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A randomized linear algorithm for clock

synchronization in multi-agent systems
Saverio Bolognani, Ruggero Carli, Enrico Lovisari, and Sandro Zampieri

Abstract

A broad family of randomized clock synchronization protocols based on a second order consensus algorithm is

proposed. Under mild conditions on the graph connectivity, it is proved that the parameters of the algorithm can always

be tuned in such a way that the clock synchronization is achieved in the probabilistic mean–square sense. This family

of algorithms contains, as particular cases, several known approaches which range from distributed asynchronous to

hierarchical synchronous protocols. This is illustrated by specializing the algorithm for the well-known broadcast and

gossip scenarios in wireless communications, and for the standard hierarchical protocol used in the context of wired

communications in data networks. In these cases, we show how the feasible range for the algorithm parameters can

be explicitly computed. Finally, the performance of this strategies is validated by actual implementation in a real

testbed and by numerical simulations.

I. INTRODUCTION

Multi-agents systems, i.e., systems composed of a large number of interconnected agents, have received a

tremendous amount of attention in the last years. This is mainly motivated by the large amount of emerging

applications where these systems are applied, e.g., sensor networks for enviromental monitoring, mobile robotic

networks for vehicle tracking and mapping, camera networks for surveillance and monitoring, just to mention few.

With respect to classical applications, the tight constraints in terms of bandwidth and communication delays, the

need for robustness with respect to agent failures or malicious attacks, and the uneffectiveness of classical system

theoretical tools in terms of complexity and computational burden, make communication and control much harder

in multi-agent systems.

In almost all applications, one of the most critical issue is time synchronization among agents. In some ap-

plications, synchronization requirements are rather basic. For example, in any sensor network, different devices

have to provide their measurements with proper time–stamping for subsequent data fusion and processing. In

other scenarios higher precision is needed, and achieving synchronization can be very challenging. For instance,
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there are applications where the collected data need to be interpreted according to fast dynamical models for the

system (e.g. in distributed detection and localization of moving targets), other applications where precise time

synchronization might be required to perform specific measurements on the system (e.g. synchronized voltage

phasor measurement in electric power networks, and certain distance measurements based on time-of-flight), and

some other network ancillary services that rely on correct time sync (e.g. TDMA communication, where the use

of a shared communication channel is regulated by precise slotting of the access times).

In addition to fulfil particular application requirements, solutions for large scale systems are also required to be

robust and scalable. Robustness is in general meant with the respect to partial failure of the system, communication

faults, node appearance and disappearance, and also possible malicious attacks. Instead scalable solutions are those

solutions whose performance are independent from the size of the system; in such a way reconfiguration should

require minimal effort every time a new node enters or leaves the network, or if two networks merge.

Clock synchronization in multi-agent systems has been a lively topic in the last years. In [1], [2], [3] the authors

propose a family of time synchronization algorithms based on the construction of a hierarchical coordination tree.

However, this solution is not scalable and not robust as meant above, and, thus, it is poorly suited for the above

mentioned applications. Indeed, maintaining such an architecture may be unbearable in many scenarios, and these

solutions exhibit little robustness against the failure of any node which is not a leaf of the tree. Other algorithms

available in the literature try to circumvent the main drawbacks of tree-based solutions by constructing different

architectures, like clusters of nodes, each one headed by an elected master node [4], [5]. Master nodes then

synchronize among them, at a higher level of coordination. Unless the communication architecture is specifically

designed, there are no guarantees that master nodes can communicate more reliably over the longer distances of

the high level communication layer.

On the other side, distributed (leaderless) protocols aim to guarantee scalability and robustness by avoiding a

clear hierarchy among the agents. Existing algorithms in this sense include [6] and [7], which however suffer

from specific drawbacks: the algorithm proposed in [6], inspired by the fireflies integrate-and-fire synchronization

mechanism, can compensate for different clock offsets but not for different clock skews; on the other hand, the

algorithm proposed in [7] compensates for the clock skews but not for the time offsets. Fully distributed protocols

that can compensate for both clock skews and offsets have been proposed in [8], [9], [10], [11], [12]. For these

algorithms, convergence has been proved by the authors, under reasonable assumptions. The main weakness of these

solutions resides in their highly nonlinear dynamic behavior, which prevents the analysis of their robustness with

respect to data losses in the communication, quantization noise, communication errors, and unmodeled dynamics

of the clocks.

Differently from these strategies, [13] proposed for the correction of both skew and offset clock errors a linear,

PI-like, distributed algorithm, reminiscent of the very popular linear consensus algorithm. The performance and the

robustness of this algorithm have been thoroughly analyzed via numerical simulations. However, providing a formal

proof of its convergence has been proved to be a difficult task, except for some special cases in which either the

communication graph was restricted to some special families, or some assumptions were made on the asynchronous
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activation of the nodes.

In the present paper, we adopt a unifying approach and we study a very general randomized synchronization

communication protocol coupled with a simple PI control at each agent. Our main result, Theorem 1, shows that,

under very mild conditions on the graph connectivity, it is always possible to properly tune the PI control so that

the network achieves clock synchronization. Within the studied family of protocols fall many clock synchronization

strategies (deterministic and randomized, hierarchical and distributed, synchronous and asynchronous, broadcast and

point-to-point) that have been proposed in the literature for specific applications, where different communication

technologies are available. In order to exemplify the broad applicability of our results, we chose three different

scenarios:

• Broadcast communication in wireless networks, in Section V-A.

• Gossip (point-to-point) communication in wireless sensor networks, in Section V-B.

• Hierarchical communication in wired sensor networks, in Section V-C.

In each of these scenarios we verify that the general convergence result presented in Theorem 1 applies, and by

further analysis we provide a precise rule to tune the algorithm so that convergence is guaranteed. Finally, we

validate the algorithm performance in the broadcast wireless scenario on an experimental testbed, while the gossip

wireless and the hierarchical communication scenario are illustrated via numerical simulations.

The paper is organized as follows: in Section II we introduce a mathematical model for the individual clocks and

their dynamic behavior, while in Section III we propose a prototype of synchronization algorithm. The proposed

algorithm is extremely general and flexible, and can be specialized for basically any communication strategy among

the clocks. Section IV studies the convergence of the proposed algorithm, providing an algebraic characterization

that is easily verified in some notable cases. Indeed, in Section V we apply our results to the three cases of broadcast,

gossip and hierarchical communication protocols. Section VI concludes the paper. In order to increase readability,

all the proofs have been collected in the Appendix.

A. Mathematical preliminaries and notation

The symbols N, R, R+, and C denote the set of natural, real, nonnegative real, and complex numbers, respectively.

For vectors and matrices, x∗ and M∗ denote complex conjugation (transposition if real vector/matrices).

Let G = (V, E) be a directed graph (or digraph), where V = {1, . . . , N} is the set of nodes and E is the set

of edges, i.e., E ⊆ V × V and (i, j) ∈ E if there is an edge going from node i to node j. In our context, the

edge (i, j) models the fact that node j can receive information from node i. By N out
i we denote the set of out-

neighbors of node i, i.e. N out
i = {j ∈ V|(i, j) ∈ E}, while by N in

i we denote the set of in-neighbors of node i,

i.e. N in
i = {j ∈ V|(j, i) ∈ E}. The graph G is undirected if (i, j) ∈ E if and only if (j, i) ∈ E . Note that for an

undirected graph we have N in
i = N out

i . In this case, we do not distinguish between in-neighbors and out-neighbors

and we simply use the notation Ni to denote the set of neighbors of i. A graph G′ = (V, E ′) is said to be a

subgraph of the graph G = (V, E) if E ′ ⊆ E . A directed path in a digraph is an ordered sequence of nodes such

that any ordered pair of nodes appearing consecutively in the sequence is an edge of the digraph. A digraph G
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u
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i (t) ∫

ki(t
0) = 1

f0

clock i

pi(t) :
∫ t

t0
pi(s)ds ≈ fi(t− t0)

u
(1)
i (t)

∫

t̂i(t
0) = oi

t̂i(t)ki(t)

Fig. 1. A schematic representation of the adopted clock model. Control signals u1(t) and u2(t) are impulsive signals that are nonzero at

update times only. Counter signal pi(t) is an sequence of pulses at frequency fi. Initial conditions are set to ki(t0) = 1
f0

and t̂i(t0) = oi.

is strongly connected if for any pair of vertices (i, j) there exists a directed path connecting i to j. A cycle in a

digraph is a directed path that starts and ends at the same node and that contains no repeated node except for the

initial and the final node. A digraph is acyclic if it contains no cycle. A directed tree is an acyclic directed graph

with the following property: there exists a node, called the root, such that any other vertex of the directed graph

can be reached by one and only one directed path starting at the root. In a directed tree, every in-neighbor of a

node is called a parent and every out-neighbor is called a child. A directed spanning tree of a digraph is a spanning

subgraph that is a directed tree.

Given a matrix M ∈ RN×N , we define the associated graph GM = (V, EM ) by taking N nodes and putting an

edge (j, i) in EM if Mij 6= 0. Viceversa, given a graph G = (V, E), V = {1, . . . , N}, the matrix M is compatible

with G if EM ⊆ E . With the symbol 1N , or 1 if the dimension is well understood, we denote the N -dimensional

all-one vector. A weighted Laplacian L ∈ RN×N of the graph G is a matrix compatible with G such that Lij ≥ 0

if i 6= j, and L1 = 0. Given the vector v ∈ RN , by diag {v} we denote the diagonal matrix having the components

of v as diagonal elements. Finally, E denotes mathematical expectation.

II. CLOCK MODEL

We assume that each agent i in a multi-agent systems (for example, each sensor in a wireless sensor network)

is equipped with an individual clock, i.e., a system capable of returning an estimate t̂i, called time reading, of the

real time t.

