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I. INTRODUCTION

Traffic congestion in large urban areas is a growing
societal issue. Technological advancements in the fields
of traffic sensing and network control and communication
offer promising possibilities to reduce both congestion and
pollution. Classical strategies [1], [2] for traffic flow control
are typically based on extensive surveys aimed at identifying
a model for the network and designing traffic plans that
are either fixed [3] or constantly re-tuned as in SCOOT
[4]. Other solutions are based on dynamic programming or
model-predictive control [5], [6], and more recently on back-
pressure algorithms [7], [8]. These strategies aim at stabi-
lizing the network, but do not provide sound performance
guarantees on the traffic network behavior.

Recently, positive and monotone systems are attracting
increasing attention in the control community, especially
in the context of distributed control of large-scale network
systems. In fact, their structural properties have been found
amenable for both efficient analysis and synthesis with
scalable complexity [9]. Inspired by the distributed synthesis
insights of [9], this paper is concerned with the problem of
distributed synthesis of monotone dynamical flow networks.

Our contribution builds upon the dynamical network flow
framework recently proposed in [10], [11]. We consider a
continuous-time model in which links are buffers whose
occupancy level dynamically changes according to mass con-
servation laws. Flow reaching a junction is redistributed in
the outgoing links according to deterministic rules aimed at
modeling both drivers’ behavior and structural characteristic
of the network, as well as the control exerted by the traffic
manager. In particular, we explore the possibility of charging
tolls and varying speed limits on the links of the network.
The goal of the traffic manager is to optimize such control
variables in order to improve the performance of the network,
measured by a function of the state of the network at steady-
state, for example, the total traffic density in the network.

The contributions of this paper are twofold. First, we for-
malize the problem of steady-state performance optimization
in dynamic flow transportation networks. Second, we provide
a scalable distributed synthesis solution in two different
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scenarios: if both tolls and speed limits can be decided,
then the solution of a convex optimization problem yields
tolls and speed limits which steer the network to the optimal
steady-state. When instead speed limits are the only control
variables, then a suboptimal solution for the non-convex
steady-state performance optimization problem is obtained
by a suitable relaxation.

Notation: A weighted directed graph G = (V, E , C) is a
triple in which V is the set of nodes and E is the set of links,
endowed with three vectors σ, τ :∈ VE , and C ∈ RE+ whose
entries σe, τe, and Ce denote the tail, head, and capacity of
link e, respectively. For v ∈ V , let E+

v = {e ∈ E : σe = v}
and E−v = {e ∈ E : τe = v}. The symbols R and R+ denote
the set of real and nonnegative real numbers, respectively.

II. PROBLEM FORMULATION

Following [10], [11], we model the topology of a trans-
portation network as a weighted directed graph G =
(V, E , C) whose nodes represent junctions and whose links
represent segments of physical roads. On each link e ∈ E
the variable ρe ∈ [0,+∞) denotes the aggregate density,
or occupancy level, of traffic on it. For each v ∈ V , let
λv ≥ 0 be the (uncontrollable) flow from the external world
reaching v, and call the stacked version λ ∈ RV+ the vector
of external inflows. We denote by O = {v ∈ V : λv > 0}
the set of origins, namely the set of nodes with nonzero
inflow from the external world. Conversely, particles leave
then network when they hit nodes called destinations. The
set of destinations is denoted D ⊆ V . We make the following
mild assumptions on the network topology.

Assumption 1: The set of destinations D is nonempty and
D ∩ O = ∅. Moreover, for every v ∈ V \ O there exists at
least one directed path from some origin node o ∈ O to v,
and for every v ∈ V \ D there exists at least one directed
path from v to a destination node d ∈ D.

The density on link e evolves according to the following
mass conservation law

ρ̇e = f in
e (ρ)− fout

e (ρ)

where f in
e (ρ) and fout

e (ρ) denote the inflow into and the
outflow from link e, respectively, and are functions of the
density on the links of the network. We shall consider
distributed policies, such that the inflow and outflow f in

e

and fout
e are a function of the local densities around link

e only. In particular, we assume that for every link e ∈ E ,
fout
e = hefe(ρe), where fe(·), called the flow function at link
e, is a concave function such that fe(0) = 0, f ′e > 0 and
limρe→∞ fe(ρe) = Ce. The value Ce, the maximum outflow



from edge e, is called the capacity of the edge. The variables
{he}e∈E , he ∈ [0, 1] are control variables which can be used
to artificially reduce the capacity on a link, thus enforcing a
certain speed limit on the links of the network.

Remark 1: By assuming that the outflow on a link only
depends on the density of the link itself, we implicitly assume
that the network always remains, or is forced to remain, in
freeflow. In the context of supply-and-demand models for
transportation systems [12], this means that supply is always
higher than demand.

