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Abstract—The capacity of finite Abelian group codes over However, interest in group codes has not decreased in these
symmetric memoryless channels is determined. For certainm-  years. Indeed, they provide the possibility to use more -spec
portant examples, such asm-PSK constellations over AWGN trally efficient signal constellations while keeping margog

channels, withm a prime power, it is shown that this capacity . - . o
coincides with the Shannon capacity; i.e. there is no loss in qualities of binary linear codes. More specifically, on tmeo

capacity using group codes. (This had previously been known hand, group codes have congruent Voronoi region, invariant
for binary linear codes used over binary-input output-symmetric ~ distance profiles, and enjoy the uniform error property. n t

memoryless channels.) On the other hand, a counterexample other hand, the nice structure of the corresponding minimal
involving a three-dimensional geometrically uniform consellation encoders, syndrome formers and trellis representatiokesna

is presented in which the use of Abelian group codes leads to a d lina for | di dl
loss in capacity. The error exponent of the average group cad group codes appealing for fow-memory encoding and low-

is determined, and it is shown to be bounded away from the complexity iterative decoding schemes. We refer to [7]}{20
random-coding error exponent, at low rates, for finite Abelan and references therein for an overview of the many research

groups not admitting Galois field structure. lines on group codes which have been developing during
recent years. Observe that coset codes over finite field allo
Keywords: non-binary constellation, geometrically uniformto achieve capacity and the random-coding error exponent of
constellation,m-PSK, group codes, Shannon capacity, errany memoryless channel [2]. However, whenever the group
exponent, channel coding theorem. structure does not match the symmetry of the channel (e.g.
binary coset codes o2"-PSK AWGN channels, for > 2),
or if the channel is not symmetric, coset codes in generhl fai
to be GU, do not enjoy the uniform error property, and have

It is a well-known fact that binary linear codes suffice t@\0n-invariant distance profiles. . _
reach capacity on binary-input output-symmetric chanfils Recently, group codes have made their appearance also in
[2], [3]. Moreover, by averaging over the ensemble of linedh® context of turbo concatenated schemes [21], [22] and of
codes, the same error exponent is achieved as by averagiﬂE density parity-check (LDPC) codes [23], [24], [25]8R
over the ensemble of all codes. The same has been prol&f1€ binary case an important issue, for these types of-high
to hold true [4] for group codes over finite Abelian groupgerformance co_dlng schemes, is the evaluation of the gap to
admitting Galois field structure. Shannon capacity, as well as the rate of convergence to zero

In this paper we investigate the same question for gro@h the word and bit error rate. For regular LDPC codes such

codes employed over non-binary channels exhibiting symnf&2PS have been evaluated quite precisely [23], [27], [28]ian
tries with respect to the action of a finite Abelian groGp has been shown that, when the density parameters are allowed

The main example we have in mind is the additive whitl® increase, these schemes tend to attain the performance of
Gaussian noise (AWGN) channel with input set restricted #£N€ric binary linear codes. In [24], [25] the authors edten

a finite geometrically uniform (GU) constellation [5h¢PSK SUch an analysis to LDPC codes over the cyclic graijp

for instance) and with possibly hard- or soft-decision diog Ut they have to restrict themselves to the case of pgme
rule. In [6] it was conjectured that group codes should serffi¢Ve Pelieve that, without first a complete understanding of ou

in this case to achieve capacity exactly as in the field cage. @/19inal question, namely if group codes do themselvesiallo
the other hand, in [4] it was conjectured that group codes Ry reach capacity and the correct error exponent, LDPC codes
not achieve the random-coding exponent if the gréudoes °Ver general Abelian groups cannot be properly analyzed,

not admit Galois field structure. To our knowledge, there hS&C€ it can not be understood whether the gap to capacity is
not been any progress towards any of these directions. due to the group structure or to the sparseness of the syrdrom
representation. In [29], a fundamental analysis of LDPCesod

Some of the material of this paper has been presented at the2(®5 over Abelian groups 1S pfop_ose‘?" based on the general sesult
[30]. for group codes presented in this paper.
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I. INTRODUCTION



achieve capacity of a symmetric channel. of A-types |Py(A)| = (N‘J;"ﬁ';l) is a quantity growing
In Section Il we consider memoryless channels which apwlynomially fast inV. Instead, the set aV-tuples of a given

symmetric with respect to the action of cyclic groufs of type 6, denoted by

prime power order, and we determine (in a computationally N N

effective way) the capacity achievable by group codes over Ag = {"3 €A% st.fa(x) = 9} )

such channels. This capacity is called thg -capacity and LN (N L :

equals the minimum of the normalized Shgnnon capacitiesgﬁs card|_nallty|A9 ‘ . (NG) o N!/H“(Ne(a))! growing

. L . o ponentially fast withV.

the channels obtained by restricting the input to all ndvial

subgroups ofZ,-. The results are contained in Theorem 5

which is an inverse coding theorem for group codes and B Coding theory for memoryless channels

Theorem 7 which exhibits an average result working on theThroughout the present paper, stationary memoryless chan-
ensemble of group codes. The error exponent for the avera@gs (Mcs) will be considered, which are described by agripl
group code is determined as well. It is shown that for- (X, Y, W), where X is the input set) is the output set

1, the averagéeZ,--code is bounded away from the randomand' for everyz in X, W(-|z) is a probability density on

coding exponent at least at low rates, confirming a conjectu; yescribing the conditional distribution of the output give

of Dobrushin [4]. that the inputz has been transmitted. The input sEtwill
In Section 1V, we show that for the"-PSK AWGN channel, gyyays be assumed finite, while the output 3&will often
theZ,--symmetric capacity and the classical Shannon capac¥ identified with then-dimensional Euclidean spad@”.
do coincide so that group codes allow to achieve capacity \fyertheless, all the results presented in this paper ragati
this case. This proves a conjecture of Loeliger [6]. to hold when) is a discrete space as well; in this case, it is
_In Section V we present a counterexample based on a thrggs |y needed to replace Lebesgue integrals with sums over
dimensional GU constellation where instead the two camcny 1

are shown to differ one from each other. It remains an openya shall consider thé/-th extension of an MQX, Y, W)
problem Whethgr using non-AbeIian ge_nerating groups ”ﬁ%\ving input settN and output sep’N and transition prob-
e e s i ey 0 a1 nsiesV () [, Wy, T mtvaes
inally, in Secll we generaliz theory to channels name memoryless, the various transmissions being proba
symmet_nc with respect to the action of arbitrary finite Abal bilistically independent once the input signals have beefi
generating groups. As usual, a block-code is any subsetC XV, while a
decoder is any (measurable) mappify : YV — C. A
Il. PROBLEM STATEMENT coding scheme consists of a pair of a code and a decoder.
In this section all relevant notation and definition areantr N is the block-length, whileR = log|C|/N will denote the
duced, and a formal statement of the problem is presentedransmission rate.
The probabilistic model of transmission is obtained by
A. Notation assuming that the tran_smitted codeword is a random variable
(r.v.) X uniformly distributed overC, and that the channel-

Throughout the paper the functioasp : R — R andlog : " " :
0 +oo)g—> R haveptopbe considered wﬁh respect to thegsam%mpm r.v. Y has conditional probability densit' (- |X)

arbitrary chosen, base € (1, +o0), unless explicit mention given X '.A‘n error oceurs when the outpdf is incorrectly
0 the contrary. For a subset C B, 14 : B — {0,1} wil decoded, i.e. it is the evedD(Y) # X }. The error proba-

denote the indicator function of, defined byl 4(xz) = 1 if bility of the coding scheméC, D) is therefore given by

x €A La(z)=01If = ¢ A _
For two groupss and H we will write G ~ H to mean they Pe(C, D) = IC] ze;pe(C,Dl 2),

are isomorphic, whild? < G will mean thatH is a subgroup

of G. Unless otherwise stated, we shall use the multiplicativeherep.(C, D|x) = ny Loy} (D(y)) Wi (y| z)dy is the

notation for a generic groug:, with 15 denoting the null error probability conditioned to the transmission of theleo

element. When restricted to Abelian case we shall switch teord x.

the additive notation witl) denoting the null element. It is well known that, given a codé, the decoder mini-
Given a finite set4, we shall consider the simpléX(A) := mizing the error probability is the maximum-likelihood (ML

{6:A4—[0,+00)| >, 0(a) = 1} of probability measures on one Dy (y) := argmax, .. Wn(y| x), solving cases of non-

A. The discrete entropy functidd : P(A) — R is defined by uniqueness by assigning @y (y) a valuex € C arbitrarily

H(6) := = > g(a)>0 0(a) log 6(a). Similarly, for a continuous chosen from the set of maxima oV (y|x). Throughout

spaceB we shall denoté?(B) the set of probability densities the paper we will always assume that ML-decoding is used,

on B and define the entropy functidfi: P(B) — [—oo,+0c] and use the notatiop.(C) andp.(C|z) for p.(C, D) and

by H(u) = — [ u(x)logpu(z)de. Given x € AN, its p.(C,Dur|x) respectively.

A-type (or empirical frequency) is the probability measure

0.(x) € P(A) given by@ 4(x) := L . 1,.. 1. Define Un fact, all the results hold true whed is a Borel space [31] and
hA( ) f ( ) g f Wy Al( )b N %1_%%\[ /{&\}} di integrations are carried on with respect to an absteadinite reference
the set of types of alN-tuples byPn (A) := 04(A™), and let  easure, with respect to which all conditioned output messare absolutely

Pn(A) := UnPn(A) be the set of allA-types. The number continuous.



