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Abstract— We consider a class of large scale linear-quadratic
coordination problems where the information exchange is
subject to a time delay. We show that several previously known
properties of the optimal solution to the delay-free problem
extend to this case. In particular, the optimal control law
comprises a diagonal (decentralized) term complemented by
a rank-one coordination term, which can be implemented by a
simple averaging operation. Moreover, the computational effort
required to obtain the controller is independent of the number
of agents.

I. INTRODUCTION

Control of large scale systems has been an established area

of research for more than half a century and has received

renewed attention over the last two decades. These systems

are characterized by a very large number of interconnected

subsystems, each with their own sensors and actuators. In

such situations, fully centralized, structureless information

processing becomes infeasible.

A common approach to limit the amount of information

processing in the controller is to impose a sparsity pattern on

the controller structure, which shapes permitted information

exchange between subsystems [1]–[3]. However, the design

of these type of structured controllers is generally a notori-

ously difficult problem [4], [5]. Considerable effort has been

made in the control community to understand the nature of

these difficulties and devise tools to address them, see [3],

[6], [7] and the references therein.

Sparsity is not the only way to attain computational and

implementational scalability. One example of a non-sparse,

yet scalable, controller is the diagonal-plus-low rank config-

uration. This type of controller comprises a block-diagonal

term, which is completely decentralized, complemented by

a low-rank component that can be implemented via a few

averaging operations. To the best of our knowledge, it first

explicitly appeared in [8] as the structure of optimal con-

trollers for symmetrically interconnected systems and then

in [9] as a constraint imposed on some large-scale robust

stability problems.

Recently, we showed that this type of control structure also

appears naturally (i.e., without being imposed) as the optimal
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solution to a class of large-scale linear-quadratic coordina-

tion problems [10]. Specifically, we studied a homogeneous

group of autonomous agents that are coupled through a

constraint on their average behavior. It was shown that the

optimal centralized solution has a diagonal-plus-rank-one

form. Although the rank-one term depends on information

from all systems, the only centralized computation required

to implement it is a single averaging operation, which scales

well as the number of agents grows large. We also showed

that the solution has an additional attractive property in terms

of large scale applications: the computational effort required

to obtain the solution is independent of the number of agents.

A potential limitation of the solution derived in [10], as

well as of the earlier examples, is that it assumes immediate

information exchange between the agents. This might not

be feasible in some applications due to communication

constraints. In this paper, we show that the properties of

the optimal control law discussed above for the delay-free

case, extend to the case with delayed information exchange.

Moreover, we derive analytic expressions that quantify the

performance deterioration due to the delay. An important

implication of our result is that it adds insight into the class

of diagonal-plus-low-rank controllers by enlarging the class

of known problems for which they are well-suited.

Notation: The transpose of a matrix M is denoted by

M 0. By ei we refer to the i th standard basis of a Euclidean

space and by In to the n � n identity matrix (we drop

the dimension subscript when the context is clear). The

Frobenius norm of a matrix is kMkF ´
p

tr.M 0M/. The

notation ˝ is used for the Kronecker product of matrices:

A ˝ B ´

2

6
4

a11B � � � a1mB
:::

: : :
:::

ap1B � � � apmB

3

7
5 ;

where aij stands for the .i; j / entry of A. The L2.jR/ norm

[11, Ch. 4] of a system G is denoted kGk2. For a set A, the

indicator function 1A.t/ is 1 if t 2 A and 0 elsewhere.

