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Abstract— A general framework for the analysis of networks
of heterogeneous agents is presented. By modeling each agent as
a nominal linear time-invariant system plus a possibly nonlinear
perturbation and the interconnection among the agents via a
memoryless operator, a general result is offered which ensures
robust synchronization of the network to a subspace of RN . The
result is applied to the case when the interconnection operator
is a constant normal matrix and the perturbations nonlinear.
The criterion is reduced to a graphical Popov criterion for the
synchronization of the network.

I. INTRODUCTION
In the past few years, the scientific community has devoted

a vast amount of effort to the study of synchronization
in large–scale networks. In these systems a possibly huge
number of agents interact according to some local law which
is designed to achieve some global goal. Since the control is
based on local cooperation between the agents rather than on
coordination by a centralized unit, we call this a distributed
algorithm. The network is modeled by a communication
graph G = (V, E) in which the nodes are the agents, and
an edge (k, j) exists if agent j is able to use some sort of
information coming from agent k. We say that cooperation
is local since each agent receives information from a usually
small subset of the network, called its neighborhood. One of
the simplest instances is the consensus problem, which found
several applications in recent years, see [10], [9] and the
references therein. It is defined as follows: Assume we have
N agents, each initialized with a different real number. The
goal is to agree on a common value by iteratively exchanging
information between the agents. We stack all these initial
values in a vector x(0) = x0 ∈ RN , which evolves according
to the discrete–time system

{
x = z−1

1−z−1u = N0(z−1)u

u = −(I − P )x
. (1)

The first equation says that agent k updates its information
by integration of some local input uk, which is computed
as a linear combination of the values of its neighbors with
coefficients given by the k-th row of the matrix P ∈ RN×N .
This is a non–negative row–stochastic primitive1 matrix
consistent with the communication graph, namely such that
Pkj > 0 if and only if (j, k) ∈ E , in accordance to the fact
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1Row–stochastic means P1 = 1, primitive that there exists a positive
integer ν such that all the entries of P ν are strictly positive. Here 1 =
1√
N

[1, . . . , 1] ∈ RN .

that j uses, to compute its local control, only the information
coming from its neighbors. By Perron–Frobenius theorem [2]
we know that

xk(t)
t→∞−→ πTx0, ∀ k = 1, . . . , N

where πTP = πT and πT1 = 1.
A consensus network is thus a network of integrators

that asymptotically agrees on the same linear combination
of the initial conditions of the network. In this paper we
are interested in higher order consensus problems, where
N0(z−1) is a generic transfer function, not just an integrator.
The consensus here is required in the outputs of the agents,
and we call this synchronization of the network. We consider
moreover heterogeneous networks, in which the dynamics of
the agents contain a nominal part perturbed in some “mild”
way. The unperturbed network is called homogeneous. In [5]
robust synchronization of a network of perturbed integrator is
studied, and the idea is extended in [7] to the synchronization
of a class of higher order systems. In [6] a graphical criterion
is proposed for the case of dynamic feedback. The paper
[11] proposes a comprehensive model for synchronization
in an input/output framework. Much effort has also been
devoted to the study of the stabilization of an interconnected
network (in consensus we stabilize the system apart from
the consensus direction, e.g. 1), see, for example, [4], [3].

The aim of this paper is to present a model for a network of
agents whose outputs should synchronize, in which we allow
heterogeneity, higher order dynamics and higher order syn-
chronization, and some degree of generality in the law that
produces the local controls given the local information. We
present a synchronization result which is derived using the
IQC theorem in [8] and we particularize it to a special case
for which the criterion decomposes to one lower dimensional
criterion for each eigenvalue of the interconnection matrix.

Notations
The Hilbert space H denotes either the continuous time

signal space L2[0,∞) or the discrete time signal space
l2(0,∞). Vector valued versions are denoted Hn, where
n denotes the spatial dimension of the signals. The corre-
sponding extended space Hne consists of signals for which
PT v ∈ Hn, ∀T ≥ 0, where the truncation operator is defined
as (PT v)(t) = v(t) when t ≤ T and (PT v)(t) = 0 when
t > T .
An operator H on Hne is causal if PTH(v) = PTH(PT v)
for all T ≥ 0 and all v ∈ Hne . The operator is bounded if its
gain

γ(H) = sup
v∈Hn

v 6=0

‖H(v)‖
‖v‖ ,

is bounded, where ‖ · ‖ is the norm on Hn. H is linear if
H(α1v1 + α2v2) = α1H(v1) + α2H(v2). A causal linear



time–invariant (LTI) operator acts as

(Hv)(t) =

∫ t

0

hc(t− τ)v(τ)dτ + h0v(t) (2)

