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Abstract— We deal with the important applicative problem
of distributed cameras calibration. We model a network of
N cameras as an undirected graph in which communicating
cameras can measure their relative orientation in a noisy way.
These measures can be used in order to minimize a suitable
cost function. The shape of this cost function depends on a
vector of integers K. We propose two algorithms which in a
distributive way estimate such K, comparing advantages and
disadvantages of both. Simulations are run on a grid network
to prove effectiveness of the algorithms.

I. INTRODUCTION

In the last fifteen years many efforts have been spent by
the scientific community to distribute tasks over a network of
communicating and interacting agents, in order to avoid the
major problems of centralized strategies, such as reliability
of multi-hops, and reliability of the agents themselves, both
physically (they could fail) and under a security point of
view (they could be malicious and intentionally damage the
network). On the contrary, distributed strategies are based
on local exchange of information among hierarchically equal
agents. In a network of cameras deployed in a plane one of
the most important problems is the calibration. Namely, each
camera has to know how it is oriented, at any instant, with
respect to a certain common reference frame. The importance
of this is clear: assume that an external agent, which has
to be tracked, is exiting from the range of the i-th camera
and entering in that of the j-th one. In this case camera i
has to communicate to camera j to move and follow the
agent before camera i looses it. Clearly, both cameras must
share the same reference frame. Usually, this is set off-line
by a human operator, or by a centralized unit. Instead, the
algorithms we propose aim to complete autonomy, and do
not require any central control to carry on computations.
This allows improved accuracy and possibility of periodical
autonomous re–calibration.

The model for the network is a graph G = (V, E) in
which V is the set of cameras, and E the set of edges, the
couples of communicating cameras. The information which
is used to calibrate the network, inspired by the works by
Barooah and Hespanha [1], [2], [3] on localization, is the
relative orientation among cameras, which can be computed
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if their field of view overlaps. Cameras calibration through
relative orientations can be transformed into a consensus
like problem over the manifold S1: this problem has already
attracted much attention by research community. In [4], [5]
a consensus algorithm on S1 based on the gradient flow of
a potential defined using the chordal distance is proposed.
In [6] a similar approach based on the geodesic distance
is proposed to study the more general calibration problem
on SE(3). The issue with both these approaches is that
the defined potentials are characterized by several nontrivial
local minima in which, apart from particular initial condi-
tions, it is easy to fall. On the other hand, in [7] the noisy
measurements of relative orientations are a priori constrained
to sum to zero on cycles. Based on this construction, a least-
square estimation algorithm, which is proved to be optimal
on a ring graph, is presented. We choose to concentrate
on the simple case of calibration in SO(2) ∼ S1, and we
use the geodesic distance. Our main idea is to break the
estimation problem into two parts: first we estimate a sort of
combinatorial object which is a vector in ZE and takes care
of the fact that noise around cycles in general does not sum
up to 0. Once this is done we estimate by solving a quadratic
optimization problem like in the localization problem. Our
method is consistent in the sense that if there is no error,
the solution coincides with the true one. We propose two
different algorithms: one based on spanning trees, another
one based on minimal cycles. This procedure has been used
in [8] to improve the estimates for localization in RN .

The paper is organized as follows: in Section II we present
several definitions and algebraic properties of graphs, which
will be extensively used throughout the paper. In Section III
we formulate the problem we want to deal with. Section IV
presents our two algorithms and gives some first properties.
In Section V we compare the two algorithms giving closed
formulae of the results, and we estimate their performance.
Examples and numerical simulations are provided in Sec-
tion VI and VII.

II. GRAPH THEORETICAL TOOLS

An undirected graph is a couple G = (V, E) where V is
the set of nodes, and E is a subset of unordered pairs of
elements of V called edges. We put N = |V| and M = |E|.
A spanning tree T = (V, ET ) of G = (V, E) is simply a
tree subgraph of G which has the same set of nodes, and
consequently |ET | = N − 1.

