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Abstract— A framework based on the gap metric and inte-
gral quadratic constraints (IQCs) is developed for analysing
robust synchronisation of heterogenous linear time-invariant
networks. Both the agents and the communication channels
are allowed to be dynamic and unstable. Structural properties
of the uncertainty are described by IQCs and exploited in
synchronisation analysis as a means to reduce conservatism.
The homotopy employed in IQC analysis is defined with respect
to the graph topology as induced by the gap metric, whereby
open-loop unstable dynamics are accommodated. The results in
this paper extend recent developments, which have been shown
to unify several existing synchronisation analysis methods in
the literature.

Index Terms— Synchronisation, consensus, multi-agent net-
works, unstable dynamics, integral quadratic constraints

I. INTRODUCTION

The problem of synchronisation of heterogeneous multi-
agent systems is widely studied in various engineering ap-
plications ranging from power system networks to biological
cells. In [1], [2], a unifying framework for the analysis
of synchronisation of heterogenous open-loop stable linear
time-invariant (LTI) agents is proposed. The agents commu-
nicate through an interconnection transfer matrix with stable
dynamics to reach synchronisation. The developed frame-
work incorporates the problem of consensus as a special
case. The approach relies on the use of integral quadratic
constraints (IQCs) [3] to encapsulate structural properties or
uncertainty of the dynamics in order to reduce conservatism
in synchronisation analysis.

In this paper, the framework of [1] is generalised to ac-
commodate open-loop unstable dynamics in both the agents
as well as the interconnection transfer matrix. Heterogenous
distributed-parameter LTI systems are considered. These
include, for instance, time-delay operations. The gap met-
ric [4], [5] is employed to define a homotopy in the IQC
analysis, reminiscing the main results in [6], [7]. Sufficient
conditions for synchronisation based on the blended IQC/gap
metric are provided. These find applications in situations
where the agents exchange information through unstable
dynamic communication channels, for example.

The paper evolves along the following lines. In the next
section, the notation used in the paper is defined and some
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enrico.lovisari@gipsa-lab.fr

preliminaries on linear analysis and graph theoretic concepts
stated. The problem of synchronisation is formulated in
Section III. The blended IQC/gap metric based analysis
framework for synchronisation involving unstable dynamics
is delineated in Section IV. Illustrative examples are provided
in Section V. Section VI contains some concluding remarks.

II. NOTATION AND PRELIMINARIES

A. Matrices
Let R and C denote the real and complex numbers

respectively. jR denotes the imaginary axis, C+ (resp. C̄+)
the open (resp. closed) right half complex plane, and | · |
the Euclidean norm. Given an A ∈ Cm×n (resp. Rm×n),
A∗ ∈ Cn×m (resp. AT ∈ Rn×m) denotes its complex
conjugate transpose (resp. transpose). Aij denotes the (i, j)
entry of A. The ith row and jth column of A are denoted
respectively by Ai• and A•j . Given a vector v ∈ Cn,
diag(v) ∈ Cn×n denotes the diagonal matrix whose diagonal
entires are v1, . . . , vn. Let ⊗ denote the Kronecker product
and ⊕ the direct sum of matrices. Define

⊕n
i=1Ai :=

A1 ⊕ A2 ⊕ . . . ⊕ An. In denotes the identity matrix of
dimensions n× n.

B. Function spaces
Define the Lebesgue space

L∞ :={φ : jR→ C |‖φ‖∞ := supω∈R |φ(jω)| <∞}
and the Hardy space

H∞ :=

{
φ ∈ L∞

∣∣∣∣ φ has analytic continuation into C+

with sups∈C+
|φ(s)| = ‖φ‖∞ <∞

}
.

Let C be the class of functions continuous on jR∪{∞}, and
S := H∞∩C. Note that C ⊂ L∞. An H ∈ Cn×n is said to
be Hermitian if H(jω) = H(jω)∗ for all ω ∈ R∪ {∞} and
positive semidefinite if in addition, H(jω) ≥ 0 and positive
definite if H(jω) ≥ γ for some γ > 0.

