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Abstract  

This paper deals with data fusion of multiple sources of information for density estimation in 

traffic networks. A macroscopic approach is adopted by partitioning the network in cells and 

considering as state of the network the dynamically evolving vehicle densities in the cells. 

Estimation of the state of the network is of crucial importance in modern ITSs, but direct 

measurements can be obtained via expensive sensors only. To overcome this problem, this 

paper presents an algorithm for fusion of sensor measurements with Floating Car Data, which 

on the contrary have become recently available in large quantity and are relatively 

inexpensive. Furthermore, the paper provides methods for calibration of splitting ratios and of 

the Fundamental Diagram, and a discussion on optimal sensor placement. The prowess of the 

algorithm is shown in a real scenario using data from the sensor network along the Rocade 

Sud in Grenoble and INRIX Floating Car Data. 

 

KEYWORDS: Transportation Systems, Data Fusion, Floating Car Data 

 

1. Introduction 

 

The last decades have witness an enormous increase of number of passenger and commercial 

vehicles, not matched by a comparable extension of roads infrastructures. Crucial highways 

and arterial roads have thus reached a state of near saturation, experiencing on a daily basis 

periods of congested traffic. Consequences are decreased safety, economical losses (fuel 

consumption, increased travel times), and health and psychological hazards (pollution, road 

rage). Development of Intelligent Transportation Systems (ITSs) is envisaged as a structured 

and long term solution to such a problem. 

  

The ability of the traffic operator to monitor the state of the network by quantifying road 

usage, which namely the density of vehicles, is clearly of paramount importance. Such an 

information is used  1) to inform drivers in real time about the state of the network; 2) to 

feed, along with historical data, prediction algorithms to forecast travel time and traffic 

evolution, allowing drivers to take better navigation decisions; 3) to aid public authorities to 

monitor and maintain roads, e.g., allowing early detection of accidents; and 4) to compute 

control actions by standard means such as traffic lights, ramp metering, speed limits, or more 

recent means such as lane change and origin-destination navigation suggestions [1, 2, 3]. 



A Fusion Algorithm for Traffic Density Estimation using Sensors and Floating Car Data 

 

2 

 

While monitoring is of crucial importance, density estimation is not an easy task. Classical 

measurement devices for traffic networks are static sensors such as induction loops or 

magnetometers, which provide measurements of flow, density (more precisely, occupancy, see 

Section 2), and, if deployed in pairs, speed, of the section of road in which they are deployed. 

These systems provide reliable measurements, but their require huge investments and 

planning. For this reason, measurements obtained using this method are “expensive” and thus 

usually sparse. Recently, technological advancements in the field of telecommunication 

devices have allowed a growing availability of Floating Car Data (FCD), namely, of 

measurement of position and speed of single vehicles by means of smartphones, navigation 

systems, and other devices able to track its GPS position. If enough vehicles are equipped 

with such devices and are willing to transmit their data, it is possible to obtain reasonably 

good measurements of the evolution of speed in the network. The most advanced systems, 

such as the one employed by INRIX, allow for very fine spatial granularity, up to one datum 

every 250 meters (source: [4]). This type of measurement is extremely appealing because it 

does not require any additional equipment other than already deployed communication 

systems, and is thus relatively “cheap” and covers all major traffic networks.  

 

This paper is devoted to describing an algorithm that fuses these two sources of information 

to estimate traffic density. We model the network as a first order system whose dynamics 

depend on inflows and outflows at each cell in which the network is divided. We do not aim 

to model the latter, which depend in a complex way on the state of the network. Instead, we 

assume for estimation purposes a local relation between flow and density as captured by a 

bilinear Fundamental Diagram, and we assume that the inflow in a cell is a linear combination 

of the outflows from the cells immediately before it, with fixed weights known as splitting 

ratios. We propose a method to calibrate Fundamental Diagram and splitting ratios, and to 

estimate the dynamic evolution of the density making use of the aforementioned 

measurements of flow and speed. Furthermore, we discuss the problem of optimal sensor 

location and of trading-off between cost and estimation performance. Finally, we implement 

the proposed algorithm on the real case study of Grenoble Rocade Sud, using static sensor 

data from the Grenoble Traffic Lab and FCD provided by INRIX. 