An orientation on G = (V, E) is a pair of maps s : E →
V and t : E → V such that e = {s(e), t(e)} for every
e ∈ E . In these notations s(e) (t(e)) is called the starting
(terminating) node of the edge e. Assume from now on that



we have fixed an orientation (s, t) on G. The incidence matrix
B ∈ {±1, 0}E×V of G is defined by putting Be s(e) = 1,
Be t(e) = −1, and Bev = 0 if v 6= s(e), t(e). An oriented
cycle h of length n (with n > 2) is an ordered sequence of
nodes h = (v1v2 · · · vn) (up to cyclic permutations) such that
{vi, vi+1} ∈ E for all i = 1, . . . , n (interpreting n+ 1 = 1).
The set of cycles is denoted byH. Given a cycle h, we denote
by −h the same cycle with reversed orientation. Given h =
(v1 v2 · · · vn) ∈ H, we associate a row vector rh ∈ {±1, 0}E
as follows. Put ei = {vi, vi+1} and define rh(ei) := Bei vi
for every i = 1, . . . , n. While, rh(e) = 0 for any other edge
not in the cycle. It is immediate to see that r−h = −rh.
Given two oriented cycles h, h′ such that rh(e)rh′(e) = 0
for all edges except one e∗ for which rh(e∗)rh′(e

∗) = −1,
we can consider the sum cycle denoted by h+h′ determined
by setting rh+h′ := rh + rh′ . The sum cycle h + h′ is
simply obtained by joining the edges of the two cycles and
dropping e∗. An oriented cycle is said to be minimal if it
can not be written as the sum of two other cycles. Clearly,
if h is minimal, also −h is minimal. We denote by H0 any
subset of minimal cycles with the property that h ∈ H0 iff
−h 6∈ H0. A standard result says that |H0| = M −N + 1.

Given a spanning tree T = (V, ET ) of the graph G, a
cycle h is a (T -) fundamental cycle if h = (v1v2 · · · vn)
where {vi, vi+1} ∈ ET for every i = 1, . . . , n − 1. Notice
that {v1, vn} is the only edge in the cycle which is not in ET .
Clearly, for each edge e ∈ E \ET , there are two fundamental
cycles sharing the edge e, he and −he, and we assume that
he has been chosen so that rhe

(e) = 1. HT will denote the
set of he’s, and evidently also |HT | = M −N + 1. This is
not a coincidence as the following result will show.

Let R ∈ ZH×E be an integer matrix whose rows are all
the vectors rh as h varies among all possible cycles, and
let R0 and RT be the sub-matrices of R consisting of those
rows in H0 and in HT , respectively. Interpreting R, R0, and
RT as group homomorphisms on ZE and the matrix B as a
group homomorphism ZV → ZE , we have the following.

Lemma 2.1: It holds kerR0 = kerRT = kerR = ImB.
While there is an obvious bijection between HT and E \

ET , the construction of a bijection between H0 and E \ ET
needs a bit of extra work, as stated in the next proposition.

Proposition 2.1: Given the graph G with an orientation
and a spanning tree T , there is an ordering e1, . . . , eM−N+1

of the edges in E \ ET such that, for every i, ei forms a
minimal cycle in G with all remaining edges lying in ET ∪
{e1, . . . ei−1}.

III. PROBLEM FORMULATION

We model the network of cameras as a connected undi-
rected graph G = (V, E) equipped with an orientation
(s, t). Each node is equipped with a camera. Fix an external
reference frame and let θ̄v ∈ R to be the orientation of the
camera of agent v w.r.t. such reference frame.

We fix a reference node v∗, called anchor node, that
exactly knows its orientation, but the chosen external ref-
erence frame does not depend on the anchor node. In
the following the orientation of the anchor node w.r.t. the

external reference frame will be set to 0 without losing
generality since the actual orientations have to be computed
up to global translations.

Nodes can obtain relative noisy measurements along the
available edges in the way we are going to describe. First,
given any real number x, we set

(x)2π = x− 2πq2π(x)

where q2π(x) = bx+π
2π c ∈ Z is such that (x)2π ∈ [−π, π).

The floor function is chosen in order to guarantee that
q2π(x) = x, if x ∈ [−π, π). It would be equivalent to project
R onto (−π, π] just imposing q2π(x) =

⌈
x−π
2π

⌉
.

