
Low-rank Optimization with Convex Constraints

CHRISTIAN GRUSSLER ∗, ANDERS RANTZER ∗, AND PONTUS GISELSSON ∗

Abstract. The problem of low-rank approximation with convex constraints, which often appears in data anal-
ysis, image compression and model order reduction, is considered. Given a data matrix, the objective is to find an
approximation of desired lower rank that fulfills the convex constraints and minimizes the distance to the data matrix
in the Frobenius norm. The problem of matrix completion can be seen as a special case of this.

Today, one of the most widely used techniques is to approximate this non-convex problem using convex nu-
clear norm regularization. In many situations, this technique does not give solutions with desirable properties. We
instead propose to use the largest convex minorizer (under-approximation) of the Frobenius norm and the rank
constraint as a convex proxy. This optimal convex proxy can be combined with other convex constraints to form an
optimal convex minorizer of the original non-convex problem. With this approach, we get easily verifiable conditions
under which the solutions to the convex relaxation and the original non-convex problem coincide. Several numeri-
cal examples are provided for which that is the case. We also see that our proposed convex relaxation consistently
performs better than the nuclear norm heuristic, especially in the matrix completion case.

The expressibility and computational tractability is of great importance for a convex relaxation. We provide
a closed-form expression for the proposed convex approximation, and show how to represent it as a semi-definite
program. We also show how to compute the proximal operator of the convex approximation. This allows us to use
scalable first-order methods to solve convex approximation problems of large size.

Key words. Low-rank approximation, Douglas-Rachford splitting, Matrix Completion, k-support norm, semi-
definite programming, matrix norms, non-convex optimization.

1. Introduction. The main reason for low-rank approximation theory lies in the idea of
studying only the few essential components of an otherwise complex operator. For instance,
it is well-known that the rank of a matrix N ∈Rn×m equals the dimension of its column space.
In other words, if a matrix has low rank then only a small number of basis vectors is needed
to span its range and a possibly high dimensional subspace in Rm can be disregarded when
studying y = Nx. Hence, if N is sufficiently close to a lower rank matrix, it may be sufficient
to study the approximation y≈ N̂x where rank(N̂)< rank(N).

With this concept in mind, one can understand why many areas such as image analysis,
model order reduction, multivariate linear regression, etc. desire a low-rank approximation
(see [3, 12, 11, 14, 33, 40, 49, 44, 43, 52, 56, 64, 65]). In Sections 6 to 9 some of these
applications are explained in greater depth.

For unitarily invariant norms an optimal low-rank approximation can be found by per-
forming a singular value decomposition (SVD) (see Section 2). Unfortunately, these ap-
proximations usually do not fulfill structural constraints such as element-wise non-negativity,
Hankel-structure, prescribed entries, etc. (see [7, 12, 16, 36, 49, 52, 56, 64]). Only for a few
known cases an explicit solution to the constrained low-rank approximation problem can be
determined (see [3, 49, 64]). To this end, other concepts based on convex optimization have
been developed (see [14, 24, 44, 43, 56]). Many of them rely on nuclear norm regulariza-
tion, which allows to incorporate any convex constraint (see Subsection 5.1). Nevertheless,
the question of optimality is not addressed, unless one aims for a minimum rank solution
(see [12, 56]). Besides the nuclear norm heuristic, other commonly used heuristics, e.g. for
element-wise non-negativity are briefly considered in Section 6.

In this work, we study the optimal low-rank approximation problem with a prescribed
target rank and convex constraints (see Problem 1). This is a continuation of the authors
work [31]. It is shown that a globally optimal solution to our non-convex problem can often be
determined by convex optimization (see Section 3). In particular, if the SVD-approximation
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of a matrix is unique, then it is a solution to a semi-definite program (SDP). Even though the
approach presented can be linked to the regularization method in [44, 43], we will see that it
is essentially parameter free.

In Section 4 some computational aspects of the convexified problem are discussed. First,
an SDP-representation of the convex proxy is presented, which allows us to compute solutions
for small scale examples with SDP-representable constraints. Subsequently, we derive the
so-called Douglas-Rachford iterations in order to deal with examples of larger size and suffi-
ciently simple constraints (see Subsection 4.2). As a consequence, we will be able to prove
local convergence of the Douglas-Rachford iterations of the originally non-convex problem.