 

The problem of estimating the density of vehicles in a traffic network has been tackled in the 

literature using a number of techniques. A standard approach, partially employed in this paper, 

is to discretize the space so that roads are partitioned in cells, as in the celebrated Cell 

Transmission Model [5]. The dynamics of vehicles flowing from cell to cell are then modeled 

as a discretization of the celebrated Lighthill-Whitham and Richards (LWR) [6] model. 

Researchers have been then focusing on the problem of calibrating such models [7] and on 

system-theoretical problems such as observability and controllability [8]. As mentioned above, 

differently from these approaches the relation between flow and density, which is inherently 

nonlinear and complex and thus difficult to model precisely, is only used in this paper to design 

the observer of the state. Alternative approaches to the problem of fusion of data from 

heterogeneous sources employ signal processing techniques such as the generalized 

Treiber-Helbing filter [9]. Differently from this approach, we consider a dynamical model and 

system theoretical ideas. Very recent approaches avoid altogether discretizing the PDE model, 

and provide a way to cast the problem of estimation and control in traffic networks as convex 

problems [10]. This approach however requires additional assumptions on the initial 

conditions and the inputs in the system, and is more difficult to implement than ours. 

 

The rest of the paper is organized as follows: Section 2 describes the setting and formulates 
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the problem. Section 3 details the proposed solution. Section 4 is focused on optimal sensor 

placement. Section 5 illustrates the numerical study, and Section 6 draws the conclusions.  

 

2. Problem formulation 

 

A Traffic Network is a collection of interconnected multi-lane roads. Each lane is partitioned 

into several consecutive cells, and vehicles travel from cell to cell until they exit from the 

network (for example through an offramp). Origin cells act as gates through which vehicles 

enter into the network, and represent onramps or connectors. The network is then a graph G = 

(V, E), where nodes v ∈ V are junctions or sections of roads that separate cells e ∈ E. A stretch 

of road is a sequence of parallel cells separated by junctions (see Fig. 1). Two cells are 

parallel if they lie on different lanes of the same section of a road. 

 

We consider a dynamical description of the system, where the densities of vehicles on the 

cells of the network change in time according to a discrete time scheme in which time is 

slotted in intervals of length T > 0. In our numerical study, T = 15 seconds. On each cell e ∈ E,  

let ρe(t) be the density of vehicles, in number of vehicles per km, at time. The vector of 

densities ρ(t) = [ρe(t)]e∈E is the state of the network, and changes dynamically in time 

according to the first order equation 

 

ρe(t+1) = ρe(t) + f
in

e(t)/Le - f
out

e(t)/Le    (1) 

 

where f
in

e(t) and f
out

e(t) are the inflows and outflows at time t in cell e, respectively, and Le is 

the length of cell e (in km). Such an equation simply represents mass conservation of vehicles 

on cell e, as the change of traffic volume on cell e, Le(ρe(t+1) - ρe(t)), is given by the 

difference of inflow and outflow on that cell during the last time slot. 

 
Figure 1: A stretch of road (traffic direction: left – right) with mainline and an offramp. 

Each lane is divided in cells (separated by dotted lines). Cells 1 and 2, 3 and 4, 5 and 6 

are parallel. Vehicles exiting from 3 or 4 can proceed along the main line (cells 4 or 5) or 

turn into the offramp 7. Vehicles distribute according to splitting ratios Rej, e.g., f
in

3 = 

R13f
out

1+R23f
out

2. Sensors (circles), are deployed at the end of some of the cells. 

 

In the real system inflows and outflows f
in

e(t) and f
out

e(t) depend in a complex way on the 

density of vehicles of all the cells around e. When (1) is intended as a mathematical model of 

the real system, the most well known tool to describe the relation between density and flows 

is arguably the Cell Transmission Model (CTM) [5, 11], in which it is postulated that the flow 

from a cell to the following depends on the density of the former in freeflow, and on the 

density of the latter in congested state. In this paper, we do not aim to model in detail such a 

complex relation between flow and density. However, we maintain the standard assumption 

that vehicles on a cell split into the following ones according to given fractions, called 

splitting ratios. For every cell e and for every other cell j that follows e there exists a 

nonnegative value Rej that specifies the fraction of vehicles that exiting from e enter into j. 
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Clearly ∑jRej = 1, for every e. Splitting ratios specify the dependence of inflows on outflows, 

as the inflow on cell j will be given by the sum of the outflows from the preceding cells, say e, 

multiplied by the splitting ratio Rej. The only exception is origin cells, whose inflows come 

from parts of the environment that are not modeled. In formulae, we can write 

 

 f
in

j(t) = ∑eRejf
out

e(t) + λj(t),    (2) 

