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Abstract— Stability of Wardrop equilibria is analyzed for
dynamical transportation networks in which the drivers’ route
choices are influenced by information at multiple temporal
and spatial scales. The considered model involves a continuum
of indistinguishable drivers commuting between a common
origin/destination pair in an acyclic transportation network.
The drivers’ route choices are affected by their, relatively
infrequent, perturbed best responses to global information
about the current network congestion levels, as well as their
instantaneous local observation of the immediate surroundings
as they transit through the network. A novel model is proposed
for the drivers’ route choice behavior, exhibiting local consis-
tency with their preference toward globally less congested paths
as well as myopic decisions in favor of locally less congested
paths. The simultaneous evolution of the traffic congestion on
the network and of the aggregate path preference is modeled
by a system of coupled ordinary differential equations. The
main result shows that, if the frequency of updates of path
preferences is sufficiently small as compared to the frequency
of the traffic flow dynamics, then the state of the transportation
network ultimately approaches a neighborhood of the Wardrop
equilibrium. The proposed analysis combines techniques from
singular perturbation theory, evolutionary game theory, and
cooperative dynamical systems.

I. INTRODUCTION

As transportation demand is dramatically approaching
its infrastructure capacity, a rigorous understanding of the
relationship between the macroscopic properties of trans-
portation networks and realistic driver route choice behav-
ior is attracting renewed research interest. A particularly
relevant issue is the impact of drivers’ en route responses
to unexpected events on the overall transportation network
dynamics. This issue is particularly significant in a modern
real-life transportation network scenario, where recent tech-
nological advancements in intelligent traveller information
devices have enabled drivers to be much more flexible in
selecting their routes to destination even while being en
route. While there has been a significant research effort to
investigate the effect of such technologies on the route choice
behavior of drivers, e.g., see [1], [2], the analytical study of
the dynamical properties of the whole network under such
behavior has attracted very little attention.

This paper is focused on the stability analysis of trans-
portation networks in a setup where the drivers have access to
traffic information at multiple temporal and spatial scales and
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they have the flexibility to switch their route to destination
at every intermediate traffic intersection. Specifically, we
consider a model in which the drivers choose their routes
while having access to relatively infrequent global informa-
tion about the network congestion state, and real-time local
information as they transit through the network. The drivers’
route choice behavior is then influenced by relatively slowly
evolving path preferences as well as myopic responses to the
instantaneous observation of the local congestion levels at the
intersections. This setup captures many real-life scenarios
where unexpected events observed en route might cause
drivers to take a temporary detour, but not necessarily to
change their path preferences. Such path preferences may
instead be updated, e.g., on a daily, weekly, or longer time
basis, in response to information about the global congestion
state of the different origin-destination paths collected from
the drivers’ personal experience, their opinion exchanges
with their peers, as well as from information media. How-
ever, since the traffic dynamics is significantly influenced
by the drivers’ response to real-time local information, such
responses can influence the drivers’ path preference thereby
modifying their global route choice behavior in the long run.

The proposed driver decision model gives rise to a double
feedback dynamics, governed by a finite-dimensional system
of coupled ordinary differential equations. We study the long-
time behavior of this dynamical system: our main result
shows that, in the limit of small update rate of the aggregate
path preferences, a state of approximate Wardrop equilibrium
[3] is approached. The latter is a configuration in which
the delay associated to any source-destination path chosen
by a nonzero fraction of the drivers does not exceed the
delay associated to any other path. Our results contribute to
providing a stronger evidence in support of the significance
of Wardrop’s postulate of equilibrium for a transportation
network. They may also be read as a sort of robustness
of such equilibrium notion with respect to non-persistent
perturbations of the network.

Our work is naturally related to two streams of literature
on transportation networks. On the one hand, traffic flows on
networks have been widely analyzed with fluid-dynamical
and kinetic models: see, e.g., [4], and references therein. As
compared to these models (typically described by partial, or
integro-differential equations), ours significantly simplifies
the evolution of the traffic parameters (treating them as
homogeneous quantities on the links, representative of spatial
averages), whereas it highlights the role of the drivers’ route
choice behavior with its double feedback dynamics, which
is typically neglected in that literature.