In order to derive a mathematical model for each clock, we consider a typical implementation, which is represented

in Figure 1. Each clock i has an on-board oscillator which generates a sequence of pulses, called ticks, and described

in mathematical terms as an impulsive signal pi(t), at a frequency fi. The frequency fi is unknown, and deviates

from the known nominal frequency f0 mainly because of electronic components’ tolerance. The time estimator is

given by a counter. This counter is initialized at a time toi to a value oi and every tick increases this counter by a

value ki. The value of the counter at time t is then formally described as

t̂i(t) =

∫ t

toi

kipi(s)ds+ oi (1)
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Equation (1) models the behavior of a single uncontrolled clock for which the values ki and oi are fixed. We

notice that we can interpret the value ki as the oscillator frequency correction of clock i, and a reasonable choice

is to set ki = 1
f0

. In fact, notice that
∫ t
toi
pi(s)ds = bfi(t− toi )c, where bac denotes the largest integer smaller than

or equal to a. If fi(t− toi )� 1, then bfi(t− toi )c ≈ fi(t− toi ), so that (1) yields

t̂i = kifi(t− toi ) + oi =
fi
f0

(t− toi ) + oi .

In the ideal case fi = f0 and oi = toi , the clock obtains the the correct estimate t̂i = t, for all t ≥ 0, while in

general the estimate is a linear affine function of time with slope fi
f0
6= 1 and with initial offset oi − toi . Since no

information on the absolute time is available, that is the best achievable by an isolated clock.

In case the clock is an agent in a network and is able to communicate with other agents, it has the capability

to instantaneously modify both ki and t̂i at the instant Tup at which it receives information from its neighbors. In

particular, the controlled counterpart of (1) is



t̂i(t) =

∫ t
toi

(
ki(s)pi(s) + u

(1)
i (s)

)
ds+ oi

ki(t) =
∫ t
toi
u

(2)
i (s) ds+ ki(t

o
i )

(2)

where u
(1)
i (t) and u

(2)
i (t) are impulsive signals that are nonzero only at update times. Therefore, between two

consecutive update times Tup and T ′up the clock receives no information and thus the value ki is kept fixed and the

counter t̂i evolves according to (1). Thus, for t ∈ (Tup, T
′
up], the same argument as before establishes that




t̂i(t) = t̂i(T

+
up) + ki(T

+
up)fi(t− Tup)

ki(t) = ki(T
+
up)

(3)

where the corrections u(1)
i (Tup) and u(2)

i (Tup) act as follows



t̂i(T

+
up) = t̂i(Tup) + u

(1)
i (Tup)

ki(T
+
up) = ki(Tup) + u

(2)
i (Tup)

.

Assume we have a network of N agents, labeled 1 through N , each of which equipped with a time estimator as

described in the previous section. The goal of this paper is to study how a proper design of the control signals u(1)
i

and u(2)
i , for i = 1, . . . , N , can yield synchronization in networks of clocks as defined in the following statement.

Problem. In a network of N agents, each equipped with a clock giving a time estimator t̂i(t), i = 1, . . . , N , of the

absolute time t, design an algorithm so that synchronization of the clocks is achieved, in the sense that there exist

γ ∈ R+ and β ∈ R such that

t̂i(t)
t→∞−−−→ γt+ β, ∀i = 1, . . . , N. (4)

III. CLOCK SYNCHRONIZATION PROTOCOL PROTOTYPE

In this section we propose a very general prototype of clock synchronization algorithm, denoted RANDSYNC,

which corresponds to a specific choice of the control signals u(1)
i and u(2)

i , and which encompasses many different

communication strategies between the agents.
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Assume that a random time Tup a group of agents wake up and communicate each other. Each agent i belonging

to this group performs the following operations.

1) Agent i sends its time reading to some agents of this group of activated agents;

2) Agent i receives the time readings from some of the agents of this group of activated agents;

3) Agent i uses the received time readings t̂j(Tup) by updating the states t̂i and ki as follows



t̂i(T

+
up) = t̂i(Tup) +

∑
j Eij(Tup)

[
t̂j(Tup)− t̂i(Tup)

]

ki(T
+
up) = ki(Tup) + α

∑
j Eij(Tup)

[
t̂j(Tup)− t̂i(Tup)

] (5)

where α > 0, and T+
up indicates the time instant immediately following Tup.

We assume the coefficients Eij(Tup) satisfy the following property.

Assumption 1. For every update time Tup we have that Eij(Tup) ≥ 0 for any i, j, and

∑

j 6=i

Eij(Tup) < 1.

Observe that the coefficients Eij will be typically different at different activation times, as they depend on the

family of nodes that are activated.

Next, to clarify the broad applicability of the proposed algorithm, we briefly present three examples corresponding

to different communication protocols which are employed in wireless and wired sensor networks. Further details

for these scenarios will be provided in Section V.

Example 1 (Asymmetric Broadcast RANDSYNC-BCAST). Let G = (V, E) be a given digraph, where V =

{1, . . . , N} is the set of agents, and an edge (i, j) ∈ E ⊆ V × V represents the possibility for agent j to receive

information from agent i. The RANDSYNC-BCAST protocol is described as follows. At each random time Tup there

is only one node, say i, which performs the transmission step. Specifically, node i broadcasts its time reading t̂i(Tup)

to all its out-neighbors (see Figure 2), which update their states t̂j and kj , j ∈ N out
i , according to




t̂j(T

+
up) = t̂j(Tup) + q

[
t̂i(Tup)− t̂j(Tup)

]

kj(T
+
up) = kj(Tup) + αq

[
t̂i(Tup)− t̂j(Tup)

]
,

(6)

where 0 < q < 1. The RANDSYNC-BCAST protocol therefore corresponds to the specific implementation of (5) in

which Eji(Tup) = q for all j ∈ N out
i , and zero otherwise (i being the node that transmits at time Tup).

�

Example 2 (Gossip Symmetric RANDSYNC-GOSSIP). Let G = (V, E) be a given undirected graph, where again

V = {1, . . . , N} is the set of agents, and the set E ⊆ V × V models the admissible bidirectional communication

among the agents. The RANDSYNC-GOSSIP protocol is described as follows. At each random time Tup a node,

say i, activates. Node i selects randomly one of its neighbors, say j, j ∈ N (i). The two nodes i, j send each other
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i

t̂i

t̂i

t̂i

Fig. 2. Broadcast wireless communication in RANDSYNC-BCAST: the graph represents the admissible communication between pairs of

wireless nodes. When node i activates, it sends its current time reading to neighbor nodes (thick red arrows). The neighbor nodes (in red) update

their state according to the algorithm.

i j
t̂i
t̂j

Fig. 3. Gossip wireless communication in RANDSYNC-GOSSIP: the graph represents the admissible communication between pairs of wireless

nodes. When node i activates, it exchanges current time readings with one of its neighors (thick red arrow). Both node i and the neighbor node

(in red) update their state according to the algorithm.

their time readings t̂i(Tup) and t̂j(Tup) (see Figure 3). Node i and node j update their states according to



t̂i(T

+
up) = t̂i(Tup) + q

[
t̂j(Tup)− t̂i(Tup)

]

ki(T
+
up) = ki(Tup) + αq

[
t̂j(Tup)− t̂i(Tup)

]

and 


t̂j(T

+
up) = t̂j(Tup) + q

[
t̂i(Tup)− t̂j(Tup)

]

kj(T
+
up) = kj(Tup) + αq

[
t̂i(Tup)− t̂j(Tup)

]

where again 0 < q < 1. The RANDSYNC-GOSSIP protocol therefore corresponds to the specific implementation of

(5) in which Eij(Tup) = Eji(Tup) = q, and zero otherwise (i and j being the two nodes that communicate at time

Tup).

�
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i

t̂j

j

Fig. 4. Hierarchical communication in wired networks in RANDSYNC-TREE: the graph represents the architecture of the communication

network between nodes. When node i activates, it requests the current time reading from its parent node in the tree (thick red arrow). Once the

time reading is received, node i updates its state according to the algorithm.

Example 3 (Hierarchical communication RANDSYNC-TREE). Let G = (V, E) be a given undirected graph, where

again V = {1, . . . , N} is the set of agents, and the set E ⊆ V × V models the admissible bidirectional commu-

nication among the agents. In this scenario, the communication graph G is an undirected tree. The Hierarchical

Communication protocol is described as follows. At each random time Tup there is only one node, say i, which

requests a time reading from its parent in the tree, say j. Once the parent node j receives a request from an agent

i, it responds with the time reading t̂j (see Figure 4). Node i then computes the difference t̂j − t̂i, and updates its

own states according to 


t̂i(T

+
up) = t̂i(Tup) +

[
t̂j(Tup)− t̂i(Tup)

]
= t̂j(Tup)

ki(T
+
up) = ki(Tup) + α

[
t̂j(Tup)− t̂i(Tup)

]
,

(7)

The RANDSYNC-TREE protocol therefore corresponds to the specific implementation of (5) in which Eij(Tup) = 1,

and zero otherwise (i being the node that requests the time reading from its parent at time Tup).1

�

A convenient way to describe the proposed algorithm consists in employing a vector representation of the states

t̂i(t) and ki(t), i ∈ V . Let t̂(t) and k(t) be the vectors [t̂1(t) . . . t̂N (t)]∗ and [k1(t) . . . kN (t)]∗, respectively. Let

moreover E(Tup) be a matrix whose off-diagonal entries are Eij(Tup), while the diagonal elements Ehh(Tup) are

defined as

Ehh(Tup) = −
∑

6̀=h

Eh`(Tup).

1Notice that, in this specific case, Assumption 1 is not strictly satisfied. The analysis in Section V shows how the proposed approach can be

technically extended to the case in which
∑

j 6=i Eij(Tup) ≤ 1.
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Using this notation, at the activation time Tup, the following update occurs



t̂(T+

up) = t̂(Tup) + E(Tup)t̂(Tup)

k(T+
up) = k(Tup) + αE(Tup)t̂(Tup).