 

where λj(t) is the external inflow of cell j (zero for non-origin cells). In compact form, given 

the matrix R = [Rej] and the vector of external inflows λ(t) = [λj(t)]j∈E, we have f
in

(t) = R
T
f

out
(t) 

+ λ(t), for all t, where 
T
 denotes the transpose of a matrix. 

 

As mentioned, we do not aim to model the way outflows f
out

e(t), e ∈ E, depend on the state of 

the network. However, we postulate, for estimation purposes only, that there exists a 

deterministic relation between outflow and density on a cell, as in the LWR PDE model, the 

graph of such a relation being known under the name of Fundamental Diagram. In particular, 

we assume that the outflow f
out

e = φe(ρe) on a cell e is given by the product of density ρe and 

speed ve(ρe), where the speed ve(ρe) is assumed to be a non increasing function of ρe. In 

particular, in the following, we assume the standard triangular Fundamental Diagram in which  

 

  ve(ρe) = v
ff

e     ρe  ≤ ρe
c
 (3) 

  ve(ρe) = Ce(ρe
 
- ρ

max
)/(ρe

c-
 ρ

max
)   ρe  > ρe

c
 (3) 

 

where v
ff

e is the freeflow speed on cell e, ρe
c
 is the critical density separating freeflow region 

(low densities) and congested region (high densities), ρ
max

 is the maximum density of vehicles, 

and Ce is the capacity, namely the maximum flow, on cell e. Notice that Ce = v
ff

e/ρe
c
. 

 

We immediately underline that, under the last assumption, (1) does not well describe the 

dynamics of a Traffic Network, except maybe for low densities. In fact, since (3) postulates 

that outflows only depend on the density on the same cell, (1) with (3) is not a good 

discretization of the continuous space LWR model, and cannot reproduce important 

phenomena such as shock waves.  Indeed, in the following, (3) will only be a tool to 

reconstruct the densities in the network on the basis of flow and speed measurements.  

 

Available measurements 

 

In this paper we consider as sources of information both static sensor networks and FCDs. 

 

Static sensor network 

 

Induction loops and magnetometers are standard devices to measure traffic. They are buried in 

the ground and send information, through wired and wireless communication networks, to 

usually far away data centers, and they are thus considerably expensive. 

  

In this paper we assume that roads are partitioned in cells and sensors are placed at their end 

in the sense of the traffic direction (see Fig. 1). Traffic sensors are able to: 

 Count the number of vehicles crossing a section: such a value is the flow through the 

section and corresponds to the outflow from the cell where the sensor is deployed; 

 Measure the time a vehicle is present above the sensor: such a value provides a noisy 

measurement of the occupancy of the road (and, for us, of teh cell) over the sensor. 

Occupancy is usually expressed as the percentage of time a vehicle is above a sensor 



A Fusion Algorithm for Traffic Density Estimation using Sensors and Floating Car Data 

 

5 

during a time slot, where 0 corresponds to no vehicles, and 100 full congestion. The 

density of vehicles is proportional to the occupancy by a constant given by 

1/(100Lave), where Lave is the average length of a vehicle expressed in km. For this 

reason, from now on we assume that  sensors can measure density directly; 

 If sensors are deployed in pairs at known distance, the two times at which a vehicle 

crosses the sensors: such information can be used to compute the speed of the vehicle 

and thus the average speed of the vehicles.  

 

We assume from now that sensors obtain a new traffic measurement at every time slot. As 

such, we denote by φ
m

e(t), ρ
m

e(t), and ν
m

e(t) the flow, density and average speed noisy 

measurements, respectively, at time t and on the sensor on cell e. Sources of noise range from 

temporary inability to detect changes of the magnetic field, too fast or too slow vehicles, etc. 

While in the present paper we do not model such sources of noise, this will be subject for 

future research. Finally, we denote by M the set of cells in which sensor are deployed. 