On the other hand, transportation networks have been
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studied from a decision-theoretic perspective within the
framework of congestion games [5], [6]. Such an approach
has been used, for example in [7]. The stability of Wardrop
equilibrium in the context of communication networks has
been studied in [8]. It is important to note that the two
salient features of a typical congestion game setup are that
information is available to the drivers at a single temporal
and spatial scale, and that the dynamics of traffic parameters
are completely neglected by assuming that they are instan-
taneously equilibrated. In contrast, we study the stability of
Wardrop equilibrium in a setting where the dynamics of the
traffic parameters are not neglected, and the drivers’ route
choice decisions are affected by, relatively infrequent global
information, as well as their real-time local information as
they transit through the network. As a consequence, classic
results of evolutionary game theory and population dynamics
[9], [10] are not directly applicable to our framework, and
novel analytical tools have to be developed, particularly
for the analysis of the fast scale dynamics of the traffic
parameters. We do not report all the technical details here
due to space limitations; we refer to [11] for complete details.

Before proceeding, we establish here some notation to be
used throughout the paper. Let R be the set of reals, R+ :=
{x ∈ R : x ≥ 0} be the set of nonnegative reals. Let A and
B be finite sets. Then, RA (respectively, RA+) will denote
the space of real-valued (nonnegative-real-valued) vectors
whose components are labeled by elements of A, and RA×B
the space of matrices whose real entries labeled by pairs of
elements in A× B. The transpose of a matrix M ∈ RA×B,
will be denoted by M ′ ∈ RB×A, while I to be an identity
matrix, and 1 the all-one vector, whose size will be clear
from the context. The simplex of probability vectors over A
will be denoted by S(A) := {x ∈ RA+ :

∑
a∈A xa = 1}. For

p ∈ [1,∞], ‖ · ‖p is the p-norm. By default, let ‖·‖ := ‖ · ‖2
denote the Euclidean norm. Let int(X ) be the interior of a
set X ⊆ Rd.

II. MODEL FORMULATION AND MAIN RESULT

In this section, we formulate the problem and state the
main result. In our formulation, we represent the dynamics
of the traffic and the route choice behavior on a transporta-
tion network as a system of coupled ordinary differential
equations with two time scales representative of route choice
behavior influenced by the two levels of information. The
key components of our model are: network topology, con-
gestion properties of the links, path preference dynamics,
and node-wise route choice decision. We next describe these
components in detail.

A. Network characteristics

Let the topology of the transportation network be de-
scribed by a directed graph (shortly, di-graph) G = (V, E),
where V is a finite set of nodes and E ⊆ V × V is the set
of (directed) links. For every node v ∈ V , we shall denote
by E−v , and E+

v , the sets of its incoming, and, respectively,
outgoing links. A length-l (directed) path from u ∈ V to
v ∈ V is an l-tuple of consecutive links {(vj−1, vj) ∈ E :

1 ≤ j ≤ l} with v0 = u, and vl = v. A cycle is path of
length l ≥ 1 from a node v to itself. Throughout this paper,
we shall assume that:

Assumption 1: The di-graph G contains no cycles, has a
unique origin (i.e., some v ∈ V such that E−v = ∅), and a
unique destination (i.e., v ∈ V such that E+

v = ∅). Moreover,
there exists a path to the destination node from every other
node in V .
Assumption 1 implies that one can find a (not necessarily
unique) topological ordering of the node set V (see, e.g.,
[12]). We shall assume to have fixed one such ordering,
identifying V with the integer set {0, 1, . . . , n}, where n :=
|V| − 1, in such a way that E−v ⊆

⋃
0≤u<v E+

u for all
v = 0, . . . , n .

