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The Conjugate Gradient Method

• Solves large linear systems of equations.
• Proposed by Hestenes and Stiefel in the 1950’s as an

alternative to Gaussian elimination for large problems with
positive definite coefficient matrices.

• Adapted to solve nonlinear optimization problems.
• Nonlinear conjugate gradient was introduced by Fletcher and

Reeves in the 1960’s. One of the first methods for solving large
scale nonlinear optimization problems.

• Requires no matrix storage and are faster than the steepest
descent method.

1 / 43



The Linear Conjugate Gradient Method

The (linear) CG is an iterative method for solving a linear system
of equations

Ax = b (1)

where A is a symmetric, positive definite matrix.

This is equivalent of solving the optimization problem

min φ(x)≡ 1
2xT Ax −bT x (2)

∇φ(x) = Ax −b ≡ r(x) (3)

Problem 1 and 2 have the same unique solution.
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Conjugacy

The CG method generates a set of conjugate vectors pi w.r.t. A,
these vectors are the step directions when minimizing φ(x).

Definition
Two vectors v and u are conjugate w.r.t. A if uT Av = 0.
uT Av is an inner product since A> 0, n vectors fulfilling this
property are linearly independent and are a base in Rn.
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Conjugate directions of A

Given any starting point x0 and a set of conjugate directions
{p0,p1, . . . ,pn−1} w.r.t. A. The sequence {xk} generated by

xk+1 = xk +αkpk

where αk is the minimizer of φ along xk +αkpk , given by

αk =− rT
k pk

pT
k Apk

will minimize φ in at most n steps.
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Conjugate directions theorem.

Theorem
For any x0, the sequence xk generated by a set of conjugate
directions {p0,p1, . . . ,pn−1} and the minimizing αk will converge
to the solution x∗ in at most n steps.

Proof.
x∗− x0 =

∑n−1
i=0 σkpk since pk span Rn, multiplying this expression

by pT
k A from the left gives σk = pT

k A(x∗−x0)
pT

k Apk
which gives σk = αk

since pT
k A(x∗− x0) =−pT

k rk .
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Geometrical Interpretation
If A is diagonal, φ has its level-curve ellipse axes aligned with the
coordinate directions.
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Geometrical Interpretation
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Geometrical Interpretation

Diagonalize A and minimize along the new coordinate directions

x̂ = S−1x

where
S =

[
p0 . . . pn−1

]
,

ST AS is diagonal by the conjugacy property.
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Expanding Subspace Minimization

The residual is orthogonal to the previous search directions.

Theorem
For any x0, the sequence xk generated by a set of conjugate
directions method fulfils the properties

rT
k pi = 0, for i = 0,1, . . . ,k−1

and xk is the minimizer of φ over the set

x0 + span{p0,p1, . . . ,pk−1}
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Conjugate Directions

How to generate the conjugate directions
• Take the eigenvectors vk of A.
• Modified Gram-Schmidt orthogonalization.

These procedures are computationally heavy and requires storage.
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The CG Method

The CG method computes pk in an economical fashion that only
requires the previous direction pk−1. This requires little storage
and computation. With the following update rule

pk =−rk +βkpk−1.

Conjugagy is fulfilled if

βk = rT
k Apk−1

pT
k−1Apk−1

.
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Algorithm 1 CG Algorithm
1: r0 = Ax0−b
2: p0 =−r0
3: k = 0
4: while rk+1 > ε do
5: αk =− rT

k pk
pT

k Apk
6: xk+1 = xk +αkpk
7: rk+1 = Axk+1−b
8: βk+1 = rT

k+1Apk
pT

k Apk
9: pk+1 =−rk+1 +βkpk

10: k = k + 1
11: end while
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Geometrical Interpretation
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Theorem for Algorithm 1

Theorem
Suppose the iterate k is not the solution, then

• rT
k ri = 0 for i = 0,1, . . . ,k−1

• span{r0, . . . , rk}= span{r0, . . . ,Ak r0}
• span{p0, . . . ,pk}= span{r0, . . . ,Ak r0}
• pT

k Api = 0, for i = 0,1 . . . ,k−1

Therefore the sequence {xk} converges in at most k steps.
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Remark from the book:

”The conjugate gradient method should rather be called the
conjugate (search) direction method since it is the search
directions that are conjugate w.r.t. A and not the gradients.”
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The CG Method

Simplified updating formulas

αk = rT
k rk

pT
k Apk

βk+1 =
rT
k+1rk+1

rT
k rk

gives a more economical CG algorithm which is also the standard
implementation.