In order to state the classical channel-coding theorem wransitive if for everya,b € A there existyy € G such that
are only left with defining the capacity and the random-cgdirya = b. The action is said to be simply transitive if the element
exponent of an MG X', Y, W). The former is defined as g above is always unique itv. If G acts simply transitively
on a setA, it is necessarily in bijection witd, a possible

C = n%)a); /W y|z)log %dy. bijection being given byg — gao for any fixedag € A.
peP( zEXp y Finally, the action of a groupr on a measure spactis said
(1) to be isometric if it consists of measure-preserving bipet.
The latter is instead given, faR € [0, log |X|], by In particular, whenA is a finite set, all group actions are
isometric. Whend = R™ instead this is a real restriction and
E(R) := 02?%(1 pér%%’}()(Eo(p’p) —rR), 2) is satisfied if the maps — ga are isometries oR", i.e. maps

preserving the Euclidean distance.

Definition 1. Let G be a group. A MC(X', Y, W) is said to

1+p
Ey(p,p) := —log (/ <Z pla)W (y|z) T) dy) be G-symmetr!mf

where, for everyp € [0,1] andp € P(X),

TEX (8) G acts simply transitively or,
3) (b) G acts isometrically ony,
A well-known fact (see [2], [3]) is that (c) W(ylx) = W(gy|gx) for everyge G, x € X, y € ).

E(R)>0 & R<C. 4) The simplest example of symmetric MC is the following
one, while a much richer family of symmetric MCs based on

Moreover the random-coding exponeli(R) is continuous, GU signal constellations will be presented in Sect.ll-D.

monotonically decreasing and convex in the interfalC),
while the dependence of botfi and E(R) on the channel is Example 1 (m-ary symmetric channel)Consider a finite
continuous. set X of cardinality m > 2 and somes € [0,1]. The m-
Given a design rat? € [0,log|X|] and blocklengthN, ary symmetric channes described by the triplé X, X, W),
the random-coding ensemble is obtained by consideringwhiere W (ylz) = 1 — ¢ if y = 2 and P(y|z) = ¢/(m — 1)
random collectior€ y of [exp(RN)] possibly non-distincfV-  otherwise. This channel returns the transmitted input syimb
tuples, sampled independently frafV, each with distribu- 2 as output with probabilityl — ¢, while with probabilitys a
tion &,y u*, wherep™ in P(X) is the optimal input wrong symbol is received, uniformly distributed over the se

distribution in (2).p.(Cx) . will denote the average error®t \ {z}. The special casen = 2 corresponds to the BSC.

probability with respect to such a probability distributio he m-ary symmetric channel exhibits the highest possible

We can now state Shannon-Gallager coding theorem f§V€! Of symmetry. Indeed, it 5-symmetric for every group
MCs. G of order |G| = m. To see this, it is sufficient to observe

that every group acts simply and transitively on itself. ibkot

Theorem. Assume a MQX, ), W) is given, having capacity that whenevein = p” for some primep and positive integer

C and random-coding expone#i(12). It holds r, the groupG can be chosen to b& which is compatible
(a) with the structure of the Galois fielfl,

—— R
pe(Cn) < exp(-NE(R)). A first property of G-symmetric channels is that, for both
In particular this implies that the average error prob-their Shannon capacitg’ and their random-coding exponent
ability tends to0 exponentially fast forN — 400, FE(R), the maximizing probability distributiop € P(X) in
provided that the rate of the codes is kept below the variational definitions (1) and (2) can be chosen to be the
(b) For everyR > C there exists a constanty > 0 inde- uniform distribution over the input set.
pendent of N such that for any coding scheme having Since the input of a G-symmetric MC can be identified with
rate not smaller thank, we have thap.(C) > Ar. the group G itself, block codes for such channels are subsets
C C GN. However, it is natural to consider a subclass of
codes matching the symmetry of the channel: they are known

C. Symmetric memoryless channels and group codes
s group codes.

In this paper we shall focus on MCs exhibiting symmetrles
and on codes matching such symmetries. Definition 2. For a finite groupG, a G-codeis a subgroup
In order to formalize the notion of symmetry, a few concepts < GV .
about group actions need to be recalled. Given a finite groupg
G, with identity 14, and a setd we say that acts onA if,
for everyg € G, it is defined a bijection ofA denoted by
a — ga, such that

G-codes enjoy many properties when used over
symmetric MCs. In particular, [5] they have congruent Vain
(ML-decoding) regions, and invariant distance profiles.&\s
consequence, the uniform error property (UEP) holds true,
h(ga) = (hg)a Vh,ge G, Va € A. namely the error probability does not depend on the trans-

mitted codewordp,. = P, ") for everyx,x’ in C.
In particular we have that the identity map correspondsdo ! wordp(Clz) = pe(Cla') veryz, 2’ in €

and the maps corresponding to an elemgrnd its inverse
g~ ! are the inverse of each other. The action is said to beAnother important property is that their ML-error probabil



ity of a G-code can be bounded by a function of its type-
spectrum only. For a codg C GV and a typed in P(G), let
Sc(6) := |CNGY| be the number of codewords of C of
type 6. The following estimation is proved using techniques
similar to those in [32]. It will be used in Sect.lll-B while
proving the direct coding theorem féf,--codes.

Lemma 3. Let G be a finite group(G, Y, W) a G-symmetric
MC, andC C GV a code such that,~ € C. Then

1 . 1%{) Fig. 1. 8-PSK constellation with the two labelindggs and Dy.
pe(C|1gN) S [GIN Z j WN (y|Z)
zEGN YN

_1 P . . . . .
Z Sc(6) S WL (ylzx) | dy. .Let S be a flnlten-dlmen5|oqal GU constellation equipped
0cPn(G) with a generating grou:. Define theS-AWGN channehks

N
(Ne xEGéV

0#015 the n-dimensional unquantized AWGN channel with input set
®) S, outputR™, and Gaussian transition densities given by
Proof See Appendix A. | 1 g |2
Wylr) = s— e =
Observe that Lemma 3 does not assuin® be aG-code. (2m0?)
However, whenC is a G-code, (5) provides an estimate toThe S-AWGN channel isG-symmetric.
pe(C) by the UEP. A well-known fact (see [7]) is that every finite GU constel-

lation S lies on a sphere. With no loss of generality we shall

A fundamental question arising is wheth@rcodes allow : . 7
assume the radius of such a sphere is unitary.

to achieve the capacity of @symmetric MC. This is known . . .
. . . : The above construction off-symmetric channels with a
to be the case for binary linear codes over binary-inputwdtp ,. . : .
: . finite GU constellationS as input can be extended to a
symmetric channels. Moreover, as shown in [4], the same

. much wider class of channels. Indeed, one could consider the
continues to hold true whenever the gratihas the property hard-decoded version of th& AWGN channel, obtained by
that every elemeng in G has the same order, i.e. whén '

is isomorphic toZ, for some primep and positive integer guantizing the output over the Voronoi regions $fthrough

r. However, in [6] Loeliger conjectured that,,-codes should the map
suffice to achieve capacity on the-PSK AWGN channel even Q:R"— S Q(x) = argmin ||z — s .
for non-primem. In this paper Loeliger’s conjecture will be s€5

proved to be true form equal to a prime power. More in Moreover, all the theory can be generalized to MCs having
general, the capacity achievable@ycodes overi-symmetric a GU finite constellationS as input and transition densities
channels will be characterized for any finite Abelian gra&p W (y|z) which are functions of the Euclidean distanpe-z||

and a counterexample will be presented showing that, whenonly. As an example, one can consider the Laplacian channel
is not isomorphic tdZ], G-codes may fail to achieve Shannomwith transition probability densities given by

capacity. AT (n/2)

= e~ AMlz—yll
271/2T (n) ’

W (yl|z)

D. Gfec-)metnc-ally ur-nform signal c.on.stella.tlc?ns where > 0 is a parameter anfi(t) i f0+°° e de is
A finite n-dimensionalconstellationis a finite subset’ C  the well-known Euler's”™ function.

R™ spanningR™; i.e. everyx € R" can be written ax = | the following we present some examples of finite GU
>ses @ss With a, € R. We shall restrict ourselves to theconstellations admitting Abelian generating group. Withrts

study of finite constellations’ C R™ with barycenter0, i.e. with the simplest example, provide by a binary constelhatio
such tha) | __ s = 0: these minimize the average per-symbol

energy over the class of constellations obtained one fram tgXxample 2 (2-PAM). The 2-PAM constellation is defined by
other by applying isometries. Ky = {1,-1}.

We denote byl'(S) its symmetry group, namely the set _ _
of all isometric permutations of with the group structure It is trivial to see thatl'(Ky) ~ Z, is a generating group
endowed by the composition operation. Cleadrlys) acts on for K». It is also possible to show tha’; is the only one-

S. S is said to begeometrically uniform (GUJf this action is dimensional GU constellation. O
transitive; a subgrougr < I'(S) is a generating grougdor S
if for every s, € S a uniqueg € G exists such thags = r, We now pass to the:-PSK constellation which is the main

namely if G acts simply transitively 0. It is well known that practical example of finite GU constellation.

not every finite GU constellation admits a generating gro@xample 3 (m-PSK), For any integerm > 2, defineg,, :—

(see [33] for a counterexample). However in what follows Wei2r 1o PSK constellation is

will always assume that the constellations we are dealiriy, wi
do admit generating groups, and, actually, Abelian ones. K, = {5,’;,1 <k< m} .