If e = {v, w} ∈ E , we assume that the fields of view of v
and w overlap, so that by means of known algorithms, the
following noisy measurement can be computed

ηe = (θ̄s(e)− θ̄t(e)− εe)2π = θ̄s(e)− θ̄t(e)− εe− 2πK̄e (1)

where K̄e ∈ Z. The assumption that the measurement is an
angle ηe ∈ [−π, π) does not entail any loss of generality.

The incidence matrix B of the graph G allows to rewrite
this relation in vector form as

η = Bθ̄ − ε− 2πK̄, (2)

where K̄ ∈ ZE .
We assume noises along different edges to be independent

and to be equally distributed as εe ∼ U [−ε̄, ε̄]. This last
choice is made for the sake of simplicity. Notice that it is
a realistic hypothesis, since each camera has a well defined
resolution, and by construction it has a failure tolerance thus
it cannot mislead more than a certain number of pixels.

The calibration problem consists in giving an estimate
θ̂v ∈ R of the correspondent θ̄v for each node v ∈ V . These
estimates will be constructed using the available relative
measurements and exchanging information along the graph.
Notice that θ̄ and θ̄ + 2πl for some l ∈ ZV , will give rise
to the same measurements η, so even in the case when no
noise is present, θ̄ can only be determined up to these 2π
integer translations. The vectors of the form θ̄+ 2πl will be
called representatives of θ̄.

A. Cost function

To address the calibration problem we consider the cost

V (θ) =
∑
e∈E

(θs(e) − θt(e) − ηe)2
2π = ‖(Bθ − η)2π‖22. (3)

The cost V (θ) attains the value zero for any representative of
θ̄ in case of noiseless measurements. However, even in this
ideal case, it has multiple local minima. In order to let the
algorithm avoid these points, we define the following regions

RK(η) := {θ ∈ RV : |Bθ − η − 2πK| ≤ π1}1, (4)

where K ∈ ZE . These regions are convex and form a
partition of RV . However, some of them can be empty, since
they are defined by M constraints on N variables and in

1|v| ≤ p, where both v,p ∈ Rn, means −pi ≤ vi < pi for all
i = 1, . . . , n.



general M > N . It is trivial to see that if θ ∈ RK(η), and
only for these points, then V (θ) = ‖Bθ−η−2πK‖22, which
is purely quadratic and convex in RK(η), where thus there
can be at most one local minimum of V (θ). The main idea
is the following: first, obtain a reasonable estimate K̂ of K̄.
Then minimize the reshaped cost

VK̂(θ) := ‖Bθ − η − 2πK̂‖22 (5)

which is defined by first restricting V to the region RK̂(η)
and then extending the quadratic form to RV .

Notice that by the way η has been defined,

|Bθ̄ − η − 2πK̄| = |ε| ≤ π1 (6)

so that θ̄ ∈ RK̄(η). If we have obtained an estimation K̂
such that K̂ = K̄ + Bl for some l ∈ ZV , then, clearly,
θ̄ + 2πl ∈ RK̂(η). A simple continuity argument then
shows that, when the threshold ε̄ tends to 0, the estimation
θ̂ converges to θ̄ + 2πl. In other terms, with such a K̂, we
have a guarantee that our solution is close to a feasible one,
namely to a representative of the true θ̄. In Section V, we
analyze in more detail the performance of the algorithms.

IV. DESCRIPTION OF THE ALGORITHMS

Both algorithms we now describe are based on the idea of
breaking the estimation problem into two steps: first give an
estimate K̂ of K̄ and then minimize the quadratic function
defined in Eq. 5. The two algorithms only differ in the first
step, as the first uses the fundamental cycles of a given
spanning tree, the second instead the minimal cycles.