II. PRELIMINARIES

In this section we review the main results of [10], which

studies a coordination problem among � uncoupled homo-

geneous systems (agents)

˙i W Pxi .t/ D Axi .t/ C Buui .t/; xi .0/ D xi0

where the state vectors xi can be measured. Associated with

each system is the cost function

Ji D
Z 1

0

�

x0
i .t/Q˛xi .t/ C u0

i .t/ui .t/
�

dt:



C

Fig. 1. Overall optimal controller corresponding to (3)

The coordination among the agents is imposed by constrain-

ing the behavior of their center of mass, defined as the system

Ṅ W PNx.t/ D A Nx.t/ C Bu Nu.t/; Nx.0/ D Nx0;

which connects the signals

Nu.t/ ´
�

X

iD1

�iui .t/ and Nx.t/ ´
�

X

iD1

�ixi .t/; (1)

where �i ¤ 0 may be thought of as the mass of the i th

system. We then require that Ṅ evolves according to

PNx.t/ D .A C Bu
NF / Nx.t/; Nx.0/ D Nx0

for a given stabilizing NF (in other words, we require that

Nu D NF Nx). The local objectives and coordination requirement

are then combined in the following constrained optimization

problem:

minimize J ´
�

X

iD1

Ji (2a)

subject to ˙i ; i D 1; : : : ; � (2b)

Nu � NF Nx D 0 (2c)

Problem (2) is a constrained LQR problem, which can,

in principle, be reduced to a standard, unconstrained, LQR

problem via resolving (2c) in one of ui ’s. Yet this approach

is not readily scalable if the number of agents � grows.

Instead, [10] applied a coordinate transformation1, which

splits problem (2) into a set of � uncoupled problems. Using

this approach, it was shown that the optimal control law has

the following form:

ui .t/ D F˛xi .t/ C �i . NF � F˛/ Nx.t/; i D 1; : : : ; �; (3)

where F˛ is the optimal LQR gain corresponding to the

local, unconstrained, problem with the plant ˙i and the cost

function Ji .

The control law (3) has two attractive scalability prop-

erties. First, the computational effort required to calculate

its parameters does not depend on the number of agents

�, only one local unconstrained LQR problem needs to

be solved. Second, the information exchange between the

subsystems ˙i requires only the knowledge of the state of

the center of mass, Nx. Computing this quantity only requires a

single averaging operation, which is far less demanding, from

both computation and communication viewpoints, than full

centralized information processing. The overall controller

then has the block diagonal-plus-rank-one structure, sketched

out in Fig. 1.

1This transformation happens to be similar to that proposed in [12] and,
earlier, in the literature on symmetric systems, see the references in [8].

G´w G´u

Gxw Gxu
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Fig. 2. Aggregate standard state-feedback H 2 problem

A potential limitation of the control law (3) is that each

system needs to have immediate access to Nx. This might not

be feasible in applications, where communication resources

are limited. Motivated by this, below we revisit the coor-

dination problem (2) under the additional constraint that the

information exchange between the agents is subject to a time-

delay and show that the scalability properties discussed above

extend to this case.

III. PROBLEM FORMULATION

The problem setup considered in this paper is slightly

altered with respect to that studied in [10] (see Section II).

First, instead of the LQR formulation (nonzero initial con-

ditions, no disturbances), we choose an H 2 formulation (zero

initial conditions, exogenous disturbances). Accordingly, the

local dynamics of each agent read

Pxi .t/ D Axi .t/ C Bwi
wi .t/ C Buui .t/ (4)

for i D 1; : : : ; �, where xi .t/ 2 R
n are (measured) state

vectors, ui .t/ 2 R
m are control inputs, and wi .t/ 2 R

pi are

exogenous disturbances. Local requirements are quantified

in terms of the H 2 problems associated with the regulated

outputs

´i .t/ ´ C´xi .t/ C D´uui .t/: (5)

Aggregating (4)–(5) for all i D 1; : : : ; �, the local problems

can be cast as the standard state-feedback H 2 problem [11,

÷14.8.1] depicted in Fig. 2. Here w, ´, u, and x are the

aggregate disturbance, regulated output, control input, and

measured state vector, respectively (e.g., w ´
P�

iD1 ei ˝wi ),

and the generalized plant

G.s/ D
�

G´w.s/ G´u.s/

Gxw.s/ Gxu.s/

�

D

2

4

I� ˝ A Bw I� ˝ Bu

I� ˝ C´ 0 I� ˝ D´u

I�n 0 0

3

5

with Bw ´
P�

iD1.ei e
0
i / ˝ Bwi

. Each sub-block of this G is

block diagonal. Hence, if no other constraints were imposed,

the optimal solution K would be block diagonal as well.

