Enrico Bini

Earliest Deadline First basics

EDF: deman bound function

EDF: sufficient tests

EDF: sensitivity analysis

Example

Advanced Real-Time Systems Lecture 4/6

Enrico Bini

November 2, 2012

Enrico Bini

Earliest Deadline First: basics

EDF: demand bound function

EDF: sufficient tests

EDF: sensitivity analysis

Example

1 Earliest Deadline First: basics

2 EDF: demand bound function

3 EDF: sufficient tests

4 EDF: sensitivity analysis

5 Example

Outline

Enrico Bini

Earliest Deadline First: basics

EDF: demand bound function

EDF: sufficient tests

EDF: sensitivity analysis

Example

Earliest Deadline First

- Task model is still the same $\tau_i = (C_i, T_i, D_i)$;
- In FP, priorities are per task: all jobs of same task that have the same priority;
- In EDF, priorities are per job: jobs are prioritized according to their absolute deadline.

Draw an example of schedule.

Enrico Bini

Earliest Deadline First: basics

EDF: demanc bound function

EDF: sufficient tests

EDF: sensitivity analysis

Example

Most interesting feature

Theorem (Liu and layland, 1973 [?]) If a task set is feasible, then it is EDF-schedulable. Theorem (Liu and Layland, 1973 [?])

If $D_i = T_i$ (implicit deadline) then a task set is EDF-schedulable if and only if:

$$\sum_{i=1}^{n} U_i \le 1$$

Any FP-schedulable task set is also EDF-schedulable task set.

Enrico Bini

Earliest Deadline First: basics

EDF: demand bound function

EDF: sufficient tests

EDF: sensitivity analysis

Example

1 Earliest Deadline First: basics

2 EDF: demand bound function

3 EDF: sufficient tests

4 EDF: sensitivity analysis

5 Example

Outline

Enrico Bini

Earliest Deadline First basics

EDF: demand bound function

EDF: sufficient tests

EDF: sensitivity analysis

Example

Demand bound function

If $D_i \neq T_i$ the schedulability condition becomes more complicated.

Theorem (Lemma 3 in [?])

The task set ${\mathcal N}$ is EDF-schedulable if and only if:

$$\forall t \ge 0 \quad \sum_{i=1}^{n} \max\left\{0, \left\lfloor \frac{t + T_i - D_i}{T_i} \right\rfloor\right\} C_i \le t$$

The LHS is called *demand bound function* dbf(t) of the task set at t.

- dbf(t) is the maximum amount of work of jobs with both activation and deadline in [0, t].
- no per-task condition: any task task may influence others
- $\max\{0, \cdot\}$ only needed for i with $D_i > T_i$

Enrico Bini

Earliest Deadline First basics

EDF: demand bound function

EDF: sufficient tests

EDF: sensitivity analysis

Example

Making it more practical

- Obviously, checking $\forall t > 0$ is not very practical
- By observing the step shape of the dbf we can check only at the points where the steps occur

Theorem (Lemma 3 in [?])

The task set \mathcal{N} is EDF-schedulable if and only if $\sum_i U_i \leq 1$ and:

$$\forall t \in \mathcal{D} \quad \sum_{i=1}^{n} \max\left\{0, \left\lfloor \frac{t + T_i - D_i}{T_i} \right\rfloor\right\} C_i \le t$$

with

 $\mathcal{D} = \{ d_{i,k} : d_{i,k} = kT_i + D_i, \ i \in \mathcal{N}, \ k \in \mathbb{N}, \ d_{i,k} \le D^* \}$

and $D^* = \text{lcm}(T_1, \dots, T_n) + \max_i \{D_i\}.$ $H = \text{lcm}(T_1, \dots, T_n)$ is often called *hyperperiod* of the task set.