Regarding the first step, the main idea underlying both
algorithms exploits the fact that the relative differences of
the actual orientations θ̄v along a cycle must necessarily
sum up to a multiple of 2π. More precisely, let h be an
oriented cycle and let rh be its representative vector. Then,
from Eq. 2, using the fact that rhB = 0, we obtain that
rhK̄ = −q2π(rhη)−q2π(rhε). Therefore, if it happens that
the algebraic sum of the noise along the cycle h is below π
in modulus, i.e. |rhε| < π, we obtain that

rhK̄ = −q2π(rhη). (7)

In other terms, in this case rhK̄ can be exactly computed
on the basis of the measurements η along the cycle h. This
would suggest to define K̂ in such a way that rhK̂ =
−q2π(rhη) for any cycle h, but this in general will not be
possible since the various rh’s are linearly dependent. What
must be done is to restrict the cycles to a subset for which
the corresponding rh’s form a Z-basis for the Z-module
generated by the rows of the matrix R. The choice of this
basis is the essential difference among the two algorithms.

A. The Tree-algorithm

Fix a spanning graph T and consider the corresponding
fundamental cycles. Let us impose that rhK̂ = −q2π(rhη)
for any fundamental cycle h. From Lemma 2.1 we know
that this determines K̂ up to elements in the image of B
as required. A concrete solution can be easily found by

imposing K̂e = 0 for every e ∈ ET . Then, we easily obtain
that, for any e ∈ E \ ET ,

K̂e = −q2π(rhe
η)

where, we recall, he is the fundamental cycle associated with
e such that rhe

(e) = 1. This algorithm is very simple and
easily implementable. As we will point out, however, its
performances for large graphs are rather poor.

A distributed way to compute K̂ is proposed below. Fix
an anchor node, denoted by v∗, which will serve as a root
in the tree T . First of all, we propagate the measurements
along the tree starting from the root, namely, given a node
v and called f(v) its father, we set

θ̂FE, v = θ̂FE, f(v) + ηvf(v).

As a side effect, we also obtain a first estimate θ̂FE of θ̄.
Now we construct K̂. For each edge e = {v, w} ∈ E \

ET , the nodes v and w exchange their first estimates θ̂FE, v,
θ̂FE,w and compute K̂e as

K̂e =

⌊
θ̂FE,s(e) − θ̂FE,t(e) − ηe

2π

⌋
.

This is the only choice of K̂ for which θ̂FE ∈ RK̂(η).
Finally we obtain a final estimate of θ̄, call it θ̂, by

minimizing the quadratic cost function in Eq. 5. This problem
can be for example easily solved using a distributed Jacobi
algorithm as shown in [2], [3].

Algorithm 1 Tree-Algorithm
(Input variables)

1: θ̄v∗ , value of the anchor
2: ηe, e = 1, . . . ,M
3: T spanning tree

(Step A: first estimate θ̂FE)
4: θ̂FE,v∗ = θ̄v∗ ;
5: for i = 1, . . . , N do
6: for j = 2, . . . , N do
7: if j is a son of i in T then θ̂FE,j = θ̂FE,i + ηj,i

(Step B: estimate K̂)
8: for e ∈ E do
9: K̂e =

⌊
θ̂FE,s(e)−θ̂FE,t(e)−ηe

2π

⌋
(Step C: second estimate θ̂)

10: Initial condition: θ̂(0) = θ̂FE

11: compute θ̂ = argmin
∥∥∥Bθ − η − 2πK̂

∥∥∥2

2

B. Minimal cycles-algorithm

The second algorithm is based on the minimal cycles
of the graph G. Let us impose that rhK̂ = −q2π(rhη)
for any minimal cycle h. From Lemma 2.1 we know that
this determines K̂ up to elements in the image of B as



required. A concrete method for constructing such K̂ once
the values −q2π(rhη) have been computed for all minimal
cycles, can be easily based on Proposition 2.1. We start, as in
the previous algorithm, from a spanning subtree T = (V, ET )
of G and we assign K̂e = 0 on the edges in ET . We then
consider the remaining edges e1, e2, . . . , eM−N+1 ordered as
in Proposition 2.1 and we define K̂ iteratively as

K̂ei = −q2π(rhiη)−
∑
e 6=ei

rhi(e)K̂e

where, hi is the minimal cycle that ei forms with edges in
ET ∪ {e1, . . . ei−1} oriented so that rhi

(ei) = 1.
The last step of the Minimal cycle-algorithm is the same

as that of the Tree-algorithm. Since we have no particular
initial condition, it can be set to (0, . . . , 0) for simplicity.