Second, the coordination constraint are also adjusted, to

keep it in line with the system-based formulation. To this

end, introduce the vector

� ´
�

�1 � � � ��

�0

and rewrite (2c) as

0 D Nu � NF Nx D .�0 ˝ Im/u � .�0 ˝ NF /x

D ..�0 ˝ Im/K.s/ � �0 ˝ NF /x

D .�0 ˝ Im/.K.s/ � I� ˝ NF /x:



We require this equality to hold for every x (restrictive

compared to (2c) only if part of the state space is not excited

by w). This implies .�0 ˝ Im/.K.s/ � I� ˝ NF / D 0, which is

signal independent and obviously guarantees (2c).

The last, and only nontrivial, deviation from [10] is that

we now impose an additional constraint on the controller

structure. We require that

K.s/ D

2

6
6
6
4

K11.s/ e�shK12.s/ � � � e�shK1�.s/

e�shK21.s/ K22.s/ � � � e�shK2�.s/
:::

:::
: : :

:::

e�shK�1.s/ e�shK�2.s/ � � � K��.s/

3

7
7
7
5

(6)

for some proper Kij .s/ and h > 0. This structure reflects our

assumption that any information exchange between different

agents is delayed by at least h time units.

The formal statement of the problem considered in this

paper is then as follows:

minimize kT´wk2 (7a)

subject to .�0 ˝ Im/.K.s/ � I� ˝ NF / D 0 (7b)

K is of the form (6) (7c)

We address (7) under the following assumptions:

A1: .A; Bu/ is stabilizable,

A2:

�

A � j!I Bu

C´ D´u

�

has full column rank 8! 2 R,

A3: D0
´uD´u D I ,

A4: �0� D 1 and all entries in � are non-zero,

A5: the matrix NA ´ A C Bu
NF is Hurwitz.

Assumptions A1,2 are necessary for the well-posedness of

the unconstrained local problems and A5 is necessary for

the stabilizability of the overall system. The normalization

assumptions in A3,4 are introduced to simplify the exposition

and can be relaxed. Finally, if �i D 0, then the i th system

is not a part of the coordination problem and can therefore

be excluded from the analysis.

IV. PROBLEM SOLUTION

To formulate the solution, we need the following algebraic

Riccati equation (ARE):

A0X˛ C X˛A C C 0
´C´

� .X˛Bu C C 0
´D´u/.B 0

uX˛ C D0
´uC´/ D 0; (8)

This is the state-feedback ARE associated with the uncoor-

dinated version of the problem. It is known [11, Cor. 13.10]

that A1–3 guarantee that its stabilizing solution X˛ � 0

exists. We also need the Lyapunov equation

NA0Y C Y NA C . NF � F˛/0. NF � F˛/ D 0; (9)

where F˛ ´ �B 0
uX˛ � D0

´uC´, and the matrix function

Yh ´ Y � e
NA0hY e

NAh D
Z h

0

e
NA0� . NF � F˛/0. NF � F˛/e

NA� d�:

(limh!0 Yh D 0 and, as NA is Hurwitz, limh!1 Yh D Y ).

C e
�sh

Fig. 3. Overall optimal controller corresponding to (11)

The main result of this paper, whose proof is postponed

to ÷IV-B, is formulated below.

Theorem 4.1: Let assumptions A1–5 be satisfied. Then the

optimal performance in (7) is

kT´wk2
2 D

�
X

iD1

tr.B 0
wi

X˛Bwi
/ C

�
X

iD1

�2
i tr.B 0

wi
YBwi

/

C
�

X

iD1

.1 � �2
i / tr

�

B 0
wi

YhBwi

�

(10)

and it is attained by

ui .t/ D NF xi .t/C.F˛� NF / Oxi .t/��i .F˛� NF /e
NAh Nx.t�h/; (11)

where

Oxi .t/ ´ e
NAhxi .t � h/

C
Z t

t�h

e
NA.t��/Bu

�

ui .�/ � NF xi .�/
�

d�; (12)

and Nx is the state of the center of mass defined in (1). O

A. Discussion

In this subsection, we discuss some properties of the

optimal control law in Theorem 4.1.