The paper is organized as follows. In Section 2 we recap the unconstrained low-rank
approximation problem and define our main problem. The main approach is derived and
discussed in Section 3 with some computational aspects examined in Section 4. Other known
approaches, including the nuclear norm heuristic are discussed in Section 5. In Sections 6
to 9 some applications are presented that show the usefulness of this approach. Moreover, the
examples are chosen to illustrate some properties and drawbacks of this method. Finally, we
draw a conclusion and discuss future research in Section 10.

2. Background. The following notation for real matrices and vectors X = (xi j) ∈Rn×m

is used throughout this paper. If X = XT , then we write X ∈ S. Moreover, if X is positive def-
inite (semi-definite) we write X � 0 (X � 0). We also use these notations to describe the rela-
tion between two matrices, e.g. A� B means A−B� 0. The non-increasingly ordered singu-
lar values of X ∈Rn×m, counted with multiplicity, are denoted by σ1(X)≥ ·· · ≥σmin{m,n}(X).
Further we define by 〈X ,Y 〉 := ∑

m
i=1 ∑

n
j=n xi jyi j = trace(XTY ), X ,Y ∈ Rn×m the Frobenius

inner-product on the Hilbert space Rn×m. Correspondingly, the Frobenius norm is defined as

‖X‖F :=

√
m

∑
i=1

m

∑
j=n

x2
i j =

√√√√min{m,n}

∑
i=1

σ2
i (X).

The Frobenius norm is unitarily invariant, i.e. ‖UXV‖F = ‖X‖F for all unitary matrices U
and V . A complete characterization of all unitarily invariant norms is given in [39].

This work mainly considers the norms that are found in the following Lemma, which is
proven in Subsection A.3.

LEMMA 1. Let M ∈ Rn×m, r ∈ N such that 1 ≤ r ≤ q := min{m,n} and Pr denote the
set of all orthogonal projections of rank r. Then

(1) ‖M‖r :=

√
r

∑
i=1

σ2
i (M) =

√
max
P∈Pr
〈P,MT M〉

is a unitarily invariant norm with dual norm

‖M‖r∗ := max
‖X‖r≤1

〈M,X〉= max
∑

r
i s2

i ≤1

[
r

∑
i=1

σi(M)si + sr

q

∑
i=r+1

σi(M)

]
.

Moreover,

‖M‖1 ≤ ·· · ≤ ‖M‖q = ‖M‖F = ‖M‖q∗ ≤ ·· · ≤ ‖M‖1∗.(2)
rank(M)≤ r if and only if ‖M‖r = ‖M‖F = ‖M‖∗r.(3)

An explicit expression of ‖ · ‖r∗ was first derived in [25]. Notice that ‖M‖1 = σ1(M)

is equal to the spectral norm, and its dual norm ‖M‖1∗ = ∑
min{m,n}
i=1 σi(M) is equal to the
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nuclear/trace norm. These norms can be formulated using convex linear matrix inequalities
(see [24, 56]). In Section 3 we will see that the same holds true for ‖ · ‖r and their duals.

Recently, the vector version of the r∗ norm has appeared as ”k-support norm” (see [4]).
As a result, some authors have adopted that name for the matrix case (see [22, 42, 50]).
However, as for other vector/matrix norm pairings e.g. the `1 norm of the singular values
is called the nuclear norm, we have chosen the r∗ norm notation to distinguish between the
matrix and vector case.

2.1. Statements. Let us turn to the underlying problem of this work. We start with the
traditional optimal low-rank approximation problem in Rn×m, which is formulated as follows.
Given N ∈ Rn×m and r ∈ N such that 1≤ r ≤min{m,n}, find a solution M? ∈ Rn×m to

(4)
minimize ‖N−M‖2

F

subject to rank(M)≤ r

In case of the Hilbert-Schmidt norm, the natural operator generalization of the Frobeninus-
norm, this problem has been solved by Schmidt and generalized by Mirsky to unitarily in-
variant norms (see [3]). The result is stated next.

