
Advanced Real-Time Systems

Enrico Bini

November 11, 2012

1 Intro to Sched Prob

Basic elements of a scheduling problem:

• a set N of tasks (aka demands, works, jobs) requiring work to be made.
Since they are finite, we represent them by N = {1, 2, . . . , n};

• a set R of resources (aka processors, machines, workers, etc.) capable to
perform some work (one/many machine, heterogeneous multicore, differ-
ent machines in manufacturing, etc.). Since they are finite we represent
them by R = {1, 2, . . . ,m};

• a time set T , over which the scheduling is performed (typically N or
[0,∞));

• a scheduling algorithm A which produces a schedule S for given R and N .

Characteristics of tasks:

• amount of work,

• recurrent/non-recurrent, does a task repeat over time? How often?

• on-line/off-line, do we know the parameters in advance?

• precedence constraints,

• deadlines, “the work must be completed by this instant”,

• affinity, not all resources are the same,

• sequential (only one resource at time), parallel (more than one resource
at time), parallelizable (one or more resources at time).

Characteristics of a resource:

• type, (coffee machine 6= a CPU)

• execution rate rk (speed), which may be time-varying or demand-varying;

1



• operating modes (variable speed over time, etc.)

A schedule is a function

S : R× T → N ∪ {0}

If m = 1 then just S : T → N ∪ {0}.

• If S(k, t) = i then the resource k is assigned to the i-task at time t.

• If S(k, t) = 0 then the resource k is not assigned at time t (we say that
the k-th resource is idle at t).

• This definition of schedule implies that at every instant t each resource is
assigned to at most one task.

• Conversely, at every instant each task may be assigned any number of
resources in R.

The inverse image of i under S, si ⊆ R× T , that is

si = S−1(i) = {(k, t) ∈ R× T : S(k, t) = i}

represents the resources allocated to the i-th task.
Goal of scheduling algorithm A: find a schedule S such that:

• the constraints are met (in this case constraints have to be specified): all
task deadlines are met,

• some target function is minimized/maximized (minimum makespan/delay,
best “performance”: requires to know how the timing affect the “perfor-
mance”)

Characteristics of scheduling algorithms:

• (non-)work-conserving: no idle resource if pending tasks exist;

• (non-)preemptive, I can interrupt a task while it executes;

• time-complexity: how long does it take to decide the resource assignment?

Examples of scheduling algorithms:

• First In First Out (FIFO), schedule tasks in order of arrivals;

• Round Robin (RR), divide the time in slices and assign slices in round;

• Shortest Job First (SJF) and its preemptive version Shortest Remaining
Time First (SRTF);

• Earliest Deadline First (EDF), assigns priority according to the deadlines
d;

2



• Least Laxity First (LLF), aka Least Slack Time (LST), at t assigns priority
according to the smallest “laxity” (d− t)− c′

• Fixed Priorities (FP), tasks are prioritized.

Definition 1 A task set N is feasible is it exists a schedule which satisfies the
task constraint.

Definition 2 A task set N is schedulable by the scheduling algorithm A, if A
can produce a schedule S which does not violate any constraint of N .

Obviously: schedulability by any algorithm implies feasibility.

1.1 Real-Time Scheduling

Many books exist for surveys of non-real-time scheduling [26, 47]. From now on
we focus on RT scheduling.

• Tasks have a an execution requirement Ci;

• Tasks are recurrent and activated sporadically: with a minimum interar-
rival (or period) Ti; Each activation of a task is called job (job 6= task);

• Tasks have a relative deadline Di, relative (if Di = Ti then implicit dead-
line, if Di ≤ Ti then constrained deadline, if Di unrelated to Ti then
arbitrary deadline);

Also the quantity Ui = Ci/Ti is called task utilization and represents the
fraction of time needed by task i.

More elaborated task model do exist. Below some references.

• Models for the execution time: Stigge et al. proposed the Di-Graph RT
Task Model [58], which is probably the richest task model with a tractable
analysis. In the paper, which contains also a comparison with other task
models such as the multiframe task model [45], the recurring RT task
model [9], and the non-cyclic generalized multiframe [59], the EDF analysis
is described. In reward-based scheduling [7] the longer a task executes the
higher system utility is achieved. Probabilistic execution times were also
considered [32] even in the case of dependence among the distributions [13].

• Models for the activation pattern: the rate-based task model specifies
the number of task activations in an interval [37], in the event stream
model the number of task activations are lower and upper bounded by
functions [51], Velasco et al. [60] analyzed the activation pattern of control
tasks activated by events.

• Models for the deadline: a deadline model in which only m deadlines have
to be guaranteed among any k consecutive ones [49, 48].

3



Resources: single processor, multiprocessor (with m processors/cores).
A necessary condition for feasibility is:

n∑

i=

Ui ≤ m (1)

From now on we focus on single processor only (m = 1).
Below we report a list of the most relevant works on multiprocessor RT

scheduling.

• Baruah et al. [11] introduced the notion of fairness and proposed the
scheduling algorithm P-fair which can always produce a feasible schedule,
if (1) is true. Later, Anderson and Srinivasan [2] extended to sporadic
tasks. P-fair requires to divide the time in quanta, hence it may have a
high overhead is the cost of preemptions is not negligible.

• Other algorithms which can feasibly schedule a task set, provided that (1)
is true, with fewer preemption than P-fair, are Edf with task splitting and
K processors in a Group (EKG) [5], Local Largest Remaining Execution
time First (LLREF) [27], and Reduction to UNiprocessor (RUN) [50].

• A simpler scheduling algorithm is certainly Global EDF (EDF). However,
GEDF cannot schedule all tasks satisfying (1). Hence some schedulability
tests are needed [35, 8, 14, 23]. Some variations of GEDF can significantly
improve the capacity to schedule task sets. Examples are: EDF-US [57]
and Earliest Deadline Zero Laxity (EDZL) [29]. If a task set with implicit
deadlines with

∑

i Ui = m is scheduled by GEDF, clearly some deadline
will be missed. However it is possible to estimate the amount of deadline
violation [31, 33], which often may be acceptable.

• Examples of global fixed priority scheduling over multiprocessor are RM-
US [4] and SM-US [3].

2 Fixed Priority (FP): basics

• Tasks are sorted in decreasing priority order

– τ1 is the highest priority one,

– τn is the lowest priority one.

Theorem 1 (Liu, Layland, 1973 [44]) If Di = Ti then Rate Monotonic (RM)
is optimal: if some priority assignment can schedule the task set, then RM can
schedule the task set.

Theorem 2 (Leung, Whitehead, 1982 [41]) If Di ≤ Ti then Deadline Mono-
tonic (DM) is optimal.

4



Liu and Layland [44] also proved the most popular utilization upper bound
(checked on 24/10/2012: cited 7914 in Google Scholar).

Theorem 3 If Di = Ti
n∑

i=1

Ui ≤ n(
n
√
2− 1)

then N is schedulable by RM.

• The RHS is called utilization upper bound.

• As n→∞ the bound tends to log 2 ≈ 0.69315

• Is the LL bound tight? Is there any non-schedulable task set with
∑

i Ui >
ULL? Draw the example.

Theorem 4 (Hyperbolic Bound [19]) If Di = Ti and

n∏

i=1

(1 + Ui) ≤ 2

then N is schedulable by RM.

• Visualization of the bound and interpretation of HB in the utilization
space.