 

Remark: while in the Grenoble Traffic lab network sensors are deployed in pairs and thus able 

to obtain speed measurements, this is not usually the case due to the corresponding cost 

increase. As such, in the following we do not employ speed measurements ν
m

e(t). 

 

Floating Car Data 

 

Vehicles embedded with communication and tracking devices can measure their position and 

speed and communicate such information to ITS systems. For privacy reasons, single vehicle 

data cannot be directly used and are aggregated, usually in terms of average speed on 

segments. We refer to the latter quantities as Floating Car Data (FCD). While vehicles such as 

buses and taxis can be tracked, we do not consider them in this paper. 

  

Depending on the technology, the spatial granularity of FCD can be very fine, with segments 

as short as 250 meters. Moreover, we assume that FCD cover the entire area of interest. 

However, differently from sensor networks, FCD do not usually distinguish among parallel 

cells. In addition, information provided via FCD is averaged over a relatively long period of 

time, of the order of minutes. For this reason, we assume that a new speed aggregate datum is 

available every N time slots, namely, at times N, 2N, 3N, ..., and corresponds to the average 

speed in periods [0, N-1], [N, 2N-1], [2N, 3N-1], ..., respectively. Thus, at each time t and at 

each cell e, the measurement of speed v
m

e(t) is a noisy measurement of the average speed of 

vehicles in e and all cells parallel to e during the last interval [kN, (k+1)N-1] before time t. 

 

As an example, in our numerical study we consider a scenario in which time is slotted with T 

= 15 seconds, and measurements of speed are obtained every 5 minutes starting from 

00:00:00. Therefore, between 00:05:00 and 00:09:45 the speed measurement on cell e is the 

(noisy) average speed of vehicles on cell e and on cells parallel to e in the (N = 20 time slots 

long) period 00:00:00 – 00:04:45.  

 

Remark: both ν
m

e(t) and v
m

e(t) are measurements of speed, but their nature is different. In fact, 

the former represents the average speed of all vehicles crossing a certain section during a time 

slot, while the latter is the average speed of a subset of vehicles that were in a certain cell 

during several time slots. As such, the sources of noise are different, being related to sensors’ 

parameters for the former, and to penetration rate for the latter. 

 

The system observer 
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From now on, interpret ρe(t) as an estimate of the density of vehicles on cell e at time t, not as 

its real (unknown) counterpart, and consider the following observer for a Traffic Network  

 

ρe(t+1) = ρe(t) + f
in,e

e(t)/Le - f
out,e

e(t)/Le+ γ(ρ
fe

e(t) - ρe(t))  (4) 

 

The observer has form similar to (1), however f
in,e

e(t) and f
out,e

e(t) denote here estimates of the 

real inflow and outflow, obtained on the basis of the measurements. Furthermore, a 

compensation term γ(ρ
fe

e(t) - ρe(t)) is added to the right hand side: its effect is to steer the 

density estimate towards a first estimate of the density ρ
fe

e(t), function of the measurements. 

The tuning parameter γ trades off between model and first estimates. If γ = 0, we only trust 

the flow measurements, while if γ is large the trajectory ρe(t) tends to track the first estimates. 

In our study we set γ = 0.5 to avoid high corrections and, in turn, possibly unrealistic negative 

estimates. The question of how to tune it will be matter for future research. 

 

The problem that we tackle in this paper is how to design the maps f
in,e

e and f
out,e

e, and ρ
fe

e as  

functions of the measurements, in order to obtain good estimates of the real traffic densities. 

 

3. Proposed solution 

 

The proposed solution consists of an offline calibration step and an online update procedure. 

 

Offline calibration 

 

The offline calibration part consists in  

 calibrating the Fundamental Diagram, that is, estimating the function φe(ρ) = ρve(ρ) 

where ve(ρ) has the form (3), for all cells e ∈ M  

 calibrating the splitting ratios matrix R 

 

Calibration of the Fundamental Diagram 

 

For each e ∈ M, let [ρ
m

e(ti), φ
m

e(ti)]i be the pairs density-flow measured at given times ti, i = 1, 

2, ..., nc used for calibration. Calibration of the Fundamental Diagram is cast into a 

minimization problem in which the variables are the parameters ρ
c
e and Ce of the 

Fundamental Diagram, and in which the cost function penalizes square deviations of φe(ρ(ti)) 

from the measured outflow φ
m

e(ti) on all available measured couples. The problem is solved 

making use of a gradient descent algorithm and the nonlinearity of the fundamental diagram is 

solved by identifying, at each step of the algorithm, which pairs [ρ
m

e(ti), φ
m

e(ti)]i are in 

freeflow and which in congested state using the previous critical density ρ
c
e. For all cells for 

which measurements of flow and density are not available, we compute the parameters ρ
c
e and 

Ce of the Fundamental Diagram by linear interpolation using those of the closest cells in M. 