PROPOSITION 1. Let N ∈ Rn×m and r ∈ N such that 1≤ r ≤min{m,n}, then

min
M∈Rn×m

rank(M)≤r

‖N−M‖= ‖diag(σr+1(N), . . . ,σmin{m,n}(N))‖,

holds for any unitarily invariant norm ‖ · ‖.

If an SVD of N is given by N = ∑
min{m,n}
i=1 σiuivT

i , a solution to (4) can be derived as M? =
svdr(M) := ∑

r
i=1 σiuivT

i , which we refer to as a standard SVD-approximation. This solution
may not be unique if the norm does not depend on all singular values or if
σr(N) = σr+1(N). Nevertheless, with the Frobenius norm and σr(N) 6= σr+1(N) the unique-
ness of X? is guaranteed, which on the other hand does not account for additional constraints.

In this work we look at the following extension of (4).

PROBLEM 1. Given N ∈ Rn×m, find M? ∈ Rn×m with rank(M?)≤ r such that

min
M∈Rn×m

rank(M)≤r

[
1
2
‖N−M‖2

F +g(M)

]
=

1
2
‖N−M?‖2

F +g(M?),

where g : Rn×m→ R∪{∞} is a given closed proper convex functional (see Definition A.2).

Compared to (4), Problem 1 has an additional functional g that can be used to add information
about the desired solution. Both problems are non-convex due to the rank constraint. Nev-
ertheless, we will see in Section 3 that they can often be solved by convex optimization. In
particular, if (4) has a unique solution, it is possible to determine it by solving a semi-definite
program instead of an SVD.

In the following we often think of g as g(M)≡ χC (M) where

χC (M) :=

{
0, M ∈ C

∞, M /∈ C

is defined to be the characteristic function of a (convex) set C ⊂ Rn×m – within the opti-
mization literature often called indicator function. We also use χrank(M)≤r(M) to denote the
characteristic function of the set of matrices which have at most rank r.

Notice that Problem 1 also deals with cases where N = 0, which then covers the class of
matrix completion problems (see Section 7).
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3. The r∗ approach. In the following we consider an attempt of finding an optimal so-
lution to Problem 1. It is a continuation of the authors work [31]. The insights obtained here
will allow later to generalize and improve upon current standard approaches (see Section 7).
The main idea is to derive a convex minorizer (under-approximation) of the non-convex cost-
function in Problem 1 by means of Fenchel-duality (see Subsection A.2). We denote by
f ∗ and f ∗∗ the conjugate and bi-conjugate functionals of f : Rn×m → R∪{∞} (see Defini-
tion A.1).

THEOREM 1. Let N ∈Rn×m and r ∈N such that 1≤ r≤min{m,n}. Then the conjugate
and bi-conjugate functionals of f (M) := 1

2‖N−M‖2
F +χrank(M)≤r(M) are given by

f ∗(D) =
1
2
‖N +D‖2

r −
1
2
‖N‖2

F ,(5)

f ∗∗(M) =
1
2
‖M‖2

r∗−〈N,M〉+ 1
2
‖N‖2

F .(6)

Proof. Let N ∈ Rn×m and f (M) := 1
2‖N−M‖2

F +χrank(M)≤r(M). Then,

f ∗(D) = sup
M∈Rn×m

rank(M)≤r

[
〈D,M〉− 1

2
‖N−M‖2

F

]

= sup
M∈Rn×m

rank(M)≤r

−1
2
‖N−M+D‖2

F + 〈D,N〉+ 1
2
‖D‖2

F

=−1
2
‖N +D‖2

F +
1
2
‖N +D‖2

r + 〈D,N〉+ 1
2
‖D‖2

F

=−1
2
‖N‖2

F +
1
2
‖N +D‖2

r

where the third equality follows by Proposition 1. Hence,

f ∗∗(M) = sup
D∈Rn×m

[
〈D,M〉+ 1

2
‖N‖2

F −
1
2
‖N +D‖2

r

]
= sup

D∈Rn×m

[
〈D−N,M〉+ 1

2
‖N‖2

F −
1
2
‖D‖2

r

]
=

1
2
‖N‖2

F −〈N,M〉+ 1
2
‖M‖2

r∗.

