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Throughput optimality and overload behavior
of dynamical flow networks under monotone distributed routing

Giacomo Como, Enrico Lovisari, and Ketan Savla

Abstract—A class of distributed routing policies is shown to
be throughput optimal for single-commodity dynamical flow
networks. The latter are modeled as systems of ODEs based
on mass conservation laws on directed graphs with maximum
flow capacities on links and constant external inflow at some
origin nodes. Distributed routing regulates the flow splitting at
each node, as a function of information on the densities of the
local links around the nodes. Under monotonicity properties
of routing, it is proven that, if no cut capacity constraint is
violated by the external inflow, then a globally asymptotically
stable equilibrium exists and the network achieves maximal
throughput. This holds for finite or infinite buffer capacities
for the densities. The overload behavior, if any cut capacity
constraint is violated, is also characterized: there exists a cut
on which the link densities grow linearly in time for infinite
buffer capacities, while they simultaneously reach their respective
buffer capacities, when these are finite. The results rely on a
novel l1-contraction principle for monotone dynamical systems.
Applications to dynamic traffic models and data networks are
also discussed.

I. INTRODUCTION

Rapid advancements in technologies are facilitating real-
time control of infrastructure networks, such as transportation,
in order to achieve the efficient utilization of these networks.
Static network flows, e.g., see [1], have traditionally dominated
the modeling framework for infrastructure networks. However,
in order to realize the true potential of the emerging technolo-
gies, one needs to develop control design within a dynamical
framework. In this paper, we study single-commodity dynami-
cal flow networks, modeled as systems of ordinary differential
equations derived from mass conservation laws on weighted
directed graphs, possibly with cycles, and having constant
external inflow at each of possibly multiple origins. The
weights on the links are their maximum flow capacities. The
flow of particles is regulated from a link to links downstream
to it by deterministic rules, or routing policies, which depend
on the state of the network, and the particles leave the network
when they arrive at any of the possibly multiple destination
nodes. Our first objective is to characterize routing policies that
allow the network to achieve maximum throughput, i.e., the
maximum possible external inflow at the origin nodes under
which the link densities remain within the buffer capacities.
Our secondary objective is the detailed characterization of the
overload behavior of the network, when the the external inflow
at the origin nodes is greater than the maximum throughput.

The first two authors were partially supported by the Swedish Re-
search Council through the Junior Research Grant Information Dy-
namics in Large Scale Networks and the Linnaeus Center LCCC. G.
Como and E. Lovisari are with the Department of Automatic Con-
trol, Lund University, SE-221 00 Lund, Sweden giacomo.como,
enrico.lovisari@control.lth.se. K. Savla is with the Sonny
Astani Department of Civil and Environmental Engineering, University of
Southern California, Los Angeles, CA 90089-2531 ksavla@usc.edu

We focus on routing policies that are distributed: the routing
at each link depends only on the local information consisting
of density of itself and the links downstream to it. We propose
a novel class of distributed routing policies, called monotone
distributed routing policies, that are characterized by general
monotonicity assumptions on the sensitivity of their action
with respect to local information. We then establish throughput
optimality of this routing policy, and give a detailed charac-
terization of the overload behavior of the network operating
under monotone distributed routing policies. Our main result
is in the form of a dichotomy. If the the external inflow at the
origin nodes does not violate any cut capacity constraints, then
there exists a globally asymptotically stable equilibrium, and
thus the network achieves maximal throughput. These results
hold true for finite or infinite link-wise buffer capacities for the
densities. When the external inflow at the origin nodes violates
some cut capacity constraint, then the resulting overload
behavior of the network exhibits the following feature: if the
buffer capacities are infinite, then there exists a constraint-
violating cut, independent of the initial condition, such that
the particle densities on the origin side of the cut grow at
most linearly in time; if the buffer capacities are finite, then
there exists a constraint-violating cut, in general dependent
on the initial condition, such that the links constituting the cut
hit their buffer capacities simultaneously. The last case implies
that a link reaches its buffer capacity only at the very moment
at which it is unavoidable. We emphasize again that such an
efficient utilization of the network is induced by a distributed
routing policy relying only on local information.

The results presented in this paper rely on the ability of
the routing policy to implicitly propagate congestion effects
upstream, allowing the flow to be routed through the less
congested parts of the network in a timely fashion. While
algorithms for distributed computation of maximum network
flow have long been known (e.g., see [2]) the novelty of
our contribution consists in proving throughput optimality for
flow dynamics naturally arising in physical networks. The
proofs are based on a novel l1 contraction principle for mono-
tone conservation laws (Lemma 1), possibly of independent
interest, and on a complete characterization of all possible
combinations of limiting (as densities approach the buffer
capacities) states of all the links around every node (Lemma 3).

The distributed routing architecture of this paper and the
ensuing result on throughput optimality are reminiscent of
the backpressure routing algorithm for data networks, first
proposed in [3], and the maxweight-α policies for switched
networks, e.g., see [4], [5]. Indeed, we elaborate on this con-
nection in this paper, showing that, by defining an appropriate
dual graph, we can transform our setup to fit within the setup
of [3], [4], [5]. Moreover, modulo the discrete-time discrete-
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space setting of [3], [4], [5], we point out that the backpres-
sure and the maxweight-α policies satisfy the properties of
monotone distributed routing policies proposed in this paper.
This allows us to possibly extend the throughput optimality
to the finite buffer capacity case. This throughput optimality
for the finite buffer capacity under distributed routing has
to be contrasted with existing work in [6], [7], where either
throughput optimality is obtained under a centralized routing
policy or there is a trade-off between throughput and buffer
capacity under distributed routing policies. The dynamical
formulation of this paper is also reminiscent of models of
dynamic traffic flow over networks, e.g., see [8], [9], [10].
However, the key difference is that, unlike these existing
works, routing policies in our framework depend on the (local)
state of the network. We also mention the utility of our
framework in analyzing a dynamic traffic model that is related
to the well-known cell transmission model for traffic flow [11].

It is also imperative to highlight the difference between this
paper and our previous work [12], [13], where we formulated
the dynamical flow network framework when the routing
policies can only control the splitting of incoming flow at a
node among outgoing links. We proposed a class of locally
responsive policies and established conditions for existence
and stability of equilibrium when the buffer capacities are
infinite for directed acyclic network topologies. We also stud-
ied resilience properties of the network under these routing
policies and showed that the margin of resilience under locally
responsive policies is maximal under the distributed architec-
ture where the routing policies can not control the inflow at
the nodes. In this paper, we extend and modify the framework
from [12], [13] to allow for finite buffer capacities and cyclic
network topologies, and also allow the routing policies to
completely control (subject to capacity constraints) the flow
transfer between links, i.e., the routing policies can also control
the inflow arriving at nodes. Under this framework, we are
able to establish global asymptotic stability of equilibrium,
when the links have infinite or finite buffer capacities and
for cyclic network topologies. Moreover, unlike [12], [13],
we give a detailed characterization of the overload behavior
of the network. Additionally, although we do not address
resilience explicitly in this paper, we remark that the margin
of resilience under distributed monotone routing policies is the
maximum of all (not necessarily distributed) routing policies
for a dynamical flow network.

The paper is organized as follows: in section II, we propose
a general model for dynamical flow in networks, formulate the
problem, and explain the connections between our framework
and dynamic traffic models as well as routing in data networks.
In section III, we state our main results. Section IV is devoted
to the proofs of the main results. Finally, section V states
conclusions and possible directions for future research.