 

Calibration of the splitting ratios matrix R 

 

Let [φ
m

e(ti)]i,e∈E be the set of all available flow measurements at given consecutive times ti, i = 

1, 2, ..., nc used for calibration. By combining (1) and (2) yields that the rate of change of the 

state is given by a linear combination of the outflows, with weights equal to the splitting 

ratios. Under the assumption that the latter are constant, the difference between the state of the 

network at the end and the beginning of a time interval is given by the same linear 

combination of the outflows summed over the whole interval. If such a period is long (for 
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example, a day), the latter sum is large, while the previous difference is small. As such, we 

can assume that the linear combination of summed outflows is zero, and one can then cast the 

problem of estimating the splitting ratios as an optimization program in which splitting ratios 

are the variables and the measured outflows define the constraints. 

 

Online update 

 

The Density Estimation Algorithm proceeds according to the following steps: 

 Initialization: initialize the state of the network to an arbitrary value. In case the 

algorithm starts during night time, zero state is close to reality; 

 At time t: 

o Receive the new flow measurements [φ
m

e(t)]e∈E, and compute estimates of f
in

e(t) 

and f
out

e(t) using the matrix of splitting ratios; 

o Receive, if available, new speed measurements [v
m

e(t)]e∈E, or hold the previous 

ones, on the whole network; 

o For each cell e, compute from the Fundamental Diagram the two possible densities 

ρ
1

e (freeflow) and ρ
2

e (congested) compatible with the estimated outflow f
out

e(t); 

o For each cell e, compute the two corresponding speeds ve(ρ
1

e) and ve(ρ
2

e); 

o Set as first estimate ρ
fe

e(t) that among ρ
1

e and ρ
2

e whose associate speed is the 

closest to v
m

e(t); 

  Update ρe(t+1) according to (4). 

 

The most critical steps of the algorithm are flow estimate and speed computations. In the next 

two paragraphs we provide more details on such steps. 

 

Flow estimate  

 

While part of the flows are directly measured by sensors, in most of the network they are not 

directly available. To overcome this problem, we cast the outflow estimate as a further 

optimization problem in which the optimization variables are the outflows. Aside from non 

negativity, we constrain the outflows on the cells e∈M to be equal to the measured flows. The 

cost function is designed in such a way that it penalizes deviations from zero of the linear 

combination of the flows having as weights the splitting ratios. In other terms, the 

optimization problem looks for a set of flows equal to those measured where possible, and 

such that the network is almost at steady-state, that is, inflow and outflow are equal in each 

cell. Clearly this is in general not the case, but the difference between the two in a time slot 

(for example, in a period of 15 seconds in our numerical study) is nonetheless small, hence 

our choice. Different flow estimation methods will be subject for further research. Finally, 

inflows at each cell are computed via splitting ratios and outflows through (2). 

 

Speed computation 

 

Given an outflow estimate of f
out

e, we can easily obtain two candidate densities ρ
1

e and ρ
2

e 

from the Fundamental Diagram: ρ
1

e = f
out

e ρ
c
e / Ce, the freeflow candidate density, and ρ

2
e = 

ρ
max

 + f
out

e (ρ
c
e - ρ

max
)/Ce, the congested candidate density. The corresponding speed is 

computed through the relation φe(ρ) = ρve(ρ), which yields a freeflow speed ve(ρ
1

e) = αCe / ρ
c
e, 

and a congested speed ve(ρ
2

e) = αCe  / (Ce ρ
max

 / (αf
out

e)+ (ρ
c
e - ρ

max
)) . Notice that the flows 

computed in the previous section are given in vehicles per time slot, and the parameter α is 

used to convert the flow in vehicles per hour. For example, T = 15 corresponds to α = 240. 
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4. Optimal sensor placement 

 

The proposed algorithm, and in general traffic monitoring and control, highly profits from 

good flow estimates. Since the latter are influenced by the locations at which sensors are 

deployed, one of the most crucial problems in designing a sensor network is to decide how 

many sensors to use, and where they are to be deployed, in order to meet the requirements. 