• Still some space for uncertainty. What happens in between?

3 FP exact analysis: response time

Definition 3 The response time Ri of task τi is the longest time that can elapse
from the activation of any job to its completion.

Ri = max
j≥1
{Ri,j}

with Ri,j response time of the j-th job of τi.

The idea: to compute the response time and check whether or not Ri ≤ Di

• if so, then all jobs of τ1 will meet their deadline (schedulable by FP).

• if not, then some job will miss its deadline (not schedulable by FP).

Definition 4 We define the level-i interference Ii(t) as the maximum amount
of work which can be requested by tasks with priority higher than i in an interval
of length t.

5



For our simple task model, it is

Ii(t) =

i−1∑

j=1

⌈
t

Tj

⌉

Cj

and it corresponds to the scenario with all tasks activated together at 0 at the
highest possible rate.

• Example of interference with different activation patterns (two alternating
periods)

• The response time of the first job of τi is found [38, 6] as the smallest fixed
point of the following equation

{

R
(0)
i,1 = Ci

R
(k+1)
i,1 = Ci + Ii(R

(k)
i,1 )

(2)

• It converges iff
∑i−1

j=1 Uj < 1

• Explain its rationale.

• if Ri,1 ≤ Ti then Ri = Ri,1 is the longest response time among all jobs
belonging to τi.

• otherwise (Ri,1 > Ti) it is not guaranteed that the maximum job response
time occurs at the first job! In such a case we have to compute the response
time Ri,k of all subsequent jobs [39].

• We care only if Di > Ti (arbitrary deadline)

• We can compute the absolute job response time ri,j as follows







ri,1 = Ri,1

r
(0)
i,j = ri,j−1 + Ci

r
(k+1)
i,j = j Ci + Ii(r

(k)
i,j )

Ri,j = ri,j − (j − 1)Ti

(3)

until ri,j ≤ j Ti.

• The interval [0, ri,j∗ ], with j∗ equal to the index of job where it first is
ri,j ≤ j Ti, is called level-i busy period.

• If
∑i

j=1 Uj < 1, j∗ is finite

• If
∑i

j=1 Uj > 1, limj Ri,j =∞ (level-i overload)

• If
∑i

j=1 Uj = 1 and {T1, . . . , Ti} rational, j∗ finite because the schedule
will repeat after the least common multiple of the periods

6



• If
∑i

j=1 Uj = 1 and {T1, . . . , Ti} irrational, j∗ infinite, but Ri can still be
defined as Ri = supj Ri,j

• In human cases Ri = maxj≤j∗ Ri,j and we can check Ri ≤ Di.

• Iterating the response time equation Eq. (2) may be too time consuming,
especially if it has to be executed on-line.

• One may want to forget necessity by computing a response time upper
bound.

• Suppose we have a linear upper bound of the interference Ii(t) ≤ Ii(t) =
αit+ βi. Then from (2)

Ri ≤ Ci + Ii(Ri) = Ci + αiRi + βi

Ri − αiRi ≤ Ci + βi

Ri ≤
Ci + βi

1− αi

= Ri

and have the following as a just sufficient (faster) test

∀i, Ri ≤ Di

Finding suitable αi and βi. By upper bounding the ⌈x⌉ with x + 1 in Ii(t)
we quickly find

αi =

i−1∑

j=1

Uj βi =

i−1∑

j=1

Cj

however βi can be made [22] a bit tighter by choosing

βi =

i−1∑

j=1

Cj(1− Uj)

this bound is still valid in the arbitrary deadline case.

4 FP: scheduling points

• The drawback of the response-time test is its “black-box” nature: all task
parameters are specified and we get a yes/no answer.

• In reality, it is often more desirable to have a margin on the system pa-
rameters that guarantee schedulability: sensitivity analysis.

An alternate exact test is the following one.

Theorem 5 (Lehoczky et al. [40]) A constrained deadline (with Di ≤ Ti)
task set is schedulable by FP if and only if

∀i ∈ N , ∃t ∈ [0, Di], Ci + Ii(t) ≤ t

7



Interesting, but not so practical (how do we check if it exists a point in a real
interval?)

If we remember the expression of Ii(t) we realize that the previous condition
is equivalent to the following one, which can be better managed

∀i ∈ N , ∃t ∈ Si, Ci +

i−1∑

j=1

⌈
t

Tj

⌉

Cj ≤ t

with
Si = {kTj : k ∈ N, 0 < kTj < Di, j < i} ∪ {Di}

This is the set of scheduling points.

However the points in Si can still be many and period dependent, especially
when the periods of the higher priority tasks are significantly smaller than Ti.

• Can we remove points from Si to reduce the complexity?

• By removing arbitrarily points we may lose necessity.

Theorem 6 (Hyperplanes Exact Test [17]) A constrained deadline (with
Di ≤ Ti) task set is schedulable by FP if and only if

∀i ∈ N , ∃t ∈ Pi−1(Di), Ci +
i−1∑

j=1

⌈
t

Tj

⌉

Cj ≤ t (4)

with Pj(t) being a set recursively defined as

{
P0(t) = {t}
Pj(t) = Pj−1

(⌊
t
Tj

⌋

Tj

)

∪ Pj−1(t).
(5)

Show how Pi−1(Di) is computed, for two tasks and U -plane.

∀i ∈ N , ∃t ∈ Pi−1(Di), Ci +

i−1∑

j=1

⌈
t

Tj

⌉

Cj ≤ t

If T1 = 3, T2 = 8, T3 = 20, and Di = Ti the schedulable Ci are

5 FP: Sensitivity Analysis

• If the processor runs at speed r, then all computation times become Ci/r

• From the scheduling point condition it is not difficult [21] to find the
smallest speed that guarantee FP-schedulability

8



C 2

C 1

C 1 C 3

C 1

C 2

C 3

8
20643

1

1

0123

2

3

4

5

8

∀i ∈ N , ∃t ∈ Pi−1(Di),
Ci

r
+

i−1∑

j=1

⌈
t

Tj

⌉
Cj

r
≤ t

∀i ∈ N , ∃t ∈ Pi−1(Di), r ≥
Ci +

∑i−1
j=1

⌈
t
Tj

⌉

Cj

t

r ≥ max
i∈N

min
t∈Pi−1(Di)

Ci +
∑i−1

j=1

⌈
t
Tj

⌉

Cj

t

• (there is no direct way to find it using the response time)

• Example of calculation for two tasks in the plot.

What is the maximum schedulable Ck?

• all tasks τi with i < k are unaffected by Ck

• to ensure the schedulability of τk it must be

Ck ≤ max
t∈Pk−1(Dk)

(t−
k−1∑

j=1

⌈
t

Tj

⌉

Cj)

The RHS is the amount of level-(k − 1) idle time in [0, Dk]

• to ensure the schedulability of all tasks with lower priority i > k it must
be

Ck ≤ min
i=k+1,...,n

max
t∈Pi−1(Di)

t− (Ci +
∑i−1

j=1
j 6=k

⌈
t
Tj

⌉

Cj)

⌈
t
Tk

⌉

• hence Cmax
k is the minimum of the two RHS

9



Since Rk is independent of the deadline Dk, the minimum schedulable dead-
line is just Dk = Rk.

• Task periods appear in the ceiling operator. Not trivial to extract them

• More sophisticated technique needed [21].

Let T
(i)
k denote the minimum period of τk such that τi is schedulable.