We conclude this section by introducing some notational
conventions to be used throughout the paper. Let R be the set
of real numbers and R+ := {x ∈ R : x ≥ 0} be the set of
nonnegative real numbers. Let A and B be finite sets. Then
|A| denotes the cardinality of A, RA (respectively, RA+) the
space of real-valued (nonnegative-real-valued) vectors whose
components are indexed by elements of A, and RA×B the

space of matrices whose real entries are indexed by pairs in
A× B. If B ⊆ A and x ∈ RA, then xB ∈ RB stands for the
projection of x on B. The transpose of a matrix M ∈ RA×B is
denoted by M ′ ∈ RB×A, while 1 stands for an all-one vector
of suitable dimension. The natural partial ordering of RA will
be denoted by x � y for two vectors x, y ∈ RA such that
xa ≤ ya for all a ∈ A.
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Figure 1. Graphical depiction of some key notations. In the right, links
comprising ∂−U and ∂+

U are shown by dashed and dotted arrows, respectively;
links comprising E+

U \ ∂+
U are shown in solid arrows.

A weighted directed multi-graph is a triple G = (V, E , C),
where V and E stand for the node set and the link set,
respectively, and are both finite. They are endowed with three
vectors: σ, τ ∈ VE , and C ∈ (0,+∞]E . For every e ∈ E ,
σe and τe stand for the tail and head nodes respectively of
link e and Ce for the positive (and possibly infinite) flow
capacity of link e. We shall always assume that there are no
self-loops, i.e., τe 6= σe,∀e ∈ E . On the other hand, we allow
for parallel links. For a node v ∈ V , let E+v := {e : σe = v}
and E−v := {e : τe = v}. For a link e ∈ E , let E+e := E+τe
be the set of links downstream to e and E−e := E−σe be the
set of links upstream to e. Put Ee := {e} ∪ E+e . For a vector
x ∈ RE , we shall denote by xe := {xj : j ∈ Ee} its projection
on Ee. For a node subset U ⊆ V , define E+U := ∪u∈UE+u and
E−U := ∪u∈UE−u . Let ∂+U := {e ∈ E : σe ∈ U , τe /∈ U} and
∂−U := {e ∈ E : σe ∈ V \ U , τe ∈ U} be the set of links from
U to V \ U and from V \ U to U , respectively. See Figure 1
for an illustration of some of these notations.

II. PROBLEM STATEMENT

A. Static single-commodity network flows and the max-flow
min-cut theorem

We shall identify a network with a weighted directed multi-
graph G = (V, E , C) and denote its set of destinations by
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Figure 2. An example of multi-destination network with cycles and parallel
edges. The links added in the augmented graph Gλ are shown in dotted line.
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D := {v ∈ V : E+v = ∅} and the set of its feasible flows by

F∗ :=

{
x ∈

∏
e∈E

[0, Ce] :
∑
e∈E+v

xe−
∑
e∈E−v

xe ≥ 0 , ∀v ∈ V\D
}
.

For f∗ ∈ F∗, the vector λ(f∗) ∈ RV\D+ with components
λv(f

∗) :=
∑
e∈E+v f

∗
e −

∑
e∈E−v f

∗
e will be referred to as the

value of f∗.1 For λ ∈ RV\D+ , we introduce the augmented
network Gλ = (Vλ, Eλ, C) (see Figure 2) with node and link
sets Vλ = V∪{w} and Eλ := E∪Oλ∪E+D , respectively, where
Oλ := {ev :=(w, v) : λv > 0}, E+D := {ed :=(d,w) : d ∈ D},
and Cev = Ced = +∞ for all v ∈ V \ D and d ∈ D. The
extra node w may be thought of as representing an external
world, playing the double role of source of the flow for nodes
with positive value of flow, and sink of the flow exiting from
the destination nodes, respectively. We shall refer to links in
Oλ as origin links and adopt the notation Eev = E+ev := E+v ,
for all v ∈ V \ D.

Throughout this paper, we shall make the following assump-
tions on the network topology.

Assumption 1. The set of destinations D is nonempty, and
the augmented network Gλ is strongly connected.

Assumption 1 is equivalent to the properties that, in G, from
every v ∈ V \D there exists at least one directed path to some
destination node d ∈ D, and there exists at least one directed
path from some u with λu > 0 to every v ∈ V .

A cut is a non-empty subset of non-destination nodes
U ⊆ V \ D. For a cut U , we shall denote its capacity by
CU :=

∑
e∈∂+
U
Ce and put λU :=

∑
v∈U λv . The definition

of Oλ implies that, under Assumption 1, there is no subset
A ⊆ V that is unreachable in Gλ, i.e., it is not possible in
G to have ∂−A = ∅, and λA = 0. Cut capacities determine
potential bottlenecks for network flows. This is formalized in
the celebrated max-flow min-cut theorem [14], [15], which
states that, for G = (V, E , C) satisfying Assumption 1, it holds

max
f∗

max
U
{λU (f∗)− CU} = 0 , (1)

where the maximizations run over all feasible flows f∗ ∈ F∗,
and cuts U . Consider the special case when we restrict feasible
f∗ ∈ F∗ such that λo(f∗) > 0 only for a single node
o ∈ V \D. In this case, one has λU = λo whenever o ∈ U , so
that (1) reduces to the better-known formulation of the max-
flow min-cut theorem: maxf∗ λo(f

∗) = minU CU , where
the maximization runs over the feasible flows f∗ such that
λv(f

∗) = 0,∀v ∈ V \ (D∪{o}). For given G = (V, E , C) and
λ, (1) gives a necessary and sufficient condition for the exis-
tence of a feasible flow with value λ, namely,

∑
v∈U λv ≤ CU

for every cut U .

B. Dynamical flow networks and monotone distributed routing
We now introduce dynamics over a network G = (V, E , C).

We associate, to each link e ∈ E , a positive, and possibly in-
finite, buffer capacity Be ∈ (0,+∞]. Let R :=

∏
e∈E [0, Be).

1The value of flow at a node is the same as the usual notion of external
inflow at that node. In this paper, we use this terminology because of the
necessity to interpret nodes with positive external inflow, i.e., origin nodes,
as links.

For e ∈ E∪Oλ, let ρe := {Bj : j ∈ Ee},Re :=
∏
j∈Ee [0, Bj),

and R◦e :=
∏
j∈Ee [0, Bj ]. Let R•e be defined as R•e = R◦e if

e ∈ E−D , and R•e = R◦e \ {ρe} if e ∈ (E ∪ Oλ) \ E−D . Finally,
let the set of feasible flows on the outgoing links of e under
capacity constraint be defined as Fe := [0, Ce] if e ∈ E−D and
Fe := {x ∈ RE

+
e

+ :
∑
j∈E+e xj ≤ Ce} if e ∈ (E ∪ Oλ) \ E−D .

We shall consider a dynamical system with state vector
ρ(t) ∈ R whose e-th component, ρe(t) ∈ [0, Be), represents
the time-varying density on link e ∈ E . Dynamics is driven
by conservation of mass and by a distributed routing policy,
which determines how the outflow from each link depends on
the current density and how it gets split among its following
links. We shall loosely use the phrase a set of links getting
congested to refer to the fact that the densities on those links
approach their respective buffer capacities.