(8)

If G = (V, E) is the graph of the admissible communications, then the matrices E(Tup) are weighted Laplacians of

subgraphs of G. In fact, the off-diagonal entries of any E(Tup) are nonnegative, and E(Tup(h))1 = 0.

Finally, given a specific clock synchronization protocol, we define by M the set of all possible matrices E that

result from the allowed combinations of such decisions (nodes, subset of neighbors), so that E(Tup) ∈ M at any

update time Tup.

The prototype that we described is extremely general, and by choosing the set of matricesM, it can be specialized

in order to meet the specifications of many common communication architectures, for example the broadcast wireless

communication and the gossip wireless communication which we have introduced in the previous examples, and

also hierarchical wired architectures. These notable examples will be presented in Section V, where the behavior

of the proposed algorithm will be illustrated via experiments, simulations, and further theoretical analysis.

Remark. Observe that the update t̂i(T+
up) = t̂i(Tup)+

∑
j Eij(Tup)

[
t̂j(Tup)− t̂i(Tup)

]
can be rewritten as t̂i(T+

up) =(
1−∑j Eij(Tup)

)
t̂i(Tup)+

∑
j Eij(Tup)t̂j(Tup) which represents a convex combination of t̂i(Tup) and of the time

readings t̂j(Tup) received by node i at time Tup. This implies that

max
(h,k)∈V×V

|t̂h(T+
up)− t̂k(T+

up)| ≤ max
(h,k)∈V×V

|t̂h(Tup)− t̂k(Tup)|.

In other words the updating steps on the variable t̂ resemble the iterations of the standard consensus algorithms.

Clearly, if the frequencies fi, i ∈ V , are different from each other, acting only on the variable t̂ does not

allow, in general, to reach asymptotic synchronization. For this reason, in the proposed algorithm, the correction
∑
j Eij(Tup)

[
t̂j(Tup)− t̂i(Tup)

]
, suitably scaled by the parameter α, is applied also to the oscillator frequency

corrections with the aim of reaching asymptotic synchronization on the quantities kifi, i ∈ V . In this sense we can

say that the algorithm we introduced above is based on a second order consensus algorithm.

Remark. Observe that in the proposed approach, we are assuming either negligible or perfectly predictable

communication delays. If this is not true, and if bidirectional communication is available, then the agents can

possibly implement some more complex routines in order to estimate their time difference, like the ones adopted in

the Network Time Protocol [14] and in the Precision Time Protocol [15], and use such computed time differences

in the update equations (5).

IV. CONVERGENCE RESULTS

In this section we state our main convergence result for the general clock synchronization algorithm presented

in Section III.
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We define as {Tup(h)}h∈N the ordered sequence of all time instants in which the algorithms is executed, i.e., the

sequence obtained by ordering the activation times of all the agents. A specific clock synchronization protocol is

therefore fully characterized by:

• a family M of weighted Laplacians of subgraphs of the graph of the admissible communications G,

• a positive tuning parameter α ∈ R,

• a random process describing the update times {Tup(h)}h∈N,

• a random sequence {E(h)}h∈N that specifies which update matrix E(h) ∈ M is chosen at the h-th update

time Tup(h). 2

We make the following assumptions about the update times {Tup(h)} and the sequence {E(h)}.

Assumption 2. Let us denote by δup(h) = Tup(h + 1) − Tup(h) the inter-time between consecutive update times.

We assume that {δup(h)}h∈N is an i.i.d. process, with moments



E [δup(h)] = µ

E
[
δ2
up(h)

]
= σ2

∀h ∈ N

Assumption 3. For each update time Tup(h) a matrix E(h) is independently picked from the family of matrices

M according to a probability distribution pM. With no loss of generality we can assume that each Laplacian in

M can be picked with nonzero probability.

In other words the previous assumption says that E(h) is an independent and identically distributed, matrix

valued, stochastic process. The familyM of weighted Laplacians, the probability distribution pM, and the first and

second order moments of the inter-times δup(h), are characteristic of the specific implementation of the algorithm.

We will show in Section V how Assumptions 2 and 3 are practically verified in many scenarios.

Since switching rule and update instants are random processes, we will be interested in the following notion of

synchronization, which solves, in the mean-square sense, the Problem expressed in (4).

Definition (Mean-square synchronization). We say that switching system with updates (8) at times {Tup(h)}h∈N,

and autonomous evolution (3) between consecutive updates, achieves mean-square synchronization if there exist

γ ∈ R+ and β ∈ R such that

E[(t̂i(t)− (γt+ β))2]
t→∞−→ 0. (9)

for all i ∈ V .

It is convenient, for the analysis of the algorithm behavior, to consider the discrete time system which is obtained

by sampling the clocks at the update times {Tup(h)}h∈N. Denote by

x(h) =
[
t̂1(Tup(h)) . . . t̂N (Tup(h)) f0k1(Tup(h)) . . . f0kN (Tup(h))

]∗

2With a slight abuse of notation, we used the symbol E(h) to denote the update matrix at time Tup(h), i.e. E(Tup(h)).
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the vector of time readings and oscillator frequency corrections multiplied by the nominal frequency at the update

times. By using (8), together with the model (3) for the autonomous evolution between consecutive updates, we

obtain the following linear update for x(h)

x(h+ 1) =


I + E(h) + αf0δup(h)DE(h) δup(h)D

αf0E(h) I


x(h) (10)

where D = diag {d1, . . . , dN} is di = fi/f0 > 0 the ratio among the i-h oscillator frequency correction fi and its

nominal value f0. Given the sampling strategy that we introduced, we consider the following notion of mean-square

synchronization for the sampled system.

Definition (Mean-square synchronization of the sampled system). We say that system (10) achieves mean-square

synchronization if there exist γ ∈ R+ and β ∈ R such that

E[(t̂i(Tup(h))− (γTup(h) + β))2]
h→∞−→ 0. (11)

for all i ∈ V .

The following Proposition shows that mean-square synchronization of the sampled systems is a necessary and

sufficient condition for mean-square synchronization of the original switched system. The proof is postponed to the

Appendix.

Proposition 1. Consider the original switching system with updates (8) at times {Tup(h)}h∈N, and autonomous

evolution (3) between consecutive updates. Consider then its sampled version (10), and let Assumption 2 hold true.

Then the former achieves mean-square synchronization if and only if so does the latter.

Notice that, if we define

Ē := E[E(h)] =
∑

E∈M
E pM(E) (12)

where pM(E) is the probability of picking E ∈M as defined in Assumption 3, then we have that

GĒ =
⋃

E∈M
GE ⊆ G .

We can now state the following result, which gives sufficient conditions for mean-square synchronization to take

place. To do so we first introduce the following notation. Let w ∈ RN be the unique vector such that w∗Ē = 0 and

w∗1 = 1 and let V ∈ RN×(N−1) be a full column rank matrix such that w∗V = 0. Then we have that
[
1 V

]−1

is invertible and
[
1 V

]−1

=


w
∗

W ∗




for some W ∈ RN×(N−1).

Theorem 1. Consider the clock synchronization protocol presented in section III, and let Assumptions 1, 2 and 3

hold true. Additionally assume the following properties:
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1) The graph GĒ contains a directed spanning tree.

2) The matrix W ∗DV has all eigenvalues with positive real part, where the matrices V,W ∈ RN×(N−1) are

defined as above from the vector w ∈ RN .

Then there exists a value ᾱ > 0 such that, for any α ∈ (0, ᾱ), mean-square synchronization is achieved.

The proof is postponed to the Appendix.

Observe that in the statement of Theorem 1 the second condition does not depend on the specific choice of

V . In fact, assume that V1, V2 ∈ RN×(N−1) are full column rank matrices such that w∗V1 = w∗V2 = 0. Notice

that the columns of both V1 and V2 form a basis of orthonormal vectors of span {w}⊥ and so there exists an

invertible matrix T ∈ RN−1×N−1 such that V2 = V1T . Since we have that W ∗2 = T−1W ∗1 , we can conclude that

W ∗2DV2 = T−1(W ∗1 FV1)T an so W ∗1DV1 and W ∗2DV2 have the same eigenvalues.

Condition 2) may seem a bit involved and difficult to check. However, a clever choice of the matrix V might result

in a simple check of the proposed condition. Also, there are notable cases in which the condition is immediately

satisfied, as the following corollary states.

Corollary 1. Consider a network employing a clock synchronization protocol with a strongly connected graph of

admissible communication G = (V, E) and family of Laplacians M. Let Assumptions 2 and 3 hold. If Ē = Ē∗,

then there exists a value ᾱ > 0 such that for any α ∈ (0, ᾱ) mean-square synchronization is achieved.

The result of Corollary 1 is quite remarkable, since, provided that Ē = Ē∗, it ensures that existence of ᾱ > 0

for any matrix D > 0, i.e. for any difference between the frequencies of the clocks.

Condition Ē = Ē∗ is clearly much simpler than condition 2) of Theorem 1, and it is for example satisfied in

the following very common scenarios, as the examples in Section V will show:

• in the case of highly regular graphs like complete graphs or Cayley graphs [16], with a proper choice for the

weights of the matrices E ∈M;

• in case of symmetric protocols like symmetric gossip [17], in which at every iteration two nodes perform the

exact same update, and thus the elements of M are all symmetric matrices, regardless of the communication

graph.

Remark. The proof of Theorem 1 shows that the variance of the time synchronization error evolves according to a

linear operator whose eigenvalues depend continuously on the matrix D, i.e. on the different clocks speed di of the

clocks. Condition 2) of Theorem 1 is automatically verified, for any (possibly asymmetric) communication protocol,

if the clocks have the same frequency, i.e. fi = f̄ ∈ R+, for all i ∈ V . Therefore, by continuity of the eigenvalues

of a matrix with respect to its entries, existence of ᾱ > 0 that achieves mean-square synchronization is guaranteed

if the clock frequencies fi are sufficiently similar.