Given an ε > 0 and a point jq ∈ jR, define the semi-circle
of radius ε in the right-half plane as

Sε(jq) := {s ∈ C : |s− jq| = ε,<(s) > 0}
and S0(jq) := {}. Given a finite ordered set jQ =
{jq1, jq2, . . . , jqK} ⊂ jR with q1 > q2 > . . . > qK , define
a contour parameterised by ε ≥ 0 as

Cε(jQ) := j[q1 + ε,∞) ∪ Sε(jq1) ∪ j[q2 + ε, q1 − ε]
∪ Sε(jq2) ∪ j[q3 + ε, q2 − ε]

...
∪ Sε(jqK) ∪ j(−∞, qK − ε].



that is, a straight line on the imaginary axis indented to
the right of every point in jQ by a semi-circle of radius
ε. In particular, notice that C0(jQ) = jR for any jQ ⊂ jR.
Denote by C+

ε (jQ) the open half plane that lies to the right
of Cε(jQ), i.e.

C+
ε (jQ) := {s = σ+jω ∈ C | σ̄+jω ∈ Cε(jQ) =⇒ σ > σ̄},

and C̄+
ε (jQ) its closure. Let Cε(jQ) be the class of functions

continuous on Cε(jQ) ∪ {∞}. Given X ∈ Cε(jQ)n×m,
define ‖X‖Cε(jQ) := sups∈Cε(jQ) σ̄(X(s)), where σ̄(·)
denotes the maximum singular value. An H ∈ Cε(jQ)n×n

is said to be Hermitian if H(s) = H(s)∗ for all s ∈ Cε(jQ)∪
{∞}. Let Sε(jQ) be the subclass of Cε(jQ) containing
functions that have analytic continuation into C+

ε (jQ). Note
that S ⊂ Sε(jQ) for all ε ≥ 0.

Let the Lebesgue space Ln2 denote the class of functions
f : [0,∞) → Rn with finite energy, i.e. square-integrable,
satisfying ‖f‖22 :=

∫∞
0
|f(t)|2 dt < ∞. The Fourier trans-

form of f ∈ Ln2 is denoted f̂(jω) :=
∫∞

0
e−jωtf(t) dt.

Note that ‖f̂‖2 = ‖f‖2 and f̂ has analytic continuation
into C+ and supσ>0 ‖f̂(σ + ·)‖2 = ‖f̂‖2 < ∞. The set
of Fourier transforms of functions in Ln2 is denoted Hn

2 . A
linear operator mapping between Banach spaces X : X → Y
is said to be bounded if the induced norm

‖X‖X→Y := sup
f∈X :‖f‖X =1

‖Xf‖Y <∞.

Note that multiplication by a transfer function in S as an
operator on H2 defines a corresponding causal and bounded
LTI operator on L2 in the time domain via the Laplace
transform isomorphism [8].

For ε ≥ 0 and finite subset jQ ⊂ jR, define Hn
2ε(jQ)

to be the set of functions f̂ : C̄ε(jQ) → Cn that are
analytic on C+

ε (jQ) and square-integrable on Cε(jQ), i.e.
‖f̂‖2Cε(jQ) :=

∫
Cε(jQ)

|f̂(s)|2 ds < ∞. For notational sim-
plicity, the spatial dimension n and the set of imaginary-
axis poles (jQ) are often dropped from Hn

2ε(jQ). Note that
Hn

2 = Hn
2ε(jQ) when ε = 0. Moreover, for all ε ≥ 0,

multiplication by a transfer function X ∈ Sε(jQ) defines
a bounded operator on H2ε with its induced norm equals
to ‖X‖Cε(jQ). H2ε is a Hilbert space with inner product
〈u, v〉Cε(jQ) :=

∫
Cε(jQ)

u(s)∗v(s) ds. It can be seen that
multiplication by an X ∈ S is bounded on H2ε for all
ε ≥ 0. One the other hand, given a q ∈ R, multiplication
by 1

s−jq is bounded on H2ε({jq}) for all ε > 0 but not on
H2. In the following, we will not notationally distinguish
between a transfer function and its associated multiplication
operator. For instance, an X ∈ S defines a bounded operator
X : H2ε → H2ε for all ε ≥ 0.