It is possible to show that f (M) ≥ f ∗∗(M) for all M ∈ Rn×m, i.e. f ∗∗ is a convex minorizer
of f . In fact, f ∗∗ it is the largest convex minorizer of f (see [37, Theorem 1.3.5]), i.e. the
point-wise supremum of all affine functions majorized by f (see Figure 1). This allows us to
construct the following dual and bi-dual problem to Problem 1:

− min
D∈Rn×m

[
g∗(−D)+

1
2
‖N +D‖2

r −
1
2
‖N‖2

F

]
,(A)

min
M∈Rn×m

[
1
2
‖M‖2

r∗−〈N,M〉+ 1
2
‖N‖2

F +g(M)

]
.(B)

Observe that f ∗∗+g is the largest convex minorizer of f +g with g is a summand. Therefore,
we propose to use (B) instead of the nuclear norm heuristic (see (25) in Subsection 5.1) as
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− f ∗(D1)

− f ∗(D2)

− f ∗(D3)

− f ∗(D4)

− f ∗(D5)

M

Figure 1: Schematic plot of f (M), f ∗∗(M) and tangents through − f ∗(Di).

a convex proxy to Problem 1. We will see that it has many interesting properties and that
sometimes it can be guaranteed to solve the original non-convex problem. Theorem 1 gives
the following duality result through Fenchel-duality (see Lemma A.1 and Proposition A.3).

PROPOSITION 2. Let N ∈ Rn×m and g : Rn×m → R∪ {∞} be a closed proper convex
functional, then for all r ∈ N such that 1≤ r ≤min{m,n} one has

min
M∈Rn×m

rank(M)≤r

[
1
2
‖N−M‖2

F +g(M)

]
≥− min

D∈Rn×m

[
g∗(−D)+

1
2
‖N +D‖2

r −
1
2
‖N‖2

F

]
(C)

= min
M∈Rn×m

[
1
2
‖M‖2

r∗−〈N,M〉+ 1
2
‖N‖2

F +g(M)

]
.

Since the original Problem 1 is non-convex, there is a duality-gap for some choices of g
(see Section 8). This is reflected by the inequality in (C). However, there are situations with-
out a duality-gap. Next, we present a number of important cases.

In the following, the set of minimizers of a functional f over a given set S is denoted by
argminS f . If argminS f = {x?} is just a singleton, we write x? = argminS f .

PROPOSITION 3. Assume that (B) has a minimizer M? with rank(M?)≤ r. Then,

argmin
M∈Rn×m

rank(M)≤r

[
1
2
‖N−M‖2

F +g(M)

]
= argmin

M∈Rn×m
rank(M)≤r

[
1
2
‖M‖2

r∗−〈N,M〉+ 1
2
‖N‖2

F +g(M)

]
.

Proof. The result follows by combining Proposition 2 with (3) in Lemma 1.

Thus obtaining a rank-r solution to the convex relaxation problem (B) implies solving the
original non-convex problem. Another way to state this result, that gives additional insight
on the solution to Problem 1, is as follows.

THEOREM 2. Assume that D? is a solution to (A) and σr(N +D?) 6= σr+1(N +D?) or
σr(N+D?) = 0. Then there is no duality gap in (C) and svdr(N+D∗) is the unique minimiz-
ing argument of Problem 1, i.e.

svdr(N +D?) = argmin
M∈Rn×m

rank(M)≤r

[
1
2
‖N−M‖2

F +g(M)

]
.
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This result provides a simple sufficient condition for the uniqueness of a solution to Prob-
lem 1. However, it is not a necessary condition. A proof of Theorem 2 is given in a more
general setting in Theorem 3, which also allows us to say something about the rank of the
convex relaxation solution if there is a duality-gap.