For certain specific scenarios, it is possible to compute or to estimate the value of the upper bound ᾱ which

ensures synchronization. This is the approach followed by the authors in [18], where they considered a very similar
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model for the clocks and a specialization of the algorithm based on asymmetric gossip communication. We perform

an analogous analysis in the next section, for some other specific scenarios.

V. EXAMPLES

In this section, we study three specialized settings of the general RANDSYNC algorithm presented in Section III.

For each of them we illustrate how the convergence results can be used and how the proposed algorithm behaves.

In particular we consider implementations of the algorithm based on

• broadcast wireless communication (RANDSYNC-BCAST), for which we can compute the threshold ᾱ analyt-

ically (for a complete communication graph), and for which we validate the algorithm on a real experimental

testbed;

• gossip wireless communication (RANDSYNC-GOSSIP), for which, similarly to RANDSYNC-BCAST algorithm,

we can compute the threshold ᾱ analytically (for a complete communication graph), and for which we illustrate

the effectiveness of the algorithm via numerical simulations on random geometric graphs;

• hierarchical wired communication (RANDSYNC-TREE), for which we compute the threshold ᾱ analytically,

and we validate such bound via simulations.

A. Broadcast communication in wireless networks (RANDSYNC-BCAST)

Consider a network of wireless agents. Each agent i activates according to a independent Poisson processes

with intensity λ (i.e. with exponentially distributed waiting times between subsequent activations). As described in

Example 1, when an agent i activates, it broadcasts its time reading t̂i to all its neighbors in the communication

graph G (see Figure 2) which update their states according to (6). The update matrix E(i), corresponding to the

activation of node i, is then

E(i) = q
∑

j∈Ni

(eje
∗
i − eje∗j ) =




+q −q

+q −q




← row i

← row j1

← row j2

where ei ∈ RN is the i-th vector of the canonical base and where j1, j2 are two neighbors of i. The strategy is

asymmetric, since only the agents that receive the time reading from node i update their state, while agent i holds its

state constant. Therefore node i does not need to gather any information from its neighbors, and the communication

happens only in one direction (as indicated by the red thick arrows in Figure 2).

This protocol is very easy to implement, because of the inherent broadcast nature of the wireless channel. As no

response is required from the nodes, the transmitting node i does not need to identify itself or its neighbors, and

media access control is extremely simple.
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Nominal frequency f0 32768 Hz

Frequency deviation stdev(fi) ±0.15 Hz

Relative frequency deviation stdev(fi)
f0

4.6 ppm

TABLE I

CLOCK PARAMETERS IN THE EXPERIMENTAL SETUP

Notice that, since the transmission times of each agent are independent one each other, then {Tup(h)}h∈N are

the samples of a Poisson process of intensity Nλ, with inter-time moments



µ = E [δup(h)] = 1

λN ,

σ2 = E
[
δ2
up(h)

]
= 2

N2λ2

Assumptions 2 and 3 are therefore verified. For the specific case in which the communication graph is the

complete graph, and therefore all pairs of nodes can communicate, it is easy to check that Ē is a symmetric matrix

and equals to

Ē = −q(I − 1

N
11∗).

Corollary 1 therefore applies, and thus there exists a positive constant ᾱ such that mean-square convergence of the

algorithm RANDSYNC-BCAST is guaranteed for any value of the parameter α smaller than ᾱ. In the specific case

of a complete graph and when the clocks are all equal, we can also explicitly determine the maximum value ᾱ, as

the following proposition states.

Proposition 2. Consider a network of clocks with a complete graph of admissible communications G = (V, E).

Assume that the clocks are all equal with fi = f0. Assume that they activate according to Poisson processes with

the same intensities, and that they implement the RANDSYNC-BCAST synchronization protocol. Then mean-square

synchronization is ensured if

0 < α <
λN(2− q)

f0
.

The proposed synchronization algorithm has been implemented and validated on the FIT IoT-LAB/SensLAB

testbed [19], [20]. SensLAB is a very large scale open wireless sensor network platform which allows fast prototyping

of distributed algorithms via a convenient infrastructure for code deployment and node monitoring. Each node of the

testbed is based on a low power MSP430-based platform [21] (equipped with off-the-shelf 16-bit micro-controllers)

with a IEEE 802.15.4 radio interface.

The on-board 32 KHz quartz oscillator has been used for driving the time counter. This choice corresponds to

a granularity of 30 µs. Skew corrections have been implemented by periodically increasing (or decreasing) the

time counter by 1 tick. By adjusting the period of this correction, proper skew correction can be achieved by the

algorithm.
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Wireless communication has been implemented according to a CSMA (Carrier Sense Multiple Access) protocol,

in which however re-transmission and back-off strategies have been disabled for the specific time synchronization

packets in order to avoid random transmission delays. Packets are timestamped before being forwarded to the radio

interface transmission buffer and as soon as they are received. This way, a constant deterministic delay has been

observed, and has been compensated in the algorithm. Notice that this deterministic delay can be easily estimated

by the nodes by exchanging few packets any by comparing the timestamp differences.

For this experimental validation, 20 nodes have been used among the 256 nodes available in the testbed. The

communication graph between these nodes resulted to be a complete graph, with limited packet losses. The source

code used in these experiments is available online for review [22].

Each node triggered its own broadcast transmission with random, exponentially distributed, waiting times, with

an average waiting time of 2048 s (about 34 min). The energy consumption and the communication burden for

each node is therefore extremely small.

The experiment consisted in three phases (see Figure 5).

• In the first 900 s (15 min, enlarged in Figure 6), no synchronization algorithm has been implemented. This

stage allowed us to evaluate the clock skew differences among the nodes, which can be as large as 13 ppm.

• At time equals to 900 s, the proposed time synchronization algorithm has been activated with α = 0 and

q = 1/2. This way, the time synchronization error has been corrected by adjusting the clock offsets at each

algorithm execution, but leaving the clock skews untouched (Figure 7). It is clear that this approach can keep

the time synchronization error bounded, but cannot drive it to zero. Experimental results show that, with the

adopted intensity for the triggering process, the error seems to remain in the order of magnitude of 1 ms.

• Finally, at time equals to 1800 s (30 min), the parameter α of the synchronization algorithm has been set to

2−9/f0 ≈ 1.9 × 10−3/f0, which is smaller than the threshold ᾱ computed according to Proposition 2. It is

clear from Figure 8 that in the following 15 minutes the algorithm is capable of correcting the skew differences

among the nodes, driving the synchronization error to zero. After this transient, the clocks of the different

nodes result to be synchronized up to the time granularity of the devices, as Figure 9 shows.

It is interesting to notice that the performance of RANDSYNC-BCAST are comparable, in terms of steady state

accuracy of the time synchronization, with the experimental results presented in [9], where two other methods

based on broadcast wireless communication have been considered and implemented: the Average TimeSynch (ATS)

algorithm [9] and the Flooding Time Synchronization Protocol (FTSP) [2]. The testbed considered in [9] is extremely

similar to the one presented in this paper. However, the computational and communication burden of RANDSYNC-

BCAST is remarkably smaller than both ATS and FTSP. Indeed, in the implementations reported in [9], nodes

transmit their time readings to other nodes every minute, while in our experimental validation the expected waiting

time between subsequent communications of the same node is about 34 minutes. Some extra comments about this

comparison are provided in [23], where the proposed algorithm is shown to be more robust against disturbances,

compared to ATS, and much simpler to implement.
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Fig. 5. Time difference between 7 among 20 nodes, compared to a reference node, over a time span of more than one hour. The vertical line

at 900 s indicates the time instant when the RANDSYNC-BCAST synchronization algorithm has been activated with α = 0 and the vertical line

at 1800 s indicates the time instant when the skew correction algorithm (α = 9.8× 10−4) has been activated.
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Fig. 6. Enlarged view of the clocks behavior when no synchronization algorithm is present.

B. Gossip communication in wireless networks (RANDSYNC-GOSSIP)

We consider again a wireless network, as in the previous example. In this case, however, we adopt a gossip

(peer-to-peer) communication strategy, as described in Example 2. According to such strategy, when node i activates

(according to its own independent Poisson process), it sends its time reading to node j, one node randomly chosen

among its neighbors and itself (see Figure 3). When node j receives the message t̂i, it computes the difference t̂i−t̂j ,
and sends it back to node i. Then, nodes i and j update their states according to (2) and (2). Both Assumptions 2

and 3 are easily verified. In this case the strategy is symmetric: node i and node j, after a gossip-like exchange
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Fig. 7. Enlarged view of the clocks behavior when the offset correction algorithm is running (α = 0).
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Fig. 8. Enlarged view of the clocks behavior when the offset correction ans the skew correction algorithm is running (α = 9.8× 10−4).

of information, execute a symmetric update of their parameters. The update matrix corresponding to the update of

nodes i and j is then

E(ij) = −q(ei − ej)(ei − ej)∗ =




−q q

q −q




← row i

← row j

.
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Fig. 9. Enlarged view of the steady state clocks behavior when the offset correction and skew correction algorithm is running (α 6= 0).

Notice that, as the matrix E(ij) is symmetric for any pair i, j, the matrix Ē is necessarily symmetric (for any

underlying communication graph G, and for any probability distribution pM). Corollary 1 then applies, and the

algorithm RANDSYNC-GOSSIP is guaranteed to achieve mean-square synchronization if the parameter α is smaller

than some positive threshold ᾱ. Again, in the case of a complete graph and when the clocks are all equal, we

can determine the maximum value of ᾱ. To state our result we need an additional assumption related to the initial

condition of the algorithm. Let

Σ(h) = E [x(h)x(h)∗] :=


Σ11(h) Σ12(h)

Σ21(h) Σ22(h)




where Σrs(h) ∈ RN×N , r, s = 1, 2. We assume the following property.