Given an ε ≥ 0, define the graph of the linear operator
X : dom (X) ⊂ Hm

2ε(jQ)→ Hn
2ε(jQ) to be

Gε (X) :=

{[
u
y

]
∈ Hn+m

2ε (jQ) : y = Xu

}
.

Similarly, define the (inverse) graph

G ′ε (X) :=

{[
u
y

]
∈ Hn+m

2ε (jQ) : u = Xy

}
.

Denote by Fm×n the class of linear operators which admit
strong right graph representations in S, i.e. for every X ∈
Fm×n, there exists Y ∈ S(m+n)×m such that Y has a left
inverse in Sm×(m+n) and Gε (X) = YHm

2ε for all ε ≥ 0.
In particular, Fm×n includes the class of proper rational
transfer matrices and the Callier-Desoer algebra [9], where
strong right graph representations can be constructed from
right coprime factorisations.

C. Graph theory

A graph is denoted by G = (V,E), where V =
{v1, . . . , vn} is the set of nodes and E ⊂ V × V , E =
{e1, . . . , em} is the set of edges such that ek = {vi, vj} ∈ E
if node i is connected to node j. A graph is undirected if
{vi, vj} ∈ E then {vj , vi} ∈ E. A path on G of length N is
an ordered set of distinct vertices {v0, v1, . . . , vN} such that
{vi, vi+1} ∈ E for all i ∈ {0, 1, . . . , N − 1}. An undirected
graph is said to be connected if any two nodes in V is
connected by a path. The adjacency matrix A = [Aij ] ∈
Rn×n is defined by Aij = 1 if {vi, vj} ∈ E and Aij = 0
otherwise. Note that A is symmetric for an undirected graph.
In an undirected graph, let the neighbours of node vi ∈ V
be defined as Ni := {vj ∈ V : {vi, vj} ∈ E} and
denote its degree by |Ni|. The graph Laplacian is defined as
L := diag(|Ni|)−A. L has a zero eigenvalue corresponding
to the vector of ones 1n ∈ Rn. The multiplicity of the
zero eigenvalue is one if the graph is connected [10]. The
Laplacian matrix can be factorised as L = DDT , where
D = [Dik] ∈ Rn×m is the oriented incidence matrix. It is
defined by associating an orientation to every edge of the
graph: for each ek = {vi, vj} = {vj , vi}, one of vi, vj is
defined to be the head and the other tail of the edge:

Dik :=

 +1 if vi is the head of ek
−1 if vi is the tail of ek
0 otherwise.

Note that the Laplacian matrix is invariant to the choice of
orientation. Define also the unoriented incidence matrix D̄ ∈
Rn×m whose entries are the absolute value of those of D.

III. SYNCHRONISATION PROBLEM FORMULATION

P

Γ+

+

f

e

w

v

y
Z · In

Fig. 1. Feedback setup for synchronisation.

Consider the feedback interconnection in Figure 1. There,
P :=

⊕n
i=1 Pi = diag(Pi) with the SISO dynamical



agents Pi ∈ F and Γ ∈ Fn×n denotes the interconnection
matrix. Z is a SISO proper rational transfer function that
has a finite number of poles on jR. Throughout the paper,
jQ = {jq1, jq2, . . . , jqK} is used to denote the set of poles
of Z on the imaginary axis. These poles/modes describe the
trajectory of the output signal y under synchronisation. The
interactions between the agents is determined by an underly-
ing undirected and connected graph G = (V,E), where each
node vi ∈ V is associated with a corresponding Pi and the
edges describe the communication/connections between the
agents. Figure 1 models the problem of synchronisation of
a network of heterogeneous agents interconnected through a
dynamic matrix.

The following standing assumption is made throughout the
paper.

Assumption 3.1: For every jq ∈ jQ,

lim
s→jq

1

smq−1
Γ(s)1n = 0,

where mq denotes the multiplicity of the pole jq of Z.
Furthermore, there exists no x ∈ Cn, x 6= 1n such that
Γ(jq)x = 0. In other words, det(Γ(s)) has a zero at every
s = jq ∈ jQ of multiplicity mq corresponding to the null
space span{1n}.