(Hv)(t) =

n∑

k=0

h(t− k)v(k) (3)

in continuous and discrete time, respectively, where h is the
impulse response function. If the signals belong to Hn then
we have the equivalent frequency domain representations
Ĥv(jω) = Ĥ(jω)v̂(jω) and Ĥv(ejω) = Ĥ(ejω)v̂(ejω),
where Ĥ and v̂ is the transfer function and Fourier transform
of v ∈ Hn, respectively. Ĥ(s) and Ĥ(z−1) will denote
respectively the Laplace transform and the Z transform of
h in continuous and discrete time. We denote by Ω the
unstability domain. In the case of continuous time systems
we have Ω = {s : Res ≥ 0} and in the case of discrete time
systems we have Ω = {z : |z| ≥ 1}. We let Hnd denote
the signals on the doubly infinite time–axis Ln2 (−∞,∞)
or ln2 (−∞,∞) with corresponding frequency domain space
Ĥd being either L2(jR) or L2[0, 2π]. The adjoint of a
bounded operator Ψ : Hnd → Hnd is defined by the relation
〈w,Ψv〉 = 〈Ψ∗w, v〉 ∀w, v ∈ Hnd , where 〈·, ·〉 denotes the
inner product. Ψ is self-adjoint if Ψ = Ψ∗. A self–adjoint
bounded linear time–invariant operator Ψ : Hnd → Hnd
defines a quadratic form 〈v,Ψv〉. We say that Ψ is positive
definite, which is denoted, Ψ > 0, if there exists ε > 0
such that 〈v,Ψv〉 ≥ ε‖v‖2 for all v ∈ Hnd . A necessary
and sufficent condition is that Ψ̂(jω) = Ψ̂(jω)∗ > 0,
∀ω ∈ R ∪ {∞} and Ψ̂(ejω) = Ψ̂(ejω)∗ > 0, ∀ω ∈ [0, 2π],
respectively. In this paper we use the algebra Ac consisting
of LTI operators with impulse responses functions

h(t) = hc(t)θ(t) + h0δ(t)

where hc ∈ Lm×m1 [0,∞), h0 ∈ Rm×m, θ(·) and δ(·) denote
the unit step function and the dirac delta function, respec-
tively. It defines a bounded LTI operator via the convolution
in Eq. 2. We let Sn×nAc

be the bounded LTI operators on
Ln2 (−∞,∞) defined by impulse response functions of the
form

h(t) = hc(t) + h0δ(t)

where hc(t) = hc(−t)T ∈ Lm×m1 (−∞,∞) and h0 = hT0 ∈
Rm×m. The transfer function Ψ̂(s) of Ψ ∈ Sm×mA satisfies
Ψ̂(s) = Ψ̂(−s)T in its domain of definition, which includes
the imaginary axis. It is thus self-adjoint and will be used to
define quadratic forms. Similarly, Ad denotes the bounded
LTI operators on l2(0,∞) defined by the convolution in Eq. 3
with an impulse response function satisfying

∑∞
k=0 |hk| <

∞. Similarly, Sn×nAd
denotes the LTI bounded operators

on ln2 (−∞,∞) defined by impulse response functions with
hk = hT−k and

∑∞
k=−∞ |hk| < ∞. Any transfer function

Ψ̂(z) of Ψ ∈ Sm×mAd
satisfies Ψ̂(z) = Ψ̂(−z)T and is thus

self-adjoint. We use the notation A and Sn×nA to denote
an LTI operator that could be either continuous or discrete
time. A causal LTI operator is called stable if its transfer
function is analytic in Ω. In particular, A consists of stable
LTI operators.

The diagonal augmentation is defined as

daug (A,B) =



A11 0 A12 0
0 B11 0 B12

A21 0 A22 0
0 B21 0 B22


 .

II. A MODEL OF HETEROGENEOUS NETWORKS

Our model for a heterogeneous multi–agents network is
given in the following system, depicted in Fig. 1




[
y

v

]
=

[
Huy Hry Hwy

Huv 0 Hwv

]

u

r

w


 = H



u

r

w


 ,

w = ∆(v),

u = Γ(y).

(4)

All the variables are N–dimensional vectors, one for each
agent. In our model each agent is represented as a common
LTI system, so that all the block–entries of H are diagonal
and we can write

H =

[
huv hry hwy
huv 0 hvv

]
⊗ IN .

The agent k is characterized by an output yk whose dynamics
is given by

yk = huyuk + hryrk + hwywk.

Here uk is the interconnection input, produced according to

uk(t) = Γk(t, y(t)),

where Γk is a bounded memoryless operator HNe → He
whose structure is related to the communication graph G =
(V, E). In particular, (j, k) ∈ E if and only if Γk depends
explicitly on yj , namely if k is allowed to use the information
coming from j. The signal rk is called the external input and
it can be used, for example, to impose initial conditions under
some assumptions on the system. We will always assume
that ‖r‖2 < ∞. The internal input wk is an internal signal
which is used to model the perturbations of the agents, and
it is produced according to wk = ∆k(vk), while the internal
output vk evolves according to

vk = huvuk + hwvwk.

The operator ∆ will be always assumed to be diagonal,
since the perturbations at different agents are assumed to be
“independent” of each other, and even of different nature. For
example, ∆k could be a LTI SISO system while ∆j could
be a memoryless nonlinear operator. If ∆(v) ≡ 0, namely
if no perturbation exists, the system evolves according to its
nominal behavior, and we have a homogeneous network. The
following assumptions are technical conditions that normally
are non-restrictive in applications.

