observe that, for eachI ⊂ Jc, if x is in AJ , then

∑

i∈I∪J

xi ≤

|I|+|J|
∑

i=1

xi ,
∑

i∈J

xi =

|J|
∑

i=1

xi ,

so that

∑

i∈I

xi =
∑

i∈I∪J

xi −
∑

i∈J

xi ≤
|I|+|J|
∑

i=|I|+1

xi .

For J ⊆ {1, . . . , n + 1}, let ΨJ ∈ Sn+1 be any permu-
tation mapping the first|J | elements ontoJ , i.e. such that
ΨJ ({1, . . . , |J |}) = J . Define SJ ⊆ Sn+1 be the set of
permutationsσ such thatσ

∣

∣

{1,...,|J|}
is the identity. Notice

that SJ commutes withSJc in the sense thatσρ = ρσ,
for all σ ∈ SJ and ρ ∈ SJc . Let φJ : πJRn+1 → R|J|

and φJc : πJcRn+1 → R|Jc| be the standard isomorphisms.
By applying the inductive hypothesis toφJπJΨJw and
φJcπJcΨJw respectively, and then immersing back the results
in Rn+1 by φ−1

J andφ−1
Jc respectively, we have that

BJ ⊆ co(πJΨJSJw), CJ ⊆ co(πJcΨJSJcw) . (41)

For everyx ∈ AJ we haveπJx ∈ BJ andπJcx ∈ CJ from
(40). Then (41) implies thatλ′ ∈ P(SJ) and λ′′ ∈ P(SJc)
exist such that

x = πJx + πJcx

=
∑

σ∈SJ

λ′(σ)πJΨJσw +
∑

ρ∈SJc

λ′′(ρ)πJcΨJρw

=
∑

σ∈SJ ,ρ∈SJc

λ′(σ)λ′′(ρ)ΨJσρw

=
∑

σ∈ΨJ SJSJc

λ(σ)σw ∈ co(Sn+1w),

with λ ∈ P(ΨJSJSJc) ⊆ P (Sn+1) defined byλ(ΨJσρ) :=
λ′(σ)λ′′(ρ). Therefore, for everyJ ⊂ {1, . . . , n+1}, we have
AJ ⊆ co(Sn+1w), and soA = co (

⋃

J AJ ) ⊆ co(Sn+1w).

Lemma 26. Supposen2 real numbers{ak
i , 1 ≤ i, k ≤ n} are

given, such that

k < k′ =⇒ ak
j ≤ ak′

i , 1 ≤ j, i ≤ n . (42)

Definex and v in Rn, x :=
(

∑

1≤i≤n a1
i , . . . ,

∑

1≤i≤n an
i

)

,

v :=
(

∑

1≤k≤n ak
1 , . . . ,

∑

1≤k≤n ak
n

)

. Then v ∈ co(Snx),
i.e. v is a convex combination of permutations ofx.

Proof (42) implies thatx1 ≥ x2 ≥ . . . ≥ xn, and, for every
J ⊂ {1, . . . , n},

∑

i∈J vi ≤
∑

1≤i≤|J| xi. Then, Lemma 25
can be applied to show thatv ∈ co(Snx).

We can now prove Lemma 14.

Lemma. For every1 ≤ α < q < r, andy ∈ C, we have

H





∑

j∈Zp

λq(yξj
pq+1 )

pλq+1(y)
δα

q (y, j)



 ≤ H (νq(y)) .

Proof We shall show that

νq(y) ∈ co



Sp





∑

j∈Zp

λq(yξj
pq+1 )

pλq+1(y)
δα

q (y, j)







 . (43)



16

Then, the claim will simply follow from the concavity of the
entropy function.

Let us consider the quantitieswk
q,j introduced in Lemma

12. For all0 ≤ j, s < p, define

as
j :=

pα−1

∑

h=0

pq−α−1−1
∑

h̃=0

wspα+h+h̃pα+1

q,j .