Enrico Bini

Earliest Deadline First basics

EDF: demand bound function

EDF: sufficient tests

EDF: sensitivity analysis

Example

Reducing the number of points

- If U < 1, then the for large t the condition is always true
- then D^{\ast} can be computed $\circle{2}$ by upper bounding dbt(t) with a line and we find

$$D^* = \frac{U}{1-U} \max_i \{T_i - D_i\}$$

• what happen to D^* if $\max_i \{T_i - D_i\} \le 0$?

Enrico Bini

Earliest Deadline First basics

EDF: demand bound function

EDF: sufficient tests

EDF: sensitivity analysis

Example

Reducing the number of points

- If U < 1, then the for large t the condition is always true
- then D^{\ast} can be computed $\circle{2}$ by upper bounding ${\rm dbt}(t)$ with a line and we find

$$D^* = \frac{U}{1-U} \max_i \{T_i - D_i\}$$

- what happen to D^* if $\max_i \{T_i D_i\} \le 0$?
- the task set is obviously EDF-schedulable,
 - $\max_i \{T_i D_i\} \le 0 \quad \Leftrightarrow \quad \forall i, \ D_i \ge T_i$
 - EDF is sustainable, hence if $D_i = T_i$ is sched then $D_i \ge T_i$ also sched
 - Since U < 1, the task set is sched

Enrico Bini

Earliest Deadline First basics

EDF: demand bound function

EDF: sufficient tests

EDF: sensitivity analysis

Example

Faster exact test

- All deadlines in $\left[0,D^*\right]$ may be too many
- Zhang and Burns [?] proposed the Quick convergence Processor-demans Analysis (QPA)
- 1: $d_{\min} \leftarrow \min\{D_i\}$ 2: $t \leftarrow \max\{d_{i,k} : d_{i,k} \le D^*\}$

 \triangleright initial assignment

- 3: while $dbf(t) \le t \land dbf(t) > d_{\min} do$
- 4: **if** dbf(t) < t **then**
 - $t \leftarrow \mathsf{dbf}(t)$
- 6: **else**

5:

- 7: $t \leftarrow \max\{d_{i,k} : d_{i,k} < t\} \triangleright$ escape from fixed points
- 8: end if
- 9: end while
- 10: if $dbf(t) \le d_{min}$ then task set EDF-schedulable
- 11: else task set not EDF-schedulable
- 12: end if

Enrico Bini

Earliest Deadline First: basics

EDF: demand bound function

EDF: sufficient tests

EDF: sensitivity analysis

Example

1 Earliest Deadline First: basics

2 EDF: demand bound function

3 EDF: sufficient tests

4 EDF: sensitivity analysis

5 Example

Outline

Sufficient tests

Systems Enrico Bini

Advanced Real-Time

Earliest Deadline First basics

EDF: demand bound function

EDF: sufficient tests

EDF: sensitivity analysis

Example

• By replacing T_i with the more conservative value $\min\{T_i, D_i\}$, we find

$$\sum_{i=1}^{n} \frac{C_i}{\min\{T_i, D_i\}} \le 1$$

the ratio $\frac{C_i}{\min\{T_i,D_i\}}$ is often called density of the task

Enrico Bini

Earliest Deadline First basics

EDF: demand bound function

EDF: sufficient tests

EDF: sensitivity analysis

Example

١

More sophisticated suff test

Devi proposed the following sufficient test

• Assuming that tasks are sorted by non-decreasing relative deadline $(D_i \leq D_2 \leq \ldots \leq D_n)$

Theorem (Theorem 1 in [?])