THEOREM 3. Let D? and M? be solutions to (A) and (B), respectively. Further suppose
that an SVD of N + D? is given by N + D? = ∑

min{m,n}
i=1 σi(N + D?)uivT

i with
σr−t(N+D?) 6=σr−t+1(N+D?)= · · ·=σr(N+D?)= · · ·=σr+s(N+D?) 6=σr+s+1(N+D?),
where t = r and s = min{m,n}− r if σ1 = σr and σmin{m,n} = σr, respectively. Then there
exists T ∈ Rs+t×s+t with T � 0, ‖T‖1 ≤ 1 and ‖T‖1∗ = t such that

M? =
r−t

∑
i=1

σi(N +D?)uivT
i +σr(N +D?)

(
ur−t+1 . . . ur+s

)
T
(
vr−t+1 . . . vr+s

)T
.

In particular, rank(M?) ≤ r+ s and if σr(N +D?) 6= σr+1(N +D?) or σr(N +D?) = 0 then
M? = svdr(N +D?).

Proof. If D? and M? are solutions to (A) and (B), respectively, then by Proposition A.3 it
holds that f ∗∗(M?) = 〈D?,M?〉− f ∗(D?), where f ∗ and f ∗∗ are given by (5) and (6). Hence,
by Proposition A.4 it follows that

M? ∈ ∂D
1
2
‖N +D‖2

r

∣∣∣∣
D=D?

= ‖N +D?‖r∂D‖N +D‖r|D=D?

and invoking Proposition A.5 proves the result.

Observe that whenever (B) does not have a unique solution, it must hold by Proposition 1
and Theorem 3 that σr(N +D?) = σr+1(N +D?) for all solutions D? to (A). Furthermore,
Theorem 3 implies that svdr(N) with σr(N) 6= σr+1(N), can be determined by solving a
convex problem.

COROLLARY 1. Let N ∈ Rn×m and r ∈ N be such that 1≤ r ≤min{m,n}. Then

min
M∈Rn×m

rank(M)≤r

1
2
‖N−M‖2

F =
1
2
‖N‖2

F −
1
2
‖N‖2

r = min
M∈Rn×m

[
1
2
‖M‖2

r∗−〈N,M〉+ 1
2
‖N‖2

F

]

and svdr(N) ∈ argminM∈Rn×m
[ 1

2‖M‖
2
r∗−〈N,M〉

]
. If σr(N) 6= σr+1(N) or σr = 0 then

svdr(N) = argmin
M∈Rn×m

[
1
2
‖M‖2

r∗−〈N,M〉
]
.

Proof. Since g = 0 implies g∗(D)< ∞ ⇔ D = 0, the result follows by Theorem 3.

Finally, notice that several extensions of Problem 1 are covered by the preceding results. For
instance, one can consider the weighted case

min
M∈Rn×m

rank(M)≤r

[
1
2
‖W (N−M)‖2

F +g(M)

]
(7)

where W ∈ Rl×n and rank(W ) = n. Let g̃(M̃) := g(W †M̃), where W † denotes the pseudo-
inverse of W (see [39]). Since rank(M̃) = rank(W †M̃) = rank(M), one can reformulate (7)
such that it fits the formulation of Problem 1:

min
M∈Rn×m

rank(M)≤r

[
1
2
‖W (N−M)‖2

F +g(M)

]
= min

M̃∈Rn×m

rank(M̃)≤r

[
1
2
‖WN− M̃‖2

F + g̃(M̃)

]
.
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Note that ‖W (N−M)‖2
F = trace((N−M)TW TW (N−M)) =: 〈N−M,N−M〉W T W defines

another inner product and norm. A suitable W may enable us to satisfy the requirements of
Theorem 2, where the Frobenius norm fails to do so.

3.1. Geometric interpretation. Assuming that g(M)≡ χC (M) for some closed convex
set C ⊂ Rn×m, the preceding results offer an insightful geometric interpretation. Note that
(B) has the same solutions as

min
M∈C
〈N,M〉=c

‖M‖r∗,(8)

where c := 〈N,M?〉 and M? is a solution to (B). The solutions of (8) can be found by studying
the set Bε̄

r∗∩H ∩C where

Bε
r∗ := {X : ‖X‖r∗ ≤ ε},
H := {X : 〈N,X〉= c}

and ε̄ := min{ε ≥ 0 : Bε
r∗ ∩H ∩C 6= /0}. Theorem 2 states, if σr(N +D?) 6= σr+1(N +D?)

then Bε̄
r∗ ∩H ∩C consists of a single element. This can also be understood geometrically

with the help of the following Lemma, which generalizes the corresponding result for the
nuclear norm and r = 1.