In the case where Z has non-repeated poles on jR, Γ
can be set to L, the graph Laplacian matrix for the graph
G. Dynamics can be included via the expression Γ =
D diag(Γi)D

T , where D denotes the incidence matrix and
Γi ∈ F for i = 1, . . . ,m; see Figure 2. This models a hetero-
geneous network configuration of agents interconnected via
dynamically weighted matrices. Note that for both cases Γ
satisfies Assumption 3.1 by the connectedness of the graph
G.

diag(Pi)

diag(Γi)

y
Z · In

DTD

Fig. 2. A synchronisation setup with dynamical interconnection matrix.

Definition 3.2: The interconnection in Figure 1 is said to
reach synchronisation if

|yi(t)− yj(t)| → 0 as t→∞
for all i, j ∈ {1, 2, . . . , n} and e, f ∈ L2.

In other words, lim
t→∞

y(t) lies in the subspace spanned by
1n, i.e. span{1n}. This means the output yi of each of the
agent Pi synchronises to the same trajectory defined by the
imaginary-axis poles of Z.

Remark 3.3: If Z(s) = 1, one recovers the standard
setup of feedback interconnection, whereby synchronisation
in the definition above corresponds to feedback stability. By
defining Z(s) := 1

s , one recovers the standard consensus

problem where all yi’s are to asymptotically converge to the
same constant value. By contrast, if Z(s) := ω0

s2+ω2
0

and
synchronisation takes place, then each yi will converge to
a sinusoid of frequency ω0 and the same phase/magnitude.
Another example is Z(s) := 1

s2 , where the system outputs
synchronise to a ramp function.

IV. ROBUST SYNCHRONISATION ANALYSIS

This section introduces a unified framework within which
to analyse the problem of synchronisation using integral
quadratic constraints (IQCs) [3]. To this end, some results
from robustness of closed-loop interconnections are needed
and provided next.

A. Feedback robustness
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Fig. 3. Standard feedback configuration.

Definition 4.1: Given ε ≥ 0, ∆ : dom (∆) ⊂ Hn
2ε(jQ)→

Hm
2ε(jQ) and G : dom (G) ⊂ Hm

2ε(jQ) → Hn
2ε(jQ), the

feedback interconnection of ∆ and G in Figure 3, denoted
[∆, G]: {

v = ∆w + f
w = Gv + e

(1)

is said to be H2ε-stable if the map (v, w) 7→ (f, e) has a
bounded inverse on H2n

2ε .
Given an H2ε-stable [∆, G], define the generalised robust-

ness margin with the ambient space taken to be H2ε(jQ) by

bε∆,G := inf
v∈Gε(∆),w∈G ′

ε(G)

‖v + w‖Cε(jQ)

‖v‖Cε(jQ)
. (2)

Furthermore, given two systems ∆1 : dom (∆1) ⊂
Hn

2ε(jQ) → Hm
2ε(jQ) and ∆2 : dom (∆2) ⊂ Hn

2ε(jQ) →
Hm

2ε(jQ), define the generalised gap metric as follows:

δε(∆1,∆2) := ‖ΠGε(∆1) −ΠGε(∆2)‖Cε(jQ)

= max
{
~δ(∆1,∆2), ~δ(∆2,∆1)

}
,

(3)

where the directed gap

~δε(∆k,∆l) := γ
(
Π(Gε(∆l))⊥ΠGε(∆k)

)
= sup
xk∈Gε(∆k)

inf
xl∈Gε(∆l)

‖xk − xl‖Cε(jQ)

‖xk‖Cε(jQ)
.

(4)

See [5] for the original definitions of the robustness margin
and gap metric with respect to the ambient space H2.

Proposition 4.2: Suppose [∆1, G] is H2ε-stable with
bε∆1,G

> δε(∆1,∆2), then [∆2, G] is H2ε-stable.



Proof: The claim can be established following the
arguments in [5, Thm. 3] or [11, Prop. III.1], where the result
is proven with respect to the ambient space H2.