1) Computational scalability and structure: An important

consequence of Theorem 4.1 is that the two scalability

properties of the solution to (2) discussed in Section II extend

to the case with delayed information exchange. First, as in

the case of h D 0, we only need to solve ARE (8) to form

the optimal control law in Theorem 4.1. The computational

effort is thus independent of the number of agents �. Second,

the optimal control law (11) comprises three terms, where

the the first two are completely decentralized. As for the last

term, the only global computation needed to form it is a

single (scaled) averaging operation as in (1).

The structure of the overall controller is shown in Fig. 3.

This structure is identical to that presented in Fig. 1 modulo

the delay e�sh in the rank-one coordination term.

2) Interpretation: It may be useful to view (11) in terms

of the signals

vi ´ ui � NF xi ; i D 1; : : : ; �:

With vi D 0, 8i D 1; : : : ; �, constraint (7b) would be

satisfied without any need to exchange information between

the agents. The signals vi may thus be viewed as additional

degrees of freedom in the control, which are brought about

by the possibility to exchange information with other agents.

Substituting ui D NF xi C vi into (4), the dynamics of the

i th agent can be rewritten as

Pxi .t/ D NAxi .t/ C Bwi
wi .t/ C Buvi .t/: (40)



xi

e
�sh Nx�i

viui

F˛ � NF

˘.s/

e
NAh

e
�sh

�i

NF

-

Fig. 4. A realization of the optimal controller for the i th system

This form helps to explain the signal Ox defined by Eqn. (12).

Indeed, in terms of vi this equation reads

Oxi .t/ D e
NAhxi .t � h/ C

Z t

t�h

e
NA.t��/Buvi .�/d�; (120)

which is the mean-squared prediction of xi .t/ based on xi .�/,

� � t � h, cf. [13, Lesson 16].

Now, rewrite the control law (11) in terms of vi :

vi .t/ D .F˛ � NF / Oxi .t/ � �i .F˛ � NF /e
NAh Nx.t � h/ (110)

D .F˛ � NF / Oxi .t/ � �i

�
X

j D1

�j .F˛ � NF / Oxj .t/

(the last expression can be verified by totting up the right-

hand side of (120) and using the fact that Nv ´
P

j �j vj D 0).

This structure bears resemblance with the control law in the

delay-free (h D 0) case, (3), which can be presented as

vi .t/ D .F˛ � NF /xi.t/
„ ƒ‚ …

vloc;i .t/

��i

�
X

j D1

�j .F˛ � NF /xj .t/
„ ƒ‚ …

vloc;j .t/

; (30)

where vloc;i is the optimal control law for the i th subsystem

in the absence of the coordination constraint (2c). The second

term can then be interpreted as the least harmful correction to

locally optimal strategy to enforce (2c) and it is a weighted

average of the locally optimal control signals of all agents. If

h > 0, (30) cannot be applied because vloc;j .t/ is available to

agents i ¤ j only after h time units. The control law (110)

then substitutes all vloc;j .t/ with their best (in the mean-

squared sense) predictions, which are available to all agents.

3) Implementation: Denote by ˘ the operator vi 7! Oxi in

(120). This is an LTI distributed-delay system, whose impulse

response is e
NAt Bu1Œ0;h�.t/. As such, its transfer function is

˘.s/ D
Z h

0

e�.sI� NA/� d�Bu: (13)

A possible implementation of the optimal controller of Theo-

rem 4.1 can then be as depicted in Fig. 4. This implementa-

tion contains two infinite-dimensional dynamical elements:

the pure delay e�sh, which is easy to implement, and the

distributed-delay system ˘ . The latter is an intrinsic part of

many optimal control strategies, see, e.g., [14]–[18], which

study problems with a single delay.