• i < k, meaningless

• then
Tmin
k = max

i≥k
T

(i)
k , (6)

• The schedulability of τk is not affected by Tk

– if constrained deadline (Dk ≤ Tk) then T
(k)
k = Dk;

– if implicit deadline (Dk = Tk) then T
(k)
k = Rk.

• Computing T
(i)
k with i > k requires some efforts.

Definition 5 Given the subset of tasks M ⊆ N , we define level-M idle time
in [0, D], denoted by Y (M, D), the amount of time in [0, D] in which no task
in M is executing, under the worst-case scenario for activations.

Examples:

• Y (∅, D) = D

• Y ({τ1}, T1) = T1 − C1

To evaluate T
(i)
k we need Y ({1, . . . , i} \ {k}, Di), because it is the

time that can be consumed by τk, keeping τi schedulable.

• How do we compute Y (M, D)?

Y (M, D) = max
t∈P|M|(D)






t−

∑

j∈M

⌈
t

Tj

⌉

Cj







• It is scaring! Let’s check.

• Then the maximum number n
(i)
k of τk (associated to the minimum period

T
(i)
k ) jobs which can preserve the schedulability of τi then is

n
(i)
k =

⌊
Y ({1, . . . , i} \ {k}, Di)

Ck

⌋

10



• Given the maximum number of jobs n
(i)
k , what is the minimum period T

(i)
k

which preserves the schedulability of τi?

• T
(i)
k is such that τk has n

(i)
k jobs interfering on τi, and by increasing T

(i)
k

by any small amount the number of interfering jobs would increase. Hence

T
(i)
k =

Ri

n
(i)
k

with Ri response time of τi with n
(i)
k interfering jobs by τk

Ri = Ci + n
(i)
k Ck +

i−1∑

j=1
j 6=k

⌈
Ri

Tj

⌉

Cj

Summarizing

1. For all i > k we compute

n
(i)
k =

⌊
Y ({1, . . . , i} \ {k}, Di)

Ck

⌋

Ri = Ci + n
(i)
k Ck +

i−1∑

j=1
j 6=k

⌈
Ri

Tj

⌉

Cj

T
(i)
k =

Ri

n
(i)
k

Tmin
k = max{Dk, T

(k+1)
k , T

(k+2)
k , . . . , T

(n)
k } if constr dl

Tmin
k = max{Rk, T

(k+1)
k , T

(k+2)
k , . . . , T

(n)
k } if impl dl

If some pessimism is acceptable, we can gain in simplicity by using sufficient
tests for the sensitivity

• Using LL bound ULL = n( n
√
2− 1):

– Min speed: rmin =
∑

i
Ui

ULL

– Max Ck: C
max
k = Tk(ULL −

∑

j 6=k Uj)

– Min Tk: T
min
k = Ck

ULL−
∑

j 6=k Uj

6 FP: optimal design

• Schedulability tests says yes/no

• Sensitivity analysis returns the margins of variation

11



• What if some task parameters are left unspecified and need to be set by
the designer?

Optimal design of RT systems

Given:

• a task set N with a set X of parameters that are not specified

• a performance function of J : X → R, which returns the performance J(x)
of assigning the unspecified parameters equal to x

Solve the following problem

max
x∈X

J(x)

s.t. N (x) is schedulable by FP

It requires to understand the geometry of the feasible region X .

Definition 6 (Def. 1 in [10]) A schedulability test for a scheduling policy is
sustainable if any system deemed schedulable by the schedulability test remains
schedulable when the parameters of one or more individual job[s] are changed in
any, some, or all of the following ways:

1. decreased execution requirements;

2. later arrival times;

3. smaller jitter; and

4. larger relative deadlines.

Theorem 7 (in [10]) Exact tests of FP and EDF are sustainable.

7 FP: optimal execution time

• X = {C1, . . . , Cn}.

• Periods Ti and deadlines Di are given

• Execution times have to be found so that the performance J(C1, . . . , Cn)
(function of the computation times) is maximized

An example of cost function can be

max
C1,...,Cn

min
i

Ji(Ci)

s.t N is FP-schedulable

with Ji(Ci) task dependent performance.

12



• Typically Ji(Ci) is non-decreasing.

Solution is such that

• ∀i = 1, . . . , n− 1 Ji(Ci) = Ji+1(Ci+1)

• the task set is barely FP-schedulable: by increasing some computation
time by any small amount, we make it non-schedulable.

• If exact solution is too complicated, one can always use sufficient (simpler)
tests

An example with LL test

max
C1,...,Cn

min
i

Ji(Ci)

s.t
∑

i

Ci

Ti

≤ ULL

with Ji(Ci) task dependent performance Solution is such that

• ∀i = 1, . . . , n− 1 Ji(Ci) = Ji+1(Ci+1)

• ∑

i
Ci

Ti
= ULL

Chung et al. [28] proposed the imprecise computation task model. In this
task model, the longer a task can execute the higher accuracy can be achieved.
Aydin et al [7] investigated the execution of an optional amount of computation.
In their settings, the longer a job can execute, the higher reward is achieved.
Hou and Kumar [36] considered the problem of maximizing the reward of tasks,
which can execute chunks of code. To each chunk it is associated a reward. The
problem is formulated as an LP problem with an unimodular matrix.

8 FP: optimal period

• X = {T1, . . . , Tn}

• Typical problem in control systems: choosing the sampling periods of all
controlers

• sometime it is convenient to view them as activation frequencies fi =
1
Ti
,

so that X = {f1, . . . , fn}

• Execution times Ci are specified

• Deadlines are specified either as absolute value Di or normalized to the
periods Di

Ti
.

13



The problem then is

max
T1,...,Tn

J(T1, . . . , Tn)

s.t N is FP-schedulable

What is the geometry of the FP-schedulable periods?
Let us assume Di = Ti

• Starting from a schedulable configuration, we can reduce any period, then
another, . . . until we reach a point with

∑

i Ui = 1. Hence at this final
point no other period can be further reduced;

• the point that we reach changes depending on the order that we follow for
reducing the periods.

• FP is sustainable.

View in the space of activation frequencies fi = 1
Ti
. In the fi space the

constraint
∑

i Ui ≤ 1 is linear.
if n = 2 and C1 = 1, C2 = 2 we have

f1 ≥ f2

f2 ≥ f1
1
C2

1
C1

f1

f2

1
3

1
2

3
5

2
3

5
7

necessary cond

FPS region

If ∂J
∂fi
≥ 0 all “vertices” are local optima.

Why the HB region is not contained?

1. find a good starting point over a simple constraint (for example, by using
∑

i Ui ≤ 1)

2. using the “Min schedulable speed” find the intercept with the FP bound-
ary

• scaling the computation times by α is equivalent to scaling the task
periods by 1

α

3. since ∂J
∂fi
≥ 0, then by increasing task frequency we certainly increase the

performance J

14



No guarantee of optimality

1. Start from an initial FP-schedulable solution ffirst (such as the one found
previously) and set it as current solution f cur

2. Use a branch and bound algorithm to enumerate, and possibly prune, all
vertices f with better performance J(f) > J(ffirst)

3. if a better solution is found, then update f cur

4. when all vertices have been check f cur will be the optimum

How do we enumerate the vertices?