Assumption 4. The matrices Σrs(0), r, s = 1, 2, have the following structure

Σrs(0) = αrsI + βrs11
∗,

where αrs, βrs, r, s = 1, 2 are nonnegative real numbers.

This structure, which we shall prove to be positively invariant for the system, is easily implementable. As

an example, the clocks could initiate the t̂i’s to independent random variables, and the ki’s to some common

deterministic value, such as the reasonable ki(0) = 1/f0 for all i ∈ V .

We have the following result.

Proposition 3. Consider a network of clocks with a complete graph of admissible communications G = (V, E).

Assume that the clocks are all equal with fi = 1. Assume that they activate according to Poisson processes with

the same intensities, and that they implement the RANDSYNC-GOSSIP synchronization protocol. Then mean-square
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Fig. 10. The undirected random geometric graph with N = 20 nodes considered for the numerical simulation of RANDSYNC-GOSSIP.

synchronization is ensured if

0 < α <
λ

f0
.

The proposed algorithm has been simulated for a network of N = 20 clocks communicating through the edge

of a random geometric graph. The graph is built as follows: The coordinates of the nodes are picked randomly in

[0, 1]2, and two nodes communicate if their Euclidean distance is less than r = 3 logN/N , a choice that is known

to guarantee connectedness with high probability. One realization of the resulting graph is illustrated in Figure 10.

We set f0 = 1 to be the nominal frequencies of the clocks, while the true frequency of each clock, say the i-th, is

given by fi = f0di for di = max{0.1, 1 + εi}, εi ∼ N (0, 1). This results in 20 different clock frequencies ranging

from fmin = 0.1f0 to fmax = 2.53f0, hence with differences up to 150% of the nominal frequency. We also set for

simplicity λ = 1, and following Proposition 3, we chose α = 0.9 λ
f0

= 0.9 and q = 1/2.

We run 20 simulations. For each simulation, we picked randomly the initial offset for any agent i as t̂i(0) ∼
N (0, 1), while we set ki(0) = 1, i.e., all clocks start with the same estimate of estimate of their frequency. The

results on these simulations are illustrated in Figure 11, where we show a typical trajectory of the time readings

and the error decay for the 20 simulations. For the latter, in particular, for each of the 20 simulations we plot in

log-scale the process

e(t) = ||Ωt̂(t)||2

where Ω = IN − 1
N 1N1TN is a projector onto the orthogonal to 1N . As one can see, clocks synchronize to the

same ramp-shaped function essentially exponentially in time.

C. Hierarchical communication in wired networks (RANDSYNC-TREE)

As a third example, we consider a typical wired data network divided into nested subnetworks. The nodes

belonging to each subnetwork can communicate with the root node of their subnetwork (the router), and each

router is a node of a larger, higher subnetwork, recursively. We assume that each router is provided with a time
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Fig. 11. Results of the numerical simulations of RANDSYNC-GOSSIP. On the left, a typical trajectory of the time readings, asymptotically

approaching the same ramp-shaped function. On the right, the process e(t) = ||Ωt̂(t)||2 in log-scale, for all the 20 simulations.

server, and agents can request the time reading of the router of their subnetwork, as described in Example 3. Similar

tree-like communication architectures have been exploited in numerous clock synchronization algorithms, and such

hierarchical structure (which is inherent in most wired data networks) is also adopted in the standard Network Time

Protocol (NTP) which is currently used over the Internet [14].

Once a router j receives a request from an agent i in its subnetwork, it responds with the time reading t̂j (see

Figure 4). Node i then computes the difference t̂j − t̂i, and updates its own states according to (7). Such update

result in an asymmetric update matrix

E(i) = ei(e
∗
j − e∗i ) =




−1 +1




← row i

← row j

Notice that the row sum of the off-diagonal elements of E is not strictly smaller than 1, as the algorithm would

require. It is however possible to show that the results of Section IV hold also in this case, and, in general, in all the

cases in which
∑
j 6=iEij ≤ 1,∀i ∈ V , provided the graph G of the admissible communications is acyclic. Again it

would follow from Theorem 1, the existence of an ᾱ > 0 such that, if α < ᾱ then the RANDSYNC-TREE algorithm

reaches the mean-square synchronization. However in this hierarchical architecture, it is possible to provide a more

refined and complete analysis which is stated in the following Proposition. We assume that all the nodes, except

for the root, activate according to independent Poisson processes with the same intensity λ. Furthemore, without

loss of generality, we assume that the root is node 1. Then we have the following result.

Proposition 4. Consider a network of clocks whose graph of admissible communications G = (V, E) is a directed

tree. Assume that all the nodes, except for the root (node 1), activate according to independent Poisson processes
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with the same intensity λ, they retrieve the time reading from their parent node, and they update their clock

parameters according to the RANDSYNC-TREE algorithm described in (7). Let fmax = max {fi | i ∈ V \ {1}}.
Then mean-square synchronization is ensured if

0 < α <
λ

fmax
. (13)

We simulated the RANDSYNC-TREE algorithm on a network with N = 21 nodes. The communication graph is

a (k, l) regular tree in which every node (except the leaves) has k = 4 children, and the depth of the tree is l = 2.

We set once again f0 = 1 to be the nominal frequencies of the clocks, while the true frequency of each clock, say

the i-th, is given by fi = f0di for di = 1 + εi, εi ∼ U [−.3, .3], thus fmax ≤ 1.3. We also set for simplicity λ = 1,

and we pick the initial conditions of the states of the clocks according to t̂i(0) ∈ N (0, 25) and ki(0) ∈ U(0, 10),

for all i ∈ V \ {1}.
With these parameters, Proposition 4 ensures synchronization if the parameter α is smaller than ᾱ = 1/1.3 ≈ 0.77.

We consider three cases, with different values for α. In particular, we choose α = 0.1, α = 0.5 and α = 1.5.

The simulated synchronization errors of the agents with respect to the root of the tree are shown in Figure 12.

As expected, the system achieves synchronization to the root, and convergence is faster with α = 0.5 than with

α = 0.1, at the expense of a larger transient. When α = 1.5, the system does not synchronize in the mean-square

sense, but an interesting phenomenon occurs, which resembles what has been already observed in the case of noisy

consensus with packet drop and is related to the so called Levy flights [24]. Indeed, even if clocks tend to drift apart,

synchronization is achieved abruptly at seemingly random times. Intuitively, this happens because for any ε > 0

there exist (with non-zero probability) a time t′ such that |t̂i(t′)− t̂1(t′)| < ε, for all i > 1, and this is related to

fast sequences of activations of the nodes from the root to the leaves of the tree. Such an effect is not described by

the proposed mean-square analysis of the system, and is related to the multiplicative effect of the random matrices

E(h). Therefore, even if the system does not achieve mean square synchronization, there exist instants at which it

is synchronized with arbitrary precision, these times possibly being very far away in the absolute time. Of course,

such a notion of synchronization is useless for real-world application.

VI. CONCLUSIONS

This paper studies randomized clock synchronization PI-controllers in multi-agent networks, establishing the

existence of tuning parameters for which the network achieves synchronization in the mean-square sense. Sev-

eral instances of randomized algorithms are presented and discussed in light of the theoretical results, and their

effectiveness is studied in real and simulation testbeds. Future research directions include and are not limited to

a more thorough characterization of the interval in which the tuning parameter can lie to ensure synchronization

in the mean-square sense, in particular with respect to the topology of the network and well-known geometrical

and graph-theoretical parameters, such as the dimension in which the network is embedded and the second largest

eigenvalue of the average communication graph.
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Fig. 12. Simulated clock synchronization errors, for the case of the hierarchical protocol RANDSYNC-TREE, for different values of α. In the

third panel, for α = 1.5λ, only the few largest trajectories can be seen, due to scaling.
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APPENDIX

A. Proof of Proposition 1

Since (10) is a sampled version of the original switched system, one direction of the equivalence is obvious. On

the other hand, notice first that, from (10), mean-square synchronization of the sampled systems also implies that

E
[
(fiki(Tup(h))− γ)2

] h→∞−→ 0.

Let t ∈ (Tup(h), Tup(h+ 1)) and observe that

t̂i(t)− (γt+ β) = t̂i(Tup(h)+)− (γTup(h) + β) +
(
fiki(Tup(h)+)− γ

)
(t− Tup(h)).
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It follows that

E
[(
t̂i(t)− (γt+ β)

)2]

= E
[(
t̂i(Tup(h)+)− (γTup(h) + β) +

(
fiki(Tup(h)+)− γ

)
(t− Tup(h))

)2]

≤ E
[(
t̂i(Tup(h)+)− (γTup(h) + β)

)2]
+ E

[(
fiki(Tup(h)+)− γ

)2]E
[
(t− Tup(h)))

2
]

+ 2

√
E
[(
t̂i(Tup(h)+)− (γTup(h) + β)

)2]
√

E
[
(fiki(Tup(h)+)− γ)

2
]
E
[
(t− Tup(h)))

2
]

where the inequality has been obtained by applied the Cauchy-Schwarz inequality. Since by hypothesis we have

that E
[(
t̂i(Tup(h)+)− (γTup(h) + β)

)2] h→∞−→ 0, E
[
(fiki(Tup(h)+)− γ)

2
]
h→∞−→ 0 and E

[
(t− Tup(h)))

2
]
≤ σ2

we can conclude that also

E
[(
t̂i(t)− (γt+ β)

)2] h→∞−→ 0.

B. Proof of Theorem 1 and Corollary 1

Let x′(h), x′′(h) ∈ RN be such that

x(h) =


x
′(h)

x′′(h)




Let moreover w ∈ RN be such that w∗Ē = 0 and w∗1 = 1. If V ∈ RN×(N−1) is a full column rank matrix such

that w∗V = 0, then we have that [1 V ] is invertible and that

[
1 V

]−1

Ē
[
1 V

]
=


0 0

0 Ẽ




and that
[
1 V

]−1

=


w
∗

W ∗




for some W ∈ RN×(N−1). Therefore we have that W ∗1 = 0, W ∗V = IN−1, VW ∗+1w∗ = IN and Ẽ = W ∗ĒV .