Although distributed-delay systems can be safely imple-

mented [19]–[21], their implementation might be numeri-

cally involved. The implementation in our case, however, is

simplified because the matrix NA is Hurwitz (by A5). Indeed,

it is readily seen that (13) can be equivalently written as

˘.s/ D .sI � NA/�1.Bu � e
NAhBue�sh/; (130)

NG´w
NG´u

NGxw
NGxu

e
�shKh

w´

vx

Fig. 5. Equivalent reformulation with a uniform loop delay and biased
control input via u D .Im ˝ NF /x C v

whose singularities at the eigenvalues of NA are removable.

This transfer function can be implemented as

P�i .t/ D NA�i .t/ C Buvi .t/ � e
NAhBuvi .t � h/; (14)

which is a combination of a (stable) finite-dimensional

system and a pure delay element, whose implementations

are standard. Although this implementation involves pole-

zero cancellations of all eigenvalues of NA, the cancellations

are stable. Hence, the implementation via (14) is internally

stable and thus valid.

Finally, the only matrix exponential involved in imple-

menting the blocks in Fig. 4 is e
NAh. Because NA is Hurwitz,

the computation of the optimal controller parameters is

numerically stable even for large h.

B. Proof of Theorem 4.1

The first step in solving (7) is to reduce it to a constrained

H 2 problem, in which the unorthodox delay structure in

(6) is replaced by a single delay element that applies to

all measurement channels uniformly. This is done in the

following lemma:

Lemma 4.2: All K satisfying (7b) and (7c) are of the form

K.s/ D I� ˝ NF C e�shKh.s/;

where Kh.s/ is any proper transfer function verifying

.�0 ˝ Im/Kh D 0: (15)

Proof: If K is of the form (6), the j th block-column

of (7b) reads (�j ¤ 0 by A4)

�j Kjj .s/ C e�sh
X

i¤j

�i Kij .s/ � �j
NF D 0

It is readily seen that the latter condition holds iff

Kjj .s/ D NF C e�sh QKjj .s/

for some QKjj satisfying �j
QKjj C

P

i¤j �iKij D 0. The result

follows by repeating these arguments for every j .

We now substitute K with the right-hand side of the

expression in Lemma 4.2, which is equivalent to shifting

ui D NF xi C vi , where vi is a new control signal. This step

replaces constraint (7c) with the unified loop delay e�sh,

transforming (7) into the H 2 problem depicted in Fig. 5,

where Kh is now subject to (15), and the generalized plant

is given by

� NG´w
NG´u

NGxw
NGxu

�

D

2

4

I� ˝ NA Bw I� ˝ Bu

I� ˝ NC´ 0 I� ˝ D´u

I�n 0 0

3

5 ; (16)



where NC´ ´ C´ C D´u
NF .

With the delay applied uniformly to all components of

the controller, the problem in Fig. 5 subject to (15) can be

solved using the approach in [10]. Due to space limitations,

we only provide an outline of the steps involved in deriving

the control law (11). For details we refer to [10, ÷III.B].

1) Decoupling: The first step is to decouple the local

problems and the coordination constraint. To this end, let U

be a unitary matrix such that U� D e1 (this is the singular

value decomposition of �, so U exists) and set

Qx ´ .U ˝ In/x; Qv ´ .U ˝ Im/v; Q́ ´ .U ˝ Iq/´:

This coordinate transformation decouples the problem into

� �1 decoupled delayed H 2 problems and one problem with

the predefined control law Qv1 D 0. Although the transfor-

mation couples the disturbances in the H 2 formulation, this

does not affect the solution of the state-feedback problem.