Theorem 8 (Proposition 2.1 in [53]) The task set N is schedulable by FP
if and only if:

∀i = 1, . . . , n ∃k(i) ∈ N
i−1

such that






Ci +

i−1∑

j=1

k
(i)
j Cj ≤ Ti

(k
(i)
ℓ − 1)Tℓ < Ci +

i−1∑

j=1

k
(i)
j Cj ≤ k

(i)
ℓ Tℓ ℓ = 1, . . . , i− 1

Proof sketch: it is equivalent to ∀i, ∃t ∈ [0, Ti] . . ., by setting t = Ci+
∑i−1

j=1 k
(i)
j Cj

and by setting k
(i)
j =

⌈
t
Tj

⌉

The task set N is schedulable by FPS if and only if :

∀i = 1, . . . , n ∃k(i) ∈ N
i−1

such that:







0 ≤ fi ≤
1

Ci +
∑i−1

j=1 k
(i)
j Cj

k
(i)
ℓ − 1

Ci +
∑i−1

j=1 n
(i)
j Cj

< fℓ ≤
k
(i)
ℓ

Ci +
∑i−1

j=1 k
(i)
j Cj

ℓ = 1, . . . , i− 1

which are the coordinates of the vertices.
With C1 = 1 and C2 = 2

15



f1 ≥ f2

f2 ≥ f1

k
(2)
1 = 1 k

(2)
1 = 2

k
(2)
1 =3

1
C2

1
C1

f1

f2

1
4

1
3

2
5

1
2

4
7

3
5

5
8

2
3

5
7

necessary cond

FPS region

• A branch and bound algorithm can be used to search for the optimal task
frequencies.

• More details can be found in [20].

Seto et al. [54] proposed to simply use a utilization based test

n∑

i=1

Ci

Ti

≤ Uub

to assign the periods.

• sub-optimal

• explicit solution can be found

9 Beyond the period assignment

Is the performance J function of the only task periods/frequencies?

• In control systems “periodic” means that both sampling and actuation
occur at the same instant;

• In reality when a “periodic” task is scheduled over a CPU, it has a delay
and a jitter in its execution, which depends on the parameters of the other
tasks, too.

Add a drawing
Ideally we should:

• identify how the task periods and priorities affect the schedule S;

16



• identify how the schedule affect the (control) performance;

• just perform the optimization.

• relatively recent research area

• some results do exist (will be included in the course notes)

• still space for new contributions

• How do task parameters affect the entire task schedule?

– pattern of job start times

– pattern of job response time

– distribution of job response time

– joint distribution of job response times of k consecutive jobs

• How does the task schedule affect performance?

– can controllers be improved by the exact knowledge of sampling and
actuation times?

– how robust are controllers against variations of the task schedule?

10 Earliest Deadline First: basics

• Task model is still the same τi = (Ci, Ti, Di);

• In FP, priorities are per task: all jobs of same task that have the same
priority;

• In EDF, priorities are per job: jobs are prioritized according to their
absolute deadline.

Theorem 9 (Liu and layland, 1973 [44]) If a task set is feasible, then it is
EDF-schedulable.

Theorem 10 (Liu and Layland, 1973 [44]) If Di = Ti (implicit deadline)
then a task set is EDF-schedulable if and only if:

n∑

i=1

Ui ≤ 1

• Any FP-schedulable task set is also EDF-schedulable task set.

17



11 EDF: demand bound function

If Di 6= Ti the schedulability condition becomes more complicated.

Theorem 11 (Lemma 3 in [12]) The task set N is EDF-schedulable if and

only if:

∀t ≥ 0

n∑

i=1

max

{

0,

⌊
t+ Ti −Di

Ti

⌋}

Ci ≤ t

The LHS is called demand bound function dbf(t) of the task set at t.

• dbf(t) is the maximum amount of work of jobs with both activation and
deadline in [0, t].

• no per-task condition: any task task may influence others

• max{0, ·} only needed for i with Di > Ti

• Obviously, checking ∀t > 0 is not very practical

• By observing the step shape of the dbf we can check only at the points
where the steps occur

Theorem 12 (Lemma 3 in [12]) The task set N is EDF-schedulable if and

only if
∑

i Ui ≤ 1 and:

∀t ∈ D
n∑

i=1

max

{

0,

⌊
t+ Ti −Di

Ti

⌋}

Ci ≤ t

with
D = {di,k : di,k = kTi +Di, i ∈ N , k ∈ N, di,k ≤ D∗}

and D∗ = lcm(T1, . . . , Tn) + maxi{Di}.

H = lcm(T1, . . . , Tn) is often called hyperperiod of the task set.
As suggested by Ripoll et al [52] D∗ can also be set equal to the longest busy

period.
An alternative approach, quite complex though, is to compute the response

time of each task as proposed by Spuri [56].

• If U < 1, then the for large t the condition is always true

• then D∗ can be computed [12] by upper bounding dbt(t) with a line and
we find

D∗ =
U

1− U
max

i
{Ti −Di}

• what happen to D∗ if maxi{Ti −Di} ≤ 0?

• the task set is obviously EDF-schedulable,

18



– maxi{Ti −Di} ≤ 0 ⇔ ∀i, Di ≥ Ti

– EDF is sustainable, hence if Di = Ti is sched then Di ≥ Ti also sched

– Since U < 1, the task set is sched

• All deadlines in [0, D∗] may be too many

• Zhang and Burns [62] proposed the Quick convergence Processor-demans
Analysis (QPA)

1: dmin ← min{Di}
2: t← max{di,k : di,k ≤ D∗} ⊲ initial assignment
3: while dbf(t) ≤ t ∧ dbf(t) > dmin do
4: if dbf(t) < t then
5: t← dbf(t)
6: else
7: t← max{di,k : di,k < t} ⊲ escape from fixed points
8: end if
9: end while

10: if dbf(t) ≤ dmin then task set EDF-schedulable
11: else task set not EDF-schedulable
12: end if

12 EDF: sufficient tests

• By replacing Ti with the more conservative value min{Ti, Di}, we find

n∑

i=1

Ci

min{Ti, Di}
≤ 1

the ratio Ci

min{Ti,Di}
is often called density of the task

Devi proposed the following sufficient test

• Assuming that tasks are sorted by non-decreasing relative deadline (Di ≤
D2 ≤ . . . ≤ Dn)

Theorem 13 (Theorem 1 in [30]) The task set N is EDF-schedulable if:

∀k = 1, . . . , n Dk

k∑

i=1

Ui +
k∑

i=1

Ti −min{Ti, Di}
Ti

Ci ≤ Dk

• Proved to strictly dominate the density test

• Albers et al. [1] proposed a Fully Polynomial Time Approximation Scheme.

19



• The i-th term in dbf(t) can be upper bounded by

max{0,
⌊
t−Di + Ti

Ti

⌋

}Ci ≤ dubi(k, t)

=

{

max{0,
⌊
t−Di+Ti

Ti

⌋

}Ci t ≤ di,k = (k − 1)Ti +Di

Ui(t+ Ti −Di) t > di,k

so that
k

k + 1

∑

i

dubi(k, t) ≤ dbf(t) ≤
∑

i

dubi(k, t)

• This enables a quite interesting result

Theorem 14 If U ≤ 1 and

∀t ∈ D(k) = {di,k ∈ R
+ : di,k = (k − 1)Ti +Di, 1 ≤ k ≤ k}

n∑

i=1

dubi(k, t) ≤ t

then the task set is schedulable.