Definition 1. Let G = (V, E , C) be a network satisfying
Assumption 1. A distributed routing policy f with value
λ ∈ RV\D+ and buffer capacities {Be ∈ (0,+∞] : e ∈ E}
is a family of Lipschitz-continuous maps

fe : R•e → Fe , e ∈ E ∪ Oλ , (2)

such that

fe(ρe) =

{
{fe→j(ρe)}j∈E+e if e /∈ E−D
fe→ed(ρe) if e ∈ E−d , d ∈ D

foute (ρe) :=
∑
j∈E+e

fe→j(ρ
e)

satisfy

foutev (ρev ) = λv , ρev ∈ R•ev , v ∈ V \ D , (3)

and, for all e ∈ E and ρe ∈ R•e ,

ρe = 0 =⇒ foute (ρe) = 0 , (4)

ρe = Be =⇒ foute (ρe) = Ce , (5)

and, for all e ∈ E ∪ Oλ, k ∈ E+e , ρe ∈ R•e
ρk = Bk =⇒ fe→k(ρe) = 0 . (6)

The functions fe→j(ρe) specify both how the outflow foute

depends on the local density and how it gets split into the
outgoing links of τe. Notice that the domain of fe isR•e , thus if
e 6∈ E−D it is not defined at the point ρe = {Bj : j ∈ Ee}, where
(6) and (5) cannot hold simultaneously. On the other hand, fe

is well defined when the density is strictly less than its buffer
capacity at least on one link in Ee. Also notice that, because of
the structure imposed by (2), the functions {fe→j(ρe)} depend
on the local density only, and in particular for e ∈ E \ E−D the
outflow foute (ρe) depends only the density on link e itself and
the links downstream to it, and if e ∈ E−D then foute (ρe) only
depends on ρe. Similarly, the inflow

f ine (ρ) := feσe→e(ρ
eσe ) +

∑
j∈E−e

fj→e(ρ
j)

of a link e ∈ E depends on the density on all the links in
E incoming to or outgoing from σe (including link e itself).
Also notice that the flow fev→j from ev to a link j ∈ E+v
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depends on the densities of the links in E+v only, and that by
(3) it holds foutev (ρev ) ≡ λv , i.e., the outflow from every link
ev is constantly equal to λv . Finally, (4) and (6) imply that
foute (ρe) = 0 if ρe = 0, i.e., there is no outflow from a link e
which is empty, or if ρj = Bj ,∀j ∈ E+e , i.e., if the densities
on all the links outgoing from τe are at their buffer capacities.

For ρ ∈ R, let F (ρ) ∈ R(E∪Oλ)×(E∪E+D)
+ be defined as

Fej(ρ) =


fe→j(ρ

e) if j ∈ E+e ,
fe→ed(ρe) if e ∈ E−d , d ∈ D, j = ed ,

0 otherwise.

Imposing mass conservation ρ̇e = f ine − foute on every link
e ∈ E leads one to consider the dynamical system

ρ̇ = (F (ρ)′1)E − (F (ρ)1)E = Φ(ρ) . (7)

We shall refer to it as the dynamical flow network. Observe
that, thanks to the Lipschitzianity assumption on the routing
policies, standard analytical results (Picard’s Existence Theo-
rem) imply, for every initial density ρ(0) = ρ◦ ∈ R, existence
and uniqueness of a solution {ρ(t) : 0 < t < κ(ρ◦)} of (7)
up to κ(ρ◦) := sup{t ≥ 0 : ρ(t) ∈ R, ρ(0) = ρ◦} , i.e., as
long as ρ(t) stays within R. Moreover, (4) implies invariance
of the nonnegative orthant, i.e., ρ(t) � 0 for all ρ◦ ∈ R and
t ≤ κ(ρ◦). Hence, κ(ρ◦) coincides with the first time the
solution hits the buffer capacity on some link.

Remark 1. In this paper, we study the behavior of dynamical
flow networks only for t ∈ [0, κ(ρ0)). Some initial work on
the complex behavior of dynamical flow networks, such as
cascading failures, for t > κ(ρ0) is reported in our companion
papers [16], [17].

Remark 2. In our previous work [12], [13], we formulated
the dynamical flow network framework for acyclic network
topologies and where the links have infinite buffer capacities.
We considered routing policies under which the outflow from a
link j is independent of the densities on the links downstream
from link j. This, combined with the fact that all the links have
infinite buffer capacities, implied that there is no backward
propagation of congestion effects. In this paper, we extend
and modify the framework from [12], [13] to allow for finite
buffer capacities and cyclic network topologies, and also allow
the routing policies to completely control (subject to capacity
constraints) the flow transfer between links, i.e., the routing
policies can also control the inflow arriving at nodes. This
allows for backward propagation of congestion effects, and
hence yields stronger results in comparison to [12], [13].

We shall be interested in a special class of distributed
routing policies, as per the following.

Definition 2. A distributed routing policy f is monotone if,
for all e ∈ E ∪ Oλ, ρe ∈ R•e , the functions {fe} satisfy

∂fe→j
∂ρk

(ρe) ≥ 0, ∀ j ∈ E+e , k ∈ Ee \ {j} , (8)

∂

∂ρk
foute (ρe) ≤ 0, ∀ k ∈ E+e , (9)

for almost every ρe ∈ Re. A monotone distributed policy is
strongly monotone if, for all e ∈ E ∪ Oλ, and almost every
ρe ∈ Re, the inequalities in (8) and (9) are strict.

Example 1. For every link e ∈ E , let ϕe : [0, Be]→ [0,+∞]
be Lispchitz continuous, strictly increasing, and such that
ϕe(0) = 0 and ϕe(Be) = +∞. Example of such a ϕe is
ϕe(ρe) = βeρe/(Be − ρe) if Be < +∞, and ϕe(ρe) = βeρe
if Be = +∞, for some βe > 0, e ∈ E . Define

fe→j(ρ
e) =


Ce (1− γe) γj/Z if e ∈ E \ E−D ,
Ce (1− γe) if e ∈ E−d , d ∈ D, j = ed ,

λvγj/Z if e = ev ∈ Oλ ,

where γi := exp(−ϕi(ρi)) and Z :=
∑
k∈Ee γk. Then

{fe}e∈E∪Oλ is a strongly monotone distributed routing policy.

Notice that, under monotone distributed routing policies, (7)
defines a cooperative dynamical system in the sense of Hirsch
[18], [19], i.e,

∂Φe
∂ρk

(ρ) ≥ 0, ∀e, k ∈ E , e 6= k . (10)

Then, Kamke’s theorem [19, Theorem 1.2], [20] implies that
(7) is a monotone system [18], i.e.,

ρ(0) � ρ̃(0) ⇒ ρ(t) � ρ̃(t) , ∀t ∈ [0, κ(ρ̃(0))) . (11)

Also, observe that monotonicity implies that κ(ρ◦) ≤ κ(0) for
all ρ◦ ∈ R.

We conclude this section by showing how our framework
of dynamical flow networks allows analysis of dynamic traffic
models, as well as distributed routing in data networks.

C. Dynamic Traffic Models

Our framework allows to analyze a dynamic traffic model
closely related to the well known cell transmission model [11],
[8]. We explain this for simple line networks. For n ≥ 1,
let V = {vi : 0 ≤ i ≤ n}, E := {1, 2, . . . , n}, and the
indices of the nodes and links be such that τe = σe+1 = e,
for 1 ≤ e ≤ n. In the cell transmission model terminology,
link e represents a cell with homogeneous traffic density within
it. For 1 ≤ e ≤ n, let Be, Ce ∈ (0,+∞), and ρe ∈ (0, Be).
Let ψe : [0, Be]→ [0, Ce] be a Lipschitz continuous function
such that ψe(0) = ψe(Be) = 0, ψe(ρ̄e) = Ce, and ψe is
nondecreasing in [0, ρe] and nonincreasing in [ρe, Be]. Define

fe→e+1(ρe) := min{de(ρe), se+1(ρe+1)} , 1 ≤ e < n ,

fn→ed(ρn) := dn(ρn),
(12)

where

de(x) = ψe(x), se(x) = Ce if x ∈ [0, ρ̄e]
de(x) = Ce, se(x) = ψe(x) if x ∈ [ρ̄e, Be] .