[1l. THE CODING THEOREM FORZ,--CODES ON
Zpr-SYMMETRIC MEMORYLESS CHANNELS

Given a primep and a positive integer, let (Z,~,Y, W)
be aZ,--symmetric MC, whose input has been identified with
the groupZ,- itself with no loss of generality. Far <! <,
consider the MQp"~'Z,-, Y, W) obtained by restricting the
input of the original MC to the subgroug —!Z,. We shall
denote byC; the Shannon capacity of such a channel, and by

(a) (b) E;(R) its error exponent.
Fig. 2. (a)Ze-labelled2-PAMx3-PSK;  (b)Zs-labelled K constellation. Definition 4. TheZ,-capacityof the MC(Z,+, Y, W) is
Cz,, == min iCl;
1<i<r |

Clearly S is two-dimensional forn > 3. It can be shown
thatI'(K,,,) ~ D,,, whereD,,, is the dihedral group witl2m

elements.K,, admitsZ,,, i.e. the Abelian group of integers
modulo m, as generating group. Whem is even there is
another generating group (see [5], [6]): the dihedral group
D,, /2, which is non-commutative for > 6. It follows that
the m-PSK-AWGN channel is bot#,,-symmetric and (for
evenm) D,, ,-symmetric. The constellatios with the two
possible labeling¥s and Dy is reported in Fig.1. O

its Z,--error exponent is

l

Ez,.(R) := min F (;R) .

It is easily observed thatz . (R) > 0 if and only if
R < Cz,.. In the rest of this section the quanti€y;, . will

be shown to be exactly the capacity achievableZhy-codes
over the Z,--symmetric MC (Z,-,Y, W). In particular, in
Sect.lll-A it will be proven that reliable transmission Wi, -

Next example shows how higher dimensional GU corﬁ:-Odes is not possible "’.“ any rate beymT' In Se_ct.III-B

|n§tead, a random-coding argument will be used in order to

stellations can be obtained as Cartesian product of low! thatZ, d ¢ arbitraril I bability exist
dimensional ones. This constellation will be considered ﬁ?t'ow alzyr-codes ot arbitrarily smatl error probabifity €xIs
at any rate below’z ., and thatFz . (R) is a lower bound

Sect.VI, to show how the&5-capacity can be evaluated for
pacty 0 the error exponent of the averagg--code of rateR.

Sfi);hean group codes of order which is not the power of ect.lll-C will deal with issues of tightness @&z, (R).

Example 4 (Cartesian product constellatiorfor any integer
m > 2 consider the family of three-dimensional GU conste
lations parameterized by € (0, +o0)

'A. The converse coding theorem f65--codes

Let C < Zf}l be somez,--code of lengthV and rateR.
Standard algebraic arguments (see [14] for instance) dthow
show that

1
KB =8 (& (-1)!8)|0<k<2,1=0,1p. \
mx2 {m(m’( )ﬁ)l >R 4 ) C~ @ fosb,

1<s<r
Fig.2(a) shows the special case = 3. It's easy to show that o

Z.m X 7o is a generating group fngXQ; notice that, for odd for some nonnegative integefs, satisfying

M, Loy X Ly ~ Zg. Thus, for oddm, AWGN channels with 1 S sK,logp =R
input m-PSKx 2-PAM areZs,,-symmetric. a N &= 77 Br=

Finally we provide an example of an ’'effectively’ three- Foreveryl < < r, we consider the cod® := Cmp’”*lZfX
dimensional constellation, i.e. one which is not obtained abtained by restricting the original codg to the subgroup
the Cartesian product of lower-dimensional ones. This cop’-*lZéVL. This is tantamount to considering only those code-

stellation will be used as a counterexample in Sect.V. words ofC of order not exceeding’. It follows that
Example 5 (3-D constellation) For evenm > 2 we introduce C ~ @ 7K @ ZXs .
the family of three-dimensional GU constellations, partene 1<s<l P I<s<r P

ized byf € (0, +00) By denoting the rate of the sub-codeby R,;, we get

KB — 1 ¢k p? (D)%), 1<k<mb. R = % > sKslogp + % > 1K logp
m 1+ 62 mAl 4+ 62 ’ - = 1<s<l 1<s<r
. . o > & Y LsKlogp+ 4% > K logp (6)
An example withn = 8 is shown in Fig.2(b): observe that 1<s<l 1<s<r
even-labeled points and odd-labeled ones have an offset of = %R-

7/4. It can be shown that, similarly to the constellations \ye now apply the inverse channel coding theorem to the
K., the the constellation&” have two different generating codeC; and to the MQp™~'Z,, Y, W) obtained by restricting
groups Zy, and Dy, »; s0, K7,-AWGN channels are both,,- e input of the original MC to the subgrowp—'Z,-. Recall-

symmetric andD,,, />-symmetric. ing that C; denotes the Shannon capacity of such a channel,



we get that, ifR; > Cj, then the error probability of the codeProof Consider the standard badi§; }1<;<n of ZZJJVT. Then,
C; is bounded away from zero by some constant independant equivalent condition foy to be uniformly distributed
of the blocklengthV. SinceC; C C, and since both arg,-- over hom(ZZJ,VT,ZZEr) is that the rv.sdyd;, 1 < i < N, are

codes, by the UEP we get that mutually independent and uniformly distributed o%j,
Let us now fix anN-tuple  of type 8 Z,r). From
Pe(C) = pe(C|0) 2 pe(Ci]0) = pe(Cr) - the definition ofs() it follows thatzf beloenZ;SN t(()pf_)s(e)ZpT
It thus follows that, if R, > C, then the error probability for all 1 < j < N, and thatz; ¢ p"~*®)~1Z,. for some
of the originalZ,--codeC itself is bounded away from zerol < @ < N. It follows that the rv.X; := z;®n0; is
independently from its block-length. uniformly distributed ovep” <@ ZL. while the rv.X_; :=
By repeating the argument above for all< | < r and )_;; ¥;®n0; takes values ip™™ “(6) ZL and is independent
using (6), the following theorem is proved. from X;. Thereforeoyz = >,y IJI)N(? =X+ X

is uniformly distributed overp”— SZL . So, in particular,
P(®yx = 0) = p~ L0,
Hence, for any typé in Py (Z,-) we have

Theorem 5. Let (Z,-, Y, W) be aZ,--symmetric MC; denote
its Z,--capacity byCz .. Then, for every design rat& >
Cz,. there exists a constantr > 0 such that

N —Ls(0)
p.(C) > AR, E[Sn(0)] = Z N]P(@N:B:O): (N0>p ®)
for everyZ,--codeC of rate not smaller tharR. weZpr)o

the first equality above following from (7) and the lineard

B. A coding theorem foZ,--codes expectation. u

Theorem 5 provides a necessary condition for reliable Lemma 6 and Lemma 3 allow us to prove the following
transmission using@,,--codes ort,--symmetric channels: for fundamental estimation on the average error probabilityef
this to be possible the rate needs not exceedZfhecapacity parity-check ensemble d,--codes.

Cz,.. However, it is not clear at all whether any rate belo“\‘heorem 7. Let (Z,-,Y, W) be aZ,.-symmetric MC, and
Z)‘I‘7 5 p’!" y

CZ’ can actually be achieved by means 2f--codes. In let £z, (R) be itsZ,--error exponent. Then the average error

prlnC|pIe there could be other algebraic constraints cgrimio » B . -
the picture which have been overlooked in our analysis.dt faprobablllty of theZ,- -code ensemble of design rafiesatisfies

we will see that this is not the case: the conditiﬁ;rK_CZp,\ _ pe(Cn) < rexp (—NEZPT (R)) .
will be shown to be sufficient for reliable transmission ggsin
Z,--codes over &,--symmetric MC. Proof Foralll<s<r let
Given a design raté in (0,log p”), we introduce theZ,- N
code ensemble as follows. For every block-length we =1{0}U (CNﬂ (US(B s(Zp)e ))
setL := [(1- lvgp )IV], and consider a random parlty—be the sub-code of consisting of the all-zero codeword

check operatord,y uniformly distributed over the the set

hom(Z);,ZL.) of all homomorphisms fromZ/\. to ZL..