2) Single-delay H 2 problems in transformed coordinates:

Following the solution steps in [17] (which addresses the

output-feedback version of the problem), we end up with

Qvi .t/ D F

�

e
NAh Qxi .t � h/ C

Z t

t�h

e
NA.t��/Bu Qvi .�/d�

�

for i D 2; : : : ; �, where F is the optimal feedback gain of

the delay-free H 2 problem associated with the generalized

plant (16). It can be shown that F D F˛ � NF . The overall

control law in the transformed coordinates is then

Qv.t/ D
�

.I� � e1e0
1/ ˝ .F˛ � NF /

�
�

.I� ˝ e
NAh/ Qx.t � h/

C
Z t

t�h

�

I� ˝ .e
NA.t��/Bu/

�

Qv.�/d�

�

D
�

I� ˝ .F˛ � NF /
�
�

.I� ˝ e
NAh/ Qx.t � h/

C
Z t

t�h

�

I� ˝ .e
NA.t��/Bu/

�

Qv.�/d�

�

�
�

.e1e0
1/ ˝ ..F˛ � NF /e

NAh/
�

Qx.t � h/;

where the fact that .e0
1 ˝ Im/ Qv D 0 was used to obtain the

last equality.

3) Return to the original coordinates: This last stage just

follows the steps of the proof of [10, Thm. 3.1].

To derive (10) note that since U is unitary,

kT´wk2
2 D kT Q́wk2

2 D
P

i kT Q́i wk2
2:

Set Bi ´ ..e0
i U / ˝ I /Bw and note that the observability

Gramian associated with . NA; NC´/ is X˛ C Y . Then

kT Q́i wk2
2 D

(

tr.Bi .X˛ C Y /Bi / if i D 1

tr.Bi .X˛ C Yh/Bi / otherwise

(cf. [17, Lemma 9]). Hence,

kT´wk2
2 D tr

�

B 0
w .U 0 ˝ In/

�

.e1e0
1/ ˝ .X˛ C Y /

C .I� � e1e0
1/.X˛ C Yh/

�

.U 0 ˝ In/Bw

�

D tr
�

B 0
w

�

.��0/ ˝ .Y � Yh/ C I� ˝ .X˛ C Y /
�

Bw

�

;

where the last equality follows by the facts that U is unitary

and Ue1 D �. Straightforward algebra gives then (10).

V. COST OF COORDINATION PER AGENT

In this section we study the performance of each system

in (4) under the optimal control law (11). Namely, we

quantify the H 2 norm of the closed-loop system T´i w from

the aggregate disturbance w to the local regulated signal ´i

defined in (5).

Proposition 5.1: Let Ji .h/ ´ kT´i wk2
2. Then

Ji .h/ D tr.B 0
wi

X˛Bwi
/ C tr.B 0

wi
YhBwi

/

C �2
i

�
X

j D1

�2
j tr

�

B 0
wj

e
NA0hY e

NAhBwj

�

(17)

and terms containing Bwj
reflect the effect of wj on ´i .

Proof: Omitted because of space limitations.

Two quantities that appear in the right-hand side of (17)

are important for understanding properties of Ji .h/. The term

˛i ´ tr.B 0
wi

X˛Bwi
/ is the performance of the i th agent in

the absence of the coordination constraint (7b). The term

ıi .h/ ´ tr.B 0
wi

YhBwi
/ D

Z h

0

k. NF � F˛/e
NA� Bwi

k2
F d�

would be the deterioration of the local uncoordinated H 2

performance due to the delay h in the control law ui .t/ D
NF xi .t/Cvi .t �h/ with free vi . In other words, ıi.h/ reflects

the “H 2 sensitivity” of the generalized plant in Fig. 5 to a

loop delay. It is an increasing function of h. Moreover, if

. NF � F˛/.sI � NA/�1Bwi
¤ 0, ıi .h/ is strictly increasing for

almost all h.

A. Discussion

In the remaining of the section we investigate the effect

of the delay time h and the number of agents � on Ji .h/.