Otherwise it is not schedulable over a CPU with speed k

k+1
.

• In this way only nk evaluation of the dbf are needed.

• We can trade accuracy vs. complexity. As k → ∞ it becomes necessary
and sufficient.

• FPTAS

Similar results can be found for FP [34].

13 EDF: sensitivity analysis

Similarly as in the FP case we can find [16] the minimum EDF-schedulable
speed as follows

rmin = max
t∈D

∑n

i=1 max
{

0,
⌊
t+Ti−Di

Ti

⌋}

Ci

t

However D∗ = H + maxi{Di}, because we are changing the speed and then
altering the linear upper bound that motivates the expression

D∗ =
U

1− U
max

i
{Ti −Di}

20



The maximum EDF-schedulable Cmax
k can be computed in a similar way as

in FP

Cmax
k = min

t∈D,t≥Dk

t−∑n
i=1
i6=k

max
{

0,
⌊
t+Ti−Di

Ti

⌋}

Ci

⌊
t+Tk−Dk

Tk

⌋

Here too, D∗ = H +maxi{Di}.

14 EDF: space of comp times

Theorem 15 (Lemma 3 in [12]) N is EDF-schedulable if and only if
∑

i Ui ≤
1 and:

∀t ∈ D
n∑

i=1

max

{

0,

⌊
t+ Ti −Di

Ti

⌋}

Ci ≤ t

with
D = {di,k : di,k = kTi +Di, i ∈ N , k ∈ N, di,k ≤ D∗}

and D∗ = lcm(T1, . . . , Tn) + maxi{Di}.

H = lcm(T1, . . . , Tn) is often called the hyperperiod.

• Since we are investigating the space of Ci, no smallerD∗ can be considered.

• For given Ti and Di, the space of EDF-schedulable Ci is convex!

Let us assume T1 = 4, D1 = 5 and T2 = 6, D2 = 5.

D = {5, 9, 11, 13, 17}

Hence equations are















4 6
8 6
8 12
12 12
16 18
1 1
−1 0
0 −1















[
U1

U2

]

≤















5
9
11
13
17
1
0
0















21



1

1

Hence only the equations









4 6
16 18
1 1
−1 0
0 −1









[
U1

U2

]

≤









5
17
1
0
0









are needed to be checked, corresponding to D = {5, 17}

• Finding a general method to reduce D without losing sufficiency would be
an interesting contribution.

• Being the exact region convex the optimal assignment of computation
times Ci does not present big difficulties.

15 EDF: space of deadlines, periods

• Example: n = 2, T1 = T2, U1 + U2 ≤ 1

• We can reduce D1 to C1, but then D2 = C1 + C2, or

• D2 = C2, but then D1 = C1 + C2

• convex comb of these two points are not EDF-sched

• Let us assume T1 = T2 = . . . = Tn, and
∑

i U1 ≤ 1.

22



• For any permutation p : N → N , a “vertex” has coordinates

Dp(i) =
i∑

j=1

Cp(j)

Being the periods and deadlines into the set D and into the ⌊·⌋, dbf condition
is unfit to show the space of feasible periods/deadline.

Theorem 16 (Theorem 1 in[18], Theorem 2 in [15]) The task set N is
EDF-schedulable if and only if:

∀k ∈ N
n \ {0} ∃i ∈ Ik

n∑

j=1

Cjkj ≤ (ki − 1)Ti +Di

where
Ik = {j : kj 6= 0}

is the set of non-zero indexes in k.

∀k ∈ N
n \ {0} ∃i : ki 6= 0

n∑

j=1

Cjkj ≤ (ki − 1)Ti +Di

can be seen as the problem of finding a cover to N
n \ {0} with halfspaces of

equations

(Ci − Ti)ki +
∑

j 6=i

Cjkj ≤ −Ti +Di

considering (k1, . . . , kn) as variables.

• Remember: ∃i : ki 6= 0, not just ∃i ∈ N
• If U = 1 linearly dependent.

If T1 = D1 = 4, C1 = 2, and T2 = D2 = 8, C2 = 3, then

−2k1 + 3k2 ≤ 0

2k1 − 5k2 ≤ 0

have to cover N2 \ {(0, 0)}

1

2

3

4

5

1 2 3 4 5 6 7 80
k1

k2
i = 1

i = 2

23



• If U > 1 cannot cover, ever.

• Deadline Di appears at the RHS of the i-th inequality only

• Changing Di means to translate boundary of the i-th halfspace

1

2

3

4

5

1 2 3 4 5 6 7 80
k1

k2

Dmin
1 = 2 (= C1)

1

2

3

4

5

1 2 3 4 5 6 7 80
k1

k2

D2 = 5

0

1

2

3

4

5

6

7

−1

1 2 3 4 5 6 7 8
D1

D2

• The i-th period has an effect only on the i-th equation

• however Ti appears in the coefficients and at the RHS

• changing Ti is a rotation of the i-th halfspace

• the points in common between two equations with T ′
i and T ′′

i are

24



(Ci − T ′
i )ki +

∑

j 6=i

Cjkj = −T ′
i +Di

(Ci − T ′′
i )ki +

∑

j 6=i

Cjkj = −T ′′
i +Di

ki = 1
∑

j 6=i

Cjkj = Di − Ci

• As T1 changes, the 1st boundary rotates around

k1 = 1, k2 =
D1 − C1

C2

• As T2 changes, the 2nd boundary rotates around

k1 =
D2 − C2

C1
, k2 = 1

• C1 = 2, D1 = 4, and C2 = 5, D2 = 8

• changing T1 rotates around (1, 0.4)

• changing T2 rotates around (1.5, 1)

1

2

3

4

5

1 2 3 4 5 6 7 80
k1

k2

• T1 = 27

• T2 = 27/5

1

2

3

4

5

1 2 3 4 5 6 7 80
k1

k2

25



• T1 = 8

• T2 = 20/3

1

2

3

4

5

1 2 3 4 5 6 7 80
k1

k2

• T1 = 6

• T2 = 15/2

By making some more restrictive hypothesis, we can derive the following
sufficient EDF-test

Theorem 17 (Chantem et al. [25]) A task set is EDF-schedulable if:

{

∀i, Di ≤ Ti +Dmin
∑n

i=1 UiDi ≥
∑n

i=1 Ci −Dmin (1−
∑n

i=1 Ui).

with Dmin = mini Di.

This condition has the advantage of being convex in the space of deadlines.
If C1 = 2, T1 = 4 and C2 = 4, T2 = 7, we have

D2

D1

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14 16 18

• X = {T1, D1, . . . , Tn, Dn}

• Typical problem in control systems:

26



– given the execution times {C1, . . . , Cn}
– choose the sampling periods and deadlines (=delays) of all controllers

– such that a control cost (LQG?) is minimized

min
T1,D1,...,Tn,Dn

J(T1, D1, . . . , Tn, Dn)

s.t N is EDF-schedulable

We could try [61] to find optimal Ti and then Di

1. Suppose C1 = C2 = 1

2. Suppose that the optimal Ti are T1 = 2.1, T2 = 1.91

3. How much can we reduce the deadlines?

• very little.