From (24) it follows that
∑

0≤j<p

pqλq(yξj
pq+1)

[

δα
q (y, j)

]

(s) =
∑

0≤j<p

as
j ,

while, from (16), we have

pq+1λq+1(y) [νq(y)] (j) =
∑

0≤s<p

as
j .

Fix a pair0 ≤ k < k ≤ p − 1: from (23) we have

wkpα+h+h̃pα+1

q,j ≥ wk′pα+h+h̃pα+1

q,i ,

for every0 ≤ j, i < p, 0 ≤ h < pα−1, 0 ≤ h̃ < pq−α−1. Thus

ak
j =

pα−1

∑

h=0

pq−α−1−1
∑

h̃=0

wkpα+h+h̃pα+1

q,j (y)

≤
pα−1

∑

h=0

pq−α−1−1
∑

h̃=0

wk′pα+h+h̃pα+1

q,i (y) = ak′

i .

Therefore the coefficients{ak
j , 0 ≤ j, k < p} satisfy (42) and

then Lemma 26 can be applied to conclude that

pq+1λq+1(y)νq(y) ∈ co



Sp



pq
∑

j∈Zp

λq(yξj
pq+1 )δ

α
q (y, j)









which in turn implies (43).

APPENDIX C
PROOF OFPROPOSITION18

Proposition. For every finite varianceσ2 > 0 and any integer
r ≥ 2, the family ofKβ

2r -AWGN channels satisfies

lim
β→∞

C2r (β) = C(∞) > 0 , lim
β→∞

CZ2r (β) = 0 .

Proof We start by observing that, for everyy ∈ R3,
∑

x∈Kβ

2r

1
2r W (y|x) log W (y|x)

1
2r

P

z∈K
β
2r

W (y|z)

≤
∑

x,z∈Kβ

2r

1
22r W (y|x) log W (y|x)

W (y|z)

= 1
22r

∑

x,z∈Kβ

2r

W (y|x) log e
(

− ||y−x||2

2σ2 + ||y−z||2

2σ2

)

≤ log e
2σ222r

∑

x,z
W (y|x)

[

(||y − x||+||x − z||)
2
− ||y − x||2

]

≤ log e
2σ222r

∑

x,z
W (y|x)

(

||y − x||2 + 2||x − z||2
)

≤ log e
2σ222r

∑

x,z
W (y|x)

(

||y − x||2 + 8
)

where the first inequality is due to the convexity of the function
x → log 1

x , the second one to the triangular inequality, the
third one comes from the fact that2ab ≤ a2 + b2 for every
a, b ∈ R, and the last one from the fact thatxk andxj both lie

on a sphere of radius 1, so that||xk−xj || ≤ ||xk||+||xj || ≤ 2.
Since

1

2r

∑

x∈Kβ

2r

∫

R3

W (y|x)
log e

2σ2

(

||y − x||2 + 8
)

dy < +∞ .

Lebesgue’s dominated convergence theorem can be applied
(see [31]) in order to exchange the order of the limit and
the integral in evaluating the expressionslimβ→+∞ C2s(β) for
any s ≤ r. By this argument and the continuity of transition
densitiesW (y|x), we get, in the limitβ → +∞,

limC2r (β) = lim
∑

x∈Kβ

2r

1
2r

∫

R3

W (y|x) log W (y|x)
1
2r

P

z W (y|z)
dy

=
∫

R3

1
2

∑

x∈K∞

W (y|x) log W (y|x)
1
2

P

z W (y|z)
dy

= C(∞) .

Similarly, for every1 ≤ s < r, defineK := 2r−sZ2r . In the
limit β → +∞ we get

limC2s(β) = lim
∫

R3

2−s
∑

j∈K

W (y|xj) log
W (y|xj)

2−s
P

k∈K

W (y|xk)dy

=
∫

R3

W (y|(0, 1)) log
(

W (y|(0,1))
W (y|(0,1))

)

dy

= 0 .
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