1) Gains and losses due to delay: The effect of the inter-

action delay on the performance of the i th agent is

Ji .h/ � Ji .0/ D ıi .h/ � �2
i

�
X

j D1

�2
j ıj .h/ (18a)

D .1 � �4
i /ıi .h/ � �2

i

X

j ¤i

�2
j ıj .h/: (18b)

Because �i < 1, the sensitivity of ´i to the local wi ,

quantified by the first term in (18b), generically increases as

h grows. At the same time, the effect of disturbances applied

to the other subsystems weakens.

Although the total performance of the agents cannot be

improved due to a delay (cf. (10)), it is not necessarily true

for individual agents. It may happen that Ji .h/ < Ji .0/, i.e.,

the presence of a delay in information exchange may actually

benefit some agents. Intuitively, these are the agents that

experience relatively low level of exogenous disturbances,

so they might not even benefit from exchanging information

with the other agents. Furthermore, the second term in the

right-hand side of (18a) can be thought of as the average

delay sensitivity across the agents, scaled by �2
i . Thus,

Ji .h/ < Ji .0/ if the delay sensitivity of the i th agent is

smaller than the scaled average one.



2) Cost of coordination in large groups: The quantity

�i.h/ ´ Ji .h/ � ˛i

may be interpreted as the cost of coordination for the i th

agent. It quantifies the deterioration of the local performance

due to the need to satisfy the coordination constraint (7b).

To see a generic behavior of �i .h/ as a function of � in the

situation when all �i ! 0 as � ! 1, consider the case of

�i D �j D 1=
p

� and Bwi
D Bwj

8j D 1; : : : ; � and assume that . NF � F˛/.sI � NA/�1Bwi
¤ 0.

The cost of coordination is then

�i .h/ D ıi.h/ C 1

�
tr

�

B 0
wi

e
NA0hY e

NAhBwi

�

;

D ıi.h/ C 1

�

Z 1

h

k. NF � F˛/e
NA� Bwi

k2
F d�

which is a decreasing function of �. In the delay-free case

�i .0/ vanishes as � ! 1 (see also [10, ÷III-C.3]). This is

no longer true if h > 0, in which case �i .h/ is lowerbounded

by ıi .h/ > 0. In fact, the cost of coordination with h > 0 is

higher than that in the delay-free case for all � � 2. Indeed,

the increment of the cost of coordination due to h is

�i .h/ � �i .0/ D Ji .h/ � Ji .0/ D
�

1 � 1
�

�

ıi.h/ > 0

and it is a strictly increasing function of �.

Finally, as h ! 1, the cost of coordination approaches

ıi .1/ D tr.B 0
wi

YBwi
/, which is (expectably) the cost of

satisfying (7b) in the case when no coordination between

agents is allowed (so that each agent has to use the feedback

gain NF to satisfy (7b)).

VI. CONCLUSIONS

We have studied a large-scale coordination problem, in

which a homogeneous group of autonomous agents are

coupled through a constraint on their average state. In order

to satisfy the coordination requirement, the agents must coor-

dinate their actions over a delayed communication channel.

It has been demonstrated that several key properties of

the solution to the delay-free version of the problem, which

was derived in [10], extend to the case with delayed in-

formation exchange. Namely, the optimal control law is

decomposed into a diagonal term complemented by a rank-

one component, which is now delayed. While the first term

is completely decentralized, the latter can be implemented by

a single averaging operation. Moreover, to form the solution,

we only need to solve an optimal control problem for a

stand-alone agent. This means that the computational effort

required to obtain the solution is independent of the number

of agents.

Two other properties of the derived optimal solution are

worth mentioning. First, adding the delay constraint on

the information exchange does not introduce any additional

dynamics to the rank-one coordination term of the optimal

controller. The only complexity brought about by the delay

is the introduction of a dead-time compensation element

into the local control law for each agent. Second, we have

derived an analytic expression for the performance of each

agent under the optimal control law. Unlike the delay-free

case, where the cost of satisfying the coordination constraint

vanishes as the number of agents increases, the presence of

delays renders the cost of coordination lowerbounded by a

(generically) nonzero quantity, which grows with the delay.
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