Algorithm 2 Minimal cycles-algorithm
(Input variables)

1: ηe, e = 1, . . . ,M
2: T spanning tree
3: H0 =

{
rh1

, . . . , rhM−N+1

}
minimal cycles set

(Step A: computation of b = −q2π(R0η))
4: for h ∈ H0 do bh = −

⌊∑
e∈h ηe+π

2π

⌋
(Step B: estimate K̂)

5: for e ∈ ET do K̂e = 0

6: for h ∈ H0 s.t. K̂e is known for all e ∈ h except for
one ē do K̂ē = bh −

∑
e∈h,e6=ē rhe

(e)K̂e

(Step C: second estimate θ̂)
7: Initial condition: θ̂(0) = (0, . . . , 0)

8: compute θ̂ = argmin
∥∥∥Bθ − η − 2πK̂

∥∥∥2

2

This second algorithm allows much better performances
than the Tree-algorithm, but it requires a greater order of
collaboration among nodes. In fact, we assume that, through
some local collaboration among nodes, each minimal cycle
corresponds to a “superagent”, able to sense all the measure-
ments along the edges of its cycle. Clearly, this is far more
than just locally exchanging information.

V. ANALYSIS AND COMPARISON OF THE ALGORITHMS

Recall that the final estimate θ̂ must minimize the cost
VK̂(θ) = ‖Bθ−η−2πK̂‖22. Since B has a kernel (which is
spanned by 1) of course θ̂ is only determined up to multiples
of 12. This non uniqueness can be avoided as follows. As
already done in Section IV, fix an anchor node v∗ ∈ V that
knows the true value of its orientation, and assume that it
never changes its estimate. Then consider the vector ξ ∈ RV
defined by ξ(v∗) = 1 and ξ(v) = 0 for any v 6= v∗. Now

21 represents a vector of suitable dimension whose entries are all equal
to 1.

define the Green matrix associated to G and v∗ as the solution
of the following equations{

GBTB = I − 1ξT

Gξ = 0.
(8)

Writing down the stationary point equation for our quadratic
problem and using the Green matrix, it is straightforward to
show that the following result holds true.

Proposition 5.1: If K̂ is the estimate of K̄, the minimum
of VK̂(θ) is attained at

θ̂ = θ̄ +GBTε− 2πGBT (K̄ − K̂). (9)
The previous proposition basically says that the difference
between the final estimate θ̂ and the actual orientations θ̄ is
made of two terms. The first one, GBTε, is unavoidable and
only depends on the fact that the measurements are noisy.
This term is the localization error in the works by Barooah
and Hespanha on RN . The second term, −2πGBT (K̄−K̂)
depends on the estimation K̂, and it is due to the geometry
of S1. If K̂ = K̄ +Bl, with l ∈ ZV , it is easy to see that

θ̂ = θ̄ + 2π(I − 1ξT )l+GBTε = θ̃ +GBTε

where θ̃ = θ̄ + 2π(I − 1ξT )l is a representative of θ̄.
Let L0 be the maximum length of a minimal cycle and LT

the maximum length of a T -fundamental cycle. It is clear
that L0 ≤ LT , and in general LT depends on the number of
nodes of the graph, as the examples in Section VI will point
out. We present now the main result of this section, which
basically gives a noise threshold for both algorithms, under
which it is guaranteed to have K̂ − K̄ ∈ ImZB.

Proposition 5.2: If

Tree algorithm : ε̄ <
π

LT

Cycle algorithm : ε̄ <
π

L0

we have
K̂ = K̄ +Bl, l ∈ ZV .