Let n be the number of sensors that we are allowed to deploy. A solution to the first problem 

comes from considering a static setting, in which we assume that the network is in steady 

state. Under the assumption that the splitting ratios are fixed and roughly known, let [φ
m

e]e∈M 

be a vector of flow measurements, where M is any subset of E of cardinality n. Then, as in the 

above algorithm, the problem of estimating the whole vector of flows from [φ
m

e]e∈M can be 

cast as a minimization problem aimed to find a vector [φ
M

e]e∈E that satisfies the linear 

constraints implied by the splitting ratios. If each φ
m

e is a noisy measurement of the true φe, 

then for each M we can measure the performance of the flow estimation in terms of the 

variance of the difference φ
M

-φ, possibly weighted to improve performance on main roads. It 

can be shown then that the optimal placement corresponds to the minimization of the trace of 

such a variance, which is a combinatorial problem in which the variables are the cells in M.  

 

 
Figure 2: Trade-off between performance and cost. Left panel: the regular grid used in 

the study. Right panel: error magnitude versus number of sensors. 

 

Assume now that an algorithm for optimal placement has been designed. The second problem 

is to study the trade-off between performance and cost of the network. Indeed, while 

increasing the number of sensors and placing them in the optimal position cannot but improve 

the estimates’ performance, additional sensors also increase the cost of the network.  

 

We have analyzed such phenomenon in the fictitious network in Fig. 2, composed of 24 cells 

(arrows indicate traffic direction), with uniform splitting ratios. Thick red cells form a main 

road and are weighted 100 times more than ordinary black cells. On the right panel of Fig. 2 

we show the error magnitude for the best placement of sensors when the number of sensors 

ranges from 4 to 21. As expected, the performance improvement due to addition of one more 

sensor decreases with the number of sensors. In particular, after 12 sensors such an addition 

does not seem to be profitable from a cost-benefit trade-off point of view. 

The combinatorial nature of the problem makes brute force search unfeasible in real cases of 

hundreds of roads. For this reason, in future research we aim to relaxed and/or tackle the 

problem via randomized algorithms with performance guarantee [12]. 
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Figure 3: stylized depiction of the Rocade Sud. Each circle represents a cell/pair of 

sensors. Onramps and offramps are represented as stretches or roads entering and 

exiting the main line, respectively. The main line is composed of two lanes (except for 

Gabriel Péri entrance 2 and Rondeau). Light blue circles represent sensors used in the 

study (“expensive” measurements). Rectangles represent segments of roads in which 

average speed measurements are available (“cheap” FCD measurements). 

 

5. Numerical experiments  

 

The numerical study has been carried on making use of the Grenoble Traffic Lab, an 

extensive sensor network deployed along the Rocade Sud, a 10 km long km peri-urban 

freeway enclosing the city of Grenoble, France. Composed of two carriageways with 

two/three lanes, the Rocade is a connector of paramount importance, showing an average of 

45000 vehicles (5% trucks) driving across each direction every day. The highway is operated 

by the Direction Interdepartementale des Routes Centre-Est (DIR-CE). 

 

The Grenoble Traffic Lab (GTL) sensor network is currently deployed on the east – south 

direction. It is composed of more than 130 magnetometers buried in the pavement. In most 

locations, magnetometers are deployed in pairs distant 2.5 meters able to measure flow, 

density and speed. Pairs of magnetometers are deployed on all onramps and offramps, on the 

two lanes of the main line (three in two points of the Rocade) at sections distant on average 

500 meters (minimum 200 meters, maximum 1300 meters), and on three connector queues 

that carry vehicles from the city to the onramps. For further information, we refer to [13]. 

 

In the study, we consider as cells: a) each onramp, b) each offramp, c) each queue, and d) each 

the segment of lane between two pairs of sensors on the same lane. The length of the cells is 

set to 200 meters for cells not on the main line, and to their real value for cells on the main 

line. In total, the network is composed of are 10 onramps, 7 offramps, 3 queues, and 22 



A Fusion Algorithm for Traffic Density Estimation using Sensors and Floating Car Data 

 

10 

sections of main lines, for a total of 67 cells, and is shown in Fig. 3. 