Finally, let Cy := ker &5 be the randonZ,--code obtained

as the kernel ofd,, i.e. the set of all thoseV-tuples «

in Z). such that®ya = 0. Observe that the rate ay Pe(Cn) = pe(Cn[0) < > pe(C3]0). (8)

is deterministically not smaller thaR. We are interested in 1<s<r

estimating the average error probability(Cx) of the parity- )

check ensemble dL,--codes of design rat&. For everyls < s <rand0 ;fs’ < 1, by applying Lemma 3
Afirst step in our analysis consists in evaluating the averalf the cod&y, and the MC(p™°Z,-, ), W), then the Jensen

type-spectrum. For any typ@ in P(Z,-), let Sy(0) = inequality and Lemma 6, we get,

and of all the codewords of y whose typef is such that
(@) = s. Observe thaty, C p"*Z).. By the UEP and the
union bound we have

Scy (0) be the number of codewords in the random c6de P (C%]0)
of type 8. We have N " L 7
< S W ) (S 0 S W a0 Jay
Sn(@) = Y Iex@= > liaye—oy. (7) z y{v 7 (ve) &N

ze(Zpr)y ze(Zyr)y )

The expected value dfy(6) can be evaluated as follows. < i >° [ Wy (y]z) <Z S(NAS‘;) SWa (y|z+x)) dy
z YN 2] N6 x
Lemma 6. For every@ in Px (Z,-), the average type spectrum L ~ ﬁ P
of the parity-check ensemble 4jf--codes of design raté is S N J (Z Wy (ylz) ) ( 2 Wy (.Y|Z)) dy
. yN z z
given by 1+p
_ (N, -zs0) =prNh) | <LN S (YIZ)> dy,
SN(O) - (NO)p YN P z

where, for@ in P(Z,-), s(8) denotes the smallest integer 0 where the summation indexruns ovep”*Z., 6 over types
such thatf(a) = 0 for all a ¢ p"~'Z,-. in Pn(Z,) such thats(6) = s, andz over (Z,- )}, the set



of typed N-tuples. Observe thgt**(V—1) < exp(NpZR) C. On tightness of the error exponent

while, since the channel is stationary and memoryless, Theorem 7 provides an exponential upper bound on the
) 14p average error probability of the parity-check ensemblg,of
ny (ﬁv ZW]F (y|z)) dy codes on aZpT-symmgtric MC. Cprollary 8_ states that th.e
z N same error exponent is asymptotically achieved by a typical
(W de code sequence sampled from thg--code ensemble.
=\ L5 ZZ: ? (yl2) Y A natural question arising is whether these bounds are. tight
We conjecture thatiz . (R) is the correct error exponent for
Therefore, we get the averageZ,--code at any raté < R < Cz,,, i.e. that

s 1
s < “R— 0 im —— =
pe(CX[0) < exp(N pTR NE;(us, p)) }VHG% Nlog pe(Cn) = Bz, (R). 9)

where E°(-, -) denotes the Gallager exponent of the mdNo proof of (9) in its generality will be presented here. Rath
(»"~*Z,-, Y, W) (as defined in (3)) ands, is the uniform we shall confine ourselves to consider the high-rate and the

distribution overp™—*Z,.. Since the MC(p"~°Z,., Y, W) is low-rate regimes.
p"™*Zyr--Symmetricu, is the optimal input distribution. Then, Theorem 10. For any non-trivialZ, -symmetric MC, there ex-
by optimizing the exponent! (u., p) — p2R overpin [0,1], ist some) < Ry < R; < C7,. such that (9) holds true for the

we get the error exponett, (), so that Z,--code ensemble of design raee (0, Ro) U (Ry,Cy,.).
— 5Ty S Proof First we concentrate on the high-rate regime. For
(Cx]0) < (NES (—R)) . e
Pe(C}10) < exp r rates R close enough taCz ., from the continuity of the

The claim now follows by combining the above inequalinfXPONentss (1), it follows that £z, (R) = Ex(; R) for one
with (8), and recalling Def.4. m of the channeldp”°Z,, Y, P) whose normalized capacity

=C;s coincides with theZ,--capacityCz,, . It is known that
Standard probabilistic arguments allow us to prove th®ose to capacity the random-coding exponent coincidels wit
following corollary of Theorem 7, estimating the asymptotithe sphere-packing exponent [2], [3]. Then, by applying the
error exponent of the typicél,--code. sphere-packing bound to the sub—cddempr—szﬁi (whose

. rate is not smaller thai R), we get that, for all rate? not
Corollary 8. Let(Z,,Y, W) be aZ,--symmetric MC 0L, - ! ), we g
. P P p smaller than somé < Ry < Cy .,
capacity Cz,, and Z,--error exponentkyz . (R). Then, for »

every0 < R < Cz,,, we have Ez,.(R) = EsIR)
> limsup —4 log pe(Cy Np"—5Z1.)
1im'nf—ilogpe(CN) > Ey . (R) Nen T b (10)
NeN N - ’ > limsup —5 log p.(Cw) -
NeN

with probability one over thé&.,--coding ensemble of design

o R We shall now concentrate on showing the validity of (9) in
rate R.

the low-rate regime. First, observe that at r&te= 0
Proof With no loss of generality we can restrict ourselves to E1(0) < E5(0) < ... < E,(0), (11)

rates0 < R < (7., since otherwise?z . (R) = 0 and the ] N ] ) o
claim is trivial asp.(Cx) < 1. For any0 < ¢ < Ez,,(R), the inequalities above being strict on non-trivid,--

N e N define the event symmetric MCs. From the continuity of the error exponents
as functions of the rat&, it follows that for any non-trivial
N = {pe(Cn) = rexp(=N(Ez,. (R) —¢))}, Z,--symmetric MC
By applying Theorem 7 and the Markov inequality, we obtain Bz, (R) = El(%R) ) VR < Ro, (12)
for someR, > 0.
P(Ay) < P (pe(CN) > %GXP(NE)Pe(CN)) Notice thatCx Np"~'ZY. coincides with theZ,-linear code
< rexp(—Ne). ensemble of ratel R. It is known [34] thatF;(1R) is the

correct error exponent for the averagg-linear code. In fact,
Then}_\ P(AY) < >y exp(—Ne) < +oo, and the Borel- the arguments developed in [35] in order to prove tightness
Cantelli lemma implies that with probability one the evelit  of the error exponent for the average code sampled from the
occurs for finitely manyVN in N. Therefore, with probability random coding ensemble only require pairwise independence
one liminfy — 5 logpe(Cy) > Fz,. (R) — e. Finally, the of the random codewords. In ti -linear ensemble the events
claim follows from the arbitrariness afin (0, £z, (R)). W {x € Cy} and{w € Cx} are independent wheneverandw

are linear independent iﬁﬁ\. Since everyr in Z,- has only
Corollary 9. Let (Z,-,Y,W) be aZ, -symmetric MC, and p linear dependent elementsZj)., the arguments of [35] can
let Oz, be itsZ,--capacity. Then, forald < R < Cz_ . there still be used to show that

exist Z,--codesC of rate not smaller thank and arbitrarily

. 1 — 1
low error probability. hr;vlesgp N logpe(Cn Np™~'Zyr) < Er(3R) = By, (R).




Then, sincep.(Cn) > pe(Cn ﬂp"*lzﬁ), from (12) it follows The rest of section will be devoted to the proof of (15).

that The result will be achieved through a series of technical
) 1 — intermediate steps.
1111{[1%11) —y logpe(Cn) < Bz, (R),  VR<Ro. (13) o giart by introducing some related probability densities

n which will play a key role in the sequel:
« foreveryl < ¢ <r, \; in P(C) defined by

Finally, the claim follows from (10), (13) and Theorem
Notice that, forr > 2, strict inequalities in (11) imply that

-1
Ez . (R)< E.(R), R<Ry. 14 1 1A ,
e (R) < EBr(R), R < Ro A et Y Wk =~ Y W)
Therefore, forr > 2 on any nontrivialZ,--symmetric MC, p wepT—IZyr L

the averageZ,--code exhibits poorer performance than the
average code (i.e. a code sampled from the random-coding
ensemble). This result had been first conjectured in [4],rerhe
the author hypothesized that the random-coding exponent of

(with the second equality above following from the
symmetry of the MC);
foreveryl < ¢ < r—1andy € C, v,(y) in P(Z,)

any G-symmetric MC is achieved by the averagecode only defined by
if G ~ 7! for prime p, namely whenG admits Galois field A (V€% 1)
structure. vy (y))(a) = — =2 (16)

However, it can be shown that, at low ratés; . (R) is PAg+1(9)
not the correct error exponent for ti#g--code ensemble. In o for everyl < ¢ <r andy € C a probability distribution
fact, similarly to the random-coding ensemble and the linea  wq(y) in P(p"~9Z,-) defined by
coding ensemble [34], it can be shown that at low rates the 1
error exponent of a typicat,--code is higher thadz, , (R). [wq(W)](z) == ()
This is because the average error probability is affectedrby PiAdly
asymptotically negligible fraction of codes with poor beioa For anyl < ¢ < r, consider thep?-PSK AWGN channel
In other words, at low rates the bound of Corollary 8 is ndp”~?Z,,C,W). Since it is symmetric, its Shannon capacity
tight. In a forthcoming work we shall show that the typical’; is achieved by a uniform distribution over the input
Z,--code achieves the expurgated error exponent on marly ‘Z,-. The corresponding output probability density is
Z,»-symmetric MCs of interest, including thé-PSK AWGN  given by} . .., p~ W (ylz) = Aq(y), so that
channel. Since it is known that the random-coding ensemble
does not instead achieve the expurgated error exponent with Cq = H(Ag) = H(W(0)) . (7)
probability one, this will show that at low rates hierarchieTherefore (15) is equivalent to
for the average and the typical error exponent can be rederse
while the average random code behaves better than the averad (W (:10)) +qH (A1) < (g+1)H(Ny) , 1 <g<r. (18)
group code, the typical group code exhibits better perfoicea
than the typical random code.

W(ylz).