In the transportation literature, ψe is referred to as the funda-
mental diagram, e.g., see [8], [10], while de and se are referred
to as the supply and the demand functions respectively, of link
e. It is easily seen that (12) satisfies (4), (6), as well as (8)
and (9). (12) satisfies (5) under special conditions as follows.
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Consider the case when all the cells are identical in the
sense that Be = B, ρ̄e = ρ̄ and Ce = C for all e ∈ E ,
for some C > 0, B > 0 and ρ̄ ∈ (0, B). Let the initial
condition be such that ρ◦ ∈ Πe∈E [0, ρ̄e) ⊂ R. (12) implies that
ρ̇n = fn−1→n(ρn−1)−fn→ed(ρn). Since fn−1→n(ρn−1) ≤ C
for all ρn−1, and dn(ρ̄) = C, this implies that, as ρn → ρ̄,
ρ̇n is non-positive. Hence, ρn(t) ∈ [0, ρ̄] for all t ≥ 0.
This implies that sn(ρn(t)) = C for all t ≥ 0. Therefore,
fn−1→n(ρn−1) = dn−1(ρn−1). By performing backward
induction on the indices of the cells, one can establish that
Πe∈E [0, ρ̄e) is positively invariant, and hence fe→e+1(ρe) =
de(ρe) for all e ∈ {1, . . . , n − 1}, and fn→ed(ρn) = dn(ρn).
(12) then satisfies (5) by interpreting ρ̄ as Be in (5). The
invariance of Πe∈E [0, ρ̄e) also implies that (6) is irrelevant
when ρ◦ ∈ Πe∈E [0, ρ̄e). Using our results from Section III
and IV, one can show that there exists a unique equilibrium
ρ∗ in Πe∈E [0, ρ̄e) which is asymptotically stable for all initial
conditions ρ◦ ∈ Πe∈E [0, ρ̄e) – this can be extended to global
asymptotic stability by ρ̄→ B.

D. Distributed Routing in Data Networks

It is possible to extend our framework to include well-
known distributed routing algorithms in data networks, e.g.,
see [3], [4], [5]. We now explain the procedure to fit our
setup within the framework of [3]. We define a new network
G̃ = (Ṽ, Ẽ , C̃) based on the given G = (V, E , C) as follows.
For every e ∈ E , assign a node ṽ(e) in Ṽ . For every pair
of links e and j in E such that τe = σj , define a link in
G̃ from node ṽ(e) to node ṽ(j). For every ẽ ∈ Ẽ , C̃ẽ is
defined to be equal to Ce for e ∈ E such that ṽ(e) = σẽ.
Under this definition, the capacities of all links outgoing
from the same node are equal in G̃. Therefore, in order to
impose constraints on the simultaneous utilization of the links
outgoing from a common node in Ṽ , we define the constraint
set Sṽ := {x ∈ RE

+
ê

+ :
∑
j∈E+ê

xj ≤ 1}, where ê ∈ Ẽ is
such that τê = ṽ. The distributed routing policy at node ṽ as
per Definition 1 then corresponds to choosing an activation
vector from the constraint set and multiplying it by C̃ẽ for ẽ
such that σẽ = ṽ. The back pressure routing policy proposed
in [3] relies on the same local information as the distributed
routing policy in the context of G̃. However, the constraint set
for the back pressure routing policy is different than Sṽ , and in
general is equal to the set of all possible binary vectors defined
over the links Ẽ . When restricted to local information around
a node, it is equal to the set of all possible binary vectors over
the set of outgoing links from the node. While such a general
notion of activation vectors allows for modeling richer class of
constraints, the constraint set when restricted to Sṽ is simply
the union of the vertices of the corresponding simplex and 0.
In fact, recalling Example 1 with Be = +∞ as is the case in
[3], in the limit as β → ∞, we get that: if ϕe(ρe) ≥ ϕj(ρj)
for all j ∈ E+e then fe→j(ρ

e) → 0+ for all j ∈ E+e ;
otherwise fe→j(ρe) → Ce1{ρe>0}Gj(ρ

e) where Gj(ρe) = 1
if ϕj(ρj) > ϕk(ρk) for all k ∈ E+e \ {j} and zero otherwise,
with the ties resolved arbitrarily. With ϕe(x) = x for all e ∈ E ,
this gives us the back-pressure policy, and with ϕe(x) = xα,
α > 0, for all e ∈ E , this gives us the maxweight-α policy [5].

Therefore, in our continuous time and continuous state setup,
the monotone distributed routing policy generalizes existing
well-known distributed routing policies. Moreover, using our
results from Section III, we can establish throughput optimality
under finite buffer capacities using distributed routing.

III. MAIN RESULTS

In this section, we present the main contributions of the
paper. The first result is Theorem 1, which states a dichotomy.
If the inflow is less than the capacity of every cut, then there
exists a globally asymptotically stable equilibrium density
ρ∗ ∈ R. Otherwise, the network is divided in two parts by
a cut S, such that the densities on the links in E+S approach
their buffer capacities simultaneously.

Theorem 1. Let G = (V, E , C) be a network satisfying
Assumption 1, and f be a monotone distributed routing policy
with value λ. For ρ◦ ∈ R, let {ρ(t) : 0 ≤ t < κ(ρ◦)} be
the solution of the dynamical flow network (7) with initial
condition ρ(0) = ρ◦. Then,

(i) if maxU (λU − CU ) < 0, then κ(ρ◦) = +∞ for every
initial density ρ◦ ∈ R; moreover, if the distributed
routing policy is strongly monotone, then there exists an
equilibrium density ρ∗ ∈ R such that limt→∞ ρ(t) = ρ∗

for every initial density vector ρ◦ ∈ R.
(ii) if maxU {λU − CU} > 0, or if maxU {λU − CU} = 0

and the routing policy is strongly monotone, then, for
every initial density ρ◦ ∈ R, there exists a cut S such
that

lim
t→κ(ρ◦)

ρe(t) = Be, ∀e ∈ E+S . (13)

Remark 3. 1) Part i) of Theorem 1 strengthens results on sta-
bility of dynamical flow networks from our previous work [12],
[13] as follows. First, in [12], [13], we considered acyclic
network topologies and infinite buffer capacities on links,
whereas Theorem 1 is valid for cyclic network topologies, and
infinite as well as finite buffer capacities. And, second, the
routing policies in [12], [13] do not give strong guarantees
for existence or stability of equilibria, whereas (strongly)
monotone routing policies guarantee existence and (global)
asymptotic stability of equilibria when maxU (λU − CU ) < 0.
At an equilibrium ρ∗, the throughput of the dynamical network
is
∑
d∈D f

out
ed

(ρ∗) =
∑
v∈V\D λv . Therefore, in conjunction

with the max-flow min-cut theorem, part i) of Theorem 1 im-
plies that monotone distributed routing policies are throughput
optimal. It is important to emphasize that this throughput
optimality is achieved under a ‘distributed’ routing policy. The
stronger results in this paper are possible due to backward
propagation of congestion effects facilitated by a routing
policy architecture under which the outflow from a link j
depends on the density of links downstream from j.

2) The throughput optimality result can also be interpreted
from the point of view of resilience. For simplicity, consider
a network having only one node o ∈ V such that λo > 0. If
one defines, as in [12], [13], the margin of resilience as the
minimum sum of link-wise flow capacity losses under which
the throughput of the network is asymptotically strictly less
than λo, then Theorem 1 implies that, under the monotone
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distributed routing policy, the margin of resilience is equal
to the network residual capacity mincut U CU − λo. A simple
application of the mass balance equation to the min-cut also
implies that the network residual capacity is indeed the maxi-
mum possible margin of resilience under any (not necessarily
distributed) routing policy. The margin of resilience under
the routing policies in [12], [13] is equal to minimum node
residual capacity, which is less than or equal to the network
residual capacity. This illustrates that, by allowing backward
propagation of congestion effects, monotone routing policies
give the maximum possible margin of resilience, even by using
only local information.

A. Overload behavior with finite buffer capacities

The following proposition gives a more detailed charac-
terization of what happens when the capacity constraints are
violated in the case of finite buffer capacities.

