Enrico Bini

EDF: space of comp times

EDF: space of deadlines, periods

EDF: optima design

Advanced Real-Time Systems Lecture 5/6

Enrico Bini

November 8, 2012

Enrico Bini

EDF: space of comp times

EDF: space o deadlines, periods

EDF: optimal design

1 EDF: space of comp times

2 EDF: space of deadlines, periods

3 EDF: optimal design

Outline

Enrico Bini

EDF: space of comp times

EDF: space of deadlines, periods

EDF: optima design

Space of feasible C_i

Theorem (Lemma 3 in [?])

 \mathcal{N} is EDF-schedulable if and only if $\sum_i U_i \leq 1$ and:

$$\forall t \in \mathcal{D} \quad \sum_{i=1}^{n} \max\left\{0, \left\lfloor \frac{t + T_i - D_i}{T_i} \right\rfloor\right\} C_i \le t$$

with

 $\mathcal{D} = \{ d_{i,k} : d_{i,k} = kT_i + D_i, \ i \in \mathcal{N}, \ k \in \mathbb{N}, \ d_{i,k} \le D^* \}$

and $D^* = \text{lcm}(T_1, ..., T_n) + \max_i \{D_i\}.$

 $H = \operatorname{lcm}(T_1, \ldots, T_n)$ is often called the *hyperperiod*.

- Since we are investigating the space of C_i , no smaller D^* can be considered.
- For given T_i and D_i , the space of EDF-schedulable C_i is convex!

Enrico Bini

EDF: space of comp times

EDF: space (deadlines, periods

EDF: optima design

An example

Let us assume
$$T_1 = 4, D_1 = 5$$
 and $T_2 = 6, D_2 = 5$.

$$\mathcal{D} = \{5, 9, 11, 13, 17\}$$

Hence equations are

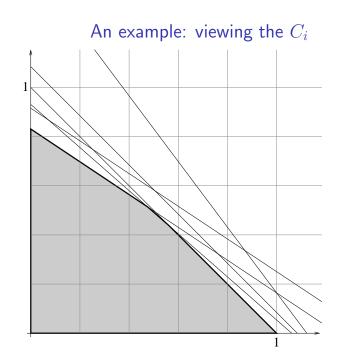
$$\begin{bmatrix} 4 & 6 \\ 8 & 6 \\ 8 & 12 \\ 12 & 12 \\ 16 & 18 \\ 1 & 1 \\ -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} U_1 \\ U_2 \end{bmatrix} \le \begin{bmatrix} 5 \\ 9 \\ 11 \\ 13 \\ 17 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

Enrico Bini

EDF: space of comp times

EDF: space of deadlines, periods

EDF: optima design



Enrico Bini

EDF: space of comp times

EDF: space of deadlines, periods

EDF: optima design

Reducing the set of deadlines

Hence only the equations

$$\begin{bmatrix} 4 & 6\\ 16 & 18\\ 1 & 1\\ -1 & 0\\ 0 & -1 \end{bmatrix} \begin{bmatrix} U_1\\ U_2 \end{bmatrix} \leq \begin{bmatrix} 5\\ 17\\ 1\\ 0\\ 0 \end{bmatrix}$$

are needed to be checked, corresponding to $\mathcal{D}=\{5,17\}$

• Finding a general method to reduce \mathcal{D} without losing sufficiency would be an interesting contribution.

Enrico Bini

EDF: space of comp times

EDF: space o deadlines, periods

EDF: optima design

Optimal comp time

• Being the exact region convex the optimal assignment of computation times C_i does not present big difficulties.