Remark 5.1: A closed formula for K̂ can actually be
derived for both algorithms, and it will be objective of our
future research to deepen the performance analysis, centered
on the error in the estimation of K̄.
If the assumptions of Proposition 5.2 hold, we have as a
straightforward consequence θ̂ = θ̃ + GBTε, where θ̃ is a
representative of θ̄. In this case the error term is exactly the
same appearing in the vector space case and can be analyzed
exploiting the probabilistic assumptions made on the noise
in Section III, namely that εe ∼ U [−ε̄, ε̄], ∀ e ∈ E . In case
this holds, from paper [1] we can obtain an estimate of the
variance of the final estimate error in terms of the effective
resistance of a suitable electrical network. Namely, consider
an electrical network whose nodes are those of the graph
G and for each edge of G we have a resistance of 1 Ohm.
Denote by Ruv the effective resistance among any pair of
nodes u, v ∈ V × V . Then we have the following result

Proposition 5.3 ([1]): The estimate θ̂ = θ̃ + GBT ε is
unbiased, namely Eθ̂ = θ̃, and its v-th component has



variance E[(θ̂v − θ̃v)2] = Rvv∗ where v∗ is the anchor. As
a consequence, the normalized scalar estimation variance is

1

N
var(θ̂ − θ̃) =

1

N

∑
v∈V
Rvv∗ (10)

which is the average effective resistance among the anchor
and the other nodes of the network.

Remark 5.2: The previous Proposition gives mean and
variance of the estimation error δ = θ̂− θ̃. However, this is
not entirely correct, since what we are really interested in is
δ2π = (θ̂ − θ̃)2π , which has still zero mean, and variance
less then that in Eq. (10). Nonetheless, if the noise is big
and θ̂ is not near θ̃, the probability to end up in a point near
another representative of θ̄ is intuitively very small, so we
preferred to give only the results in Proposition 5.3.

VI. EXAMPLES

In this section we compare the two algorithms we have
proposed for several different graph topologies. We concen-
trate on grid-like topologies since they can be used to model
real networks of cameras.

First of all, we show that our algorithms can avoid the local
minima in the original cost. Consider the simple ring graph
with 3 agents in Fig. 1, and assume θ̄1 = θ̄2 = θ̄3 = 0 for
sake of simplicity (the problem becomes thus consensus on
S1). Consider the ideal noiseless case, so that η12 = η23 =
η31 = 0 and K̄12 = K̄23 = K̄31 = 0, and assume K̂ = K̄.

Consider the case in which we have as initial conditions
θ̂1(0) = 0, θ̂2(0) = 2

3π and θ̂3(0) = 4
3π. If we use directly

the original cost in Eq. (3), it is easy to see that the initial
condition is a local maximum (in case of 5 or more agents
the analogous configuration is a local minimum), so any
gradient-descent like algorithm gets stuck. However, if we
reshape the cost using our guess K̂, we have to minimize
VK̂(θ) = ‖Bθ− 2πK̂‖22 = ‖Bθ‖22, and we converge to the
actual orientations fixing the anchor at θ̂1 = θ̄1 = 0.

1

2 3

θ̂1(0)

θ̂2(0)

θ̂3(0)

Fig. 1. A simple ring with 3 agents. On the right the initial conditions.

In order to draw now a comparison among the two
algorithms, consider the graphs shown in Fig.2. In both cases
we have a line–like graph with many nodes deployed along
one dimension, and the chosen spanning trees are shown in
thick line. They are rooted on the anchor on the most left-
top node. The set of minimal cycles H0 is simply the set of
squares which form the graph.

For the graph on the left, if we take the tree and we add the
last edge on the right we obtain a cycle with maximum length

Fig. 2. Two examples of spanning trees for a line–like graph. The proposed
algorithms work in a similar manner for the one on the right, while the
Minimal cycles-algorithm is far more effective for the one on the left. The
square node is the anchor.

LT = N . On the contrary, the minimal cycles are of length
L0 = 4. As an immediate consequence, the Minimal cycles-
algorithm has much better performances since the upper
bound ε̄ < π

4 is independent on the number of nodes. On
the contrary, in order the tree algorithm to produce a good
estimate K̂, the magnitude of the noise should decrease with
the dimension of the graph.