We shall model the traffic parameters as time-varying
quantities which are homogeneous over each link of the
network. Specifically, for every link e ∈ E , and time instant
t ≥ 0, we shall denote the current traffic density, and flow,
by ρe(t), and fe(t), respectively, while ρ(t) := {ρe(t) : e ∈
E} , f(t) := {fe(t) : e ∈ E} will stand for the vectors of
all traffic densities, and flows, respectively. Current traffic
flow and density on each link are related by a functional
dependence

fe = µe(ρe) , e ∈ E . (1)

Such functional dependence models the drivers’ speed and
lane adjustment behavior in response to traffic density on a
particular segment of a road. It will be assumed to satisfy
the following:

Assumption 2: For every link e ∈ E , the flow-density
function µe : R+ → R+ is continuously differentiable,
strictly increasing, strictly concave and is such that µe(0) =
0 and limρe↓0 dµe/dρe(ρe) < +∞.

Remark 1: Flow-density functions commonly used in
transportation theory typically are not globally increasing,
but rather have a ∩-shaped graph [4]: µe(ρe) increases from
µe(0) = 0 until achieving a maximum Ce = µe(ρ̃e), and
then decreases for ρe ≥ ρ̃e. Assumption 2 remains a good
approximation of this setting, provided that ρe stays in the
interval [0, ρ̃e).

For every link e ∈ E , let Ce := sup{µe(ρe) : ρe ≥ 0} =
limρe→+∞ µe(ρe) be its maximum flow capacity. Moreover,
let Fv := ×e∈E+v [0, Ce) ,F := ×e∈E [0, Ce) be the sets
of local, and, respectively, global admissible flow vectors.
Observe that our formulation allows for both the cases of
bounded and unbounded maximum flow capacities. As the
flow fe is the product of speed and density, it is natural to
introduce the delay function T : RE+ → [0,+∞]E

Te(fe) :=


+∞ if fe ≥ Ce
µ−1
e (fe)/fe if fe ∈ (0, Ce),

1/dµe
dρe

(0) if fe = 0 ,

(2)

whose components measure the flow-dependent time taken
to traverse the different links.1

1Here it has implicitly been assumed, without any loss of generality, that
all the links are of unit length.
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Example 1: A flow-density function that satisfies As-
sumption 2 is given by

µe(ρe) = Ce
(
1− e−θeρe

)
∀e ∈ E , (3)

where Ce > 0, and θe > 0. The corresponding delay function
is

Te(fe) =
1

θefe
log

Ce
Ce − fe

.

We shall denote by P the set of distinct paths in G from
the origin node 0 to the destination node n, and let

A ∈ RE×P , Aep =
{

1 if e ∈ p
0 if e /∈ p ,

be the link-path incidence matrix of G. The relative appeal of
the different paths to the drivers will be modeled by a time-
varying probability vector over P , which will be referred
to as the current aggregate path preference, and denoted by
π(t). If one assumes, as we shall do throughout this paper, a
constant unit incoming flow in the origin node, it is natural to
consider the vector fπ := Aπ of the flows associated to the
current aggregate path preference. Indeed, fπe =

∑
pAepπp

represents the total traffic flow that a link e ∈ E would
sustain in a hypothetic equilibrium condition in which the
fraction of drivers choosing any path p ∈ P is given by
πp. Now, let Π := {π ∈ S(P) : (Aπ)e < Ce, ∀e ∈ E} be
the set of feasible path preferences. Here, the term ‘feasible’
refers to the fact that the flow vector fπ associated to any
π ∈ Π satisfies the capacity constraint fπe < Ce for every
e ∈ E . Observe that, whenever Ce > 1 for every e ∈ E
(or, in particular, when link capacities are infinite), the set
of admissible path preferences Π coincides with the whole
simplex S(P). In contrast, when Ce ≤ 1 for some e ∈ E ,
Π ⊂ S(P) is a strict inclusion. On the other hand, whether
Π is empty or not depends solely on the value of the min-cut
capacity of the network [13, Ch. 4]

C∗ := min
U⊆V:

0∈U,n/∈U

CU , CU :=
∑

e=(u,v)∈E :
u∈U, v∈V\U

Ce ,

as shown in the following, simply established, result.
Proposition 1: The set Π is nonempty if and only if C∗ >

1.
In the case when C∗ ≤ 1 it is not hard to show that, since

the incoming flow exceeds the outgoing flow of the network,
the system will grow unstable, i.e., ρe(t) is unbounded as t
grows large, for some link e ∈ E . Therefore, throughout this
paper we shall confine ourselves to transportation networks
satisfying:

Assumption 3: The min-cut capacity satisfies C∗ > 1.