The major computational tasks is the vector matrix multiplication
Apk , the inner products pT

k Apk , rT
k+1rk+1 and three vector sums.
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Rate of Convergence

• We have seen that the method converges in at most n steps.
• If the eigenvalues of A are generously distributed, the method

will converge in much fewer iterations.
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Krylow Subspace

Definition
The order-r Krylov subspace generated by an n-by-n matrix A and
a vector b of dimension n is the linear subspace spanned by the
images of b under the first r powers of A (starting from A0 = I),
that is,

Kr (A,b) = span{b,Ab,A2b, . . . ,Ar−1b}.
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Rate of Convergence
From the previous results we have that

xk+1 = x0 +α0p0 + . . .+αkpk

xk+1 = x0 +γ0r0 + . . .+γkAk rk

xk+1 = x0 + P∗k (A)r0

where P is a k:th order polynomial.

Since xk+1 minimizes

‖x∗− xk+1‖A = φ(x∗)−φ(xk+1)

over the Krylow subspace

x0 + span{r0, . . . ,Ak r0}

P∗k (A) solves
min‖x0 + P∗k (A)r0− x∗‖A
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Rate of Convergence

From this formulation the following inequality can be derived

‖xk+1− x∗‖2A ≤minmax(1 +λi Pk(λi )2)2‖x0− x∗‖2A
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Convergence Theorem I

The following theorem is then proven by the construction of Pk .

Theorem
If A has r distinct eigenvalues, then, the CG method will converge
in at most r steps.
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Convergence Theorem II

The following theorem is given without proof.

Theorem
If A has n eigenvalues λ1 < .. . < λn, then

‖xk+1− x∗‖2A ≤
(
λn−k −λ1
λn−k +λ1

)2
‖x0− x∗‖2A

This implies...
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Convergence

That if we A have m large eigenvalues and n−m small such that
ε > λn−m−λ1, then

‖xm+1− x∗‖A ≈ ε‖x0− x∗‖A.
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Convergence
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Convergence
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Convergence

”It is generally true that if the eigenvalues occur in r distinct
clusters, the CG iterates will approximately solve the problem in
about r steps.”

Another quite conservative bound on convergence is given by

‖xk − x∗‖A ≤ 2
(√

κ(A)−1√
κ(A) + 1

)2

‖x0− x∗‖A.
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Preconditioning

The convergence can be accelerated by the use of preconditioning,
which is a rescaling of the variables on the form

x̂ = Cx

Now we instead solve the system

C−T AC−1x̂ = C−T b

or equivalently minimize

φ̂(x̂) = 1
2 x̂T C−T AC−1x̂ − (C−T b)T x̂

The convergence now depend on the eigenvalues of C−T AC−1

rather than A.
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Preconditioned CG
Given x0 and M, M = CT C .

•
•
• p0 =−y0
• k = 0
• while(rk+1 > ε)
• αk =− rT

k yk
pT

k Apk
• xk+1 = xk +αkpk
• rk+1 = rk +αkApk
• solve Myk+1 = rk+1 for yk+1

• βk+1 = rT
k+1yk+1
rT
k yk

• pk+1 =−yk+1 +βkpk
• k = k + 1
• end while
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Algorithm 2 Preconditioned CG Algorithm
1: r0 = Ax0−b
2: solve My0 = r0 for y0
3: p0 =−y0
4: k = 0
5: while rk+1 > ε do
6: αk =− rT

k yk
pT

k Apk
7: xk+1 = xk +αkpk
8: rk+1 = rk +αkApk
9: solve Myk+1 = rk+1 for yk+1

10: βk+1 = rT
k+1yk+1
rT
k yk

11: pk+1 =−yk+1 +βkpk
12: k = k + 1
13: end while
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Practical Preconditioners

The choice of M is a trade off between the effectiveness of M,
storage and the computational cost of solving My = r .