Assumption 2.1: The transfer functions representing the
operators huy , hry and hwy are such that

ĥ∗y =
b∗y
a
f̂∗y, ∗ ∈ {u, r, w},

where f̂∗y is the transfer function corresponding to f∗y ∈ A,
b∗y is a stable polynomial and

a(s) =

m∏

k=1

(s− sk)ρk



where sk ∈ Ω such that deg(b∗y) < deg(a). We finally
assume that f̂∗y has no zeros in Ω. This means that the
systems are strictly proper, has no unstable zeros, and share
the same unstable poles.

Such assumptions are satisfied in many cases of interest
such as the higher order consensus problem with minimum
phase nominal system.

Huy Hry Hwy

Huv 0 Hwv

y

v w

r

u

Γ

∆

Fig. 1. The system under consideration.

Example 2.1: The homogeneous consensus network that
was presented in the introduction can be expressed in our
framework as





[
y

v

]
=

[
z−1

1−z−1
z−1

1−z−1
z−1

1−z−1

I 0 0

]

u

r

w


 ,

w = ∆(v),

u = Γ0y.

(5)

where thus huv = 1, hwv = 0 and huy = hry = hy =
z−1

1−z−1 , Γ0 = −(I − P ) and ∆ ≡ 0. If ∆ 6= 0 then we
have a perturbed consensus network, while the higher order
consensus network is obtained simply substituting for z−1

1−z−1

a generic transfer function N0(z−1), or N0(s) in continuous–
time. Due to the simplicity of this system, we will often
reduce it to2

{
yk = N0(I + ∆)u+N0r

u = Γ(t, y)
(6)

which is depicted in Fig. 2, where the operator Γ can be
more general than the simple multiplication by a constant
matrix.

N0(I + ∆)

Γ

y

N0r

u

Fig. 2. Higher order perturbed consensus network.

III. SYNCHRONIZATION OVER HETEROGENEOUS
NETWORKS

In this section we will provide the basic tool to prove the
synchronization of the network in the sense of the following
definition.

2Here ∆u should be read ∆(u).

Definition 3.1: Consider the system in Eq. 4 and a sub-
space Z ⊂ RN . Let y⊥ = PZ⊥y be the projection of y
onto the orthogonal complement of Z . Let M : HNe → HNe
denote the causal map representing the closed loop system
y⊥ = M(r). We say that the system synchronizes to Z if
||M||HN

e →HN
e
<∞.

This notion of synchronization implies under the assump-
tion r ∈ H, that y asymptotically converges to Z , and
this is why we call it synchronization subspace. Typically
Z = span {1} in which the term synchronization recovers
its usual meaning that the differences among the components
of y to converge to zero.
We will take the following steps toward our main synchro-
nization result. First we reduce the dimension of the system
by projecting down to the orthogonal complement of Z .
Then we perform a loop transformation to stabilize the linear
part of the system. The main result will then follow by an
application of the IQC theorem in [8].

Projection onto Z⊥
The following assumption is imposed on the operator Γ.
Assumption 3.1: The synchronization subspace Z is the

right and left kernel of the memoryless operator Γ. Namely, if
z ∈ Z , then Γ(t, z) = 0 and z∗Γ(t,v) = 0, ∀ t ≥ 0, ∀v ∈
HN .

Let Z be a matrix whose columns form an orthonormal
basis for Z , and V be any orthonormal complement to it,
i.e.

Z∗Z = Ip, V
∗V = IN−p, V

∗Z = 0, V V ∗ + ZZ∗ = IN

where p = dimZ , and where V V ∗ and ZZ∗ are two
projectors respectively onto Z⊥ and Z . Assumption 3.1 can
be expressed by means of the constraints

Γ(t, y) = Γ(t, V V ∗y), Γ(t, y) = V V ∗Γ(t, y).

The first step consists in redefining y⊥ = V ∗y ∈ RN−p,
and the same for u, r, w, v, Γ⊥(y⊥) = V ∗Γ(V y⊥) and
∆⊥(v⊥) = V ∗∆(V y). Once this is done, simple computa-
tions allow us to conclude that these “projected” variables
evolve according to the reduced–dimension system





[
y⊥
v⊥

]
= H



u⊥
r⊥
w⊥




w⊥ = ∆⊥(v⊥)

u⊥ = Γ⊥(y⊥)

(7)

It is worth to notice that the diagonal structure of the linear
part H has been maintained after the dimension reduction at
the price that the diagonal structure of the perturbation is
lost. As we will see, this does not pose any problem.

Remark 3.1: We will assume from now on Hwv = 0,
namely we suppress the dependence of the internal output
from the internal input. Under some assumptions, this can
be done without loss of generality, and this will be the case
in all the applications we have in mind.