We assume that for a link e such that v = σe,

f in
e (ρ) = Gve(ρ)

λv +
∑
j∈E−v

fout
j (ρj)

 ,

where λv+
∑
j∈E−v f

out
j (ρj) is the total flow through node v,

and Gve(ρ), called routing policy, tells how the flow through
node v is split into the subsequent links. In particular, we
impose the following model, where αe ∈ R and βe ∈ R+,

Gve(ρ) =
e−βeρe−αe∑

j∈E+v e
−βjρj−αj

,∀e ∈ E+
v , v ∈ V . (1)

This routing policy models both the behavior of drivers
and possible actions of traffic managers. The parameter αe
can be interpreted as the willingness of a particle to turn
into e when isolated in the network. The lower αe, the more
particles want to turn into e. It represents the aggregate
effect of two different quantities, which are preference of
drivers derived from historical memory, such as fastest path
in business as usual, and tolls on links, as charging tolls upon
usage of a certain link e increases the corresponding αe. The
parameter βe can be interpreted instead as the willingness to
react to the state of the network, as the lower βe, the more
the drivers will follow the preferred path. In the extreme
cases, for βe = 0 the state of the network does not affect the
choice of drivers, while if βe = +∞ there is no preferred
path and drivers simply turn into the less congested link.

Putting together the previous definitions, we obtain the
following controlled dynamical system for all e ∈ E

ρ̇e = Φe(ρ, α, h)

=
e−βeρe−αe∑

k∈E+σe
e−βkρk−αk

λσe+
∑
j∈E−σe

hjfj(ρj)

−hefe(ρe) .
(2)

The routing policy (1) is a particular case of distributed
monotone routing policies [10], [11], which implies that the
transportation network is a monotone system in the sense of
Hirsch [13], [14]. The following result is proved in [10].

Proposition 1 (Th.1, [10]): Let G = (V, E , C) be a net-
work satisfying Assumption 1 with inflow λ and routing
policies as in (1), with fixed {αe}e∈E and {he}e∈E . Let ρ(t)
denote the solution of (2) with initial condition ρ◦. There
exist limit point ρ̄(α, h), ρ̄e(α, h) ∈ [0,+∞], and limit flow
f̄(α, h), f̄e(α, h) ∈ [0, Ce], independent of ρ◦, such that

lim
t→∞

ρ(t) = ρ̄(α, h), lim
t→∞

fout(t) = f̄(α, h) .

For every choice of {αe}e∈E and {he}e∈E we have a
unique limit point as per Proposition 1. We are interested
in the performance of such a limit point, measured by the a
convex function Ψ : RE+ → R+ increasing in each argument.
A standard example is Ψ(ρ) =

∑
e∈E ρe, the total volume

of traffic in the network. Formally, we aim at solving the
following optimization problem

min
ρ,α,h

Ψ(ρ)

s.t. ρe ≥ 0, e ∈ E
αe ∈ R, e ∈ E (3)

0 ≤ he ≤ 1, e ∈ E
Φe(ρ, h, α) = 0, e ∈ E

A necessary condition for (3) can be derived as follows.
A cut of the network is a subset U of nodes not containing
any destination. We call the quantity CU =

∑
e:σe∈U,τe 6∈U Ce

the capacity of the cut, and λU =
∑
v∈U λv the inflow in the

cut. The celebrated max-flow min-cut theorem [15] states that
there exists an equilibrium flow in the network if and only
if minU{CU −λU} > 0. Then, a necessary condition for the
problem (3) to be feasible is that this inequality is satisfied.

Remark 2: More in general, the control variables {αe}e∈E
and {he}e∈E could be designed as functions of the state
of the network, with local information pattern. While such
a state-dependent control would help improving the perfor-
mance of the traffic network in the transient towards the
equilibrium, we leave its design for future research.

III. EQUILIBRIUM SELECTION WITH FULL KNOWLEDGE
OF THE NETWORK

In the next two sections we address two different sce-
narios, corresponding to the possibility, or not, of using
tolls. In what follows, we assume that full knowledge of
the parameters of the network is available.

A. Equilibrium selection using tolls

The following result states that if a traffic manager can
charge tolls on each link, and if she has knowledge of the
parameters {βe}e∈E , then the tolls can be used to solve
exactly the problem (3). To this aim, we need to solve the
following optimization problem

min
ρ,µ

Ψ(ρ)

s.t. ρe ≥ 0, e ∈ E
0 ≤ µe ≤ fe(ρe), e ∈ E (4)

λv +
∑
j∈E−v µj ≤

∑
e∈E+v µe, v ∈ V

Theorem 1: Let G = (V, E) be a network satisfying
Assumption 1 with inflow λ. Let ρ(t) be the solution of
the controlled dynamical system (2) with initial condition
ρ(0) = ρ◦. Assume that minU (CU − λU ) > 0, and let
(ρ∗, µ∗) be the solution of (4). Then setting

α∗e = − logµ∗e − βeρ∗e, h∗e = 1, ∀e ∈ E (5)

yields ρ̄(α∗, h∗) = ρ∗ and (ρ∗, α∗, h∗) solves (3).