B. Route choice behavior and traffic dynamics

We now describe the drivers’ route choice behavior and
traffic dynamics on the network. We envision a continuum
of indistinguishable drivers traveling through the network.
Drivers enter the network from the origin node 0 at a constant
unit rate, travel through it, and leave the network from the
destination node n. While inside the network, drivers occupy
some link e ∈ E . The time required by the drivers to traverse

link e, and the current flow on such link are governed by its
congestion properties, as given by (2), and (1), respectively.
When entering the network from the origin node v = 0, as
well as when reaching the tail node v ∈ {1, 2, . . . , n − 1}
of some link e /∈ E−n , the drivers instantaneously join some
link e ∈ E+

v . In this paper, we shall model the choice of
such new link to depend on infrequently updated perturbed
best responses of the drivers to global information about the
congestion status of the whole network as well as on their
instantaneous observation of the local congestion levels. We
next describe these two aspects of the model in detail.

Aggregate path preference dynamics: The drivers’ aggre-
gate path preference π(t), already introduced in Sect. II-
A, models the relative appeal of the different paths to
the drivers’ population. The aggregate path preference π(t)
is updated as drivers access global information about the
current congestion status of the whole network. This occurs
at some rate η > 0, which will be assumed small with respect
to the time-scale of the network flow dynamics. Information
about the current status of the network is embodied by
the current traffic flow vector f(t). From f(t), drivers
can evaluate the vector A′T (f(t)), whose p-th component∑
e∈E AepTe(fe(t)) coincides with the total delay one ex-

pects to incur on path p assuming that the congestion levels
on such path won’t change. Drivers’ are assumed to react to
such global information by a perturbed best response

Fh(f) := argmin
ω∈Πh

{
ω′A′T (f) + h(ω)

}
, (4)

where h : Πh → R is an admissible perturbation, satisfying
the following:

Assumption 4: An admissible perturbation is a function
h : Πh → R where Πh ⊆ Π is a closed convex set,
h( · ) is strictly convex, twice differentiable in int(Πh), and
is such that limπ→∂Πh ||∇̃h(π)|| = +∞, where ∇̃ :=
(I − |P|−111′)∇ is the projected gradient on S(P)2.

As a result, the aggregate path preference π(t) evolves as

d
dt
π = η

(
Fh(f)− π

)
. (5)

The perturbed best response function Fh(f) provides an
idealized description of the behavior of drivers whose deci-
sions are based on inexact information about the state of the
network. In particular, it can be shown that the form of Fh(f)
given in (4) is equivalent to the minimization over paths
p ∈ P of the expected delay

∑
e∈E AepTe(fe) corrupted by

some (admissible) stochastic perturbation (see e.g. [14]).
It is easy to establish that the perturbed best response

Fh(f) is continuously differentiable on F . Moreover, it
is well known [10] that, as ‖h‖∞ ↓ 0, and Πh ↑ Π,
the perturbed best response Fh(f) converges to the set
argmin{ω′A′T (f) : ω ∈ Π} of best responses.3

2We shall use the notation Φ := I − |P|−111′ ∈ RP×P to denote the
corresponding projection matrix.

3Here, the convergences Πh ↑ Π, and {Fh(f)} →
argmin{ω′A′T (f) : ω ∈ Π} are intended to hold in the Hausdorff
metric. (see, e.g., [15, Def. 4.4.11])
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Example 2: Assume that Ce > 1 for all e ∈ E . Then, an
example of perturbed best response satisfying Assumption 4
is the logit function with noise level β > 0, which is defined
as

Fhp (f) =
exp(−β(A′T (f))p)∑
q∈P exp(−β(A′T (f))q)

, p ∈ P . (6)

This corresponds to the admissible perturbation function
h(ω) = −β−1

∑
p ωp logωp. For any fixed f ∈ F , one has

that limβ→+∞ Fh(f), with Fh(f) as defined in (6), is a
uniform distribution over the set argmin{(A′T (f))p : p ∈
P}. We refer the reader to [16] for more on the connection
between Fh characterized by Assumption 4 and smooth best
response functions.