Loop transformation
The second step of our approach consists in performing a

loop transformation to stabilize the linear part. This is done
by means of a matrix

Q =

[
0 Q12

Q21 Q22

]



and by defining the operator ΓQ
3 via the upper linear

fractional transformation of Γ⊥, Γ⊥ = Fu(Q, ΓQ), namely

u⊥ = Γ⊥(y⊥) =⇒





uQ = ΓQyQ[
yQ
u⊥

]
= Q

[
uQ
y⊥

]
.

ΓQ

0 Q12

Q21 Q22
y⊥ u⊥

r⊥

uQ yQ

w⊥v⊥

Γ⊥

G

∆⊥

Huy Hry Hwy

Huv 0 0

Guy Gry Gwy

Guv Grv Gwv

ΓQ

uQ

r⊥

w⊥

yQ

v⊥

∆⊥

Fig. 3. Loop transformation of the system. The upper linear fractional
system Fu(Q, ΓQ) has been substituted for Γ⊥. The Redheffer star product
of Q and the linear and unstable part, H , is employed in order to obtain a
matrix of stable transfer functions G.

This operation is depicted in Fig. 3, in which Fu(Q,ΓQ)
is substituted for Γ⊥. Once this is done, we consider the
interconnection of the linear part H and the matrix Q,
obtaining the matrix of transfer functions

G = Q ? H =

[
Guy Gry Gwy
Guv Grv Gwv

]
(8)

where the star product defines

Guy = huyQ12(I −Q22huy)−1Q21

[Gry Gwy] = Q12(I −Q22huy)−1 [hry hwy]

Guv = huv(I −Q22huy)−1Q21

[Grv Gwv] = huvQ22(I −Q22huy)−1 [hry hwy]

If G is stable, we have thus achieved the goal of this section,
and this will be an assumption from now on.

Assumption 3.2: The matrix Q ∈ R2N×2N is chosen in
such a way that all the entries of the matrix of transfer
functions G in Eq. 8 are stable.

The synchronization criterion

The main result will follow by an application of the
IQC theorem from [8] on the transformed system. We use
the following definitions of stability and Integral Quadratic
Constraint.

Definition 3.2: The interconnection [G,diag (ΓQ,∆⊥)] in
Fig. 4 is called stable if there exists c > 0 such that

‖yQ‖2 + ‖v⊥‖2 ≤ c‖r⊥‖2

for all r⊥ ∈ Hn−1.

3We will often suppress the arguments of Γ(t, y), and of ΓQ and Γ⊥,
for sake of notation.

ΓQ

∆⊥

Gr

[
yQ

v⊥

]
[

0
r⊥

]

Fig. 4. Feedback system on which we apply the IQC theorem. In this
system Gr is a matrix of stable transfer functions and in order to prove
stability we have to provide IQC characterizations for both the operators
ΓQ and ∆.

Definition 3.3 (IQC): Let Π ∈ S2m×2m
A . Then a bounded

causal operator ∆ : Hme → Hme is said to satisfy the IQC
defined by Π (∆ ∈ IQC(Π)) if

〈
[
∆(w)
w

]
, Π

[
∆(w)
w

]
〉 ≤ 0, ∀w ∈ H.

We are now ready to state our main result.
Theorem 3.1: Assume that the operator Γ respects As-

sumption 3.1 and that there exists a matrix Q ∈ R2N×2N

which respects Assumption 3.2. Assume moreover that
i) there exists continuous (in the norm topology)

parametrizations ΓQ(τ) and ∆⊥(τ) such that ΓQ(1) =
ΓQ, ∆⊥(1) = ∆⊥ and such that the nominal intercon-
nection [G,diag (ΓQ(0),∆⊥(0))] is stable,

ii) there exists bounded self–adjoint linear operators ΠΓQ

and Π∆⊥ such that
(a) ΓQ(τ) ∈ IQC(ΠΓQ

), τ ∈ [0, 1],
(b) ∆⊥(τ) ∈ IQC(Π∆⊥), τ ∈ [0, 1],

iii) [
I
Gr

]∗
daug

(
ΠΓQ

,Π∆⊥

) [ I
Gr

]
> 0 (9)

where

Gr =

[
Guy Gwy
Guv Gwv

]
, (10)

iv) huv, h
−1
uv ∈ A, Q12, Q

−1
12 ∈ RN×N .

Then the network in Eq. 4 synchronizes to the subspace Z
in the sense of Definition 3.1

Remark 3.2: The theorem ensures that y⊥ belongs to
HN−p. In discrete–time this is enough for y⊥ → 0, while
in continuous–time we need to impose in addition that Guy ,
Gry and Gwy are strictly proper. However, this is true by
our assumptions on h∗y , ∗ ∈ {u, r, w}, and hence y → Z ,
namely the network synchronizes in the usual sense.

Proof: See Appendix.
The following technical lemma, whose proof is omitted for

brevity, says that if the perturbation operators are sufficiently
structured then the same multiplier can be used for the
modified operator ∆⊥ as for the individual ∆k.

Lemma 3.1: Let

∆⊥(·) = V ∗∆(V ·) = V ∗diag (∆1(V1·), . . . , ∆N (Vn·))

where Vk denotes the kth row of V and V is as above.
Suppose that π∆ is a multiplier such that ∆k ∈ IQC(π∆),
for any k. Let moreover π∆, 11 ≥ 0. Then ∆⊥ ∈ IQC(π∆⊗
IN−1).