LEMMA 2. The set of the extreme points of the unit-ball B1
r∗ is

E := {X ∈ Rn×m : ‖X‖F = 1, rank(X)≤ r}.

Hence, B1
r∗ = conv(E), where conv(·) denotes the convex hull.

Proof. By the triangle inequality and (3) in Lemma 1 it follows that conv(E) ⊂ B1
r∗

(see Figure 2a). Moreover, by (1) in Lemma 1 it holds that

∀N ∈ Rn×m : sup
M∈conv(E)

〈N,M〉= ‖N‖r = sup
M∈B1

r∗

〈N,M〉.(9)

Since conv(E) and B1
r∗ are closed sets, (9) holds if and only if B1

r∗ = conv(E). If a point
M̄ ∈ E is not an extreme point of E, then M̄ = ∑i αiMi, ∑i αi = 1, αi > 0, Mi ∈ K \{M̄} for
all i. Thus, by the Cauchy-Schwarz inequality, we conclude that 〈M̄,Mi〉 = 1 for all i and
M̄ = Mi, which is a contradiction.

Therefore, a geometric interpretation of σr(N +D?) 6= σr+1(N +D?) is that the only
intersection point of H and Bε̄

r∗∩C is an extreme point of Bε̄
r∗ and C (see Figure 2b). Hence,

the case of σr(N + D?) = σr+1(N + D?) 6= 0 can occur if and only if H intersects Bε̄
r∗ ∩

C at several points (see Figure 2c and Subsection 6.1.2) or if there is a duality gap in (C)
(see Figure 2d and Subsection 8.1). Finally notice that one can also use Lemma 2 as a
definition of ‖ · ‖r∗. This has been done for vectors in [4] in an intention to generalize the
`1 norm.

3.2. Real-valued r. In the following we will see that allowing r to be real-valued can
be considered a regularization parameter. Unlike typical regularization methods (see Subsec-
tions 5.1 and 5.2), this parameter has a close relationship to the rank of the corresponding
solutions. It suffices to discuss the case where Theorem 2 does not apply.

Let r ∈ N be such that σr(N +D?
r ) = σr+1(N +D?

r ) and rank(M?
r )> r, where we define

M?
r :=

[
argmin
M∈Rn×m

1
2
‖M‖2

r∗−〈N,M〉+g(M)

]
, D?

r := argmin
D∈Rn×m

[
g∗(−D)+

1
2
‖N +D‖2

r

]
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B1
r∗

(a) B∗1 (shaded area) as the convex hull of E (ele-
ments ◦) with the boundary of B1

min{m,n}∗( ).

Bε̄
r∗

〈N,M〉= c

C
M?

(b) Unique solution: {M?} = Bε̄
r∗ ∩H ∩C with

rank(M?)≤ r.

Bε̄
r∗

〈N,M〉= c

C
M?

1

M?
2

(c) Non-unique solutions: conv
(
{M?

1 ,M
?
2}
)
=

Bε̄
r∗∩H∩C with rank(M?

1 )≤ r and rank(M?
2 )≤ r.

Bε̄
r∗

〈N,M〉= c

C
M?

(d) Duality gap: {M?} = Bε̄
r∗ ∩ H ∩ C with

rank(M?)> r.