It is convenient to introduce the quantities y(h), z(h) ∈ RN−1 defined as

y(h) := W ∗x′(h) z(h) := W ∗Dx′′(h). (14)

In words, y(h) is an error vector which is zero only if x′(h) belongs to span {1}, namely if the clocks are

synchronized. Analogously, z(h) is zero only if x′′(h) belongs to span{D−11}, namely if all the clocks increase

their time readings with the same slope, i.e., d1k1(h) = · · · = dNkN (h).

Since we are interested in mean-square synchronization to a ramp, we introduce the mean trajectory m(h) =

E[x(h)] and the matrix

Σ(h) = E




y(h)

z(h)



[
y(h)∗ z(h)∗

]

 =


 Σyy(h) Σyz(h)

Σyz(h)∗ Σzz(h)




where Σyy(h) := E[y(h)y(h)∗], Σyz(h) := E[y(h)z(h)∗] and Σzz(h) := E[z(h)z(h)∗].
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From (10), by statistical independence of the samples of the processes {E(h)}h∈N and {δup(h)}h∈N, we obtain

the linear evolution

m(h+ 1) =


I + Ē + αf0µDĒ µD

αf0Ē I


m(h) = M̄m(h) . (15)

Let v1 =


1

0


 and v2 =


 0

1
µD
−11


. It is straightforward to verify that (M̄ − I)v1 = 0, (M̄ − I)v2 = v1,

and that (M̄ − I)v = v2 has no solution, namely, v1 and v2 are the eigenvector and the generalized eigenvector,

respectively, of the matrix M̄ associated with the eigenvalue 1, and that the multiplicity of 1 is exactly 2. If the

other eigenvalues of M̄ are strictly inside the unit circle, then m(h)→


β1 + γh1

γ 1
µD
−11


 for some γ ∈ R and β ∈ R.

In particular, E[x′(h)]→ β1+γh1. Notice that by Frobenius-Perron theorem w∗ is a vector whose entries are non

negative. Moreover, using (15), direct computation shows that
[
0 w∗

]
m(h) =

[
0 w∗

]
m(0) for all h ≥ 0, and

thus in particular γ 1
µw
∗D−11 = w∗Ex′′(0). Under the assumption that all the clock initialize their value ki to a

strictly positive value, this proves that γ > 0.

The network achieves thus mean-square synchronization to a ramp if M̄ has only stable eigenvalues, except 1

with multiplicity 2, and if Σ(h)
h→∞−→ 0. Notice now that


w
∗

W ∗


E(h)

[
1 V

]
=


0 ∗

0 Ẽ(h)





w
∗

W ∗


DE(h)

[
1 V

]
=


0 ∗

0 F̃ (h)




Using this fact and the definitions (14) in the discrete time system (10), one obtains the update law of the signals

y(h) and z(h) 
y(h+ 1)

z(h+ 1)


 =


I + Ẽ(h) + αf0δup(h)F̃ (h) δup(h)I

αf0F̃ (h) I




y(h)

z(h)




where Ẽ(h) = W ∗E(h)V and F̃ (h) = W ∗DE(h)V .

We start with the analysis in the second moment. By definition of Σ(h) and by statistical independence of the

samples of the processes {E(h)}h∈N and {δup(h)}h∈N, we obtain the linear time–invariant system

Σ(h+ 1) = E[A(h)Σ(h)A(h)∗] (16)

where

A(h) :=


A11(h) A12(h)

A21(h) A22(h)


 =


I + Ẽ(h) + αf0δup(h)F̃ (h) δup(h)I

αf0F̃ (h) I


 .

Define now

Y (h) := vec(Σyy(h)) W (h) := vec(Σyz(h))

W ′(h) := vec(Σyz(h)∗) Z(h) := vec(Σzz(h))

where vec means the vectorization operator, namely the operator which maps a matrix into a column vector by

stacking the columns of the matrix. Notice that Σ(h)
h→∞−→ 0 is equivalent to Y (h),W (h),W ′(h), Z(h)

h→∞−→ 0,
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hence we study the evolution of these vectors. Notice now that

Y (h+ 1) = vec
(
Σyy(h)

)
= vec

(
E
[
y(h+ 1)y(h+ 1)∗

])

= E
[
vec
(
(A11(h)y(h) +A12(h)z(h))(A11(h)y(h) +A12(h)z(h))∗

)]

= E
[
vec
(
A11(h)y(h)y(h)∗A11(h)∗

)
+ vec

(
A11(h)y(h)z(h)∗A12(h)∗

)

+ vec
(
A12(h)z(h)y(h)∗A11(h)∗

)
+ vec

(
A12(h)z(h)z(h)∗A12(h)∗

)]

= E
[(
A11(h)⊗A11(h)

)
vec
(
y(h)y(h)∗

)
+
(
A12(h)⊗A11(h)

)
vec
(
y(h)z(h)∗

)

+
(
A11(h)⊗A12(h)

)
vec
(
z(h)y(h)∗

)
+
(
A12(h)⊗A12(h)

)
vec
(
z(h)z(h)∗

)]

= E
[
A11(h)⊗A11(h)

]
Y (h) + E

[
A12(h)⊗A11(h)

]
W (h)

+ E
[
A11(h)⊗A12(h)

]
W ′(h) + E

[
A12(h)⊗A12(h)

]
Z(h)

where we used the standard property that vec(ABC) = (C∗ ⊗ A)vec(B). Through similar computations it is

possible to argue that the following equation holds true


Y (h+ 1)

W (h+ 1)

W ′(h+ 1)

Z(h+ 1)




= M




Y (h)

W (h)

W ′(h)

Z(h)




where

M =




E[A11(h)⊗A11(h)] E[A11(h)⊗A12(h)] E[A12(h)⊗A11(h)] E[A12(h)⊗A12(h)]

E[A11(h)⊗A21(h)] E[A11(h)⊗A22(h)] E[A12(h)⊗A21(h)] E[A12(h)⊗A22(h)]

E[A21(h)⊗A11(h)] E[A21(h)⊗A12(h)] E[A22(h)⊗A11(h)] E[A22(h)⊗A12(h)]

E[A21(h)⊗A21(h)] E[A21(h)⊗A22(h)] E[A22(h)⊗A21(h)] E[A22(h)⊗A22(h)]




In what follows we will need to determine only some of the blocks of M . After some easy computations we can

find that M can be written in the form

M(α) = M0 + αM1 + α2M2

where

M0 =




E[(I + Ẽ(h))⊗ (I + Ẽ(h))] ∗ ∗ ∗
0 I ⊗ I + Ẽ ⊗ I 0 µI ⊗ I
0 0 I ⊗ I + I ⊗ Ẽ µI ⊗ I
0 0 0 I ⊗ I




and

M1 = f0




∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 F̃ ⊗ I I ⊗ F̃ 0



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while the computation of the matrix M2 is not needed. Now we have to understand under what conditions M(α),

is a stable matrix, namely if its eigenvalues are strictly inside the unit circle. We start with the following lemma

describes the stability of M0. Recall that an eigenvalue of a matrix is called semi–simple if its algebraic and

geometric multiplicities coincide.

Lemma A.1. Assume that GĒ contains a directed spanning tree and that Assumption 1 holds true. Then the matrix

M0 has (N − 1)2 eigenvalues 1 and the all other eigenvalues are stable, namely, strictly inside the unit circle.

Moreover the eigenvalue 1 is semi–simple.

Proof: From the upper-block-triangular structure of M0, it is clear that the eigenvalues of M0 coincide with

the eigenvalues of its diagonal blocks. The last block has eigenvalues equal to 1. We will check that the other

blocks have stable eigenvalues. Notice that

I ⊗ I + Ẽ ⊗ I = (I + E[Ẽ(h)])⊗ I = W ∗(I + Ē)V ⊗ I

and so its eigenvalues coincide with the eigenvalues of W ∗(I + Ē)V . Notice now that I + Ē is a stochastic

matrix and that the graph associated with it is strongly connected. Observe moreover that Assumption 1 implies

that diagonal elements of I + Ē are non-zero. We can conclude [25] that I + Ē is primitive, which implies that

it has one eigenvalue 1 with algebraic multiplicity one and the remaining which are strictly inside the unit circle.

Now, I + Ē and W ∗(I + Ē)V have the same eigenvalues except the eigenvalue 1. Indeed, if W ∗(I + Ē)V v = νv

and v 6= 0, then multiplying by V on the left, and using VW ∗ = I − 1w∗, w∗Ē = 0, and w∗V = 0, we

obtain (I + Ē)(V v) = ν(V v). Since the columns of V are linearly independent, we correctly obtain that to any

eigenvector of W ∗(I + Ē)V it corresponds an eigenvector of (I + Ē) with the same eigenvalue, except 1. Indeed,

if by contradiction V v = γ1, multiplication by W ∗ on the left immediately yields γ1 = 0, which is only possible

if v = 0, contradicting v 6= 0. This allows to conclude that W ∗(I + Ē)V has eigenvalues strictly inside the unit

circle. The matrix I ⊗ I + I ⊗ Ẽ can be proved to be stable in the same way. Finally consider the first diagonal

block. Notice that

E[(I + Ẽ(h))⊗ (I + Ẽ(h))] = (W ∗ ⊗W ∗)E[(I + E(h))⊗ (I + E(h))](V ⊗ V ) .