IV. SPECTRAL DECOMPOSITION OF THE
INTERCONNECTION MATRIX Γ0

In this section we particularize the previous result for
the simplest choice for the interconnection operator Γ(t, y),
namely the multiplication by a constant matrix

Γ(t, t) = Γ0y

and we impose the following Assumption on Γ0.
Assumption 4.1: The matrix Γ0

i) respects Assumption 3.1
iia) is normal, namely such that Γ0Γ∗0 = Γ∗0Γ0

iib) is such that the transfer functions hry

1−λkhuy
are stable

for any non–zero eigenvalue λk of Γ0.
Normality of Γ0 implies that

Γ0 = [ZV ]

[
0p 0
0 Γ0⊥

] [
Z∗

V ∗

]
= V ∗Γ0V,

where the columns of Z are an orthonormal basis of Z =
ker Γ0, those of V are an orthonormal basis of Z⊥, and
Γ0⊥ = diag (λp+1, . . . , λN ) ∈ RN−p×N−p is a diagonal
matrix whose (k, k)-th entry is the k-th non-zero eigenvalue
of Γ0. To perform the loop transformation we choose

Q12 = IN−1, Q21 = IN−1, Q22 = Γ0⊥

and we must show that Q respects Assumption 3.2. In fact
performing the projection using V with ∆ ≡ 0 we obtain

y⊥ = (IN−p − Γ0⊥huy)−1hryr⊥ = Gryr⊥.

Notice that Gry is a diagonal matrix of transfer functions and
that if Γ0 satisfies Assumption 4.1 then it is stable, and by
Assumption 2.1 also the others are stable. On this discussion
is based the proof of the following result.

Corollary 4.1: Consider the system in Eq. 4 in which
Γ(t, y) = Γ0y, where Γ0 respects Assumption 4.1.

Assume there exists a multiplier π∆ ∈ S2×2
Ad

such that
π∆, 11 ≥ 0 and π∆, 22 ≤ 0, ∆k ∈ IQC(π∆) and

[
I

λkhry

1−λkhuy

]∗
π∆

[
I

λkhry

1−λkhuy

]
> 0,

for any nonzero eigenvalue λk, k = 1, . . . , N − p of Γ0.
Assume moreover that huv, h−1

uv ∈ A. Then the system
synchronizes to the subspace Z .
Proof: See Appendix.

A. Quasi–saturation in the interconnection inputs
In this section we consider the higher order consensus

system which we have described in Example 2.1
{
y = N0(1 + ∆)u+N0r

u = Γ0u
(11)

The input to the k-th agent at time t is given by uk +
∆k(uk(t)) and we assume that ∆k(u) = 0 if |u| ≤ uth,
where uth is a certain threshold value, and that in general it
satisfies the slope restriction

−αmin ≤
∆k(x1)−∆k(x2)

x1 − x2
≤ 0. (12)

By making use of such an operator we can model quasi–
saturation of the input, in which the interconnection input
uk(t) is used if it is small enough in absolute value, while

if it is too large it is underestimated. If αmin = 0 then the
effect of ∆k disappears, and we keep αmin < 1 in order to
avoid the pure saturation of the input, which in general could
prevent our notion of synchronization. An example of what
can be expressed using this ∆ is shown in Fig. 5.

v

αminv

(1 + ∆k)(v)

Fig. 5. An example of quasi–saturation.

A first, simple multiplier is the sector–condition multiplier

π∆, C =

[
2 αmin

αmin 0

]

which, however, offers too conservative results. We will
combine it with the Zames–Falb multiplier, see e.g. [12],

π∆, ZF (jω) =

[
2Re( −jω

1−jω/τ ) αmin
−jω

1−jω/τ
αmin

jω
1+jω/τ 0

]
.

for which ∆k ∈ IQC(π∆, ZF ) thanks to the slope condi-
tion. If we choose τ large enough, this bounded multiplier
approximates, at sufficiently low frequency, as π∆, ZF (jω) ≈
αminπ∆,P (jω), where the Popov multiplier is

π∆, P (jω) =

[
0 −jω
jω 0

]
.

Hence, at low frequencies the Zames–Falb multiplier recov-
ers the Popov one.

Our choice for the multiplier to be used is a linear
combination of the two

π∆, C + λαminπ∆, P =

[
2 αmin(1− jλω)

αmin(1 + jλω) 0

]
.

(13)
We can invoke Corollary 4.1 to immediately prove the
following result.

Corollary 4.2: Consider the system in Eq. 11 where ∆k

satisfies Eq. 12 and Γ0 satisfies Assumption 4.1. Then the
system synchronizes if there exists λ ∈ R such that

[
1

λkN0

1−λkN0

]∗
(π∆, C + λπ∆, P )

[
1

λkN0

1−λkN0

]
> 0, (14)

where π∆, C and π∆, P are defined above.
This inequality can easily be checked graphically using a

Popov plot. Define Gr = λkN0

1−λkN0
and

P = {z : z = ReGr(jω)− jωImGr(jω)}.
The system synchronizes if P entirely lies on the right to
the line with slope 1

λ and crossing the x–axis in the point
− 1
αmin

. Is is worth to notice that if αmin → 0, namely if
∆k → 0, then the Popov criterion is always satisfied, and
this is clear since the nominal interconnection is stable.