Figure 2: Schematic plots to visualize (8) geometrically.

for 1≤ r ≤min{m,n}. Assume that 1
2‖N−M?

r ‖2
F +g(M?

r )>
1
2‖N−M?

r+1‖2
F +g(M?

r+1) and
rank(M?

r+1) > rank(M?
r ). Then one may be in the situation that M?

r is an approximation of
small rank but poor cost ‖N−M?

r ‖2
F + g(M?

r ). On the other hand, ‖N−M?
r+1‖F + g(M?

r+1)
may be acceptable while rank(M?

r+1) is too large. Thus a trade-off between M?
r and M?

r+1 is
desired. This can be achieved by letting r become a non-integer valued in the r norm. The
r norm is then defined as

‖ · ‖r :=

√√√√brc

∑
i=1

σ2
i (·)+(r−brc)σ2

dre(·),(10)

where brc := max{z ∈ Z : z ≤ r} and dre := min{z ∈ Z : z ≥ r}. Observe that for r ∈ N and
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α ∈ [0,1] we have

‖ · ‖2
r+α = (1−α)‖ · ‖2

r +α‖ · ‖2
r+1,(11)

which means that ‖ · ‖2
r+1−α

is a convex combination of ‖ · ‖2
r and ‖ · ‖2

r+1, thus indicating
its usefulness in supplying the desired trade-off solution. Similar to Theorem 3, also with
r ∈ R≥1 it remains true that rank(M?

r )≤ dre+ s if

σdre(N +D?
r ) = · · ·= σdre+s(N +D?

r )> σdre+s+1(N +D?
r ).(12)

Hence, allowing r to assume values in R≥1 may allow us to find solutions of both, lower rank
and lower cost. Next let us have a closer look at the dependency of s on r in (12).

Let us define

F(r) := g∗(−D)+
1
2
‖N +D‖2

r +
1
2
‖N‖2

F .

Using (2) in Lemma 1, we conclude that F is monotonically decreasing. In conjunction with
the piecewise linearity in (11), it follows that F is convex and thus continuous. From Berge’s
Maximum Theorem (see [6, p. 116] or [60, Theorem 9.17] for the convex case) it is known
that the parameter depending set

C ∗(r) := argmin
D∈Rn×m

[
g∗(−D)+

1
2
‖N +D‖2

r +
1
2
‖N‖2

F

]
is upper hemicontinuous in r. This means that for all r ∈ [1,min{m,n}] and all ε > 0 there
exists δ > 0 such that for all t ≥ 1

|t− r|< δ ⇒ C ∗(t)⊂Bε (C
∗(r)) ,(13)

where Bε (C ∗(r)) := {X : ∃D ∈ C ∗(r) such that ‖X−D‖F < ε} . For simplicity we assume
that D?

r is unique. By (13) and the continuity of the singular values (see [59, Corollary 4.9]),
it follows that a sufficiently small increase of r does not increase s in (12). Therefore, as for
the nuclear norm regularization, one often observes rank(M∗t ), as a function of t ∈ [r,r+ 1],
to look like a staircase (see Figure 9b in Section 8). Notice that a similar consideration can
be done with

F(r) :=
1
2
‖M‖2

r∗−〈N,M〉+ 1
2
‖N‖2

F +g(M)

and

C ∗(r) := argmin
M∈Rn×m

[
1
2
‖M‖2

r∗−〈N,M〉+ 1
2
‖N‖2

F +g(M)

]
.

In summary, real-valued r can be considered as a regularization parameter, similar to the
regularization methods in Section 5.

4. Computability. This section is devoted to the computability aspects of the r∗ ap-
proach. We show that the problems (A) and (B) can be formulated as SDPs if g is SDP-
representable. Moreover, we compute the proximal-operators of f ∗ and f ∗∗ in Theorem 1.
This allows us to solve (A) and (B) using a first order method such as Douglas-Rachford split-
ting. We further apply Douglas-Rachford to the original non-convex Problem 1. We show that
if Theorem 2 applies, then its iterates coincide locally with the convex Douglas-Rachford.
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4.1. SDP-representations. We start with an SDP-representation of the optimization
problem

(14) min
D∈Rn×m

‖N +D‖2
r .

where ‖ · ‖r is defined as in (10) and r ∈ [1,min{m,n}]. Let T ∈ Rn×n be such that
T � (N +D)(N +D)T , then trace(T ) = ∑

n
i=1 σi(T ) and σi(T ) ≥ σ2

i (N +D) for all i such
that 1≤ i≤min{m,n} (see [39, Corollary 7.7.4.]). Therefore,