B. IQC conditions for synchronisation
Throughout, jQ = {jq1, jq2, . . . , jqK} is taken to be the

finite set of poles on jR of Z and given a linear operator
X , the shorthand notation ZX is used to denote (Z · In)X .
First, a blended IQC/gap metric result on the generalised H2ε

feedback stability is given below.
Theorem 4.3: Given ε ≥ 0, the feedback interconnection

of ∆ : dom (∆) ⊂ Hn
2ε(jQ) → Hm

2ε(jQ) and G :
dom (G) ⊂ Hm

2ε(jQ)→ Hn
2ε(jQ) in Figure 3 is H2ε-stable

if there exist a homotopy τ ∈ [0, 1] 7→ Gτ with G1 = G
that is continuous in the gap metric δε(·, ·) and a Hermitian
Π ∈ Cε(jQ)(n+m)×(n+m) such that:

(i) [∆, G0] is H2ε-stable;
(ii) 〈v,Πv〉Cε(jQ) ≥ 0 for all v ∈ Gε (∆);

(iii) there exists a γ > 0 for which 〈w,Πw〉Cε(jQ) ≤
−γ‖w‖2Cε(jQ) for all w ∈ G ′ε (Gτ ) and τ ∈ [0, 1].

Proof: Following the first part of the proof for [1, Thm.
4.4], it can be shown that there exists an η > 0 for which

‖v + w‖2Cε(jQ) ≥ η2‖w‖2Cε(jQ)

∀v ∈ Gε (∆) , w ∈ G ′ε (Gτ ), τ ∈ [0, 1].
(5)

Since the feedback interconnection [∆, Gτ ] is H2ε-stable
for τ = 0 by hypothesis, inequality (5) implies that the
corresponding robust stability margin bε∆,G0

≥ η > 0;
see (2). By continuity in the gap metric, there exists an
ζ > 0 such that δε(Gh, Gh+τ ) < η for all τ ∈ [0, ζ] and
h ∈ [0, 1 − ζ]. Application of Proposition 4.2 then leads to
the feedback interconnection of ∆ and Gτ being H2ε-stable
for τ ∈ [0, ζ]. By (5), it follows again that bε∆,Gζ ≥ η > 0.
Repetitively applying the aforementioned arguments yields
H2ε-stability of the feedback interconnection [∆, Gτ ] for
τ ∈ [ζ, 2ζ], [2ζ, 3ζ], . . . in succession, and eventually for
τ = 1, as required.

The unified IQC/gap metric based result on synchronisa-
tion is in order.

Theorem 4.4: Consider the feedback configuration in Fig-
ure 1, where Z is a proper rational scalar transfer function
with poles in jQ, P :=

⊕n
i=1 Pi : Pi ∈ F;Pi(jq) 6= 0∀jq ∈

jQ, and Γ ∈ Fn×n satisfies Assumption 3.1. Suppose P and
Γ have no poles in jQ. Let τ ∈ [0, 1] 7→ Pτ ∈ Fn×n be a
homotopy that is continuous in the gap metric δ0(·, ·) such
that [ZP0,Γ] reaches synchronisation and P1 = P . Then
the feedback [ZP,Γ] reaches synchronisation if there exists
a Hermitian Π ∈ C2n×2n such that for all ω ∈ R \ Q =
(q1,∞) ∪ (q2, q1) ∪ . . . ∪ (qK , qK−1) ∪ (−∞, qK),

(i)
[
V (jω)
U(jω)

]∗
Π(jω)

[
V (jω)
U(jω)

]
≥ 0;

(ii)
[
Z(jω)Yτ (jω)
Xτ (jω)

]∗
Π(jω)

[
Z(jω)Yτ (jω)
Xτ (jω)

]
≤ −γI;

∀τ ∈ [0, 1] and some γ > 0,
where [ VU ] and

[
Yτ
Xτ

]
are, respectively, strong right graph rep-

resentations for Γ and Pτ , which satisfy Gε (Γ) = [ VU ] H2ε

and G ′ε (Pτ ) =
[
Yτ
Xτ

]
H2ε for all ε ≥ 0.