Proof: The theorem is proved in two steps. First one can
show that if (ρ∗, µ∗) is the solution of (4), then

∑
e∈E ρ

∗
e ≤∑

e∈E ρe for any feasible point (ρ, α, h) of (3), and moreover
that if minU (CU − λU ) > 0, then ρ∗e <∞ and µ∗e < Ce for
all e ∈ E . Then, as pointed out in [11], it is possible to
induce a certain equilibrium making use of tolls. Indeed, it
can be proved that, setting {α∗e}e∈E and {h∗e}e∈E as in (5),
the solution of (2) converges to ρ∗. Since this is a feasible
point for (3), (ρ∗, α∗, h∗) solves (3).

Remark 3: Differently from (3), the optimization problem
(4) is convex and can be easily solved in a distributed way
using known techniques [16].

B. Equilibrium selection without tolls

We assume in this section that tolls cannot be charged,
so {αe}e∈E are fixed and represent the drivers’ preferences,
and the equilibrium selection process relies on the control
variables {he}e∈E only. Exploiting the structure of Gve(ρ)
the following proposition can be proven.

Proposition 2: If {Gve(·)}e∈E+v ,v∈V is of the form (1), then
(3) is equivalent to

min
ρ,z

Ψ(ρ)

s.t. ρe ≥ 0, e ∈ E
ze ∈ R, e ∈ E

ze − log fe(ρe) ≤ 0, e ∈ E (6)
ze + βeρe + αe = zj + βjρj + αj , e, j ∈ E+

v , v ∈ V
λv +

∑
e∈E−v e

ze ≤
∑
e∈E+v e

ze , v ∈ V

with the change of variables eze = hefe(ρe) for all e ∈ E .

The constraints in the optimization problem (6) are all
convex, except λv +

∑
e∈E+v e

ze ≤
∑
e∈E−v e

ze for all v ∈ V .
Hence, the problem is not readily solvable as in the case
when tolls are available.

We propose an heuristic approach called Sigmoidal Pro-
gramming iteration, based on the convex-concave procedure
[17]. First, we rewrite the constraints in (6) by introducing
the variables {µe}e∈E and setting µe = hefe(ρe) = eze , for
all e ∈ E . In this way, we obtain the following problem,
equivalent to (6)

min
ρ,z,µ

Ψ(ρ)

s.t. ρe ≥ 0, e ∈ E
ze ∈ R, e ∈ E
µe ≥ 0, e ∈ E

ze − log fe(ρe) ≤ 0, e ∈ E (7)
ze + βeρe + αe = zj + βjρj + αj , e, j ∈ E+

v , v ∈ V
λv +

∑
e∈E−v e

ze ≤
∑
e∈E+v e

ze , v ∈ V
µe = eze , e ∈ E

Given an estimate z̄e of ze, we obtain a convexification of
the last set of equality constraints by linearizing around z̄e,
i.e., considering the new constraint µe = ez̄e(1 + ze − z̄e).

Solving the problem with this new constraints yields a new
estimate of ze, which is then used for a new iteration step.
This is formalized as follows:
• basic step: set z(0)

e = 0 for all e ∈ E ;
• iterative step: for k = 1, 2, . . . , find (ρ̂, ẑ, µ̂) that solve

the convex problem

min
ρ,z,µ

Ψ(ρ)

s.t. ρe ≥ 0, e ∈ E
µe ≥ 0, e ∈ E
ze ∈ R, e ∈ E

ze − log fe(ρe) ≤ 0, e ∈ E (8)
ze + βeρe + αe = zj + βjρj + αj , e, j ∈ E+

v ,

v ∈ V
λv +

∑
e∈E−v µe ≤

∑
e∈E+v µe, v ∈ V

µe = ez
(k−1)

(1 + ze − z(k−1)
e ), e ∈ E

and set ρ(k) = ρ̂, z(k) = ẑ, and µ(k) = µ̂.
• Stop if some stopping criterion is satisfied.
If n is the number of iterations, we consider ρ∗ = ρ(n),

z∗ = z(n), and µ∗ = µ(n) to be the solution to our problem,
from which one can obtain the control variables setting h∗e =
ez

∗
e

fe(ρ∗e) for all e ∈ E .
Notice that since ez̄(1 + z − z̄) ≤ ez for all z ∈ R, we

have, for all e ∈ E , µe ≤ eze , and thus, for all v ∈ V ,
λv +

∑
e∈E−v e

ze ≤
∑
e∈E+v µe ≤

∑
e∈E+v e

ze . As such, the
feasibility set of (8) is a subset of that of (6), thus even
though the obtained solution is suboptimal at each step, it
always belongs to the original feasibility set. Moreover, (8) is
clearly a convex optimization problem, thus a solution can be
found, at any iteration step, by means of known techniques
[16]. Finally, notice that while the procedure converges for a
large number of iterations [17], no guarantee can be offered
that the algorithm stops close to a global minimum.

IV. CONCLUSION

In this work we provide a first step towards distributed
equilibrium selection in transportation networks. Future re-
search includes and is not limited to extension of this
approach to the back-pressure model provided in [18] and
the supply-and-demand model [12], the design of density
dependent controllers to improve the performance during the
transient, and the design of adaptive controllers which do not
require full knowledge of the parameters of the network.
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