Proposition 1. Let G = (V, E , C) be a network satisfying
Assumption 1, and f be a monotone distributed routing policy
with value λ and finite buffer capacities Be ∈ (0,+∞), e ∈ E .
Assume that maxU (λU − CU ) > 0 . Then, for every ρ◦ ∈ R,

κ(ρ◦) ≤ min
U :λU>CU

∑
e∈E+U

(Be − ρ◦e)
λU − CU

, (14)

and there exists a cut S, possibly depending on ρ◦, such that
λS > CS and

ρe(t) < Be , ∀e ∈ E , 0 ≤ t < κ(ρ◦) ,

lim
t→κ(ρ◦)

ρe(t) = Be, ∀e ∈ E+S , (15)

where {ρ(t) : 0 ≤ t < κ(ρ◦)} is the solution of the dynamical
flow network (7) with initial condition ρ(0) = ρ◦.

Proposition 1 states that, if the buffer capacities are finite
and some cut constraints are violated, then, for every initial
density ρ◦, all the links in E+S , where S is a cut such that λS >
CS , will reach their buffer capacities simultaneously at time
κ(ρ◦). It is important to stress that, when there are multiple
cuts violating the capacity constraint, then the cut S in the
proposition may depend on the initial condition ρ◦. Observe
that dependence on the initial density ρ◦ is also evident in (14).
While it may be tempting to identify the cut U minimizing
the right hand side of (14) with the cut S of (15), it is worth
stressing that (14) is merely an upper bound on κ(ρ◦). In fact,
in contrast to the right-hand side of (14), the cut S of (15)
may depend on finer details of the routing policy, rather than
just its value and buffer capacities.

Remark 4. It is interesting to compare Proposition 1 with
the framework of our previous work [16], where we consider
links with finite buffer capacities, but the the routing policies
are such that the outflow from a link j is independent of
densities on links downstream from j. As a consequence, in
the framework of [16], even if CU > λU for every cut U , there
might be a link e on which the density hits the buffer capacity
which, in turn, could trigger a backward cascade. Part i) of
Theorem 1 implies that this cannot happen under the routing
policies presented in this paper if CU > λU for every cut U .

Moreover, as part ii) of Theorem 1 and Proposition 1 imply, the
whole cut S fills simultaneously when maxU {λU − CU} > 0,
and hence the network collapse is abrupt, and does not involve
any cascading phenomena.

B. Overload behavior with infinite buffer capacities

The following result, similar to Proposition 1, characterizes
the way congestion occurs in case of infinite buffer capacities.

Proposition 2. Let G = (V, E , C) be a network satisfying
Assumption 1, and f be a strongly monotone distributed
routing policy with value λ and buffer capacities Be = +∞,
for e ∈ E . Assume that maxU (λU − CU ) ≥ 0. Let

U∗ :=
⋃
U∈M

U , M := argmax
U

(λU − CU ) . (16)

Then, for every ρ◦ ∈ R, the solution ρ(t) of the dynamical
flow network (7) with initial condition ρ(0) = ρ◦ ∈ R is such
that κ(ρ◦) = +∞ and

lim
t→+∞

ρe(t) = +∞ , ∀e ∈ E+U∗ ,

lim
t→+∞

1

t

∑
e∈E+U∗

ρe(t) = λU∗ − CU∗ . (17)

Moreover, there exist ρ∗e ∈ [0,+∞), e ∈ E \ (E+U∗ ∪∂−U∗), such
that

lim
t→+∞

ρe(t) = ρ∗e , ∀e ∈ E \ (E+U∗ ∪ ∂−U∗) , (18)

for every initial density ρ◦ ∈ R.

Proposition 2 implies that, when the buffer capacities on all
the links are infinite, then there exists a cut U∗, independent
of initial condition ρ◦ such that, asymptotically, all the links
in E+U∗ get congested. This is to be contrasted with the finite
buffer capacity case, which has a similar result, however, the
cut there depends on the initial condition ρ◦. Proposition 2
also implies that the total density in E+U∗ grows linearly in
time, and that the densities on the links which do not get
congested approach a unique limit point. A comparison is due
with [5], which studies an acyclic queuing network with set of
queues Q employing max-weight algorithm. It is shown that
if q(t) ∈ RQ+ is the vector of queue lengths, then q(t)/t→ q̂
where q̂ ∈ RQ+ is the solution to an optimization problem
related to the parameters of the max-weight algorithm.

IV. PROOFS

To prove our results, we first provide a novel l1 contraction
principle for monotone dynamical systems under conservation
laws. We then characterize the behavior of dynamical flow
networks under the assumption that the vector of densities
converges to a limit point. This will then help us to prove the
main results.
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A. An l1-contraction principle for monotone conservation
laws

We state and prove an l1-contraction principle for a class of
monotone dynamical systems under conservation laws, which
includes system (7) under monotone distributed routing policy.
As such, it will be instrumental in proving existence and
stability of equilibria for dynamical flow networks.

Lemma 1. For a non-empty closed hyper–rectangle Ω ⊆ Rn,
let g : Ω→ Rn be Lipschitz and such that

∂

∂xj
gi(x) ≥ 0 , ∀ i 6= j ∈ {1, . . . , n} (19)

∑
1≤i≤n

∂

∂xj
gi(x) ≤ 0 , ∀ j ∈ {1, . . . , n} (20)

for almost every x ∈ Ω. Then∑
1≤i≤n

sgn (xi − yi) (gi(x)− gi(y)) ≤ 0, ∀x, y ∈ Ω .

(21)
Moreover, if
(i) there exists some j ∈ {1, . . . , n} such that the inequality

(20) is strict for almost all x ∈ Ω,
then inequality (21) is strict for all x, y ∈ Ω such that xj 6= yj .

If
(ii) for every proper subset K ⊆ {1, . . . , n}, there exist i ∈
K, and j ∈ {1, . . . , n} \ K such that inequality (19) is
strict for almost all x ∈ Ω,

then inequality (21) is strict for all x 6= y such that x ⊀ y
and y ⊀ x.

Finally, if (i) and (ii) hold true, then inequality (21) is strict
for all x, y ∈ Ω such that x 6= y.

Proof. First note that, according to Rademacher’s theorem,
e.g., see [21], Lipschitz continuity implies differentiability al-
most everywhere. For A ⊆ {1, . . . , n}, put Ac := {1, . . . , n}\
A, and gA(z) :=

∑
a∈A ga(z). Fix some x, y ∈ Ω, and put

I = {i : xi > yi}, J = {i : xi < yi}. Let ξ ∈ Ω
be such that ξi = xi for i ∈ I and ξi = yi for i ∈ Ic.
Consider the segments γI from y to ξ and γJ from x to ξ.
For A ⊆ {1, . . . , n}, and B ∈ {I,J }, define the path integral

ΓAB :=

∫
γB

∇gA(z) · dz .

Then, (20) implies that

gI(x)− gI(y) = ΓII − ΓIJ ≤ −ΓI
c

I − ΓIJ , (22)

gJ (x)− gJ (y) = ΓJI − ΓJJ ≥ ΓJI + ΓJ
c

J . (23)

Combining the above gives∑
i

si (gi(x)− gi(y)) = gI(x)− gI(y)− gJ (x) + gJ (y)

≤ −ΓI
c

I − ΓIJ − ΓJI − ΓJ
c

J ,

with si := sgn (xi − yi). Observe that, by (19), A ∩ B = ∅
implies ΓAB ≥ 0 , so that (21) follows immediately.

Notice that, if there exists some j ∈ {1, . . . , n} such that
inequality (20) is strict for almost every x ∈ Ω, and xj > yj

(xj < yj), then (22) (respectively, (23)) is a strict inequality,
hence so is (21), thus proving the second claim.