 

The GTL is operating since October 2013 on the whole Rocade. Each pair of sensors provides 

every T = 15 seconds measurements of  

 flow, as number of vehicles that have crossed the two sensors; 

 density, via measurements of occupancy of the road above the two sensors; 

 speed, as average speed of all vehicles that crossed the two sensors. 

 

The two sources of information used by the algorithm are the following: 

 Flow and density measurements every T = 15 seconds on cells e ∈ M, represented in 

light blue in Fig. 3. Since the corresponding measurement is “expensive”, and to show 

the prowess of the algorithm, we only use one third of the available sensors, and only 

on the main line. Additional information provided by the sensor network is discarded 

and only used for validation purposes. 

 Speed measurements every minute provided by INRIX. The Rocade has been divided 

in segments and a measurement of speed is available on each segment. Segments are 

represented as rectangles encircling cells in Fig. 3. 

 

 

 

Figure 5: color plot of the measured densities (upper-left panel), estimated densities 

(upper-right panel), measured flows (lower-left panel) and estimated (out)flows 

(lower-right panel) along the main line of the Rocade Sud in Grenoble on April 24
th

, 

2014. Cell numbers correspond to cells in Fig. 3. 

 

For the validation of the algorithm, we considered data obtained two weeks later, on Thursday 
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April 24
th

, 2014, also a normal working day. We run the estimation algorithm starting at 

00:00:00 and for the whole 24 hours, for a total of 5760 time slots. The state of the observer 

was initialized to zero density, a value close to reality during night time.  

 

The algorithm was implemented in MatLab 2014b and run on a non dedicated commercial 

laptop HP EliteBook Folio 1040 G1 equipped with Intel Core i7-4600U processor. The 

optimization problems in the calibration step and in the update step are solved using CVX, a 

Matlab package for specifying and solving convex problems [14, 15]. The mean executing 

time was 0.0676 seconds per time slot, for a total of about 6 minutes for a whole day. 

 

The results of the numerical study are presented in Fig. 4. In the upper-left and lower-left 

panels we provide density and flow measurements for all cells along the main line of the 

Rocade Sud during April 24
th

, 2014. The two traffic peaks, between 7:30 and 10:30 and 

between 16:00 and 19, are clearly visible. Congestion travels backwards in both cases, but in 

the morning we can notice two points in which congestion originates, namely at Rondeau 

(end of Rocade) and at Eybens (in the middle), while in the afternoon the traffic is so intense 

that congestion is continuous throughout the Rocade. Nonetheless, the area immediately 

before Eybens is more congested than the rest of the Rocade in the afternoon even before the 

peak – observe for example a smaller congestion that lasts from 14:00 to 15:00. 

 

In the upper-right and lower-right panels we show density and flow estimates, respectively. 

The algorithm provides good reconstructions, well matching the reality and in particular 

detecting all major congestion waves. One can observe that the estimated density in 

congestion is often higher than the real density. The reason has to be found in characteristic of 

the Fundamental Diagram. Indeed, it should be noted that the relation described by 

Fundamental Diagram is meant to represent an average relation between density and flow in a 

cell, but in general it captures it in a rather rough manner. In particular, large part of 

density-flow pairs in congestion lie below the Fundamental Diagram in our case study, 

implying that for a given value of flow the real (congested) density is lower than the one 

predicted by the Fundamental Diagram. Early results show that the situation is greatly 

improved employing in the congestion region a convex Fundamental Diagram, better suited to 

follow the rapid decrease of the flow for high densities. This will be subject of further studies. 

 

6. Conclusions 

 

In this paper, we have designed an observer for traffic networks able to fuse heterogeneous 

information of flow and speed. Calibration algorithms for the Fundamental Diagram and the 

splitting ratios are discussed, as well as the problem of optimal sensor placement and the 

trade-off between cost and performance. Future research directions include and are not limited 

to development of a statistical model for the relationship between flow and densities, design 

of the algorithm’s parameters for mean-square minimization of the estimation error, and 

improvement of the algorithms for flow reconstruction. Furthermore, we plan to extend the 

numerical study to the city of Grenoble. 
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