Remark 2: In the evolutionary game theory literature, e.g.,
see [9], [10], the domain of an admissible perturbation
function h, as well as the one of the minimization in the
right-hand side of (4), is typically assumed to be the whole
simplex S(P), instead of a closed polytope Πh ⊆ Π ⊆
S(P). Notice that, as already observed in Sect. II-A, when
Ce > 1 for every e ∈ E , Π = S(P) is a closed polytope,
so that one can choose Πh = Π. Therefore, in this case,
Assumption 4 does not introduce any additional restriction
with respect to such theory.

On the other hand, when Ce ≤ 1 for some e ∈ E ,
then the inclusions of Πh ⊂ Π ⊂ S(P) are both strict, so
that Assumption 4 does introduce additional restrictions on
the admissible perturbations. However, it is worth observing
that, in a classic evolutionary game theoretic framework,
the dynamics of the aggregate path preference would be
autonomous rather than coupled to the one of the actual
flow. In particular, perturbed best response dynamics in that
framework would read as

d
dt
π = Fh(fπ)− π , (7)

rather than as in (5). For such dynamics, the fact that
Te((Aπ)e) = +∞ whenever (Aπ)e ≥ Ce, can be shown
to imply that π(t) would reach a compact Πh ⊆ Π in some
finite time and never leave it. In contrast, in the two time-
scale model of coupled dynamics considered in this paper
(see (11)), such more restrictive assumption is needed in
order to ensure the same property for the trajectories of π(t).

Local route decisions: We now describe the local route
decisions, characterizing the fraction of drivers choosing
each link e ∈ E+

v when traversing a non-destination node
v. Such a fraction will be assumed to be a continuously
differentiable function Gve(fE+v , π) of the local traffic flow
fE+v := {fe : e ∈ E+

v }, as well as of the current aggregate
path preference π. We shall refer to

Gv : Fv ×Π→ S(E+
v ) (8)

as the local decision function at node v ∈ {0, 1, . . . , n− 1},
and assume that it satisfies the following:

Assumption 5: For all 0 ≤ v < n, and π ∈ Π,(∑
j∈E+v

fπj

)
Gve

(
fπE+v

, π
)

= fπe , ∀e ∈ E+
v .

Assumption 6: For all 0 ≤ v < n, π ∈ Π, and fE+v ∈ Fv ,

∂

∂fe
Gvj (fE+v , π) ≥ 0 , ∀j 6= e ∈ E+

v .

Assumption 5 is a consistency assumption. It postulates
that, when the locally observed flow coincides with the one
associated to the aggregate path preference π, drivers choose
to join link e ∈ E+

v with frequency equal to the ratio between
the flow fπe and the total outgoing flow

∑
j∈E+v f

π
j .

Assumption 6 instead models the drivers’ myopic behavior
in response to variations of the local congestion levels. It
postulates that, if the congestion on one link increases while
the congestion on the other links outgoing from the same
node is kept constant, the frequency with which each of
the other outgoing links is chosen does not decrease. It is
worth observing that Assumption 6 is reminiscent of Hirsch’s
notion of cooperative dynamical system [17], [18].

Example 3: An example of local decision function Gv

satisfying Assumptions 5 and 6 is the i-logit function. The
i-logit route choice with sensitivity γ > 0 is given by

Gve(fE+v , π) =
fπe exp(−γ(fe − fπe ))∑

j∈E+v f
π
j exp(−γ(fj − fπj ))

, (9)

for every e ∈ E+
v , 0 ≤ v < n.

For every non-destination node v ∈ {0, 1, . . . , n− 1}, and
outgoing link e ∈ E+

v , conservation of mass implies that
d
dtρe = He(f, π), where

He(f, π) :=
{
Gve(fE+v , π)− fe if v = 0
(
∑
j∈E−v fj)G

v
e(fE+v , π)− fe if 1 ≤ v < n .