Proof: First note that by hypothesis, [ZP0,Γ] is H2ε-
stable for all ε > 0. Let Ψ := 2Π + γI . The quadratic
inequalities above can thus be restated as[

Z(jω)Yτ (jω)
Xτ (jω)

]∗
Ψ(jω)

[
Z(jω)Yτ (jω)
Xτ (jω)

]
≤ −γI;[

V (jω)
U(jω)

]∗
Ψ(jω)

[
V (jω)
U(jω)

]
≥ γI,

for all ω ∈ R \ Q and τ ∈ [0, 1]. Given ε > 0, define
Ψ̄ε ∈ Cε(jQ) by Ψ̄ε(s) := Ψ(jω) for s = σ+jω ∈ Cε(jQ).
Since Z, Xτ , Yτ , U , and V are analytic on C+, it follows
that there exists a sufficiently small ε∗ > 0 such that[

Z(s)Yτ (s)
Xτ (s)

]∗
Ψ̄ε(s)

[
Z(s)Yτ (s)
Xτ (s)

]
≤ −γ

2
I;[

V (s)
U(s)

]∗
Ψ̄ε(s)

[
V (s)
U(s)

]
≥ γ

2
I

for all s ∈ Cε(jQ), τ ∈ [0, 1], and 0 < ε ≤ ε∗. These
imply that 〈v, Ψ̄εv〉Cε(jQ) ≥ 0 for all v ∈ Gε (Γ) and
〈w, Ψ̄εw〉Cε(jQ) ≤ −γ2 ‖w‖2Cε(jQ) for all w ∈ G ′ε (ZPτ ) and
τ ∈ [0, 1]. Also from analyticity of Xτ and Yτ on C+,
continuity of τ 7→ Pτ in δε(·, ·) follows from that in δ0(·, ·),
since the integral contour C0(jQ) can be continuously de-
formed into Cε(jQ). By Theorem 4.3, it thus follows that the
feedback configuration [ZP,Γ] := [ZP1,Γ] is H2ε-stable for
all 0 < ε ≤ ε∗. In turn, this implies that

Z(s)P (s) (I − Γ(s)Z(s)P (s))
−1

= P (s)

(
1

Z(s)
I − Γ(s)P (s)

)−1 (6)

has no poles on C̄+ \ jQ, i.e. det( 1
Z(s)I−Γ(s)P (s)) has no

zeros on C̄+\jQ. Moreover, by Assumption 3.1, det( 1
Z(s)I−

Γ(s)P (s)) has a zero at every s ∈ jQ corresponding to the
null space N satisfying P (s)N ⊂ span{1n}, and the multi-
plicity of the zero is the same as that of the pole s of Z. As
such, (6) has a pole at every s ∈ jQ of the same multiplicity
as Z. This implies that the synchronisation subspace defined
by the imaginary-axis poles of Z is asymptotically stable, as
required.

V. NUMERICAL SIMULATIONS

In our numerical simulations we consider a scenario of
perturbed consensus with uncertain but bounded communi-
cation delays. Consider n = 10 agents deployed on a circle,
each connected with the leftmost and rightmost neighbors,
whose dynamics are described by hi(s) = Z(s)Pi(s), i =
1, . . . , 10, where Z(s) = 1

s is the nominal model and Pi(s) is
an unstable multiplicative perturbation. In particular, Pi(s) =

1
s−λi , i = 1, . . . , 10, where the poles the perturbations are
chosen randomly according to λi ∈ U [λnom−δλ, λnom+δλ].
For the simulation, we set λnom = 1 and δλ = 0.2.

The interconnection operator takes the form

Γ(s) = Γs(s)I +DE(s)DT

where Γs(s) = 25s
s+5 , so that, as required, Γ(0)1 = 0, I is an
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Fig. 4. A typical trajectory of the system described in Section V. The
perturbed agents reach consensus despite delayed communications.

identity matrix, D is the incidence matrix of the graph, and
E(s) is a diagonal transfer function whose (e, e)-th element,
corresponding to link e = (i, j), for some (i, j), is Eee(s) =
e−sde , de being the delay on channel e. We consider fixed
communication delays, and we set de = 0.25.

Since the graph is a circle, let the nodes be numbered
in such a way that the i-th node communicates with i − 1
and i + 1 (modulo n). Also, number the edges as follows:
e = 1 = (1, 2), e = 2 = (2, 3), . . . , e = n = (n, 1). Then
the incidence matrix of the graph is

D =



1 0 0 −1

−1 1
. . . 0

0 −1
. . . . . .