The following result relates the entropies of the discrete
probability distributionsw,(y) and v,(y) to those of the
IV. Z,--CODES ACHIEVE CAPACITY ON THEp"-PSK continuous densitied, and W (- |0).
AWGN CHANNEL

This section will be focused on the-PSK AWGN chan-
nel, for which it will be shown that theZ,-capacity C7, . HW(-|0)) = H(\,) —q+ / A(y)H(wgy(y))dy;  (19)
coincides with the Shannon capacify. As a consequence, C
Z,--codes are capacity-achieving for this important family of
symmetric MCs, thus confirming a conjecture of Loeliger [6]. H(A\g) = H(Ag+1) — 1+ / Ag+1(y)H (vg(y))dy . (20)

Throughout this sectiop will be some given prime number, ¢
r a fixed positive integer. The base bfg (and thus of the Proof See Appendix B-A. [ |
entropy functionH) will be p. Form in N, &, = emieC
will denote a primitivem-th root of 1. (Z,~,C, W) will
denote thep”-PSK AWGN channel, with input¥ identi-
fied with Z,-, output ) identified with the complex field
C, and transition probability densities accordingly given b q/@)\q“(y)H (vq(y)) dy = /C/\q(y)H(wq(y))dy’ (21)
W(y|z) = #e—lly—ﬁirlf/% '

Recall that, by Def.4C7 ., = mini<<, 7C;, where C;
is the Shannon capacity of the MG/ Z,,C, W), i.e. the
AWGN channel with input restricted to thg'-PSK con-
stellation. Hence, the conditio” = (7 . is equivalent to
rC; > 1C,. for all 1 < s,1 < r. A simple inductive argument
shows that this is in turn equivalent to Wy(y) = {W(yl0), W(y|l),..., W(ylp? —1)}

Cpr < (q+1)Cy, Vi<g<r—1.  (15) = {Wl0), W(ygal0),... . Wyeh )} .

Lemma 11. For everyl < g <,

As a consequence of Lemma 11 we have that (18) is
equivalent to

forall1<¢<r-—1.

We pass now to the core of the argument which relies on
geometric considerations. Fbr< g < r, fix an arbitrary point
y in the output seC, and consider the multiset of likelihood
values for the inpup?-PSK, given by



Since thep?t!-PSK constellation is the disjoint union @f Proof We have

q.-
(r:;)upl|tleps|eoz‘)fthqef1 ’F\;lSeKh(;(\)lzstellatlon each rotated by an angl;l ( ygjqﬂ)) — H (wy; ()= H (Z(y,5)) = H (Y (7))
, < Y HMwi)= X H(5(y.J)
Werr(w) = |J Waly&len) - (22) 1sazq 1<a<q
0<j<p where we first used the fact th&t(y, j) = ( o Z(y, j) where

The geometry of the?™-PSK constellation implies that the( is a bijection, then apply chain rule for entropy, and finally
ordering of the multiset of likelihood3V,,(y) satisfies a 1€ conditional entropy bound (see [36] for instance). M

fundamental nesting property with respect to the partif®®2).  The next step of our argument consists in showing that the

Roughly speaking, this property consists in that all theset® probability distributionv, (y) in P(Z,) -as defined in (16)-
(yg .1 ) contain the same amount of highest values of the a convex combination 0d2(y) for 1 < a < ¢, so that

seth+1( ). More precisely, |qul is the k-th highest value -by Jensen inequality- its entropy estimates from above the

in W, (ygpqﬂ) for somel < k < p?and0 < ! < p—1, corresponding convex combination of the entropiegpfy).

then each of the subseld’ (ygqﬂ) contains at least — The proof of Lemma 14 below is based on certain properties

of the so called 'permutahedron’ of a given point in the

1 elements not smaller thamk This is formalized in the - > ) ] ) | )
ot dimensional Euclidean space, which are derived in Appendix

following lemma.

B-C.
Lemma 12. For everyl < ¢ < r andy € Y, there exists a
partition Lemma 14. For everyl < a < ¢ <r, andy € C, we have
k
Wan) = [ Wi (Y€1)
1<k<p H (Z ﬁa (v,7) | S H (v(y)) .  (26)
, +1

where each multiseW} (y) = {wqo, Wy w1} IS sezy
such that, for all0 < j,i < p—1, w’ ; belongs to/ (Y€1) Proof See Appendix B-C. [ |

and We are finally in the position to prove the following funda-

0<k<k <p! = w§7i(y) > w’;:j (y). (23) mental result.

Proof See Appendix B-B. m Theorem 15. For every positive integey, let C, be the

Shannon capacity of thg?-PSK AWGN channel. Then
Observe that, W|th the notation mtroduced in Lemma 12,

(y&pqﬂ) = Jzwho > >k } If we consider qCe+1 < (¢ +1)C; . (27)
the probability dISt“bUtlomqg( ) in 7’( Zpq) defined by Proof Fix an arbitrary outpuy € C. By successively applying
1 (26), the Jensen inequality, and (25), we obtain
RO [ T ——
4,3 \: = i NE
PAGYE ) Hnw) = ¥ Hn)
Soxq
i X J (ygr.'q 1) - .
we have that the entropids (wq ;(v)) an(-jH (wq.(ygpqﬂ)) > <Z< " <2762p MIH(;) 82 (y, ))
do coincide, as,.’q(yg ' .1) and w, ;(y) simply differ for a 1sasq wel )
permutation ofZ.. > ﬁ (6%(y, 7))
Consider now thep-adic expansion mag : Zy: — Zi, 1<a<qj€ly
defined as follows: ifs € Z,. is such thats = >, . pxp" > MaWeoe) (el
for 0 < pr < p, then((s) == (po,---spg-1) - It is a - ,,-gp PAat1(y) ( a(¥p0 ))
standard fact that is a bijection. LetZ(y, j) be aZy.-valued 1 qrefore
random variable with distribution, ;(y) and letY (y,j) = ’
(Y1(y,4), .-, Ya(y.4)) := C o Z(y, j) the corresponding- JeAq wq(y)) dy _
valued random variable. Far< o < q, letd¢ (y, j) € P(Zy) = f«: m Z /\ (ygpﬁ]) (wq(ygéqﬂ )) dy
be the probability distribution o¥,,(y, 7). A straightforward JELy
computation shows that < q Jo A1 (W) H (vg(y)) dy.
pi—a—1_ Thus, (21) holds true for all < ¢ < r — 1, and this has
o abl, . ! )
[5q (y’])] (s) = " gﬂ Z Z hp +sp™+h  previously been shown to be equivalent to the claim. W
Y pq“ = We summarize the results of the present section in the
(24) following:
We can now prove the following upper bound on the entropy
H(wg(y)). Corollary 16. For any primep and positive integer, the
Z,--capacity of thep”-PSK AWGN channel coincides with its
Lemma 13. For everyl < a < g, Shannon capacity, i.€z,, = C,.
H (“’q(yﬁ;qﬂ)) < > H(62(y.d))- (25)  Combining Corollary 16 with Corollary 9, we can finally

1<a<q state a result first conjectured by Loeliger in [6].
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Corollary 17. Z,--codes achieve the capacity of the-PSK S, cC
AWGN channel. 32 C

071

We observe that the step for the validity of the results of thi
section is Lemma 12. In fact, while all the other derivatidis OGN
not depend on the particuld,--symmetric channel, Lemma
12 heavily relied on the geometry of the-PSK constellation.

Hence, for allZ,--symmetric channels for which Lemma 12 **
holds, Theorem 15 and Corollary 16 continue to be true. os-

This is for instance the case for hard-decogedPSK AWGN
channels and for thg"-ary symmetric channel of Ex.1.

L L L L L ey
o 0.5 1 1.5 2 2.5 3
B

0.1

V. A SYMMETRIC CHANNEL FOR WHICH GROUP CODES DO

NOT ACHIEVE CAPACITY Fig. 3. Shannon capacity andg-capacity of Kg-AWGN channel as
. . functions ofg. It can be seen &Sz, (3) = min {Cs(3), 304(6)} coincides
In the previous section we have shown that for gie with Cg(8) only for values of3 %elow a certain threshold. The maxima of

PSK AWGN channel,--capacity and Shannon capacity d@s(8) andCs(8) are achieved for values ¢ close to this threshold, i.e. the

coincide. At this point the question arising is whether thi&o problems of optimizing respectively Shannon capacitg &s-capacity

. . . . . seem to have similar solutions. The optimal values are @reaan the 8-

is the case for any higher dimensional GU constellatigisk.awGN capacity.

admitting generating group isomorphic #p-. In this section

we shall show that the answer is negative in general. In fact,

we shall provide a whole family of counterexamples based @oinciding with a three-dimensional embedding of a restale

the three-dimensional constellations introduced in EXarbp 2"~ !-PSK. Applying the results of the previous section, we

We will prove thatZ,--capacity of the AWGN channel with get that

input constrained on some of these constellations is Istrict

less than the corresponding Shannon capacity, thus leaaling (r=1)C2(8) 2 sCor2(B) , 1<s<r—1. (29)

an effective algebraic obstruction to the useZef-codes. Thus, for everys € (0,400), in order to check whether
For some positive integet, we consider the family of GU Cy-(3) andC%,. (8) do coincide, one is only left to compare

constellationgs’., parameterized by € [0, +o0) and defined the two capacitie€’,- (3) and Cy.—1 (3).

by If we now let the parametef go to oo, the constellation

P N oy ) , Kéi approaches aR*-embedding of the 2-PAM constellation,

Kor o= {xk =\ (627 (=1 5) y 1sk<2 }  with the 27! even-labeled pointgzax|1 < k < 2771}

collapsed into the poin{0,1), and the odd labeled ones

{z2x_1]0 < k < 277!} into the point (0,—1). Let us

define this limit constellation ag(>* := {(0,1), (0, —1)}.