Now, assume that x 6= y, x ⊀ y and y ⊀ x. Then, it
follows from the definition of the sets I and J that the sets
Ic and J c are non-empty. We also have that Ic ∩ J c =
{i ∈ {1, . . . , n} | xi = yi}. Since x 6= y, this implies that
Ic ∩ J c 6= {1, . . . , n}. Therefore, at least one of Ic and J c
is a proper subset of {1, . . . , n}. If say Ic is a proper subset,
then the condition in (ii) in the statement of the lemma implies
that (19) is strict for some i ∈ I and j ∈ Ic. Therefore,
Γ(Ic, I) > 0, and the third claim follows.

Finally, the last claim is implied by the previous two: if x ≺
y or y ≺ x, then trivially xj 6= yj for all j ∈ {1, . . . , n} and
the strict inequality in (21) follows from the claim associated
with condition (i); if x ⊀ y and y ⊀ x, then the strict inequality
in (21) follows from the claim associated with condition (ii).

Lemma 1 implies the following l1-contraction principle for
dynamic networks with monotone distributed routing policies.

Lemma 2. Let G = (V, E , C) be a network satisfying
Assumption 1, f be a monotone distributed routing policy, and
ρ̂◦, ρ̃◦ ∈ R. Let ρ̂(t) and ρ̃(t) be the solutions to the system (7)
with initial conditions ρ̂(0) = ρ̂◦, and ρ̃(0) = ρ̃◦, respectively.
Define ϕ(t) := ||ρ̂(t)−ρ̃(t)||1 for 0 ≤ t < min{κ(ρ̂◦), κ(ρ̃◦)}.
Then ϕ̇(t) ≤ 0. Moreover, if the routing policy is strongly
monotone, then ϕ̇(t) = 0 if and only if ρ̂(t) = ρ̃(t).

Proof. It is easily verified that the properties of monotone
distributed routing policies (8) and (9) imply (19) and (20)
for the function Φ(·). Therefore, the first claim in Lemma 1
gives

ϕ̇(t) =
∑
e

sgn (ρ̂e(t)− ρ̃e(t)) (Φe(ρ̂(t))− Φe(ρ̃(t))) ≤ 0

if the distributed routing policy is monotone.
We now show that conditions (i) and (ii) in Lemma 1

follow from the strong monotonicity property of the distributed
routing policies. To that effect, for any j ∈ E−D , we have that

∂

∂ρj

∑
i∈E

Φi(ρ) =
∂

∂ρj

( ∑
v∈V\D

λv −
∑
i∈E−D

fouti (ρi)

)

= − ∂

∂ρj
foutj (ρj) < 0,

where the strict inequality follows from the strict version of
(8) characterizing strongly monotone routing policies. This
establishes condition (i) in Lemma 1. In order to connect
condition (ii) in Lemma 1, consider any proper subset K ( E .
It is easily seen that there exist i ∈ K and j ∈ Kc such that:
either (a) τj = σi or σj = σi; or (b) j ∈ E+i . In case (a),

∂Φi
∂ρj

(ρ) =
∂f ini
∂ρj

(ρ) =
∑
e∈E−i

∂fe→i
∂ρj

(ρ) +
∂feσi→i

∂ρj
(ρeσi ) > 0,

where the strict inequality follows from the strict version of
(8) that holds true for a strongly monotone routing policy.
In case (b), we have that ∂

∂ρj
Φi(ρ) = − ∂

∂ρj
fouti (ρi) > 0,

where the strict inequality follows from the strict version of
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Equation (9) that holds true for a strongly monotone routing
policy. The second claim in Lemma 2 now follows from the
last claim in Lemma 1.

B. Properties of limit density vectors

For an initial density ρ◦ ∈ R, let us consider the following
subsets of E :

B := {lim ρe(t) = Be} , W := {lim sup ρe(t) < Be} ,
Zo := {lim foute (ρe(t)) = 0} , Zi :=

{
lim f ine (ρe(t)) = 0

}
,

C := {lim foute (ρe(t)) = Ce} , Z := Zi ∪ Zo,
(24)

were the limits are meant as t ↑ κ(ρ◦) and the curly brackets
are meant as defining the sets of those links e such that the
enclosed condition is satisfied.

Observe that the definitions in (24) do not assume existence
of a limit density. However, if a limit ρ∗ = limt↑κ(ρ◦) ρ(t)
exists, then clearly E = B∪W . On the other hand, in general,
existence of the limit density ρ∗ does not necessarily imply
existence of the limit outflow limt↑κ(ρ◦) f

out
e (ρe(t)) or the

limit inflow limt↑κ(ρ◦) f
in
e (ρe(t)) for every e ∈ E . Finally,

observe that C ∩ Zo = ∅, and that B ∩ C ∩ Zi = ∅, since
limt↑κ(ρ◦) ρ̇e(t) = −Ce < 0 for all e ∈ C ∩ Zi which is
incompatible with e ∈ B.

The following result characterizes the behavior of ρ(t)
starting from some initial condition ρ(0) = ρ◦ ∈ R, as t
approaches κ(ρ◦).

Lemma 3. Let G = (V, E , C) be a network satisfying
Assumption 1, and f be a monotone distributed routing policy.
Let ρ◦ ∈ R be such that the solution ρ(t) of the dynamical
flow network (7) with initial condition ρ(0) = ρ◦ admits a
limit ρ∗ = limt↑κ(ρ◦) ρ(t). Let B,W, C,Z ⊆ E be defined as
in (24). Then,

1) if e ∈ B, then e ∈ C, or e /∈ E−D and E+e ⊆ B;
2) if e ∈ B, then e ∈ Zi, or E+σe ⊆ B;
3) if e ∈ W \ E−D and E+e ⊆ B, then e ∈ Zo.

Proof. 1) First consider the case e ∈ E−D . Then, (5) implies
that, if e ∈ B, then e ∈ C. On the other hand, assume that
e /∈ E−D . Then, if e ∈ B and E+e * B, necessarily ρ∗Ee ∈ R•e ,
so that property (5) implies that e ∈ C.
2) Let e be such that E+σe 6⊆ B. Then, property (6) implies that
limt↑κ(ρ◦) f

in
e (ρ(t)) = 0 .

3) If e ∈ W \ E−D and E+e ⊆ B, then property (6) implies that
limt↑κ(ρ◦) f

out
e (ρ(t)) = 0.

We now prove the following fundamental result that either
B = ∅, or there exists a cut on the origin side of which the
densities hit the buffer capacities.

Lemma 4. Let G = (V, E , C) be a network satisfying
Assumption 1, and f be a monotone distributed routing policy
with value λ. Let ρ◦ ∈ R be such that the solution ρ(t) of the
dynamical flow network (7) with initial condition ρ(0) = ρ◦

admits a limit ρ∗ = limt↑κ(ρ◦) ρ(t). Let B,W, C,Z ⊆ E be
defined as in (24). Then, either E = W , or there exists a cut
S with CS ≤ λS such that E+S ⊆ B, ∂+S ⊆ C, ∂−S ⊆ Z , and
E \ (E+S ∪ ∂−S ) ⊆ W .

Proof. Existence of the limit density ρ∗ implies that E = B ∪
W . Assume that E 6= W , and hence B 6= ∅. Let S := {v ∈
V \ D : E+v ⊆ B}. To start with, we prove that S 6= ∅. To
see this, consider a link e ∈ B. If also e ∈ E−D , then statement
1 of Lemma 3 implies that e ∈ C, and hence e /∈ Zi. This
combined with statement 2 of Lemma 3 implies that E+σe ⊆ B,
and hence σe ∈ S 6= ∅. On the other hand, if e ∈ B\E−D , then
statement 1 of Lemma 3 implies that E+e ⊆ B or e ∈ C. In the
former case, τe ∈ S 6= ∅. In the latter case, e ∈ C ∩B implies
again e /∈ Zi, so that, statement 2 of Lemma 3 yields E+σe ⊆ B,
hence σe ∈ S 6= ∅. Hence, S 6= ∅ and, since S ∩ D = ∅ by
construction, S is a cut. Also, by construction, E+S ⊆ B.