4. However by choosing non-optimal periods T1 = T2 = 2, we can actually
reduce one of the two deadlines by 1, possibly making the cost J smaller

• To best of my knowledge it is still unsolved

• (due to bizarre shape of the feasible region)

• solving this problem optimally would be a decent contribution

16 Hierarchical Scheduling: intro

• Applications often need to be isolated, otherwise a misbehaviour on one
(such as taking longer than expected) can cause misbehaviors on other
applications

• Example of high priority task executing for longer

• The execution of each application is controlled by a mechanism (aka server,
resource reservation), which prevents the application from running more
than planned

• Such a mechanism provides the abstraction of a virtual resource: a re-
source which is not always fully available

• How can we guarantee the timing constraints in presence of such a mech-
anism?

27



17 System model

• We model an application by a set of n tasks (Ci, Ti, Di)

– Ci computation time

– Ti period

– Di deadline

• All tasks are scheduled by some scheduling algorithm (FP, EDF, etc.)
over a the virtual resource. Such a scheduling alg. is often called local
scheduler (local to the virtual resource)

• How to we check schedulability over virtual resources?

• The model of a virtual resource must capture the “not-fully-available”
characteristic.

Definition 7 (Compare with [46, 42, 55, 43]) We define the supply bound
function sbf(t) of a virtual resource as the minimum amount of execution time
available in any interval of length t.

• Let us assume a virtual resource that provides execution time (to the
application) in

⋃

k∈Z

[4k, 4k + 1]

• What is its sbf(t)?

• Remember: “any interval of length t” not necessarily [0, t]

• Let us now assume that the virtual resource is implemented by a periodic
server with period (=deadline) P , time budget Q

• What is its sbf(t)

• Remember: scenario of minimum possible supply must be assumed

sbf(t)=







0 t ∈ [0, P −Q]

(k − 1)Q t ∈ (kP −Q, (k + 1)P − 2Q]

t− (k + 1)(P −Q) otherwise

with k =
⌈
t−(P−Q)

P

⌉

.

• This example explains why this is often called hierarchical scheduling since
it is about to schedule a task set within another task

• Let us assume a virtual resource that provides execution time (to the
application) in

[2, 3] ∪ [5, 7] ∪ [10, 12] with period 12

• Remember: the interval with the minimum supply can start at different
points for different t

28



18 Schedulability conditions in hierarchical schedul-
ing

Theorem 18 (FP-schedulability [42]) A constrained deadline (with Di ≤
Ti) task set is FP-schedulable over a virtual resource with sbf(t), if and only

if

∀i ∈ N , ∃t ∈ Pi−1(Di), Ci +

i−1∑

j=1

⌈
t

Tj

⌉

Cj ≤ sbf(t)

Theorem 19 (EDF-schedulability [55]) The task set N is EDF-schedulable
over a virtual resource with sbf(t), if and only if:

∀t ≥ 0

n∑

i=1

max

{

0,

⌊
t+ Ti −Di

Ti

⌋}

Ci ≤ sbt(t)

• Testing with the exact sbf(t), for example

sbf(t)=







0 t ∈ [0, P −Q]

(k − 1)Q t ∈ (kP −Q, (k + 1)P − 2Q]

t− (k + 1)(P −Q) otherwise

with k =
⌈
t−(P−Q)

P

⌉

,

may be too complicated.

• It is safe (sufficient) to make the test by using a lower bound to sbf(t)

Given a supply bound function sbf(t), it can be lower bounded [46] by any
of the following functions

lsbf(t) = max{0, α(t−∆)}

with

α ≤ lim
t→∞

sbf(t)

t

and

∆ = sup
t≥0

{

t− sbf(t)

α

}

Typically we take α = . . ..

• α is often called bandwidth of the virtual resource;

• ∆ is often called delay of the virtual resource.

– ∆ ≥ sup{t : sbf(t) = 0} always.

29



1. What is the lsbf(t) of a periodic (Q,P ) server?

α =
Q

P
, ∆ = 2(P −Q)

2. What is the lsbf(t) of

[1, 2] ∪ [3, 6] with period 6

α =
5

12
, ∆ = 1.5 (> longest idle time)

1. Can we schedule by FP the two (implicit deadline) tasks C1 = 2, T1 = 7
and C2 = 2, T2 = 15, over a virtual resource implemented by a periodic
server with period P = 4 and budget Q = 2?

2. Is it FP-schedulable over the virtual resource, if it is abstracted by the
lsbf?

3. Is it EDF-schedulable over the virtual resource, if abstracted by the sbf?

4. Is it EDF-schedulable over the virtual resource, if abstracted by the lsbf?

19 Designing a virtual resource

• Often the task set is given

• We just have to design the virtual platform parameters such that the
application is schedulable, and

• the minimum amount of (real, physical) resource is consumed (the band-
width α is minimal).

For any pair (t, w), t, w ≥ 0, let us define the region of feasible parameters
as

Fα,∆(t, w) = {(α,∆) ∈ R
2 : lsbf(t) ≥ w,α ≥ 0}

= {(α,∆) ∈ R
2 : α(t −∆) ≥ w,α ≥ 0}

If local scheduler is EDF, then the problem is:

minimize J(α,∆)

s.t. (α,∆) ∈
⋂

t∈D

Fα,∆(t, dbf(t))

If local scheduler is FP, then the problem is:

minimize J(α,∆)

s.t. (α,∆) ∈
⋂

i∈N

⋃

t∈Pi−1(Di)

Fα,∆(t, Ci + Ii(t))

30



• Fα,∆(t, w) is convex

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

9

8

7

6

5

4

3

2

1

Fα,∆(10, 6)

Fα,∆(30, 20)

Fα,∆(4, 1)

α

∆

• If local scheduler is EDF the feasible region is convex.

• What is the cost function that it is reasonable to minimize?

• J = α

– good motivation (as little bandwidth as possible)

– however, it may lead to impractical implementations

– J = α implies that ∆opt = 0

– ∆ = 0 can never be physically achieved. For example, if a periodic
server is used, then

P =
∆

2(1− α)

• To prevent ∆ = 0 cases, we can consider to minimize the really consumed
bandwidth

J = α
︸︷︷︸

useful

+
c

P
︸︷︷︸

wasted

= α+ 2c
1− α

∆

with c equal to some overhead. It is quasiconvex [24], hence good for
optimization.

• lsbf is a lower bound, hence the previous analysis is not optimal. Exact
analysis should consider the exact shape of the sbf

FP,Q(t, w) = {(P,Q) ∈ R
2 : sbf(Q,P ) server(t) ≥ w}

In the figure below FP,Q(10, 4)

31



6

5

4

3

2

1

0
0 1 2 3 4 5 6 7 8 9

Q

P

If local scheduler is EDF, then the problem is:

minimize
Q

P
+

c

P

s.t. (P,Q) ∈
⋂

t∈D

FP,Q(t, dbf(t))

If local scheduler is FP, then the problem is:

minimize
Q

P
+

c

P

s.t. (P,Q) ∈
⋂

i∈N

⋃

t∈Pi−1(Di)

FP,Q(t, Ci + Ii(t))

Level sets of the cost function are lines going through P = 0 and Q = −c.

20 Conclusions

• Hierarchical scheduling is well motivated by the need to compose applica-
tion which are designed and guaranteed in isolation

• The optimal selection of the parameters of the virtual resource was dis-
cussed

– EDF over lsbf easy because convex

– FP over lsbf complicated, but approachable

– EDF over sbf (exact supply) messy

– FP over sbf messy mess

• With the simplest possible task model

• FP over uniprocessor resource

– schedulability analysis

32



– sensitivity analysis

– optimal design of the task set

• EDF over uniprocessor resource

– schedulability analysis

– sensitivity analysis

– optimal design of the task set

• FP+EDF over uniprocessor virtual resource

– schedulability analysis

– optimal design of the virtual resource

• If you want to publish in this area, you can complicate the task model,
the scheduling algorithm, or the resource model according to your taste
(possibly getting closer to the reality).