Remark 4.1: Corollary 4.2 and the graphical criterion are
stated and verified using the Popov multiplier instead of the
Zames–Falb multiplier. As we have noticed above, the former



is a good approximation of the latter at low frequencies, so
in this range the two criteria essentially coincide. One has
then to be sure that at high frequencies in which the correct
multiplier is π∆, ZF , the inequality in Eq. 14 is satisfied. This
holds, for example, if τ is large, we are in continuous–time
and N0(s) is a strictly proper transfer function.

B. Clocks Synchronization
In this section we will apply our result to the continuous–

time version of the clock model presented in [1], which we
will now briefly recall. A clock is modeled as a double–
integrator, namely as a 2–dimensional system in which the
first state is the relative time given by the clock and the
second is the instantaneous skew of the clock. The model in
state space is as follows




ẋk(t) =

[
0 q

0 0

]
xk(t) + Fuk(t),

yk(t) =
[
1 0

]
xk(t),

(15)

A steady assumption will be that the parameter q is shared
among all the clocks. This is a rather strong assumption
which is done for simplicity only. We assume that each clock
is allowed to modify its pair of states by making use of the

(shared) matrix F =

[
f1

f2

]
, and uk is the k-th component of

u(t) = (I + ∆)(Γ0y(t)).
To give a numerical example, we assume that q = 1 and

f1 = 1.7, f2 = 1, so that the transfer function of the clocks
is

N0(s) =
f1s+ f2q

s2
=

1.7s+ 1

s2
,

and that

Γ0 = −IN + 0.15(CN + C−1
N ) + 0.30C5

N + 0.40C−5
N ,

where CN is the N ×N circulant matrix whose first row is
entirely zero apart from [CN ]12 = 1. It can be checked that

N0(s)
1−λkN0(s) is a stable transfer function for all k.

As said, we assume that the systems are all equal, except
for the fact that they all quasi–saturate their inputs in the
previously described way

(1 + ∆k)(uk(t)) ={
uk(t), |uk(t)| ≤ uth
uth + αk(uk(t)− sgn(uk(t))uth), |uk(t)| > uth

where αk ∈ [0.2, 1], ∀k. We consider the network with N =
9 agents with constant normal interconnection matrix

To prove the synchronization of this network we can use
the multiplier π∆ in Eq. 13 with λ = 3, and to see that
the IQC is satisfied one can use the Popov plot, which is
presented in Fig. 7.

C. A non–normal Γ0 example
In this section we still consider as interconnection operator

the simple multiplication by a constant matrix Γ0 but we
drop the strong normality assumption. Instead, we assume
Γ0 = −νL where ν > 0 is a real number and L is a
reversible weighted Laplacian of the communication graph.
Being a weighted Laplacian means that the off–diagonal
entries are non–positive and non–zero if and only if the
corresponding edge of the graph exists, and that L1 = 0
(so that the diagonal entries are positive). A Laplacian can
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Fig. 6. Clock synchronization with quasi–saturation. A typical trajectory
of the outputs.
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Fig. 7. The Popov plot in the case of quasi saturation. The big cross marks
the point − 1

αmin
+ j0.

be obtained as L = I − P where P is a non–negative
row–stochastic matrix associated with the communication
graph. By Perron–Frobenius theorem the kernel of L is
only spanned by 1 if P is primitive, for which a sufficient
condition is presented in the following proposition, adapted
from [10].

Proposition 4.1: Consider a row–stochastic matrix P as-
sociated to the directed graph G. Assume that G has all the
self–loops, namely that Pii > 0, ∀ i = 1, . . . , N , and that G
has a spanning tree. Then the matrix P is primitive.

Reversibility of Γ0 (or L, or P ) means that there exists a
diagonal matrix D such that

DΓ0 = ΓT0 D, (16)

which, if it exists, can be obtained as D = diag (π) where
πTΓ0 = 0. Notice that in the special case D = 1

N IN , the
matrix Γ0 is symmetric so we fall in the normal case. Due
to space restrictions, we do not give details on this. We
only underline that the name, reversible, is related to the
reversibility of the Markov Chain associated with the matrix
P .

Assume now that πi > 0, ∀ i = 1, . . . , N , so that we can
write D1/2 and D−1/2, and define the matrix

R0 = D1/2Γ0D
−1/2. (17)

Using Eq. 16 it is trivial to see that R0 is symmetric, and
this proves that the eigenvalues of a reversible Γ0 are real,
since R0 and Γ0 are similar. Since R0 is symmetric, it is
also normal, and its right kernel is span

{
D1/21

}
.