Notice that, for every finite standard deviation valwe> 0,

) L - the Shannon capacity of th&>°-AWGN channel is strictly

Let us fix a standard deviation valwe> 0, and consider the positive, while 1 (c0) = 0, since it is the capacity of

; : s s
corresponding family of¢;. -AWGN channel KQT,R?’,W), an MC with indistinguishable inputs. A continuity argument
whoseZ,--capacity will be denoted bg'z,. (3). For1l < s < yields the following result.

r, Cas () will denote the capacity of the AWGN channel with
input restricted to the sub-constellatidn,,—.|1 < k < 25},

Observe thatk}. is three-dimensional fog > 0, and recall
that the symmetry group dﬁgr is isomorphic to the dihedral
group Dy, and thatKgﬁT admits two non-isomorphic gener-
ating groups: the cyclic ong,- and the dihedral on®,., 1.

Proposition 18. For every finite variances> > 0 and any
integerr > 2, the family of K2 -AWGN channels satisfies

so that .
Cz,.-(B) = min ~Cy (8) - Jim Cor (B) = C(c0) >0, Jim Cz, (8)=0.
We start our analysis by considering the limit case= proof See Appendix C. ]

0. In this caseK?. coincides with anR® embedding of the . o ,
2"-PSK constellation and it is clearly not three-dimensional Theorem 5 and Proposition 18 have the following immediate
since it does not spaR?. Since orthogonal components of-onsequence.

the AWGN are mutually independent, for every< s < r, Corollary 19. For all variances? > 0, there exists a positive
C2:(0) coincides with the Shannon capacity of &PSK- finite 3 such that, for any3 > 3, Z»--codes do not achieve
AWGN channel. Thus, all the results of Sect.IV hold true: iShannon capacity of th&’s.-AWGN channel.

particular, theZ,--capacity and the Shannon capacity coincide,

ie On the other hand, it can be proved thiat— 1)C>-(0) <

o rCy—1(0) , for all » > 2. Then, by a continuity argument it
C22r (0) = C2r (0 (28) can be shown that instead, for sufficiently small valueg of
Similar arguments can be applied, for every givén- 0, Cy-(8) = C7,-(3), SO thatZ,.-codes do achieve capacity of

to the sub-constellation the K.-AWGN channel. Fig.3 refers to the cage = 8: the

F 2r g [ 52 1<k <or-1 normalized Shannon capaci€s(3) andCy4 () are plotted as
T152¢? TV I+ ) T =T = a functions of the parametg@r (Montecarlo simulations).
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VI. ARBITRARY FINITE ABELIAN GROUP M in G would not be injective. Then/ can be decomposed

A. The algebraic structure of finite Abelian groups as illustrated above in (30) and (31). Let us fix now a matrix

In order to generalize the results of Sect.lll, some basic 1=(li; €ZT|1<i<s,1<j<rP)
facts about the structure of finite Abelian groups need to l%ﬁch thatl; ; < j for everyi and j. We will say thatl is an
] :

recalled. We refer to standard textbooks in algebra ([37] f9G—compatibIe matrix. Define
instance) for a more detailed treatment.

j—1i,j ki j
Let M be a finite Abelian group. Givep € N define the MOh=EH @ Z;’ - (32)
following subgroups of\/: 1<i<s1<j<r8 '
pM = {pa |z € M}, M, ={xecM|uz=0} An immediate consequence of the previous considerations is
’ ) ' that

It is immediate to verify that M = {0} if and only if M,y = N L J—li; ,

M. Define g MheG,  Gu= @ > 7 Gty -
1<i<s 1<j<r8

par s=min{p € N|Myy = M} = min{p € N|uM = {0}}.  These inclusions automatically give information thearetn-

straints to the possibility of reliable transmission usithgs

are distinct primes and,, ..., r, are non-negative integers,YP€ Of codes. Denote by, the rate of M(1) and by Cy

existence and uniqueness of such a decomposition bel§ c@Pacity of the subchannel having as input alphabet the
subgroupG;. Then, a necessary condition fpg(M) not to

guaranteed by the fundamental theorem of algebra. It is s
standard fact thad/ admits the direct sum decomposition be_bounded away from by some con_stant |n<_jependent of
N is that R} < C for everyr©-compatiblel. This does not

(30) give explicit constraints yet to the ratds at which reliable
h ) aul q ) hi transmission is possible using-codes. For this, some extra
Each M) is aZ,;:-module and, up to isomorphisms, can o is needed using the structure of the Abelian grauf3).
be further decomposed, in a unique way, as a direct sum Qtice that

cyclic groups

Write py = py'--plr wherepy < py < -oo < ps

M =My @& M

ps®) -

1
v R == Z Z li ki i logp; .
; K, ki, 4,3 Vi,j i
Mprsy = Zp @ Zp?2 &L (31) NSz 1<j<r8
The sequence™ = (py,...,p,) will be called the spectrum It is useful introduce the following probability distribah on
of M, the sequence™ = (rM . . M) the multiplicity and, the pairs(i, j): -
finally, the double indexed sequence g = %Lﬁjf?i _
. og
M __ o . . M
K = (hijll<i<s, 1<j<r) From the above definition, and recalling thag | M| = RN,
. . . RNOL,; j
will be called the type ofM. It will be convenient often Weé havek; ; = TTogp, -
to use the following extensionk;; = 0 for j > rM. Denote now byP(r®) the space of probability distributions

Given a sequence of primes = (p1,...,ps), we will say (c ;) onthe setof pairéi, j) with 1 <i < sandl < j <r¢.
that M is o-adapted ifc™ is a subsequence of. Notice We introduce the following definition.

that, once the_ sequence of primeshas been fix_ed, alb- Definition 20. Let G be a finite Abelian group of spectrum
adapted Abelian groups are completely determined by thg_l@ - (;m ps) and typek®. Let (G, Y, W) be a G-
type (which includes the multiplicities! with the agreement PR ' -

. symmetric MC. For eachr“-compatible matrixl, let C; be
that som.e.of them could be eq_ual ®. We will denote by the capacity of the MQGy, Y, W). The G-capacityof the
My the finite Abelian group having typk.

. ands . : . MC (G, Y, W) is
Notice that if M is a finite Abelian group with typ& and
N € N, the Abelian groupM ™ has the same spectrum and (¢, .= max  min G ’ (33)
multiplicity of M and typeNk. a€P(r) 70 > D lif Qi j
If M andL are finite Abelian groups ang € Hom (M, L), Isissi<j<rf -

then ¢(M,,)) C L,y andg(uM) C uL for everyp € N. It wherel # 0 means that; ; # 0 for somei, j.
follows that ¢ is surely non-injective ifA/ is not o*-adapted
or if any of the multiplicities in)M is strictly larger than the
corresponding in_.

It clearly follows from our previous considerations th@t
is an upper bound to reliable transmission usifecodes.
More precisely, we have the following result which is an

immediate consequence of the inverse channel coding timeore

B. The inverse channel coding theorem for Abelizitodes ) _
Theorem 21. Consider aG-symmetric channel and lefs

Suppose now we have fixed, once for all, a finite Abeliag, s G-capacity. Then, for every rat&® > C¢ there exists

géoup GG havin% spectrumfi = (p_1, <3 Ps) muItipIici%/ a constantdg > 0, such that the the error probability of any
r = (r{,...,ry) and typek®. Consider a5-codeM < G G-codeC of rate R satisfies

of rate R = +log|M|. Clearly M is ¢“-adapted and
rM <G forall 1 < i< s, since otherwise the immersion of pe(C) = Ag .
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C. A coding theorem for Abelia@-codes D. Examples
Given a design rat® and a splittingae € P(r), for each In the sequel, three examples will be presented with explici

block-lengthN € N define computations ofCs for Abelian groupsG with particular
RN(1— aj) algebraic structure. First we examine groups admittingoisal
(hn)ij = { jlogp-” -‘ field structure, showing as in this case thecapacity Cq

coincides with the Shannon capacity, as follows from
Let V4, be the Abelian group having spectrurf and type classical linear coding theory.

hy. Consider a sequence of independent s uniformly
distributed overHom(G™, V). Let Cx := ker(®y) be
the corresponding sequence of randdfcodes. We shall
refer to such a random code construction as ¢heoding ¢ = (p) , ré = (1).
ensemble of design rat® and splitting . Notice thatCy

has rate deterministically not smaller thRnLetm(R’Q) Consequently, the only®-compatiblel is given byl = 1

denote the word error probability averaged over this enmmb and therefore we have that in this caée; = C, Ey; (R). -
E(R). In other words/Z;-codes achieve both the capaC|ty and
Theorem 7 admits the following generalization.

the random-coding exponent of evéhy--symmetric MC. This
Theorem 22. Let (G, Y, W) be aG-symmetric MC. For every had first been shown in [4]. In fact, in this case it is known

Example 6. Suppose thatz ~ Z’; for some primep and
positive integerk. Thus

R € [0,log|G|[, a € P(xr%), that linear codes over the Galois field,~ suffice to achieve
(Ryo0) capacity random-coding exponent.
pe(Cn) < > exp(-NEi(R)) However, GU constellations admitting a generating group
rcfccl)?i?)atiblc which is isomorphic toZ; are affected by a constraint on

_ their bandwidth efficiency. In fact, if' is an n-dimensional
whereE)(R) is the error exponent of the M@+, ¥, W), and  GU constellation admittingZt as generating group, then
standard arguments using group representation theoryvallo

Ri:=R > Z to conclude that
1<i<s 1<5<r; . o .
. a n > k, !f p=2;
By choosinga® € P(r%) such that 2k, ifp>2.
Coe= min G In the next example we show that whéh= Z,- Def.20
LD DI DLy reduces to Def.4 of Section III.