References

[1] Karsten Albers and Frank Slomka. Efficient feasibility analysis for real-
time systems with edf scheduling. In Proceedings of Design, Automation
and Test in Europe, pages 492–497, 2005.

[2] James H. Anderson and Anand Srinivasan. Mixed pfair/erfair scheduling
of asynchronous periodic tasks. In Proceedings of the 13th Euromicro Con-
ference on Real-Time Systems, pages 76–85, 2001.

[3] Björn Andersson. Global static-priority preemptive multiprocessor schedul-
ing with utilization bound 38%. In Theodore P. Baker, Alain Bui, and
Sébastien Tixeuil, editors, Principles of Distributed Systems, volume 5401
of Lecture Notes in Computer Science, pages 73–88. Springer Berlin, Hei-
delberg, 2008.

[4] Björn Andersson, Sanjoy K. Baruah, and Jan Jonsson. Static-priority
scheduling on multiprocessors. In Proceedings of the 22nd IEEE Real-Time
Systems Symposium, pages 193–202, London, U.K., December 2001.

[5] Björn Andersson and Eduardo Tovar. Multiprocessor scheduling with few
preemptions. In Proceedings of the 12th IEEE International Conference
on Embedded and Real-Time Computing Systems and Applications, pages
322–331, 2006.

[6] Neil C. Audsley, Alan Burns, Mike Richardson, Ken W. Tindell, and
Andy J. Wellings. Applying new scheduling theory to static priority pre-
emptive scheduling. Software Engineering Journal, 8(5):284–292, Septem-
ber 1993.

33



[7] Hakan Aydin, Rami Melhem, Daniel Mossé, and Pedro Mej́ıa-Alarez. Op-
timal reward-based scheduling for periodic real-time tasks. IEEE Transac-
tions on Computers, 50(2):111–130, February 2001.

[8] Theodore P. Baker. An analysis of edf schedulability on a multiprocessor.
IEEE Transactions on Parallel and Distributed Systems, 16(8):760–768,
August 2005.

[9] Sanjoy K. Baruah. Dynamic- and static-priority scheduling of recurring
real-time tasks. Real-Time Systems, 24(1):93–128, January 2003.

[10] Sanjoy K. Baruah and Alan Burns. Sustainable scheduling analysis. In
Proceedings of the 27rd IEEE Real-Time Systems Symposium, pages 159–
168, Rio de Janerio, Brazil, December 2006.

[11] Sanjoy K. Baruah, Neil K. Cohen, Greg Plaxton, and Donald A. Varvel.
Proportionate progress: a notion of fairness in resource allocation. Algo-
rithmica, 15(6):600–625, June 1996.

[12] Sanjoy K. Baruah, Aloysius K. Mok, and Louis E. Rosier. Preemptively
scheduling hard-real-time sporadic tasks on one processor. In Proceedings of
the 11th IEEE Real-Time Systems Symposium, pages 182–190, Lake Buena
Vista (FL), U.S.A., December 1990.

[13] Guillem Bernat, Alan Burns, and Martin Newby. Probabilistic timing
analysis: An approach using copulas. Journal of Embedded Computing,
1(2):179–194, 2005.

[14] Marko Bertogna, Michele Cirinei, and Giuseppe Lipari. Improved schedu-
lability analysis of EDF on multiprocessor platforms. In Proceedings of the
17th Euromicro Conference on Real-Time Systems, pages 209–218, Palma
de Mallorca, Spain, July 2005.

[15] Enrico Bini. Uniprocessor EDF feasibility is an integer problem. In Jane
W.-S. Liu, Rolf H. Möhring, and Kirk Pruhs, editors, Scheduling, volume
08071 of Dagstuhl Seminar Proceedings. Internationales Begegnungs- und
Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany,
2008.

[16] Enrico Bini, Giorgio Buttazzo, and Giuseppe Lipari. Minimizing CPU
energy in real-time systems with discrete speed management. ACM Trans-
actions on Embedded Computing Systems, 8(4):31:1–23, July 2009.

[17] Enrico Bini and Giorgio C. Buttazzo. Schedulability analysis of periodic
fixed priority systems. IEEE Transactions on Computers, 53(11):1462–
1473, November 2004.

[18] Enrico Bini and Giorgio C. Buttazzo. The space of EDF deadlines; the
exact region and a convex approximation. Real-Time Systems, 41:27–51,
2009.

34



[19] Enrico Bini, Giorgio C. Buttazzo, and Giuseppe M. Buttazzo. Rate mono-
tonic scheduling: The hyperbolic bound. IEEE Transactions on Computers,
52(7):933–942, July 2003.

[20] Enrico Bini and Marco Di Natale. Optimal task rate selection in fixed
priority systems. In Proceedings of the 26th IEEE Real-Time Systems Sym-
posium, pages 399–409, Miami (FL), U.S.A., December 2005.

[21] Enrico Bini, Marco Di Natale, and Giorgio Buttazzo. Sensitivity analysis
for fixed-priority real-time systems. Real-Time Syst., 39(1–3):5–30, 2008.

[22] Enrico Bini, Thi Huyen Châu Nguyen, Pascal Richard, and Sanjoy K.
Baruah. A response-time bound in fixed-priority scheduling with arbi-
trary deadlines. IEEE Transactions on Computers, 58(2):279–286, Febru-
ary 2009.

[23] Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, and Sebastian Stiller. A
constant-approximate feasibility test formultiprocessor real-time schedul-
ing. Algorithmica, 62:1034–1049, 2012.

[24] Giorgio Buttazzo, Enrico Bini, and Yifan Wu. Partitioning real-time ap-
plications over multicore reservations. IEEE Transactions on Industrial
Informatics, 7(2):302–315, May 2011.

[25] Thidapat Chantem, Xiaobo Sharon Hu, and Michael D. Lemmon. General-
ized elastic scheduling. In Proceedings of the 27th IEEE Real-Time Systems
Symposium, pages 236–245, Rio de Janeiro, Brazil, December 2006.

[26] Bo Chen, Chris N. Potts, and Gerhard J. Woeginger. A review of ma-
chine scheduling: Complexity, algorithms and approximability, chapter in
Handbook of Combinatorial Optimization, pages 21–169. Kluwer Academic
Publishers, London, 1998.

[27] Hyeonjoong Cho, Binoy Ravindran, and E. Douglas Jensen. An optimal
real-time scheduling algorithm for multiprocessors. In Proceedings of the
27th IEEE Real-Time Systems Symposium, pages 101–110, December 2006.

[28] Jen-Yao Chung, Jane W.S. Liu, and Kwei-Jay Lin. Scheduling periodic jobs
that allow imprecise results. IEEE Transactions on Computers, 39(9):1156–
1174, September 1990.

[29] Michele Cirinei and Theodore P. Baker. Edzl scheduling analysis. In Pro-
ceedings of the 19th Euromicro Conference on Real-Time Systems, pages
9–18, July 2007.