Following Proposition 4.3 in [26] we have that E[(I + E(h)) ⊗ (I + E(h))] is a stochastic matrix and that the

graph associated contains a directed spanning tree. Moreover it can be seen that Assumption 1 implies that diagonal

elements of this matrix are non-zero. We can conclude also this matrix is primitive, which implies that it has one

eigenvalue 1 with algebraic multiplicity one and the remaining which are strictly inside the unit circle. Similarly

to the previous case, the eigenvalues of (W ∗ ⊗W ∗)E[(I + E(h)) ⊗ (I + E(h))](V ⊗ V ) are a subset of those

of E[(I + E(h))⊗ (I + E(h))] and do not include the eigenvalue 1, so we can conclude that (W ∗ ⊗W ∗)E[(I +

E(h))⊗ (I + E(h))](V ⊗ V ) has eigenvalues strictly inside the unit circle.

Finally observe that, since [0 0 0 I]M0 = [0 0 0 I], we can conclude that the geometric multiplicity of the

eigenvalue 1 is (N − 1)2. which implies that this eigenvalue is semi–simple.
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In order to prove Theorem 1, we need to use of the following perturbation result, taken from [27, Lemma 7].

Theorem A.1. Let M(α) ∈ RN×N be a matrix dependent on the parameter α in a sufficiently smooth way so that

the first derivative Ṁ(α) exists at α = 03. Assume that λ is a semi–simple eigenvalue of M(0) having geometric

multiplicity m. Let r1, . . . , rm and l1, . . . , lm be right and left eigenvectors relative to the eigenvalue λ such that,

if

R =
[
r1 . . . rm

]
L =




l∗1
...

l∗m




then LR = Im, where Im is the m ×m identity. Then the derivatives of λ(α) w.r.t. α, at α = 0, exist, and they

are given by the eigenvalues of the matrix LM ′R where M ′ := Ṁ(α)|α=0.

This theorem allows us to study the eigenvalues of the matrix M(α) for small positive α, and infer its stability

properties. In can be found that the matrices L and R working for our purpose are the following

L =
[
0 0 0 Ẽ−1 ⊗ Ẽ−1

]
R =




∗
−µI ⊗ Ẽ
−µẼ ⊗ I
Ẽ ⊗ Ẽ



.

since it can be shown that

LM0 = L, M0R = R, LR = IN−1

Thus the columns of R and the rows of L are, respectively, the (N−1)2 right and left eigenvectors of M0 associated

with the (N − 1)2 eigenvalues in 1 of M0, which turn out to be semi-simple. We are now in the position to prove

our result.

Proof of Theorem 1: By assumption G is connected, thus the previously defined matrices exist and the

eigenvalues in 1 are semi–simple. Notice that

LṀ(α)|α=0R = LM1R = −f0µ
2(I ⊗ F̃ Ẽ−1 + F̃ Ẽ−1 ⊗ I)

Observe now that the eigenvalues of I ⊗ F̃ Ẽ−1 + F̃ Ẽ−1 ⊗ I coincides with the complex numbers which can be

obtained by summing two arbitrary pairs of eigenvalues of F̃ Ẽ−1. Observe moreover that F̃ Ẽ−1 = W ∗DV Since

by the hypothesis of the theorem we have that W ∗DV has eigenvalues with positive real part and since f0 > 0,

we can thus apply Theorem A.1 to conclude that the derivatives of all the eigenvalues in 1 of M(α) are complex

numbers with negative real part and so, using continuity arguments, we have that for α > 0 small enough M(α) is

stable. This immediately implies that there exists α′ such that if α ∈ (0, α′) then M(α) is a stable matrix, which

in turn implies Σ(h)
t→∞−→ 0.

3With the symbol Ṁ we mean the element-wise derivative of the matrix valued function M(α)
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We conclude the proof with the anaylsis in the first moment, i.e., we study the eigenvalues of M̄ . Notice that

by construction the eigenvalues of

M̃ =


W

∗ 0

0 W ∗D


 M̄


V 0

0 D−1V


 =


I + Ẽ + αf0µW

∗DV Ẽ µD

αf0W
∗DV Ẽ I




are the same as M̄ , except the eigenvalue in 1. Also notice that m̃(h + 1) = M̃m̃(h), where m̃(h) =


y(h)

z(h)


.

Similarly to what has been done for the second moment, notice that M̃ = M̃0+αM̃1. It is straightforward to see that

M̃0 has N − 1 simple eigenvalues in 1 and that the correspoding left eigenvectors are the rows of L =
[
0 I

]
and

the right eigenvectors are the columns of R =


−

1
µ Ẽ
−1

I


. We obtain LM̃1R = − f0µW ∗DV , so if the conditions

in the theorem are satisfied, all the eigenvalues of M̃ are stable for α small enough, and thus M̄ has all stable

eigenvalues except one eigenvalue in 1 with multiplicity 2.

Thi implies that there exist ᾱ such that if α ∈ (0, ᾱ) then the mean–square synchronization is achieved.

If we assume Ē = Ē∗ we can prove our second result.

Proof of Corollary 1: If Ē = Ē∗ is symmetric, then w = 1
N 1 and we can choose W = V . The criterion is

thus satisfied if W ∗DV = V ∗DV is positive definite, which is obvious since D is positive definite.

C. Proof of Proposition 2

First recall that, since we assume that the transmission times are the samples of a Poisson process of intensity

Nλ, we have µ = 1/λN and σ2 = 2/λ2N2. Thanks to the structure of the update matrices in the asymmetric

broadcast protocol, it is now easy to see that

E(i) = −q(I − 1e∗i )

from which we get the symmetric matrix Ē = −q(I − 1
N 11∗). Therefore, w = 1

N 1 and we can take W = V ,

V ∗V = IN−1 and V ∗1 = 0, obtaining Ẽ = V ∗ĒV = −qIN−1. Consequently, employing the Kronecker product

we can write M(α) = M ′(α)⊗ I(N−1)2 , where

M ′(α) =




(1− q)2 − 2αf0µq(1− q) + α2f2
0 2µ2q2 µ(1− q)− αf02µ2q µ(1− q)− αf02µ2q 2µ2

α2f2
0µq

2 − αf0q(1− q) 1− q − αf0µq −αf0µq µ

α2f2
0µq

2 − αf0q(1− q) −αf0µq 1− q − αf0µq µ

α2f2
0 q

2 −αf0q −αf0q 1




Notice that, if we let β := αf0µq, then



µ−2 0 0 0

0 µ−1 0 0

0 −µ−1 µ−1 0

0 0 0 1



M ′(α)




µ2 0 0 0

0 µ 0 0

0 µ µ 0

0 0 0 1




= M ′′(α)
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where

M ′′(α) =




(1− q)2 − 2β(1− q) + 2β2 2(1− q − 2β) 1− q − 2β 2

β2 − 2β(1− q) 1− q − 2β −β 1

0 0 1− q 0

β2 −2β −β 1




Since 0 < q < 1, it is manifest that studying the stability of M(α) is equivalent to studying the stability of

M̃(α) =




(1− q)2 − 2β(1− q) + 2β2 2(1− q − 2β) 2

β2 − 2β(1− q) 1− q − 2β 1

β2 −2β 1




It is a matter of tedious but straightforward computation showing that the characteristic polynomial of M̃(α) is

φ(z) = z3 + z2(−(1− q)2− 2 + q+ 2β(2− q−β)) + z((1− q)3 + (1− q)2 + 1− q− 2β(1− q)(2− q))− (1− q)3

By applying the bilinear transformation z = 1+s
1−s we obtain the polynomial

ψ(s) = Q3s
3 +Q2s

2 +Q1s+Q0

Q3 = 2(1− q)3 + 2(1− q)2 + 4− 2q − 2β((2− q)2 − β)

Q2 = −4(1− q)3 + 4− 2β(2q − q2 − β)

Q1 = 2(1− q)3 − 2(1− q)2 + 2q − 2β(−(2− q)2 + β)

Q0 = −2β(−1 + (1− q)2 + β)

By the Routh-Hurwitz criterion, for stability it is enough that all the coefficients of this polynomial are positive

and that Q1Q2 −Q3Q0 > 0. One can prove that

• The terms Q3 and Q2 are always positive;

• The term Q1 is positive for β ∈ (0, (2− q)2);

• The term Q0 is positive for β ∈ (0, q(2− q));

• The term Q1Q2 −Q3Q0 is positive when β > 0.

We can argue that we have stability if β ∈ (0, q(2− q)), which is equivalent to αf0 ∈ (0, λN(2− q)) and in this

way we have the thesis.
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D. Proof of Proposition 3

From (10) we have that the evolution of the covariance matrix Σ(h) is given by the following recursive equations

Σ11(h+ 1) = E {(I + (1 + αf0δup(h))E(h))Σ11(h)(I + (1 + αf0δup(h))E(h)∗)

+δup(h)Σ21(h)(I + (1 + αf0δup(h))E(h)∗)

+(I + (1 + αf0δup(h))E(h))Σ12(h)δup(h) + δ2
up(h)Σ22(h)

}

= Σ11(h) + (1 + 2αf0µ+ α2f2
0σ

2)L(Σ11(h)) + (1 + αf0µ)ĒΣ11(h) + (1 + αf0µ)Σ11(h)Ē∗

+ µΣ21(h) + (µ+ αf0σ
2)Σ21(h)Ē∗ + µΣ12(h) + (µ+ αf0σ

2)ĒΣ12(h) + σ2Σ22(h),

Σ12(h+ 1) = E {(I + (1 + αf0δup(h))E(h))Σ11(h)αE(h)∗ + (I + (1 + αf0δup(h))E(h))Σ12(h)

+δup(h))Σ21(h)αf0E(h)∗ + δup(h))Σ22(h)}

= αf0Σ11(h)Ē∗ + αf0(1 + αf0µ)L(Σ11(h)) + Σ12(h)

+ (1 + αf0µ)ĒΣ12(h) + αf0µΣ21(h)Ē∗ + µΣ22(h),

Σ22(h+ 1) = α2f2
0L(Σ11(h)) + αf0ĒΣ12(h) + αf0Σ21Ē

∗ + Σ22(h)

where, for ∆ ∈ RN×N ,

L(∆) =
q2

N2

∑

ij

(ei − ej)(ei − ej)∗∆(ei − ej)(ei − ej)∗,

and

Ē = − q

N2

∑

ij

(ei − ej)(ei − ej)∗ = − q

N2

∑

ij

(2NI − 211∗) = −2
q

N
Ω

Observe that

L(I) =
q2

N2

∑

ij

(ei − ej)(ei − ej)∗(ei − ej)(ei − ej)∗

= 2
q2

N2

∑

ij

(ei − ej)(ei − ej)∗

= 2
q2

N2
(2NI − 211∗) =

4q2

N
Ω

and

L(11∗) =
q2

N2

∑

ij

(ei − ej)(ei − ej)∗11∗(ei − ej)(ei − ej)∗ = 0.

and, in turn, that

L(Ω) = 4
q2

N
Ω.