A common choice is the incomplete cholesky factorization

A = LLT

where an L̃ that is sparser than L is computed, then M = L̃L̃T ,
now L̃ is stored rather than M.

30 / 43



When should CG be used?

The CG method should be used for large problems, otherwise
Gaussian elimination or other factorization algorithms are less
sensitive to rounding errors. The CG method also does not produce
fill in the arrays holding the matrix and has fast convergence.
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Nonlinear CG

Fletcher and Reeves showed how to the CG method to nonlinear
functions by making changes:

• αk is computed using line search.
• The gradient of the nonlinear objective has to be used.
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Algorithm 3 FR
1: Given x0
2: Evaluate f0 = f (x0), ∇f0 =∇f (x0)
3: p0 =−∇f0
4: k = 0
5: while ∇fk 6= 0 do
6: Compute αk and set xk+1 = xk +αkpk .
7: Evaluate ∇fk+1

8: βFR
k+1 = ∇f T

k+1∇fk+1
∇f T

k ∇fk
9: pk+1 =−∇fk+1 +βk+1pk

10: k = k + 1
11: end while

Reduces to the linear CG if f is strongly convex quadratic.
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Nonlinear CG

We have that

∇f T
k pk =−‖∇fk‖2 +βFR

k ∇f T
k pk−1

so if αk is exact, then pk is a descent direction.

The step lengths αk could be chosen to fulfill the strong Wolfe
conditions

f (xk +αkpk)≤ f (xk) + c1αk∇f T
k pk ,

‖∇f (xk +αkpk)T pk‖ ≤ −c2∇f T
k pk .

This ensures a descent direction.

34 / 43



The Polak-Ribiére Method

The Polak-Ribiére Method which alters the βk update accordingly

βPR
k+1 =

∇f T
k+1(∇fk+1−∇fk)
‖∇fk‖2

,

(
βFR

k+1 =
∇f T

k+1∇fk+1

∇f T
k ∇fk

)

has been shown to be more robust and efficient when applied to
general nonlinear functions, it is however the same when f is a
strongly convex quadratic function.

Now the strong Wolfe conditions does not guarantee that pk is a
descent direction. However the modification

β+
k+1 = max(0,βPR

k+1)

fixes this problem.
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The FR-PR

Global convergence can be guaranteed if |β| ≤ |βFR |.

βk =
{
βPR

k , if, |βPR
k | ≤ |βFR

k |
βFR

k , if, |βPR
k | ≥ |βFR

k |

There are some alternative choices for β presented in the book
that are not covered here.
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Modifications

• Quadratic interpolation along the search direction in the line
search gives an exact αk for strongly convex quadratic
functions.

• Restarting by setting βk = 0 after every n iterations to refresh
the algorithm.
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Descent Lemma

Lemma
Suppose that FR is implemented with the strong Wolfe conditions
line search with 0< c2 < 1/2 then the method generates descent
directions pk satisfying

− 1
1− c2

≤ ∇f T
k pk

‖∇fk‖2
≤ 2c2−1

1− c2
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FR Direction

A problem with the FR method is that if cos(θk) is small, a long
sequence of unproductive steps will follow, i.e. pk+1 ≈ pk .

The PR method on the other hand produces a steepest descent
step if cos(θk) is small.

”In general FR should not be implemented w/o a restart strategy”.
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Global Convergence

Theorem
If the level set L = {x |f (x)≤ f (x0)} is bounded and that in some
open neighbourhood N of L, f is Lipschitz continuously
differentiable, then,

liminf ‖∇fk‖= 0.
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Global Convergence

Theorem
Consider the PR method with an ideal line search. There exists a
twice continously differentiable function f and a starting point x0
such that the sequence {‖∇fk‖} is bounded away from zero.
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Numerical Comparison
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Exercises

1. Show that conjugate directions of A> 0 are linearly
independent.

2. Show that ‖x0− x∗‖2A = φ(x0)−φ(x∗).
3. Verify formula (5.7) in the book.
4. Construct matrices with various eigenvalue distributions

(clustered and non-clustered) and apply the CG. Comment on
whether the behavior can be explained from Theorem 5.5.

5. Prove Theorem 5.2
6. Prove Theorem 5.3

The last two are easily found in the book but I think it is a good
exercise to be able to prove these on the whiteboard.
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