[30] UmaMaheswari C. Devi. An improved schedulability test for uniprocessor
periodic task systems. In Proceedings 15th Euromicro Conference on Real-
Time Systems, pages 23–30, July 2003.

35



[31] UmaMaheswari C. Devi and James H. Anderson. Tardiness bounds under
global EDF scheduling on a multiprocessor. Real-Time Systems, 38:133–
189, 2008.

[32] José Luis Dı́az, Daniel F. Garćıa, Kanghee Kim, Chang-Gun Lee, Lucia
Lo Bello, José Maŕıa López, Sang Lyul Min, and Orazio Mirabella. Stochas-
tic analysis of periodic real-time systems. In Proceedings of the 23rd IEEE
Real-Time Systems Symposium, pages 289–300, 2002.

[33] Jeremy P. Erickson and James H. Anderson. Fair lateness scheduling: Re-
ducing maximum lateness in g-edf-like scheduling. In Proceedings of the
24th Euromicro Conference on Real-Time Systems, pages 3–12, July 2012.

[34] Nathan Fisher and Sanjoy Baruah. A fully polynomial-time approximation
scheme for feasibility analysis in static-priority systems with bounded rela-
tive deadlines. Journal of Embedded Computing, 2(3,4):291–299, December
2006.

[35] Shelby Funk, Joël Goossens, and Sanjoy Baruah. On-line scheduling on uni-
form multiprocessors. In Proceedings of the 22nd IEEE Real-Time Systems
Symposium, pages 183–192, London, United Kingdom, December 2001.

[36] I-Hong Hou and P.R. Kumar. Scheduling periodic real-time tasks with
heterogeneous reward requirements. In Proceedings of the 32nd IEEE Real-
Time Systems Symposium, pages 282–291, December 2011.

[37] Kevin Jeffay and Steve Goddard. A theory of rate-based execution. In
Proceedings of the 20th IEEE Real-Time Systems Symposium, pages 304–
314, Phoenix, AZ, USA, December 1999.

[38] Mathai Joseph and Paritosh K. Pandya. Finding response times in a real-
time system. The Computer Journal, 29(5):390–395, October 1986.

[39] John P. Lehoczky. Fixed priority scheduling of periodic task sets with
arbitrary deadline. In Proceedings of the 11th IEEE Real-Time Systems
Symposium, pages 201–209, Lake Buena Vista (FL), U.S.A., December
1990.

[40] John P. Lehoczky, Lui Sha, and Ye Ding. The rate-monotonic scheduling
algorithm: Exact characterization and average case behavior. In Proceed-
ings of the 10th IEEE Real-Time Systems Symposium, pages 166–171, Santa
Monica (CA), U.S.A., December 1989.

[41] Joseph Y.-T. Leung and J. Whitehead. On the complexity of fixed-priority
scheduling of periodic real-time tasks. Performance Evaluation, 2(4):237–
250, December 1982.

[42] Giuseppe Lipari and Enrico Bini. Resource partitioning among real-time
applications. In Proceedings of the 15th Euromicro Conference on Real-
Time Systems, pages 151–158, Porto, Portugal, July 2003.

36



[43] Giuseppe Lipari and Enrico Bini. A methodology for designing hierarchical
scheduling systems. Journal Embedded Computing, 1(2):257–269, 2005.

[44] Chung Laung Liu and James W. Layland. Scheduling algorithms for multi-
programming in a hard real-time environment. Journal of the Association
for Computing Machinery, 20(1):46–61, January 1973.

[45] Aloysius K. Mok and Deji Chen. A multiframe model for real-time
tasks. IEEE Transactions on Software Engineering, 23(10):635–645, Oc-
tober 1997.

[46] Aloysius K. Mok, Xiang Feng, and Deji Chen. Resource partition for real-
time systems. In Proceedings of the 7th IEEE Real-Time Technology and
Applications Symposium, pages 75–84, Taipei, Taiwan, May 2001.

[47] Michael L. Pinedo. Scheduling: theory, algorithms, and systems. Springer,
2012.

[48] Gang Quan and Xiaobo Sharon Hu. Enhanced fixed-priority scheduling
with (m, k)-firm guarantee. In Proceedings of the 21st IEEE Real-Time
Systems Symposium, pages 79–88, 2000.

[49] Parameswaran Ramanathan. Overload management in real-time control
applications using (m, k)-firm guarantee. IEEE Transactions on Parallel
Distributed Systems, 10(6):549–559, 1999.

[50] Paul Regnier, George Lima, Ernesto Massa, Greg Levin, and Scott Brandt.
Run: Optimal multiprocessor real-time scheduling via reduction to unipro-
cessor. In Proceedings of the 32nd IEEE Real-Time Systems Symposium,
pages 104–115, December 2011.

[51] Kai Richter and Rolf Ernst. Event model interfaces for heterogeneous sys-
tem analysis. In Design, Automation and Test in Europe (DATE), pages
506–513, Paris, France, March 2002.

[52] Ismael Ripoll, Alfons Crespo, and Aloysius K. Mok. Improvement in feasi-
bility testing for real-time tasks. Real-Time Systems, 11(1):19–39, 1996.

[53] Danbing Seto, John P. Lehoczky, and Lui Sha. Task period selection and
schedulability in real-time systems. In Proceedings of the 19th IEEE Real-
Time Systems Symposium, pages 188–198, Madrid, Spain, December 1998.

[54] Danbing Seto, John P. Lehoczky, Lui Sha, and Kang G. Shin. On task
schedulability in real-time control systems. In Proceedings of the 17th IEEE
Real-Time Systems Symposium, pages 13–21, Washington, DC, USA, De-
cember 1996.

[55] Insik Shin and Insup Lee. Periodic resource model for compositional real-
time guarantees. In Proceedings of the 24th Real-Time Systems Symposium,
pages 2–13, Cancun, Mexico, December 2003.

37



[56] Marco Spuri. Analysis of deadline scheduled real-time systems. Technical
Report RR-2772, INRIA, France, January 1996.

[57] Anand Srinivasan and Sanjoy Baruah. Deadline-based scheduling of pe-
riodic task systems on multiprocessors. Information Processing Letters,
84(2):93–98, 2002.

[58] Martin Stigge, Pontus Ekberg, Nan Guan, and Wang Yi. The digraph real-
time task model. In Proceeding of the 17th IEEE Real-Time and Embedded
Technology and Applications Symposium, pages 71–80, Chicago, IL, USA,
April 2011.

[59] Noel Tchidjo Moyo, Eric Nicollet, Frederic Lafaye, and Christophe Moy. On
schedulability analysis of non-cyclic generalized multiframe tasks. In Pro-
ceedings of the 22nd Euromicro Conference on Real-Time Systems, pages
271–278, Bruxelles, Belgium, July 2010.

[60] Manel Velasco, Pau Mart́ı, and Enrico Bini. Control-driven tasks: Mod-
eling and analysis. In Proceedings of the 29th IEEE Real-Time Systems
Symposium, Barcelona, Spain, December 2008.

[61] Yifan Wu, Giorgio Buttazzo, Enrico Bini, and Anton Cervin. Parameter
selection for real-time controllers in resource-constrained systems. IEEE
Transactions on Industrial Informatics, 6(4):610–620, 2010.

[62] Fengxiang Zhang and Alan Burns. Schedulability analysis for real-time sys-
tems with edf scheduling. IEEE Transactions on Computers, 58(9):1250–
1258, September 2009.

38