_ J
1<i<s 1<5<r8

Example 7. Let G ~ Z,~. We want to show that
one has thatin;+o E;(R;) > 0 for all R < Cg. Therefore,
Theorem 22 has the following corollary. Ce = mm ~a.

Lor 1
Corollary 23. Let (G, ¥, W) be aG-symmetric MC OG- e first that in this case® — (p) andr% = r. A vector
capacityCq. Then, for every rat® < R < Cg, there exists a 1= (I ) is r¢-compatible if and only if, < j for
G-codeC of rate not smaller thar? and arbitrarily low error everyj ’7'1" " + Notice now that =
probability. ST et
_ j—1; N r—1; R A
Finally, for 0 < R < C, it is possible to optimize the error G = Z PG = Z P Ly = Ly

exponent over all splittingsx in P(r<). This leads to the 1sjsr lsjsr
following definition of theG-coding error exponent of a MC wherel* := max l;. Hence,Cy = Cj-.

i 1<5<r
(G, Y, W): Notice now thatP(r®) simply consists of the probability
distributionsa = (a3, ..., «,). Suppose we are given some
_ . i G
Eq(R) = agggcc) Grglgl B RI; Z . ain P(r%). We have that
rG —comp. 7 Sl<_]<7‘ . C’l T 1
(34) i S~ minG L

By letting ag(R) in P(r“) be an optimal splitting in the  +&-comp. 1<Z<T T T o 02X 1<Z<T 7%
maximization above, and using arguments similar to thefproo == = ==
of Corollary 8, the following corollary can be proved. Now,

L P
Corollary 24. Let (G,Y,W) be a G-symmetric MC ofG- P Z 7047 <,
capacity C; and G-coding exponenti (R). Then, for all =y 1SS
0 < R < Cg we have and equality holds true if and only i, = 1 and a; = 0 for

1 everyj . Hence,
lim ilgf—ﬁ logp.(Cn) > Eg(R), cael r
€ Czpr = min -C,, % =(0,...,0,1).

with probability one over thez-coding ensemble of design 1<p<r p
rate R ad optimal splittinga®(R). 0
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restricted over a geometrically uniform constellati®madmit-
ting G as generating group and either soft or quantized output.
We have characterized the threshold value for the rates at
which reliable transmission is possible wiff+codes, which
we called theG-capacityCq. The G-capacity is defined as
the solution of an optimization problem involving Shannon
capacities of the channels obtained by restricting thetitpu
e some of the subgroups 6f. We have shown that at rates below
C¢ the average ML word error probability of the ensemble of
Fig. 4. The optimal splitting for the Cartesian product defiation K5, ,  G-codes goes to zero exponentially fast with the blocklength
as a function ofS. with exponent at least equal to tiizcoding exponent (R),
while at rates beyond's the word error probability of ang-
code is bounded from below by a strictly positive constarg. W
6have proved that for the AWGN channel with input constrained
on them-PSK constellation (aneh the power of a prime) the
Example 8. Now consider thal{gx?, constellation introduced G-capacityCy does coincide with the Shannon capadity
in Example 4. Consider & ,-AWGN channel. It is easy so that in this case reliable transmission at any fate C is
to show that the independence of orthogonal componeinsfact possible using group codes ov&y,.
of the Gaussian noise imply that the capacity(5) of Finally, we have exhibited a counterexample wiign < C-
such a channel is equal to the sum of the capacities of itsconsists of the AWGN channel with as input a particular
two subchannelsC>(3) and C3(3). This fact allows us to three-dimensional constellation admittirigy,, as generating
explicitly write down the optimal splitting, i.e. the € P(r“) group.
solution of the variational problem (33) definingz,, as a Among the still open problems we recall:

a®

Finally, the following example concerns one of the Cartesi
product GU constellations introduced in Ex.4.

function of the parametes. « giving a full proof thatEq(R) is tight for the average
SinceZs ~ Zy x Z3, we have that = 2, py = 2, p» = 3, G-code, and analyzing the error exponent of the typical
andr% = (r{’,rf) = (1,1). (33) reduces to G-code;
Ca(B) Cs(B) « extending the theory to non-Abelian groups: indeed, it is
Czs(B) = max min{ , ,06(5)} . known [8], [6] that GU constellations with Abelian gen-
acP({2,3}) a2 a3 erating group do not allow to achieve the unconstrained
We claim that, for every € (0, +00), Cz,(3) = Cs(3) and AWGN capacity.
the optimal splitting is given by
. . . . APPENDIXA
a%(8) = (a5°(8),a3°(8)) = ok (C2(8), Cs(8)) PROOF OFLEMMA 3
Indeed we have that For the reader’s convenience, all statements are repeated

before their proof.

Cs(B8) = Cz(B)

_ mex  min {06(5), C2(8) Cg(ﬁ)} Lemma. Let G be a finite group(G,Y, W) a G-symmetric

MC, andC C GV a code such thato~ € C. Then

acP({2,3}) a2 s
_1
> min{ Co(B), 2L, Colf) pe(Cligy) < @w X [ Wy (yl2)
ay’(B)" a3°(B) zeGN YN
= Cﬁ ﬁ . 1 g
v S 0 5 W&“(ylzx)) dy.
In Fig.4 a5¢(3) is plotted: notice how the optimal split- 0#615 WO xeGy

ting follows the geometry of the gonstezzllation as(f) s proof We start by recalling the Gallager bound [2]. Given a
monotonically increasing in3 with }g}]a *(6) = (0,1) ( MC (x,y,W), and a code&Z C XN, for everyz in C and
as 3 goes to0 Kox3(3) collapses onto constellatioi’s) and p > 0 the conditioned word error probability satisfies

ghrf a’s(3) = (1,0) (as3 goes to+oo Kax3(3) collapses p
onto constellation 2-PAM). O p(Clz) < / Wy (ylz) ™7 Z Wy (ylz)™ | dy.
YN zeC\{z}

From the given codeC we generate the random code
C’ .= ZIIC, wherell is a r.v. uniformly distributed over the
In this paper we analyzed the information-theoreticaltémi permutation groupSy (wheren € Sy acts onx € GV
of Abelian group codes over symmetric memoryless channedby. permuting its components, i.érx); = (x)r;) and Z
Our results generalize the classical theory for binarydineis a r.v. uniformly distributed oveG", independent from
codes over binary-input symmetric-output channels. ThenmdI. Throughout the proof we will denote b§[-] the average

example we have in mind is the AWGN channel with inpubperator with respect to such a probabilistic structure.

VII. CONCLUSION



14

The crucial point here is that the average word error probnd

ability of the random cod€’ conditioned to the transmission H()\,)

of Z is equal to the word error probability @f conditioned
on the transmission of;~. In fact, for everyr € Sy we

have thatlox € 7C and, since the channel is memoryless

and stationary, the ML-decision regiadn.¢ for the codeword
1g~ in the codernC coincides withmAq, where A¢ denotes
the ML-decision region ol o~ in the codeC. Thus

pe(TFCHGN) =1- fA WN y|1GN)
=1- fmc Wi (y[lg~)dy
= 1- [, Wn(yllegy)dy =pe(Cllgn) -
Similarly, for anyz € G we havez € zC and, due to the

G-symmetry of the channel, the ML-decision regidg: of

z in zC coincides withzA¢, so thatp.(zC|z) = p.(C|1gn).

Therefore, we have
Elpe(C'|Z)]

=pe(Cllgn). (35)

From (35), by applying the Gallager bound to each realiza-

tion of the random cod€’, and observing that, for any € C,
Hw is uniformly distributed over the set) of N-tuples of
type 8 and independent fronZ, we get

pe(Cllan) = Elpe(C'|Z)]

E|fx W57 (v12) (z

IN

7y |znw)) dy}
= ﬁ Ez: ny Wﬁ (v|z)E <%’: W]\l,Tlp (y|sz)> dy
= 1o 2 Jyx W (y]2) (; (AR W (y|zw)>

P
dy,

with the summation indexv running overC \ {15~ }, z over
G", 6 overPy(G) \ {01} andz overGY'.

APPENDIXB
PROOFS FORSECTION IV

A. Proof of Lemma 11
Lemma. For everyl < g <,

HW(-[0) = H(\) — g + [C No(y)H

H(M\) = H\gy1) — 1+ /@ Apir (9)H

wq(y))dy;

(vg(y))dy -
Proof We have, fork := p"~9Z,-,
H (W(-]0)) —fc (y10) log W (y[0)dy
pq Z Je W (Y& 10) log W (y&5-10)dy
— Z Je W(ylk) log W (y|k)dy
fc y)log Ay (y)dy
= Je M) 2 (wq(y))rlog(p(wq(y))r)dy

ke
H(\g) —q+ f(c Ag(y)H (wq(y)) dy

— Jo Xa(y) log Ay (y)dy
_E f)‘ y£§q+1)1ogz\ (y§§q+1)dy
k€L, C
_f(cpkz )‘q(ygpq+1)10g/\q+l( )dy
~Jedea) 3 S s i
_f(c/\q-i- (y )10g/\q+1( )
= Je X1 () % (vq(y))x log(p(vg(y))k)dy

HOs) =14 - Ays ) H ((0)) dy -

log dy

B. Proof of Lemma 12
Lemma. For everyl < ¢ < r andy € C, there exists a

partition
= U m

1<k<pa

q+1

where each multiseW}(y) = {wfq,wh,,...,wk, 1} is
such that, for all0 < j,i < p—1, wk ; belongs toW, (y¢2,..),
and

k/
0<k<k <pl P ;W) -

Proof Since the transition densitidd’(y|x) are decreasing
functions of the Euclidean distande — x|, the decreasing
ordering of the sefi¥,41(y) coincides with the increasing
ordering of the set of distancdsy — &,z € p" =7 'Zyr }.
Definey = pe”, p; = j3r for j € p"~%"'Z,-. Then,

ly — €52

= wk(y) > w

(pcosf — cosp;)* + (psinf — sin p;)?
p? +1 —2p(cosf cos p; + sinfsin p;)
p>+1+2pcos(f — ;).