(10)

C. Objective of the paper and main result

The objective of this paper is to study the evolution of the
coupled dynamics

d
dt
π = η

(
Fh(f)− π

)
d
dt
ρ = H(f, π) ,

(11)

where Fh is the perturbed best response function defined in
(4), η > 0 is the rate at which global information becomes
available, H(f, π) = {He(f, π) : e ∈ E}, with He defined
in (10), and f and ρ are related by the functional dependence
(1). In particular, our analysis will focus on the double
limiting case of small η and small h. We shall prove that, in
such limiting regime, the long-time behavior of the system is
approximately at Wardrop equilibrium [3], [19]. The latter is
a configuration in which the delay is the same on all the paths
chosen by a nonzero fraction of the drivers. More formally,
one has the following:

Definition 2 (Wardrop Equilibrium): An admissible flow
vector fW ∈ F is a Wardrop equilibrium if fW = Aπ for
some π ∈ Π such that, for all p ∈ P ,

πp > 0 =⇒ (A′T (Aπ))p ≤ (A′T (Aπ))q ,∀q ∈ P . (12)
Existence and uniqueness of a Wardrop equilibrium are
guaranteed by the following standard result which easily
follows from Theorems 2.4 and 2.5 in [19].
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Proposition 3: Let Assumptions 1-3 be satisfied. Then,
there exists a unique Wardrop equilibrium fW ∈ F .

The following is the main result of this paper.
Theorem 4: Let Assumptions 1–6 be satisfied. Then, for

every initial condition π(0) ∈ int(S(P)), ρ(0) ∈ (0,+∞)E ,
there exists a unique solution of (11). Moreover, there exists
a perturbed equilibrium flow fh ∈ F such that, for all η > 0,

lim sup
t→+∞

||f(t)− fh|| ≤ δ(η) , (13)

where δ(η) is a nonnegative-real-valued, nondecreasing func-
tion of η > 0, such that limη↓0 δ(η) = 0. Moreover, for every
sequence of admissible perturbations {hk : k ∈ N} such that
limkt +∞ ||hk||∞ = 0, and limk→+∞Πhk = Π, one has

lim
k→+∞

fhk = fW . (14)
Theorem 4 states that, in large time limit, the flow vector

f(t) approaches a neighborhood of the Wardrop equilibrium,
whose size vanishes as both the time-scale ratio η and the
perturbation norm ||h||∞ vanish. While a qualitatively simi-
lar result is known to hold [10] in a classic evolutionary game
theoretic framework (i.e., neglecting the traffic dynamics, and
assuming it is instantaneously equilibrated, as in the ODE
system (7)), the significance of the above is to show that an
approximate Wardrop equilibrium configuration is expected
to emerge also in our more realistic model of two-time scale
dynamics. Therefore, our results provide a stronger evidence
in support of the significance of Wardrop’s postulate of
equilibrium for a transportation network. In fact, they may
be read as a sort of robustness of such equilibrium notion
with respect to non-persistent perturbations.

D. Proof sketch
We provide a brief sketch of the proof of Theorem 4

here; all the details are in [11]. The main idea consists
in adopting a singular perturbation approach (e.g., see [?]),
viewing the traffic density ρ (or, equivalently, the traffic flow
f ) as a fast transient, and the aggregate path preference
π as a slow component. Hence, one first thinks of π as
quasi-static (i.e., ‘almost a constant’) while analyzing the
fast-scale dynamics (10), and then assume that f is ‘almost
equilibrated’, i.e. close to fπ , and study the slow-scale
dynamics (5) as a perturbation of (7). A first main result
shows that fπ is a globally attractive equilibrium of the fast-
scale dynamics (10) with frozen π. This is proven by showing
that a suitably weighted l1-distance between ρ and ρπ (with
weight exponentially decreasing with the distance from the
origin node) is a Lyapunov function for such dynamics,
and that the gradient of this Lyapunov function is non-
increasing along the trajectories of the fast scale dynamics.
A consequence of this is that the density vector ρ remains
bounded in time. These facts are then combined with the
property that the slow-scale dynamics with equilibrated flow,
i.e., (7), is the gradient flow of the potential

Ψ(π) =
∑
e∈E

∫ fπe

0

Te (s) ds− β−1
∑
p

πp log πp (15)

(e.g., see [10]).
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Fig. 1. The graph topology used in simulations.