Now, it is easily seen that ∂+S ⊆ C. In fact, if e ∈ ∂+S ,
then E+e 6⊆ B for otherwise one would have τe ∈ S so that
e /∈ ∂+S . Therefore, e ∈ ∂+S implies ρ∗Ee ∈ R•e . Then, property
(5) implies that e ∈ C.

On the other hand, for every e ∈ ∂−S , one has E+σe * B (since
σe /∈ S) and E+e ⊆ B (since τe ∈ S). Therefore, statement 2
of Lemma 3 implies that ∂−S ∩ B ⊆ Zi, while statement 3 of
Lemma 3 implies that ∂−S ∩W ⊆ Zo.

To show that E \ (E+S ∪ ∂−S ) ⊆ W , it is sufficient to prove
that, for every e ∈ B with σe /∈ S, necessarily τe ∈ S, so that
e ∈ ∂−S . Indeed, it follows from statement 2 of Lemma 3 that
e ∈ B and σe /∈ S (i.e., E+σe * B) imply that e ∈ Zi, so that
e /∈ C and statement 1 of Lemma 3 implies that τe ∈ S.

Finally, it follows from E+S ⊆ B and E \ (E+S ∪ ∂−S ) ⊆ W
that B = E+S ∪ ∂−S ∩ B. Then, using ∂+S ⊆ C, ∂−S ∩ B ⊆ Zi,
and ∂−S ∩W ⊆ Zo, one gets that∑

e∈B
ρ̇e(t) = λS +

∑
e∈∂−S ∩W

foute (t) +
∑

e∈∂−S ∩B

f ine (t)−
∑
e∈∂+
S

foute (t)

t↑κ(ρ◦)−→ λS − CS ,
Since ρe(t) < Be for t ∈ [0, κ(ρ◦)) and limt↑κ(ρ◦) ρe(t) = Be
for all e ∈ B, the above implies that λS − CS ≥ 0.

C. Proof of Theorem 1

The results in the previous subsection assume existence
of a limit density, which, in principle, is not guaranteed
for every initial condition ρ(0) = ρ◦ ∈ R. However, for
monotone distributed routing policies, existence of a limit
density is ensured for the initial condition ρ(0) = 0. Indeed,
for every ρ◦ ∈ R and 0 ≤ t < κ(ρ◦), let φt(ρ◦) = ρ(t)
be the solution of (7) with initial condition ρ(0) = ρ◦. Then,
for monotone distributed routing policies, (11) implies that
φt+s(0) = φt(φs(0)) � φt(0) , for 0 ≤ t < κ(ρ◦) and
0 ≤ s < κ(ρ◦) − t, i.e., φt(0) is component-wise non-
decreasing and hence convergent to some limit, to be denoted,
with slight abuse of notation, by ρ∗ := limt→κ(0) φ

t(0) .
Let B, W , C, Zi, and Zo be defined as in (24) for ρ◦ = 0.

First, consider the case maxU (λU − CU ) < 0. Then, Lemma
4 implies that E =W , as otherwise there would exist a cut S
such that CS ≤ λS . Then, ρ∗ is an equilibrium, i.e., Φ(ρ∗) =
0. For an arbitrary initial condition ρ◦ ∈ R, it cannot be that
κ(ρ◦) < ∞, as then the limit limt↑κ(ρ◦) φ

t(ρ◦) /∈ R would
exist, and Lemma 4 would imply that λS ≥ CS for some cut
S. Therefore, κ(ρ◦) = ∞, for all ρ◦ ∈ R. By Lemma 2, we
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also have ||φt(ρ◦) − ρ∗||1 ≤ ||ρ◦ − ρ∗||1, for all t ≥ 0, so
that in particular φt(ρ◦) remains bounded. If the distributed
routing policy is strongly monotone, then Lemma 2 allows one
to use LaSalle’s theorem showing that limt→∞ φt(ρ◦) = ρ∗

for any initial condition ρ◦ ∈ R.
Conversely, if ρ∗ ∈ R, then, for every cut U , mass balance

on E+U implies that 0 = Φ(ρ∗) = d
dt

∑
e∈E+U

φte(ρ
∗) = λU −∑

e∈∂+
U
foute (ρ∗) +

∑
e∈∂−U

foute (ρ∗) ≥ λU −CU . This proves
that, if λU > CU for some cut U , then necessarily ρ∗ /∈ R.
The same conclusion carries over if maxU {λU − CU} = 0
and the routing policy is strongly monotone, for in that case∑
e∈∂+
U
foute (ρ∗) < CU if ρ∗ ∈ R. Therefore, W 6= E , so that

Lemma 4 implies (13) for ρ◦ = 0. For arbitrary initial density
ρ◦ ∈ R, consider the following two cases: κ(ρ◦) < +∞ and
κ(ρ◦) = +∞. In the former, limt↑κ(ρ◦) ρ(t) exists, hence (13)
is implied by Lemma 4. In the latter, κ(0) ≥ κ(ρ◦) = ∞,
hence (13) for ρ◦ = 0 also implies (13) for arbitrary ρ◦ ∈ R.

D. Proof of Proposition 1

Observe that, for every cut U ,∑
e∈E+U

ρ̇e = λU+
∑
e∈∂−U

foute (ρe(t))−
∑
e∈∂+
U

foute (ρe(t)) ≥ λU−CU ,

so that
∑
e∈E+U

ρe ≥
∑
e∈E+U

ρ◦e+t(λU−CU ), from which (14)
follows. On the other hand, (15) is an immediate consequence
of claim ii) of Theorem 1 and the definition of κ(ρ◦).

E. Proof of Proposition 2

Let U∗ be defined as in (16), and S be a cut whose existence
is guaranteed by Lemma 4 for ρ◦ = 0. The key step in proving
Proposition 2 will be to show that U∗ = S. That will be done
in Lemma 6, after the following technical result.

Lemma 5. For a network G = (V, E , C) satisfying Assumption
1, let U∗ and M be as in (16). Then, U∗ ∈M.

Proof. We will prove that U1 ∪U2 ∈M for U1,U2 ∈M. For
A,H ⊆ V , let CAH :=

∑
e:σe∈A,τe∈H Ce. It is easy to seen

that

λA∪H − CA∪H = λA + λH\A − CA + CAH\A − C
H\A
V\(A∪H) .

(25)
For U1,U2 ∈M, put I := U1∩U2, J := U1∪U2, K := U2\U1.
Observe that λJ −CJ ≤ λU1 −CU1 since U1 ∈M. Assume
by contradiction that λJ − CJ < λU1 − CU1 = λU2 − CU2 .
Then, (25) with A = U1 and H = U2 gives

λU1 + λK − CU1 + CU1K − CKV\J < λU1 − CU1
which yields

λK + CU1K − CKV\J < 0 . (26)

Similarly, applying (25) with A = K and H = I, noting that
K ∩ I = ∅, and using CK = CKV\J + CKU1 yields

λU2 −CU2 = λK + λI −CKV\J −CKU1 +CKI −CIV\U2 . (27)

Combining (27) and (26), some algebraic steps lead to

λU2 − CU2 < λI − CU1K − CKU1 + CKI − CIV\U2
= λI − CI − CU1\U2K − CKU1\U2 < λI − CI .

Hence, λI − CI > λU2 − CU2 , which contradicts U2 ∈ M.
This proves that λJ − CJ = λU2 − CU2 = λU1 − CU1 .

Lemma 6. Let G = (V, E , C) be a network satisfying As-
sumption 1, and f be a strongly monotone distributed routing
policy with value λ such that maxU {λU − CU} ≥ 0. Let U∗
be defined as in (16) and B,W, C,Zo ⊆ E be defined as in
(24) for ρ◦ = 0. If κ(0) = +∞, then E+U∗ ⊆ B, ∂+U∗ ⊆ C,
∂−U∗ ⊆ Zo, and E \ (E+U∗ ∪ ∂−U∗) ⊆ W .