Consider the higher order consensus system
{
y = N0(I + ∆)u+N0r

u = Γ0y
. (18)

We can perform a multiplier transformation defining ȳ =
D1/2y, ū = D1/2u, r̄ = D1/2r and ∆̄(ū) =
D1/2∆(D−1/2ū) in order to obtain

{
ȳ = N0(I + ∆̄)ū+N0r̄

ū = R0ȳ
(19)

where now R0 respects the normality assumptions. We can
now state the following result.

Proposition 4.2: Consider the system in Eq. 18 where
Γ0 = −ν(I − P ) is reversible with left kernel spanned by
πT . Assume moreover that the transfer functions N0

1−λkN0
are

stable for any nonzero eigenvalue of Γ0. Then if there exists
a multiplier π∆ ∈ S2×2

A such that π∆, 11 ≥ 0, π∆, 22 ≤ 0,
∆k ∈ IQC(π∆) and

[
I

λkN0

1−λkN0

]∗
π∆

[
I

λkN0

1−λkN0

]
> 0,

for any nonzero eigenvalue λk, k = 1, . . . , N−p of Γ0. Then
the system synchronizes to the subspace Z = span {1}.
Proof: From the above discussion it is clear that R0

satisfies Assumption 4.1. Since the eigenvalues of Γ0 are also
eigenvalues of R0, we can immediately apply Corollary 4.1
and conclude that the system in Eq. 19 synchronizes to
span

{
D−1/21

}
. Since D−1/2 is an invertible constant ma-

trix, and since ȳ = D1/2y and r̄ = D1/2r, it is immediate to
conclude that the system in Eq. 18 synchronizes to span {1}.

1) Leader following using reversible matrices: In the
previous paragraph the steady assumption was that all the
entries of π had to be strictly positive. In this paragraph
we want to analyze what happens if, instead, some of them
are zero. For sake of simplicity, we will consider only the
case ∆k = 0, k = 1, . . . , N . We can assume w.l.o.g.
(possibly after relabeling the agents) that V = S1∪S2 where
S1 = {1, . . . , q} and S2 = {q + 1, . . . , N}, and πi > 0 if
i ∈ S1 and πj = 0 if j ∈ S2. By reversibility, from Eq. 16
we can conclude that Γ0 has the structure

Γ0 =

[
ΓS1

0
ΓS12 ΓS2

]
.

By suitably partitioning the system it is not difficult to see
that the agents in S1 evolve according to

{
yS1

= N0IS1
uS1

+N0rS1
,

uS1 = ΓS1yS1
,

(20)

while the dynamics of those in S2 is

yS2
= (I − ΓS2N0)−1N0(ΓS12yS1

+ rS2). (21)

Because of the block–lower–triangular structure of Γ0,
ΓS1 is minus a Laplacian while the eigenvalues of ΓS2 are
all stable. If the matrix Γ0 is chosen in such a way that
all its nonzero eigenvalues are able to stabilize N0, then
(I − ΓS2

N0)−1N0 is a stable matrix of transfer functions.
Notice, moreover, that since Γ01 = 0, we have Γ−1

S2
ΓS12

1 =
−1. Since rS2

is a bounded signal and yS1
(t) → α(t)1,

we can conclude that the agents in S1 reach asymptotically

an agreement and act as leaders, while set S2 will follow it,
progressively forgetting initial conditions and external inputs.
To understand this better, we note that we always can assume
yS1

(t) = V y⊥ + y1, where y1 = α(t)1, so that we have

yS2
= (I − ΓS2N0)−1(N0ΓS12yS1

+ rS2)

= (I − ΓS2N0)−1N0(ΓS12(V y⊥ + y1) + rS2)

= (Γ−1
S2
−N0)−1N0Γ−1

S2
ΓS12

y1 + q

= −(Γ−1
S2
−N0)−1N0y1 + q

where q = (I − ΓS2N0)−1N0Γ−1
S2

(ΓS12V y⊥ + rS2) ∈
HN−q . From this one may consider different cases. If α(t) =
α0 (a constant) and N0(z) has its only unstable pole at z = 1,
then the final value theorem gives

lim
t→∞

yS2
(t) = − lim

z→1
(Γ−1
S2
−N0(z))−1N0(z)α01 = α01.

Similarly, as in the next example, if α(t) = A sin(ω0t+φ0)
and N0(s) = 1+s

s2+ω2
0

the solution converges to the sinusoidal
yS2

(t) = A sin(ω0t+ φ0).
A numerical example: Consider a homogeneous network

of N = 8 oscillators whose nominal dynamics is

N0(s) =
1 + s

s2 + ω2
0

where ω0 = 1. The network is divided in two subsets, a first
set S1 in which the agents are interconnected in a circle and
communicate using the matrix

ΓS1
= −I4 + 0.5C4 + 0.5C−1

4 ,

and a second set S2 in which the agents are interconnected in
a circle via a matrix ΓS2

and, moreover, can receive informa-
tion from one of the agents of the set S1 via a matrix ΓS12

.
The two ΓS2

and ΓS12
, apart from the structure, are chosen

randomly with the only constraint that [ΓS12
ΓS2 ]1 = 0.