Enrico Bini

EDF: space of comp times

EDF: space of deadlines, periods

EDF: optimal design

EDF: space of comp times

2 EDF: space of deadlines, periods

Outline

3 EDF: optimal design

Enrico Bini

EDF: space of comp times

EDF: space of deadlines, periods

EDF: optimal design

Deadline space: qualitative analysis

- Example: n = 2, $T_1 = T_2$, $U_1 + U_2 \le 1$
- We can reduce D_1 to C_1 , but then $D_2 = C_1 + C_2$, or
- $D_2 = C_2$, but then $D_1 = C_1 + C_2$
- convex comb of these two points are not EDF-sched
- Let us assume $T_1 = T_2 = \ldots = T_n$, and $\sum_i U_1 \le 1$.
- For any permutation $p:\mathcal{N}\rightarrow\mathcal{N},$ a "vertex" has coordinates

$$D_{p(i)} = \sum_{j=1}^{i} C_{p(j)}$$

Enrico Bini

EDF: space of comp times

EDF: space of deadlines, periods

EDF: optimal design

Another exact test

Being the periods and deadlines into the set \mathcal{D} and into the $\lfloor \cdot \rfloor$, dbf condition is unfit to show the space of feasible periods/deadline.

Theorem

The task set N is EDF-schedulable if and only if:

$$\forall \mathbf{k} \in \mathbb{N}^n \setminus \{\mathbf{0}\} \quad \exists i \in I_\mathbf{k} \quad \sum_{j=1}^n C_j k_j \le (k_i - 1)T_i + D_i$$

where

$$I_{\mathbf{k}} = \{j : k_j \neq 0\}$$

is the set of non-zero indexes in \mathbf{k} .

Enrico Bini

EDF: space of comp times

EDF: space of deadlines, periods

EDF: optimal design

EDF-schedulablity as covering problem

$$\forall \mathbf{k} \in \mathbb{N}^n \setminus \{\mathbf{0}\} \quad \exists i : k_i \neq 0 \qquad \sum_{j=1}^n C_j k_j \leq (k_i - 1)T_i + D_i$$

can be seen as the problem of finding a cover to $\mathbb{N}^n\setminus\{\mathbf{0}\}$ with halfspaces of equations

$$(C_i - T_i)k_i + \sum_{j \neq i} C_j k_j \le -T_i + D_i$$

considering (k_1, \ldots, k_n) as variables.

- Remember: $\exists i : k_i \neq 0$, not just $\exists i \in \mathcal{N}$
- If U = 1 linearly dependent.

Enrico Bini

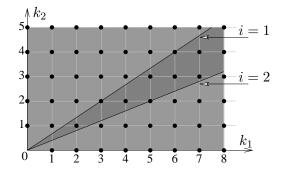
EDF: space of comp times

EDF: space of deadlines, periods

EDF: optimal design

Viewing the covering problem If $T_1 = D_1 = 4$, $C_1 = 2$, and $T_2 = D_2 = 8$, $C_2 = 3$, then $-2k_1 + 3k_2 \le 0$ $2k_1 - 5k_2 \le 0$

have to cover $\mathbb{N}^2 \setminus \{(0,0)\}$



• If U > 1 cannot cover, ever.

Enrico Bini

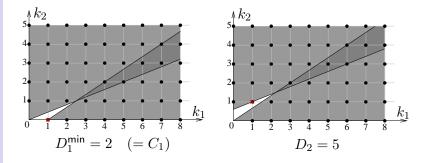
EDF: space of comp times

EDF: space of deadlines, periods

EDF: optima design

Changing deadlines

- Deadline D_i appears at the RHS of the i-th inequality only
- Changing D_i means to translate boundary of the *i*-th halfspace



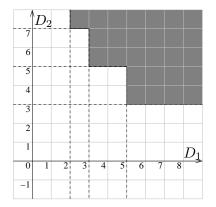
Enrico Bini

EDF: space of comp times

EDF: space of deadlines, periods

EDF: optima design

Space of feasible D_i



Enrico Bini

EDF: space of comp times

EDF: space of deadlines, periods

EDF: optima design

Changing the periods

- The i-th period has an effect only on the i-th equation
- however T_i appears in the coefficients and at the RHS
- changing T_i is a rotation of the *i*-th halfspace
- the points in common between two equations with T_i^\prime and $T_i^{\prime\prime}$ are

$$(C_i - T'_i)k_i + \sum_{j \neq i} C_j k_j = -T'_i + D_i$$
$$(C_i - T''_i)k_i + \sum_{j \neq i} C_j k_j = -T''_i + D_i$$
$$k_i = 1$$
$$\sum_{j \neq i} C_j k_j = D_i - C_i$$