Proof. Let ρ(t) be the solution of (7) with initial condition
ρ(0) = 0. Let S := {v ∈ V \ D : E+v ⊆ B}. Observe that, as
argued in Sect. IV-C, ρ̇e = f ine (ρ) − foute (ρe) ≥ 0 for all e,
so that in particular Zi ⊆ Zo. On the other hand, Barbalat’s
lemma implies that ρ̇e → 0 for e ∈ W , so that W ∩Zo ⊆ Zi.
Then, it follows from Lemma 4 that ∂+S ⊆ C, ∂−S ⊆ Zo ∩ Zi,
and E \ (E+S ∪ ∂−S ) ⊆ W .

We start by proving that S ⊆ U∗. Define H := S \ U∗,
I := ∂−H ∩ E+S , and J := ∂+H ∩ ∂+S . Then,

0 ≤
∑
e∈E+H

ρ̇e(t) ≤ λH+
∑
e∈∂−S

foute (t)+
∑
i∈I

fouti (t)−
∑
j∈J

foutj (t) .

Passing to the limit of large t, ∂−S ⊆ Zo and ∂+S ⊆ C imply
0 ≤ λH+

∑
i Ci−

∑
j Cj . Let Û := S ∪U∗ ⊇ U∗ and notice

that K := ∂+H \ ∂−U∗ ⊆ J and I ⊆ ∂−H ∩ ∂+U∗ =: L. Then,

CÛ = CU∗ + cK − cL ≤ CU∗ + cJ − cI ≤ CU∗ + λH ,

where cX :=
∑
x∈X Cc for X = I,J ,K,L. This implies that

λÛ − CÛ = λU∗ + λH − CÛ ≥ λU∗ − CU∗ ,

so that Û ∈ M, and then Û = U∗. Therefore, S ⊆ U∗.
We now prove that U∗ ⊆ S . Assume by contradiction that

A := U∗ \ S 6= ∅. Let

Υ := λA+
∑

e∈∂−A∩∂
+
S

Ce +lim inf
t

∑
k∈∂−A\∂

+
S

foutk (t)−
∑

j∈∂+
A\∂

−
S

foutj (t).

Then, the inclusions ∂−S ⊆ Zo ∩ Zi and ∂+S ⊆ C imply

lim inf
t

∑
e∈E+A\∂

−
S

ρ̇e(t) = lim inf
t

∑
e∈E+A\∂

−
S

(
f ine (t)− foute (t)

)
= lim inf

t

∑
e∈E+A

(
f ine (t)− foute (t)

)
= Υ.

Observe that strict monotonicity implies that

lim sup
t

foutj (t) < Cj , lim inf
t

foutk (t) > 0 , (28)

for all j ∈ E+A \ ∂−S and k ∈ ∂−A . If ∂−A \ ∂+S = ∂+A \ ∂−S = ∅,
then Assumption 1 implies that λA > 0 or ∂−A ∩ ∂+S 6= ∅,
therefore Υ = λA +

∑
e∈∂−A∩∂

+
S
Ce > 0. On the other hand if

∂−A \ ∂+S 6= ∅ or ∂+A \ ∂−S 6= ∅, then (28) and S ⊆ U∗ imply

Υ > λA +
∑

e∈∂−A∩∂
+
S

Ce −
∑

e∈∂+
A\∂

−
S

Ce = λU∗ − λS − CU∗ + CS ≥ 0 ,

the last inequality holding since U∗ ∈M by Lemma 5. In both
cases, lim inft

∑
e∈E+A\∂

−
S
ρ̇e(t) = Υ > 0, which contradicts

E+A \ ∂−S ⊆ W . Then, necessarily A = ∅, so that U∗ ⊆ S.
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We now prove Proposition 2. For all ρ◦ ∈ R, i ∈ E , and
t ≥ 0, one has ρi(t) ≤

∑
e ρe(t) ≤

∑
e ρ
◦
e + t

∑
v∈V\D λv , so

that κ(ρ◦) = ∞. For ρ◦ = 0, Lemma 4 and Lemma 6 imply
the the first part of (17) and (18), while the second part of
(17) follows from L’Hopital’s rule:

lim
t→∞

1

t

∑
e∈E+U∗

ρe(t) = lim
t→∞

∑
e∈E+U∗

ρ̇e(t) = λU∗ − CU∗ .

In particular, (18) and Barbalat’s lemma imply,

0 = lim
t

Φe(ρ(t)) = Φe(BE+S ∪∂
−
S
, ρ∗Ê) , ∀e ∈ Ê , (29)

where Ê := E \ (E+S ∪ ∂−S ).
For arbitrary ρ◦ ∈ R, the extension of (17) follows from

Lemma 2, hence we are left with proving (18). Towards this
goal, first note that ρ◦ � 0 implies, by monotonicity, that

lim inf
t

ρe(t) ≥ ρ∗e , e ∈ Ê . (30)

Consider a new network Ĝ = (V̂, Ê , Ĉ) with V̂ := V \ S and
Ĉe = Ce for e ∈ Ê . Let {f̂e}e∈Ê be a distributed routing
function for Ĝ with buffer capacities B̂e = Be for e ∈ Ê ,
value λ̂v̂ := λv̂ +

∑
e∈E−v̂ ∩∂

+
S
Ce for v̂ ∈ V̂ , and such that

f̂e→j(ρ̂
e) = fe→j(ρ

e) where ρe ∈ R•e is such that ρj = ρ̂j
for all j ∈ Ee ∩ Ê , and ρj = Bj for all j ∈ Ee ∩ ∂−S . It is
not difficult to see that S = U∗ implies λ̂Û < CÛ for every
cut Û in Ĝ, where λ̂Û =

∑
v̂∈Û λ̂v̂ . Then, applying part i) of

Theorem 1 to the dynamical flow network associated to Ĝ and
{f̂e}e∈Ê shows existence of a globally attractive equilibrium,
ρ̂∗ = limt ρ̂(t). Observe that ˙̂ρe(t) = Φe(BE+S ∪∂

−
S
, ρ̂Ê(t)) for

e ∈ Ê , so that (29) implies that ρ̂∗ = ρ∗Ê . Moreover, notice
that the new network is a monotone controlled system [22],
once we interpret the densities on E+S ∪ ∂−S as inputs. Since
ρe(t) < Be for all e ∈ E+S ∪ ∂−S and t ≥ 0, one gets that

lim sup
t→∞

ρe(t) ≤ lim
t→∞

ρ̂e(t) = ρ∗e , ∀e ∈ Ê . (31)

Combining (30) and (31) gives (18) for arbitrary ρ◦ ∈ R.

V. CONCLUSION

This paper studies dynamical flow networks with distributed
monotone routing policies. Throughput optimality is shown by
making use of a novel l1 contraction argument for monotone
dynamical systems. Applications to analysis of existing dy-
namic traffic models and of well-known distributed routing
policies for data networks are also discussed. We also charac-
terized the overload behavior of the network when the external
inflow at the origin nodes violates capacity constraint of some
cut in the network.

There are several directions of research that we plan to
pursue in the future. We plan to derive appropriate condi-
tions under which monotone routing policies can optimize
secondary objectives, such as steady-state delay, without com-
prising throughput optimality. We also plan to formally inter-
pret monotone routing policies as combinations of physical
properties and control policies in various application domains,
and utilize the characteristic properties of monotone routing
policies for synthesis of appropriate control policies. Finally,

we plan to extend our formalism to the multi-commodity case,
possibly under partial state feedback to model urban traffic
networks where the observations typically are aggregates of
flows of all commodities.
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