Let j* be the closest input ip™~?~'Z, to the given outpuy,

ie. j* | forall j € p" =971 Z,-
Then, either |9
o
pj» S0 < e + 2 it (36)
or
1 27
2k T gpeit <0< e (37)

hold true. Suppose that (36) holds true, and defime:=
p"~9=1, Then,

cos(f — pj») > cos(0 — pj-41) > cos(0 — @jx_1)

Zcos(@—%—*ﬂ)2...2005,(9—%*7[%”. (38)
From (38) it follows that, for odg,

Wily) = AW (yl5*), W(yli* +m), W(ylj* —m),
Wi(ylj* = [§]m)}

Waly) = AW(yls* + [§1m), W(yl(G* = [§1)m),
W(yl(5* +p)m)}

W' y) = AW IG = (5] + [5)m),

W (ylm(G* — [5)))} -
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The claim follows, since for every, Wg(y) contains exactly intersection definesd;, while for the latter it suffices to
one W(y|j) with j belonging to each coset @f ~9Z,- in observe that, for each C J¢, if x is in A;, then

P Ly 114171 7]
The case when (37) holds true instead of (36) is analogous, x; < ; T; = z;
while the case = 2 is much simpler. u 1€IZU] B Z ; Z
so that
[71+] 7]
C. Proof of Lemma 14 Sai= Y m—-Y < Y .
For any subsefX C R”, let co(K) denote the convex hull el ielu o ied =+t
of K, i.e. the smallest convex subset®f containingk’. A ForJ C {1,...,n+ 1}, let ¥; € S, 1 be any permu-

polytope is the convex hull of finite sét’ C R™. A general tation mapping the first.J| elements ontoJ, i.e. such that
fundamental result (see [38]) states tifat_ R" is a polytope ¥, ({1,...,|J|}) = J. Define S; C S,41 be the set of

if and only if it is bounded intersection of closed half-spac permutatmns(f such thata\{ 17D is the identity. Notice

In the sequel, we shall deal with a special class of polytopesat S; commutes withS;. in the sense thatp = po,
given a pointx € R", we shall considero(S,x), i.e. the for all ¢ € S; andp € Sy.. Let ¢; : my;R*t1 — RIVI
convex hull of the set of all component permutationsoThis  and ¢ : m,cR*™! — RI/°l be the standard isomorphisms.
is sometimes called the (generalized) permutahedran ®he By applying the inductive hypothesis t¢;7;¥ ;w and
next result explicitly characterizes(S,, ) as the intersection ¢ ;.7 ;. ¥ ;w respectively, and then immersing back the results

of half-spaces. in R"*! by ¢! and ;. respectively, we have that
Lemma 25. Let w € R™ be such that By Cco(my¥;S;w), CjCco(myeVySyew) . (41)
wy > we S .. > w, . (39) For everyx € A; we haver;x € By andrwj.x € Cy from
(40). Then (41) implies thad’ € P(S;) and N’ € P(S;.)
Thenco(S,w) = A, where exist such that
X = TjX+ mTjeX
A= ﬂ Z:c Z w; ﬂ Z T = Z w; p . / 1"
[ — K3 K3 K3 — \Ij C\y
o 2 . . UEZ;J N(o)msV jow + peZs:JC N (p)mye W s pw
— / 1
Proof In order to prove thato(S,w) C A it suffices to note B aesJ%;eSJc NN pPaoow
that, for everyo € 5, ox € A. Infact, it is easy to check that, = S AMo)ow € co(Spi1w),
due to (39), every constraint is satisfied. Sintés convex it o€V 555 e
immediately follows thabo(Snw).g A._ with A € P(¥;5,5:) C P(Sp+1) defined byA\(V jop) :=
We now prove the converse inclusio, C co(S,w), by  X(o)\’(p). Therefore, for everyl C {1,...,n+1}, we have

induction. The statement is trivially true fer = 1. Suppose 4 ; C co(Sp+1w), and so0A = co (J; 4;) C co(Sp+1w). B
that the claim is true for everyn < n for somen € N
and letw € R"*! be such thatv; > ... > w,41. Define Lemma 26. Suppose:? real numbers{a’,1 < i,k < n} are
Di={zeR"™ : 3, 1% = Xicicni1 Wi)- given, such that

For eachJ C {1,...,n + 1}, defineD;, F; C R**! by

’ k k' .
DJ = {x : ZieJxl Yi<i<|swiy and respectively k<k=ajsa, lsjisn. (42)
; _A{-’B :D(Z]GZD ﬂ: %ﬂ—|J|<z<n+l wl}ZCon&der t}he Definexz andv in R", x := (ZKK" Qs s D icicn l),
acetA; = 7 T Z xr; < i wW;
We observe that i < e M (ZISkSn At Y ichen @ n) Thenv € co(Snx),
i.e. v is a convex combination of permutationssof
C Ay C _
msAs C By, mpedr SO, (40) Proof (42) implies thatx; > zo > ... > x,,, and, for every
wherer; andr - are the projections dk"*! onto the linear J C {1,....,n}, > ic;vi < )2iciciy @i- Then, Lemma 25
subspacegz; = 0,7 € J¢} and{z; = 0,7 € J} respectively, can be applied to show thate co(S,x). u
and We can now prove Lemma 14.
Lemma. For everyl < a < g <r, andy € C, we have
BJ::DJﬂ ing Z wj ﬂ{xi:()} ‘
1cg | iel 1<i<|1| icJe A (Y€ 1 ih) o
Aipq()éq (y7j) <H (V‘Z(y)) :
|1+1] jez, Prat1l¥
Cy=Fye ﬂ le < Z Wi ﬂ{xi =0} . Proof We shall show that
ICJe | i€l i=|J|+1 i€
In fact, the former inclusion in (40) is trivial sinc®; is vy(y) €co | S, Z Mé oy, 7) . (43)

defined as the intersection of a subset of the half-spacesevho jez, P Ag+1(y)
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Then, the claim will simply follow from the concavity of theon a sphere of radius 1, so that, — ;|| < ||zk||+||z;]] < 2.

entropy function.
Let us consider the quantities;f,j
12. For all0 < j, s < p, define

introduced in Lemma

pa—e—1_

ZZ

From (24) it follows that

Z pq/\q(yfgqﬂ) [53(%3')} (S) =

0<j<p

81) ®fhthpotl

S
Z aj

0<j<p
while, from (16), we have
P W) W] () = 3 a
0<s<p
Fix a pair0 < k < k < p — 1: from (23) we have

wke” +h+hpett

K p® +h+hp>tt
Wq,j =

el q,1 9

forevery0 < j,i <p, 0 < h <p* 1, 0<h < p?=*1 Thus

pafl g—a—1_1 B
kp®+h+hp>t!
aj = 2w W)
=0 }1:0
p* tpiT el &% b fipet ,
< T z wp P ) =l

Therefore the coefficientfgct?, 0 <j,k < p} satisfy (42) and
then Lemma 26 can be applied to conclude that

P A1 (W)ve(y) € co [ Sy [ 7Y A (4ED,1)5 (v, )
JELy
which in turn implies (43). ]
APPENDIXC

PROOF OFPROPOSITION18

Proposition. For every finite variance? > 0 and any integer

r > 2, the family ofo,‘-AWGN channels satisfies
ﬁlim Cor (B) = C(o0) >0, ﬁlim Cz,(B)=0.

Proof We start by observing that, for evegyc R3,

W(ylx
5, # W) log 8
mEKzﬁ
< T wwmm%@%
LZEK}T
_ |2 _ |2
= = Y W(ylr)loge (_\\7420_2\\ + L=zl )
zzGKﬁ
SS2$¥7ZW/MwMw—wWHM—AD—Hy—ﬂ@
< gt L Wl) (ly — al + 2z - 2I1%)
< ks ZW ylz) (Ily — =|* +8)

where the first inequality is due to the convexity of the fumrct
T — 1og%,
third one comes from the fact thaub < a? + b for every
a,b € R, and the last one from the fact that andz; both lie

the second one to the triangular inequality, thei

Since

y 2 [ Wy

zGKzT]RS

loge

= (Ily — 2|? +8) dy < +00.

Lebesgue’s dominated convergence theorem can be applied

(see [31]) in order to exchange the order of the limit and
the integral in evaluating the expressidings . o Cas () for
any s < r. By this argument and the continuity of transition
densitiesiV (y|x), we get, in the limit3 — +oo,

W (yl|z)
>, Wylz)

limCor(8) = lim > 5 [ W(ylz)log

meKﬁ R3
/'3

W (y|z)
il 2= Wlylz)log TSt dy

C ().

dy

Similarly, for everyl < s < r, definek := 2"*Zy-. In the
limit 5 — +o00 we get

i Cy-(3) = lim J 27 W (sl ok 3=y et sy
R3 JjeER
B W(y|(0,1))
= RLW(yI(Ovl))lOg( <t<01>>)dy
= O.
|
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