Enrico Bini

EDF: space of comp times

EDF: space of deadlines, periods

EDF: optima design

Changing periods
$$(n = 2)$$

• As T_1 changes, the 1st boundary rotates around

$$k_1 = 1, \quad k_2 = \frac{D_1 - C_1}{C_2}$$

• As T_2 changes, the 2nd boundary rotates around

$$k_1 = \frac{D_2 - C_2}{C_1}, \quad k_2 = 1$$

Enrico Bini

EDF: space of comp times

EDF: space of deadlines, periods

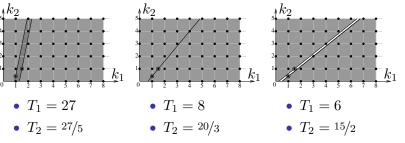
EDF: optima design

Changing periods: example

•
$$C_1 = 2$$
, $D_1 = 4$, and $C_2 = 5$, $D_2 = 8$

• changing T_1 rotates around (1, 0.4)

• changing T_2 rotates around (1.5, 1)



• Draw the *f*-space

Enrico Bini

EDF: space of comp times

EDF: space of deadlines, periods

EDF: optima design

Space of deadlines: sufficient test

By making some more restrictive hypothesis, we can derive the following sufficient EDF-test

Theorem (Chantem et al. [?])

A task set is EDF-schedulable if:

$$\begin{cases} \forall i, \quad D_i \le T_i + D_{\min} \\ \sum_{i=1}^n U_i D_i \ge \sum_{i=1}^n C_i - D_{\min} (1 - \sum_{i=1}^n U_i). \end{cases}$$

with $D_{\min} = \min_i D_i$.

This condition has the advantage of being convex in the space of deadlines.

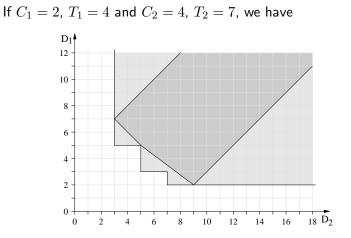
Viewing sufficient cond

Enrico Bini

EDF: space of comp times

EDF: space of deadlines, periods

EDF: optima design



Enrico Bini

EDF: space of comp times

EDF: space or deadlines, periods

EDF: optimal design

1 EDF: space of comp times

2 EDF: space of deadlines, periods

3 EDF: optimal design

Outline

Enrico Bini

EDF: space of comp times

EDF: space of deadlines, periods

EDF: optimal design

Optimal T_i , D_i assignment

- $\mathcal{X} = \{T_1, D_1, \dots, T_n, D_n\}$
- Typical problem in control systems:
 - given the execution times $\{C_1,\ldots,C_n\}$
 - choose the sampling periods and deadlines (=delays) of all controllers
 - such that a control cost (LQG?) is minimized

$$\min_{\substack{T_1,D_1,\dots,T_n,D_n}} J(T_1,D_1,\dots,T_n,D_n)$$
s.t $\mathcal N$ is EDF-schedulable

Enrico Bini

EDF: space o comp times

EDF: space o deadlines, periods

EDF: optimal design

Difficulty of the problem

We could try to find optimal T_i and then D_i

- **1** Suppose $C_1 = C_2 = 1$
- 2 Suppose that the optimal T_i are $T_1 = 2.1$, $T_2 = 1.91$
- 3 How much can we reduce the deadlines?
 - very little.
- However by choosing non-optimal periods T₁ = T₂ = 2, we can actually reduce one of the two deadlines by 1, possibly making the cost J smaller
- To best of my knowledge it is still unsolved
- (due to bizarre shape of the feasible region)
- solving this problem optimally would be a decent contribution