III. SIMULATIONS

In this section, we present results from numerical ex-
periments. We performed several experiments with different
graph topologies and for values of η ranging from 0.01 to
100. In all the cases, we found that the trajectories converge
exactly to the perturbed Wardrop equilibrium, i.e., δ(η) in
Theorem 4 was estimated to be uniformly zero. We suspect
that this might be because of the exponential convergence
also of the slow scale dynamics. Additionally, we compared
the convergence of the trajectories corresponding to local
decision function from Example 3 with trajectories corre-
sponding to local decision function of the form

Gve

(
fE+v , π

)
= fπe /

∑
j∈E+v

fπj ,∀fE+v ∈ Fv, ∀e ∈ E
+
v . (16)

The latter corresponds to the case when the drivers do not
take into account the local observation on the currently
observed flow, and always act in a way that is consistent with
their aggregate path preference. We found that the trajectories
corresponding to local decision function in (16) converged
faster than the trajectories corresponding to the local decision
function in Example 3.

We demonstrate these findings through an illustrative
example. For this example, the parameters were selected as
follows:
• graph topology G as shown in Figure 1,
• link-wise flow functions as given by (3) with C1 = 2

and θe = 1, for all e ∈ E ;
• Fh as in (6) with β = 1,
• G as in (9) with γ = 1,
• initial conditions: πe(0) = 1/15 for all e ∈ E , ρe1(0) =
ρe12(0) = 5, ρe2(0) = ρe6(0) = ρe8(0) = 7, ρe3(0) =
ρe7(0) = 3, ρe4(0) = 6, ρe5(0) = 1, ρe9(0) = 9,
ρe10(0) = 10, ρe13(0) = 12, ρe14(0) = 4, ρe15(0) = 8.

• η = 0.1.
For these values, ρh := µ−1(fh) was numerically calculated
by implementing a gradient descent algorithm for the corre-
sponding potential function (15). The evolution of the 1-norm
distance of ρ from ρh is plotted on a log-linear scale in Fig-
ure 2 for two cases: (i) local route choice decision function
of Example 3, and (ii) local decision function given in (16).
Figure 2 also shows that there is no significant difference
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Fig. 2. Log-linear plot for comparison of the evolution of ‖ρ(t)−ρh‖1 for
the local decision function of Example 3 versus the local decision function
of (16).

between the convergence of trajectory corresponding to local
decision function in (16) and the trajectory corresponding to
the local decision function of Example 3. However, as we
increase η, we observed that the trajectory corresponding
to the local decision function in (16) converge faster than
the trajectory corresponding to the local decision function of
Example 3.

IV. CONCLUSION

In this paper, we analyzed the stability of Wardrop equi-
libria in dynamical transportation networks characterized by
dual temporal and spatial scales of the drivers’ route choice
behavior. We showed that, if the frequency of updates of
path preferences is sufficiently small, then the state of the
transportation network ultimately approaches a neighborhood
of the Wardrop equilibrium. Our results provide a stronger
evidence in support of the significance of Wardrop’s postulate
of equilibrium for a transportation network. They may be
read as a sort of robustness of such equilibrium notion with
respect to non-persistent perturbations of the network.

There are several possible directions for future work.
We plan to formally justify our dynamical model as a
macroscopic approximation of the underlying driver level
microscopic process. We also plan to extend our analysis to
the case with multiple origin-destination pairs and possibly
cyclic topologies. We also plan to study the effect of per-
sistent, and possibly adversarial, perturbations on the traffic
dynamics under driver behavior model similar to the one
considered in this paper, e.g., see [20], [21].
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