From the above observations and from Assumption 4 it follows that Σij(h) = γij(h)Ω for all h ≥ 1, where γij(h),

i, j = 1, 2, are suitable nonnegative real numbers. The dynamics of γij , i, j = 1, 2, can be got from the recursive
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equations of Σij , i, j = 1, 2, and, specifically,

γ11(h+ 1) =

(
1 + (1 + 2αf0µ+ α2f2

0σ
2)

4q2

N
− 2(1 + αf0µ)

2q

N

)
γ11(h)

+

(
2µ− 2(µ+ αf0σ

2)
2q

N

)
γ12(h) + σ2γ22(h)

γ12(h+ 1) =

(
αf0

(
−2q

N

)
+ αf0(1 + αf0µ)

(
4q2

N

))
γ11(h) +

(
1− (1 + 2αf0µ)

2q

N

)
γ12(h) + µγ22(h)

γ22(h+ 1) = α2f2
0

4q2

N
γ11(h) + 2αf0

(
−2q

N

)
γ12(h) + γ22(h)

Since σ2 = 2µ2, it follows that we want to study the stability of the matrix

M(α) =




1− 4q
N (1 + αf0µ) + 4q2

N (1 + 2αf0µ+ 2α2f2
0µ

2) 2µ− 4q
N (µ+ 2αf0µ

2) 2µ2

− 2q
N αf0 + 4q2

N αf0(1 + αf0µ) 1− 2q
N (1 + 2αf0µ) µ

4q2

N α2f2
0 − 4q

N αf0 1




or equivalently of the matrix

M̄(α) =




µ−2 0 0

0 µ−1 0

0 0 1


 M(α)




µ2 0 0

0 µ 0

0 0 1




=




1− 4q
N (1 + αf0µ) + 4q2

N (1 + 2αf0µ+ 2α2f2
0µ

2) 2− 4q
N (1 + 2αf0µ) 2

− 2q
N αf0µ+ 4q2

N αf0µ(1 + αf0µ) 1− 2q
N (1 + 2αf0µ) 1

4q2

N α2f2
0µ

2 − 4q
N αf0µ 1




Now let q = 1/2 an recall that µ = 1/(Nλ). Then, through straightforward computations it is possible show that

the characteristic polynomial of M̄(α) is

Φ(z) =

N3z3 +

(
2αf0λ N −

(
αf0
λ

)2

− 3N3 + 2N2

)
z2 +

(
2αf0λ − 2αf0λ N + 3N3 − 4N2 +N

)
z −N3 + 2N2 −N

N3

By applying the bilinear transformation z = 1+s
1−s we obtain the polynomial

Ψ(s) =
Q3s

3 +Q2s
2 +Q1s+Q0

N3

Q3 = 8N3 − 8N2 − 4N
αf0

λ
+ 2N + 2

(
αf0

λ

)2

+ 2
αf0

λ

Q2 = 8N2 − 4N + 2

(
αf0

λ

)2

− 2
αf0

λ

Q1 = 4N
αf0

λ
+ 2N − 2

(
αf0

λ

)2

− αf0

λ

Q0 = −2

(
αf0

λ

)2

+ 2
αf0

λ

By the Routh-Hurwitz criterion, for stability it is enough that Q3 > 0, Q2 > 0, Q0 > 0 and Q1Q2 −Q3Q0 > 0.

One can prove that

• The term Q0 is positive if 0 < αf0
λ < 1;
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• The term Q3 and Q2 are positive if 0 < αf0
λ < 1 and N ≥ 2;

• The term Q1Q2 −Q3Q0 is positive if αf0
λ > 0.

Hence it follows that for N ≥ 2, the mean-square stability is guaranteed if α < λ
f0

.

E. Proof of Proposition 4

Assume that the root of the tree graph is the node 1. Since node 1 receives no information from the other nodes,

we can assume that its time estimate evolves as t̂1 (t) = f1
f0
t and its oscillator frequency correction as k1(t) = 1

f0
.

Consider nodes i and j, where node j is the parent of node i. Assume that node i receives information from node

j at the time instants Tup(h), h = 0, 1, 2, . . .. Assume moreover that node j reaches mean-square synchronization

with node 1, namely, we can write that

t̂j (Tup(h)) = t̂1 (Tup(h)) + ηj (Tup(h)) ,

where E
[
η2
j (Tup(h))

]
goes to 0 as h→∞. According to RANDSYNC-TREE algorithm, we can write that




t̂i (Tup(h+ 1)) = t̂j (Tup(h)) + fiδup(h)ki(Tup(h+ 1))

ki(Tup(h+ 1)) = ki(Tup(h)) + α
(
t̂j (Tup(h))− t̂i (Tup(h))

)

where δup(h) := Tup(h+ 1)− Tup(h). The second equation can be rewritten as

ki(Tup(h+ 1)) = ki(Tup(h)) + α
(
t̂1 (Tup(h)) + ηj (Tup(h))− t̂i (Tup(h))

)
(17)

Let

zi (t) := fi ki(t)− f1 k1(t) = fi ki(t) −
f1

f0
.

From equation (17) it follows that

zi(Tup(h+ 1)) = fiki(Tup(h+ 1))− f1

f0

= fiki(Tup(h))− f1

f0
+ αfi

(
t̂1 (Tup(h)) + ηj (Tup(h))− t̂i (Tup(h))

)
.

(18)

Consider t̂1 (Tup(h))− t̂i (Tup(h)). We have that

t̂1 (Tup(h))− t̂i (Tup(h)) = t̂1 (Tup(h− 1))− t̂i
(
Tup(h− 1)+

)
+ δup(h− 1)

(
f1

f0
− fiki (Tup(h))

)

= t̂1 (Tup(h− 1))− t̂j (Tup(h− 1))− δup(h− 1)zi (Tup(h))

= −ηj (Tup(h− 1))− δup(h− 1)zi (Tup(h))

Plugging the last expression into (18) we get

zi(Tup(h+ 1)) = (1− αfiδup(h− 1)) zi(Tup(h)) + αfi (ηj (Tup(h))− ηj (Tup(h− 1))) (19)
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Let Pi(h)2 := E
[
z2
i (Tup(h))

]
and Wj(h)2 := E

[
(ηj (Tup(h))− ηj (Tup(h− 1)))

2
]
. Then

Pi(h+ 1)2 =

(
1− 2

αfi
λ

+ 2
α2f2

i

λ2

)
Pi(h)2 + α2f2

i E
[
(ηj (Tup(h))− ηj (Tup(h− 1)))

2
]

+

+ 2

(
αfi −

α2f2
i

λ

)
E [zi(Tup(h)) (ηj (Tup(h))− ηj (Tup(h− 1)))]

≤
(

1− 2
αfi
λ

+ 2
α2f2

i

λ2

)
Pi(h)2 + α2f2

i E
[
(ηj (Tup(h))− ηj (Tup(h− 1)))

2
]

+

+ 2

(
αfi −

α2f2
i

λ

)√
E [z2

i (Tup(h))]

√
E
[
(ηj (Tup(h))− ηj (Tup(h− 1)))

2
]

=

[(
1− αfi

λ

)
Pi(h) + αfiWj(h)

]2

+

(
αfi
λ

)2

Pi(h)2

=

∣∣∣∣∣∣

∣∣∣∣∣∣


 1− αfi/λ

αfi/λ


Pi(h) +


 αfiWj(h)

0



∣∣∣∣∣∣

∣∣∣∣∣∣

2

≤



∣∣∣∣∣∣

∣∣∣∣∣∣


 1− αfi/λ

αfi/λ


Pi(h)

∣∣∣∣∣∣

∣∣∣∣∣∣
+

∣∣∣∣∣∣

∣∣∣∣∣∣


 αfiWj(h)

0



∣∣∣∣∣∣

∣∣∣∣∣∣




2

where we used the Cauchy-Schwarz inequality and the triangular inequality. We can argue that

Pi(h+ 1) ≤

∣∣∣∣∣∣

∣∣∣∣∣∣


 1− αfi/λ

αfi/λ


Pi(h)

∣∣∣∣∣∣

∣∣∣∣∣∣
+

∣∣∣∣∣∣

∣∣∣∣∣∣


 αfiWj(h)

0



∣∣∣∣∣∣

∣∣∣∣∣∣
=

√
1− 2

αfi
λ

+ 2
α2f2

i

λ2
Pi(h) + αfiWj(h)

and consequently, since Wj(h) converges to zero, we have that, Pi(h) converges to zero if |1−2αfiλ + 2
α2f2

i

λ2 | < 1,

namely, if 0 < α < λ
fi

.

Finally, observe that

t̂i (Tup(h+ 1))− t̂1 (Tup(h+ 1)) = t̂j (Tup(h))− t̂1 (Tup(h)) + δup(h)

[
fiki (Tup(h+ 1))− f1

f0

]

= ηj (Tup(h)) + δup(h)zi (Tup(h+ 1)) .

Since both E
[
η2
j (Tup(h))

]
and E

[
z2
i (Tup(h+ 1))

]
converge to zero, we can conclude that the node i reaches

mean-square synchronization with node 1.
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