The task set \mathcal{N} is EDF-schedulable if:

$$\forall k = 1, \dots, n \quad D_k \sum_{i=1}^k U_i + \sum_{i=1}^k \frac{T_i - \min\{T_i, D_i\}}{T_i} C_i \le D_k$$

Proved to strictly dominate the density test

Enrico Bini

Earliest Deadline First basics

EDF: demand bound function

EDF: sufficient tests

EDF: sensitivity analysis

Example

FTPAS for EDF

- Albers et al. [?] proposed a Fully Polynomial Time Approximation Scheme.
- The i-th term in dbf(t) can be upper bounded by

$$\max\{0, \left\lfloor \frac{t - D_i + T_i}{T_i} \right\rfloor\} C_i \le \mathsf{dub}_i(k, t)$$
$$= \begin{cases} \max\{0, \left\lfloor \frac{t - D_i + T_i}{T_i} \right\rfloor\} C_i & t \le d_{i,k} = (k - 1)T_i + D_i \\ U_i(t + T_i - D_i) & t > d_{i,k} \end{cases}$$

so that

$$\frac{k}{k+1}\sum_i \mathrm{dub}_i(k,t) \leq \mathrm{dbf}(t) \leq \sum_i \mathrm{dub}_i(k,t)$$

Enrico Bini

Earliest Deadline First basics

EDF: demand bound function

EDF: sufficient tests

EDF: sensitivity analysis

Example

$\ensuremath{\mathsf{FTPAS}}$ for $\ensuremath{\mathsf{EDF}}$

• This enables a quite interesting result Theorem

If $U \leq 1$ and

$$\forall t \in \mathcal{D}(\overline{k}) = \{ d_{i,k} \in \mathbb{R}^+ : d_{i,k} = (k-1)T_i + D_i, 1 \le k \le \overline{k} \}$$
$$\sum_{i=1}^n \mathsf{dub}_i(\overline{k}, t) \le t$$

then the task set is schedulable. Otherwise it is not schedulable over a CPU with speed $\frac{\overline{k}}{\overline{k+1}}$.

- In this way only $n\overline{k}$ evaluation of the dbf are needed.
- We can trade accuracy vs. complexity. As $\overline{k}\to\infty$ it becomes necessary and sufficient.
- FPTAS

Enrico Bini

Earliest Deadline First: basics

EDF: demand bound function

EDF: sufficient tests

EDF: sensitivity analysis

Example

1 Earliest Deadline First: basics

Outline

2 EDF: demand bound function

3 EDF: sufficient tests

4 EDF: sensitivity analysis

5 Example

Enrico Bini

Earliest Deadline First basics

EDF: demand bound function

EDF: sufficient tests

EDF: sensitivity analysis

Example

Min EDF-schedulable speed

Similarly as in the FP case we can find the minimum EDF-schedulable speed as follows

$$r^{\min} = \max_{t \in \mathcal{D}} \frac{\sum_{i=1}^{n} \max\left\{0, \left\lfloor \frac{t + T_i - D_i}{T_i} \right\rfloor\right\} C_i}{t}$$

However $D^* = H + \max_i \{D_i\}$, because we are changing the speed and then altering the linear upper bound that motivates the expression

$$D^* = \frac{U}{1-U} \max_i \{T_i - D_i\}$$

Enrico Bini

Earliest Deadline First basics

EDF: demand bound function

EDF: sufficient tests

EDF: sensitivity analysis

Example

Max EDF-schedulable comp time

The maximum EDF-schedulable C_k^{\max} can be computed in a similar way as in FP

$$C_k^{\max} = \min_{t \in \mathcal{D}, t \ge D_k} \frac{t - \sum_{\substack{i=1 \ i \neq k}}^n \max\left\{0, \left\lfloor \frac{t + T_i - D_i}{T_i} \right\rfloor\right\} C_i}{\left\lfloor \frac{t + T_k - D_k}{T_k} \right\rfloor}$$