...
...

0 0
. . . . . . . . .

...
...

. . . . . . 0 0

0 0
. . . 1 0

0 0 −1 1


A typical trajectory of the system is depicted in Fig. 4,

in which it is shown that the system reaches consensus on a
non-zero value.

In order to establish synchronization of the proposed
systems, we employ Theorem 4.4 by looking for Π ∈ C20×20

such that

• it holds true[
Z(jω)⊗10

i=1 Y
i
τ (jω)

⊗10
i=1X

i
τ (jω)

]∗
Π(jω)

[
Z(jω)⊗10

i=1 Y
i
τ (jω)

⊗10
i=1X

i
τ (jω)

]
≤ −γ, ∀τ ∈ [0, 1], ∀ω > 0

where
[
Y iτ
Xiτ

]
is a strong right representation for Piτ (s) =

1
s+(1−τ)λ0−τλi , for i = 1, . . . , 10, and where the net-
work in which to each Pi we substitute Pi0 = 1

s+λ0
,

λ0 > 0, reaches synchronization. For this example, it

suffices to consider{
Y iτ (s) = 1

s+1

Xi
τ (s) = s−(1−τ)λ0−τλi

s+1

i = 1, . . . , 10

• it holds true,[
V (jω)
U(jω)

]∗
Π(jω)

[
V (jω)
U(jω)

]
≥ 0, ∀ω > 0

where [ VU ] is a strong right representation for Γ. Notice that,
for λ0 = 1 the network achieves synchronization, as it can
be checked using the techniques proposed in [2].

Let Π(jω) be[
−Γ(jω)∗

I

]
(−κ(jω))

[
−Γ(jω) I

]
where κ(jω) is a non-negative integral function on the imag-
inary axis. Since Γ = UV −1, clearly we have −ΓV +U = 0
and therefore[

V (jω)
U(jω)

]∗
Π(jω)

[
V (jω)
U(jω)

]
≥ 0, ∀ω > 0.

Using this Π, the condition[
Z(jω)⊗10

i=1 Y
i
τ (jω)

⊗10
i=1X

i
τ (jω)

]∗
Π(jω)

[
Z(jω)⊗10

i=1 Y
i
τ (jω)

⊗10
i=1X

i
τ (jω)

]
≤ −γI, ∀τ ∈ [0, 1], ∀ω > 0

boils down to

− κ(jω)M(jω)∗M(jω) ≤ −γI, ∀τ ∈ [0, 1], ∀ω > 0

for M(jω) = ⊗10
i=1X

i
τ (jω) − Γ(jω)Z(jω) ⊗10

i=1 Y
i
τ (jω).

Since κ(jω) is an arbitrary non-negative integral function
on the imaginary axis, the above-mentioned condition holds
as long as the maximum eigenvalue of −M(jω)∗M(jω) is
bounded away from zero all τ ∈ [0, 1] and all ω > 0.

Figure 5 shows the result of the numerical study. In
particular, in the figure we plot, for ω ∈ Gω ,

r(ω) = max
τ∈Gτ

λmax(−M(jω)∗M(jω))

λmax(A) is the maximum eigenvalue of the square matrix A,
and Gω and Gτ are grids at which the frequency responses
are evaluated. In particular, Gτ = [0, 0.01, . . . , 1] and Gω
contains [0.01, . . . , 0.09, 1, . . . , 999, 1000] and the opposites
with respect to zero frequency (the latter being included for
sake of completeness). Since clearly the maximum eigen-
value of −M(jω)∗M(jω) is bounded away from zero for
all τ (in the considered grid) and all ω > 0 (in the considered
grid), we can conclude that the network reaches consensus
by employing Theorem 4.4.

VI. CONCLUSIONS

The paper presents a unified framework for analysing
synchronisation of multi-agent networks in which the agents
and the dynamical interconnection operator are allowed to be
open-loop unstable. It encompasses numerous results, such
as those based on Nyquist criterion, as shown along the lines
in [1]. An interesting future research direction involves the
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Fig. 5. Numerical check of inequality ii), Theorem 4.4, for the numerical
example.

study of cooperative formation control within the developed
framework.
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