If we consider instead the spanning tree on the right, we
can see that LT = 4 as well, since the spanning tree is
chosen in a much better way. In this case, the two algorithms
have comparable and good performance. It is not always
true, however, that the Minimal cycles-algorithm has good
performances. For example, if we consider the ring graph
in Fig. 3 we can easily see that there is only one minimal
cycle. Here the two proposed algorithms basically coincide,
comparing performances. In such a case, the Tree-algorithm
is better, since it is easier to implement and completely
distributed, and it requires less information on the topology
of the network, as well as less communications.

Fig. 3. On the left a ring graph, for which the two algorithms have the same
performance. On the right, a grid graph. The square node is the anchor.

As a last example, consider the 2D grid on the right in
Fig. 3. The comb-shaped spanning tree is the one in thick
line. As before, here LT ∼

√
N adding one of the edges on

the bottom, while L0 = 4. However, it can be shown that
for the grid LT ∼

√
N is actually the best one can do. So

in this case the Minimal cycles-algorithm has always better
performances than the Tree-algorithm. Notice that the choice
of the spanning tree is fundamental to draw a comparison
between the algorithms. Even if the tree is such that LT
is minimum, the choice of the better algorithm depends on
the topology of the graph, since it could hold LT > L0, as
highlighted in the previous example.

VII. NUMERICAL RESULTS

In this Section we provide a numerical comparison be-
tween the two approaches we propose in this paper. Specifi-
cally, in the experiments we simulate the Tree-algorithm and
the Minimal cycles-algorithm on square grid graphs of size



N = n2 for n ranging from 3 up to 19. An example of
square grid graph is depicted in Fig. 4 (left panel), where
n = 5 and, in turn, N = 25.

Fig. 4. On the left a square grid graph. On the right the correspondent
spanning tree used in simulations. The square node is the anchor.

In all our simulations we set θ̄1 = 0, while, for i ∈
{2, . . . , N}, θ̄i is randomly sampled from a uniform distribu-
tion on [−π, π]. The values of the noises εe, e ∈ E , are also
randomly sampled, in this case from a uniform distribution
on [−ε̄, ε̄] where ε̄ = π

8 .
The simulation results obtained are reported in Fig. 5 and

in Fig. 6. For each n the values we plot are averaged over
200 trials (a different θ̄ and a different set of noises are
generated for each trial). The kind of spanning tree we use
to run our algorithms is illustrated in Figure 6. Here we have
n = 5, but for different values of n the spanning tree used
is similarly built. Observe that, for the square grid graphs
and the corresponding spanning tree we consider, we have
L0 = 4 independently from n, and LT = 2n+ 2.
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Fig. 5. Average error on the orientations (modulo 2π).

In Fig. 5 we show the value of the estimate error e =
1
N ‖(θ̄− θ̂)2π‖2 for both the Tree-algorithm and the Minimal
cycles-algorithm; in Fig. 6 we plot the value eK = 1

M ‖(K̄−
K̂)ImZB‖2, where if X ∈ ZM , (X)ImZB represents the
projection out of the Z-submodule spanned by the columns
of B. This quantity is taken as a measure of the distance
between the actual value K̄ and the estimates obtained
through the algorithms. Notice that, since

π

L0
=
π

4
>
π

8
= ε̄

it follows from Proposition 5.2 that the Minimal cycles-
algorithm always correctly estimates K̄, thus eK = 0. On the
contrary, in the case of the Tree-algorithm eK is increasing
with the dimension of the graph. This is not surprising
since LT grows linearly with

√
N , and so intuitively the

probability of the estimate to be bad becomes larger and
larger. As expected, one can check from Fig. 5 that the
Minimal cycles-algorithm outperforms the Tree-algorithm.
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Fig. 6. Average error on K̂.

VIII. CONCLUSIONS

This paper deals with the problem of distributively cali-
brate a network of cameras deployed in a plane. Two algo-
rithms are proposed to reshape a suitable cost function which
is used by each camera to obtain an estimate of its actual
orientation w.r.t. an external reference frame. Future research
will focus on deeper characterization of such estimates and
on the more general case of calibration on SO(3).
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