Here too, $D^* = H + \max_i \{D_i\}.$

Enrico Bini

Earliest Deadline First: basics

EDF: demand bound function

EDF: sufficient tests

EDF: sensitivity analysis

Example

1 Earliest Deadline First: basics

2 EDF: demand bound function

3 EDF: sufficient tests

4 EDF: sensitivity analysis

Outline

Enrico Bini

Earliest Deadline First: basics

EDF: demand bound function

EDF: sufficient tests

EDF: sensitivity analysis

Example

Let us have the following task set

T_i	D_i	C_i
3	5	1
8	8	2
20	10	5

Sufficient tests

Not DM-schedulable since $R_3 = 14 > D_3 = 10$

• Density test

$$\frac{1}{3} + \frac{2}{8} + \frac{5}{10} = \frac{13}{12} > 1$$

Devi's test

$$\begin{split} k &= 1 \quad D_1 U_1 \leq D_1 \quad \Rightarrow \quad \mathsf{OK} \\ k &= 2 \quad D_2 (U_1 + U_2) \leq D_2 \quad \Rightarrow \quad \mathsf{OK} \\ k &= 3 \quad D_3 (U_1 + U_2 + U_3) + (T_3 - D_3) U_3 \leq D_3 \\ U_1 + U_2 + \frac{C_3}{D_3} \leq 1 \quad \Rightarrow \quad \mathsf{NO} \end{split}$$

Enrico Bini

Earliest Deadline First basics

EDF: demand bound function

EDF: sufficient tests

EDF: sensitivity analysis

Example

Exact test:

$$\forall t \in \mathcal{D} \quad \sum_{i=1}^{n} \max\left\{0, \left\lfloor \frac{t + T_i - D_i}{T_i} \right\rfloor\right\} C_i \le t$$

with

$$\mathcal{D} = \{ d_{i,k} : d_{i,k} = kT_i + D_i, \ i \in \mathcal{N}, \ k \in \mathbb{N}, \ d_{i,k} \le D^* \}$$

Computing the upper bound D^{\ast} to the set of deadlines ${\cal D}$

$$D^* = \frac{U}{1 - U} \max T_i - D_i = \frac{\frac{5}{6}}{\frac{1}{6}} 10 = 50$$

 $\mathcal{D} = \{5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, \\8, 16, 24, 32, 40, 48, 10, 30, 50\}$

Example

Enrico Bini

Earliest Deadline First basics

EDF: demand bound function

EDF: sufficient tests

EDF: sensitivity analysis

Example

$d_{\min} = 5$ t = 50, $dbf(50) = 16 + 6 \times 2 + 3 \times 5 = 43$ t = 43, $dbf(43) = 13 + 5 \times 2 + 2 \times 5 = 33$ t = 33, $dbf(33) = 10 + 4 \times 2 + 2 \times 5 = 28$ t = 28, $dbf(28) = 8 + 3 \times 2 + 5 = 19$ t = 19, $dbf(19) = 5 + 2 \times 2 + 5 = 14$ t = 14, dbf(14) = 4 + 2 + 5 = 11t = 11, dbf(11) = 3 + 2 + 5 = 10t = 10, dbf(10) = 2 + 2 + 5 = 9t = 9, dbf(9) = 2 + 2 = 4exit because $dbf(9) = 4 < d_{min} = 5$

dbf computed 9 times, instead of $|\mathcal{D}| = 22$ times

Example: QPA

Enrico Bini

Earliest Deadline First basics

EDF: demand bound function

EDF: sufficient tests

EDF: sensitivity analysis

Example

Example: FPTAS

$\overline{k} = 1$	$\mathcal{D}(1) = \{5, 8, 10\}$
t = 5	$1 + 0 + 0 \le 5$
t = 8	$2+2+0 \le 8$
t = 10	2.666 + 2.5 + 5 > 10
$\overline{k}=2$	$\mathcal{D}(2) = \{5, 8, 10, 16, 30\}$
t = 5	$1 + 0 + 0 \le 5$
t = 8	$2+2+0 \le 8$
t = 10	$2.666 + 2 + 5 \le 10$
t = 16	$4.666 + 4 + 5 \le 16$
t = 30	$9.333 + 7.5 + 10 \le 30$

- EDF-schedulable
- non EDF-schedulable over a speed $\frac{1}{2}$ processor