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Motivation

General: Numerical methods for solving ODE’s is important
for system simulations. Simulation is important for controller
design.
Personal: In my research project it is interesting to solve
ODE’s fast, in the control loop. For this purpose, Julia seems
to be an interesting alternative.
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This Presentation Covers

ODE solver packages in Julia.
How to use them, what functionality they contain.
Code examples and a comparison to Matlab solvers w.r.t.
speed and functionality.
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Essentially two packages available

ODE.jl - Various basic Ordinary Differential Equation solvers
implemented in Julia, used to be a part of Base. Supports
fixed step, adaptive and stiff solvers.
Sundials.jl - package that interfaces to the Sundials C library.
SUite of Nonlinear and DIfferential/Algebraic equation
Solvers.
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ODE.jl

Supports the following solvers

ode23: 2nd order adaptive solver with 3rd order error control,
using the Bogacki–Shampine coefficients.
ode45: 4th order adaptive solver with 5th order error control,
using the Dormand Prince coefficients. Fehlberg and
Cash-Karp coefficients are also available.
ode78: 7th order adaptive solver with 8th order error control,
using the Fehlberg coefficients.
ode23s: 2nd/3rd order adaptive solver for stiff problems, using
a modified Rosenbrock triple.
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ODE.jl - API

All of which have the following basic API:

tout, yout = odeXX(F, y0, tspan; keywords...)

For solving the following ODE at the instants of tspan

dy
dt = f (t,y), y(0) = y0 (1)
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ODE.jl - Keywords

norm: user-supplied norm for determining the error E (default
Base.vecnorm),
abstol and/or reltol: an integration step is accepted if
E <= abstol||E <= reltol∗abs(y)
maxstep, minstep and initstep: determine the maximal,
minimal and initial integration step.
points=:all (default): output is given for each value in tspan
as well as for each intermediate point the solver used.
points=:specified: output is given only for each value in tspan.
Additionally, ode23s solver supports jacobian = G(t,y):
user-supplied Jacobian G(t,y) = dF (t,y)/dy .
Note: There are currently discussions about how the Julian
API for ODE solvers should look like, and the current
documentation is more like a wishlist than a documentation.
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Example: Van Der Pool Oscillator

using ODE
using Winston
function f(t, y)

mu = 2.5
ydot = similar(y)
ydot[1] = y[2]
ydot[2] = mu*(1-y[1]ˆ2)*y[2]-y[1]
ydot

end

t = [0:.1:10.0;]
y0 = [1.0, 3.0]
t,y=ODE.ode23s(f, y0, t)
y1 = [ a[1] for a in y] # Rearranging the output,
y2 = [ a[2] for a in y] # more convenient
plot(float(y1),float(y2))
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Example: Van Der Pool Oscillator
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Sundials.jl

Containts:
CVODES - for integration and sensitivity analysis of ODEs.
CVODES treats stiff and nonstiff ODE systems of the form
y ′ = f (t,y ,p),y(t0) = y0(p), where p is a set of parameters.

IDAS - for integration and sensitivity analysis of DAEs. IDAS
treats DAE systems of the form
F (t,y ,y ′,p) = 0,y(t0) = y0(p),y ′(t0) = y0′(p).

KINSOL - for solution of nonlinear algebraic systems.
KINSOL treats nonlinear systems of the form F (u) = 0.
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CVODES

dy
dt = f (t,y), y(0) = y0

using Sundials
using Winston
function f(t,y,ydot)

mu = 2.5
ydot[1] = y[2]
ydot[2] = mu*(1-y[1]ˆ2)*y[2]-y[1]
ydot

end
t = [0:.1:10.0;]
y0 = [1.0, 3.0]
res = Sundials.cvode(f, y0, t)
plot(res[:,1],res[:,2])
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Example: Van Der Pool Oscillator
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IDAS

F (dy/dt,y , t) = 0 (2)

using Sundials
function resrob(tres, y, yp, r)

r[1] = -0.04*y[1] + 1.0e4*y[2]*y[3]
r[2] = -r[1] - 3.0e7*y[2]*y[2] - yp[2]
r[1] -= yp[1]
r[3] = y[1] + y[2] + y[3] - 1.0

end
# yp is here the derivative vector.
t = [0.0, 4 * logspace(-1., 5., 100)]
yout, ypout =
Sundials.idasol(resrob,[1.0,0,0],[-0.04,0.04,0.0],t)
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IDAS Example
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KINSOL

F (y) = 0 (3)

import Sundials
function sysfn(y, fy)

fy[1] = y[1]ˆ2 + y[2]ˆ2 - 1.0
fy[2] = y[2] - y[1]ˆ2

end

sol = Sundials.kinsol(sysfn, ones(2))

julia> sol
2-element Ar
0.786153
0.618035

15 / 21



More code examples can be found at

https://github.com/JuliaLang/Sundials.jl
https://github.com/JuliaLang/Ode.jl
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A small comparison between

ODE.jl ode23s, Sundials CVODE and Matlabs ode23s

With the conditions

t = [0:.01:10.0;]
y0 = [1.0, 3.0]
abstol=1e-8; reltol=1e-8;

function f(t, y) # Van Der Pool Oscillator
mu = 3.0
ydot = similar(y)
ydot[1] = y[2]
ydot[2] = mu*(1-y[1]ˆ2)*y[2]-y[1]
ydot

end
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Results

ODE.jl ode23s
elapsed time: 3.539e-6 seconds (80 bytes allocated)

Sundials CVODEs
elapsed time: 4.954e-6 seconds (80 bytes allocated)

Matlab ode23s
Elapsed time is 1.099103 seconds.
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Results, ODE.jl ode23s (blue), Sundials CVODEs (red),
Matlabs ode23s (green)
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Summary

ODE.jl – is a work in progress, will probably be the main
choice in the future.

Sundials.jl – has a lot more functionality, might be a better
short term solution.
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Homework (Not Mandatory)

Check out the Three-Body Problem Sundials.jl Julia Code at

http://nbviewer.ipython.org/github/pjpmarques/Julia-Modeling-
the-World/blob/master/Three-Body%20Problem.ipynb

and generate your own plots.
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