This is depicted in Fig. 8.

S1

S2

Fig. 8. Leader following for a network of perturbed oscillators. The graph
of communication. In black it is depicted the set S1 of agents, in blue it
is the set S2. Notice that the agents in S2 receive information from S1
without replying.

Once we run the simulation, taking randomly the initial
conditions, we obtain as typical trajectory what is depicted in
Fig. 9. As it can be seen, the agents in S1 agree on a sinusoid
of angular frequency ω0 = 1rad/sec, which corresponds
to the “nominal behavior”, followed by the agents in S2

which forget their initial conditions and slowly converge to
the behavior of the former agents.
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Fig. 9. Leader following for a network of perturbed oscillators. In thick
black the trajectory of the leaders, in thin blue the followers.

V. CONCLUSIONS AND FUTURE WORK
In this paper we have presented a model for heterogeneous

networks of agents characterized by a shared nominal linear
behavior which is perturbed, and interconnected using a
memoryless operator. We have in preparation a second paper
in which we rephrase the result in the original variables
and we study in detail the case in which each perturbation
operator ∆k is a LTI SISO system, for which a Nyquist
criterion can be stated similarly to what we have done in
[7]. Future work includes and is not limited to dynamic
interconnection operators and time–switching networks.

APPENDIX

Proof: [Proof of Theorem 3.1] The first step is to prove
stability of the feedback system [Gr, diag (ΓQ[τ ], ∆⊥[τ ])],
which is depicted in Fig. 4. This is a direct consequence of
the IQC theorem in this particular case, since Gr is a matrix
of stable transfer functions and the conditions i), ii) and
iii) imply that all hypotheses of the main theorem in [8] are
satisfied. Note that our definition of IQC in Defintion 3.3
has the opposite sign compared to [8]. The parametrization
of the perturbation diag (ΓQ, ∆⊥) is also slightly different
but the proof is anyway completely analogous.

Stability of the system in Fig. 4 implies that for any r ∈
HN we have ‖yQ‖2 + ‖v⊥‖2 ≤ c‖r⊥‖2. In turn, recalling
the projection step and the loop transformation step, it holds
yQ = Q12y⊥ and v⊥ = Huvu⊥ so that assumption iv)
implies that

‖y⊥‖2 + ‖u⊥‖2 ≤ cmax(‖Q−1
12 ‖, ‖H−1

uv ‖)2‖r⊥‖2,
which implies that the condition in Definition 3.1 holds.

Proof: [Proof of Corollary 4.1] The proof consists in
finding out a suitable V ∈ RN×N−p for the projection
and Q for the loop transformation so that the conditions of
Theorem 3.1 are satisfied.

Since Γ0 is normal it can be orthogonally diagonalizable.
Relabeling the nodes we obtain

Γ0 = [Z V ]
∗
[

0 0
0 Γ0⊥

]
[Z V ]

where Γ0⊥ is a diagonal matrix whose (k, k)-th element is
the k-th nonzero eigenvalue of Γ0. Notice that Γ⊥(t, y) =
Γ0⊥y⊥ and that we can use exactly the matrix V in order
to perform the projection.

Concerning Q, we simply set

Q =

[
0 I
I Γ0⊥

]
,

which trivially yields ΓQ(t, y) = 0. The resulting system is
thus 




[
y⊥
v⊥

]
=

[
Gry Gwy
Grv Gwv

] [
r⊥
w⊥

]

w⊥ = ∆⊥v⊥

since yQ = y⊥ and uQ(t) ≡ 0, ∀ t, so its contribution is
dropped.

It is immediate to see that if we set ΠΓQ
=

[
ν 0
0 0

]
⊗

IN−p, ν ∈ R, and we use the fictitious parametrization
ΓQ(t, yQ)[τ ] = τΓQ(t, yQ) ≡ 0, then ΓQ ∈ IQC(ΠΓQ

)
(actually the scalar product which defines the IQC is always
zero). The parametrization ∆k[τ ] = τ∆k, together with
π∆,11 ≥ 0 and π∆,22 ≤ 0, implies ∆k[τ ] ∈ IQC(π∆)
and thus, by Lemma 3.1, also ∆⊥ ∈ IQC(π∆ ⊗ IN−1).
Moreover, the nominal interconnection, which is given by
ΓQ[0] = 0 and ∆⊥[0] = 0, is

[G,diag (ΓQ[0],∆⊥[0])] =

[
Gry Gwy
Grv Gwv

]

since the signal uQ = 0 so it has no influence. Assump-
tion 4.1 implies now that [G,diag (ΓQ[0],∆⊥[0])] is stable.
This holds since Gry is stable by assumption and stability
of the other blocks follows from Assumption 2.1. This
reasoning implies conditions i) and ii) in Theorem 3.1 are
satisfied. It is now a matter of computation to show that
if we choose ν > 0 sufficiently large then the linear part
satisfies the quadratic constraint in the theorem defined by
the multiplier daug

(
ΠΓQ

, π∆ ⊗ IN−p
)
. Thus we can apply

our result and conclude for the synchronization of the given
system.
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