‖N +D‖2
r ≤ trace(T )− (dre− r)σdre(T )−

n

∑
i=dre+1

σi(T )≤ trace(T )− (n− r)σn(T ).

which is equivalent to

‖N +D‖2
r ≤ min

T�(N+D)(N+D)T
trace(T )− (n− r)σn(T ).(15)

In particular, equality in (15) can be achieved with

T ? :=
dre

∑
i=1

σ
2
i (N +D)uiuT

i +σ
2
dre(N +D)

n

∑
i=dre+1

uiuT
i

where N + D = ∑
n
i=1 σi(N + D)uivT

i is an SVD of N + D. Furthmore, using the Schur-
complement condition for positive semi-definiteness of T − (N +D)(N +D)T � 0 (see [39,
Theorem 7.7.7.]) gives that (14) is equivalent to

minimize trace(T )− γ(n− r)

subject to
(

T N +D
(N +D)T I

)
� 0, T � γI, D ∈ Rn×m.

Thus, if g is SDP-representable, then the dual of this optimization yields an SDP-formulation
of (B) (see [9, 56] for r = 1). We get

minimize
1
2

trace(W )− trace(NT M)+g(M)

subject to
(

I−P M
MT W

)
� 0, P� 0,

trace(P) = m− r.

Assuming that for r ∈N it holds that σr(N +D?) 6= σr+1(N +D?), the unique solution M? to
Problem 1 can be found directly, without computing the solution to (A).

4.2. Convex Douglas-Rachford. Many SDP-solvers are based on interior point meth-
ods (see [54, 62]). These solvers have good convergence properties, but the iteration complex-
ity typically grows unfavorably with the problem dimension. In order to deal with problems
of higher dimensions, it is often more desirable to look at first-order methods such as the
Douglas-Rachford splitting algorithm (see [5, 19, 20, 46]). Let us recall the basic concept of
this method. We want to determine a solution to

(16) minimize
X

f (X)+g(X)
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where f ,g : Rn×m→ R∪{∞} are closed and proper convex functionals. Then the Douglas-
Rachford iteration is given by

Xk = proxγ f (Z
k−1),(17a)

Y k = proxγg(2Xk−Zk−1),(17b)

Zk = Zk−1 +ρ(Y k−Xk),(17c)

where γ > 0, ρ ∈ (0,2) and the proximal-operator is defined as

proxγ f (Z) := argmin
X

(
f (X)+

1
2γ
‖X−Z‖2

F

)
.(18)

It is known that Xk and Y k converge towards a minimizer of (16) (see [19, 20, 46]). A spe-
cial case of these iterations is the well-known Alternating Direction Methods of Multipliers
(ADMM) (see [8, 26, 29]). Note that the Douglas-Rachford splitting algorithm can also be
applied to sums of more than two functionals f and g (see [17]).

Let g be as in (B) and assume that proxγg(X) is easy to compute. In order to apply the
Douglas-Rachford algorithm to (B) it remains to find proxγ f (Z) with

f (M) :=
1
2
‖M‖2

r∗−〈N,M〉+ 1
2
‖N‖2

F .

We get

proxγ f (Z) = argmin
M∈Rn×m

(
1
2
‖M‖2

r∗−〈N,M〉+ 1
2
‖N‖2

F +
1
2γ
‖M−Z‖2

F

)
(19)

= argmin
M∈Rn×m

(
1
2
‖M‖2

r∗+
1
2γ
‖M− (γN +Z)‖2

F + 〈Z,N〉
)

= prox γ

2 ‖·‖
2
r∗
(γN +Z).

Using the extended Moreau-decomposition (see [5, Theorem 14.3]) and Theorem 1, it holds
that for all Z

prox γ

2 ‖·‖
2
r∗
(Z)+ γprox 1

2γ
‖·‖2r

(
γ
−1Z

)
= Z.

In combination with (19) we arrive at

proxγ f (Z) = γN +Z− γprox 1
2γ
‖·‖2r

(
γN +Z

γ

)
.(20)

Since prox
γ−1

2 ‖·‖2r
= prox 1

2γ
‖·‖2r

, it is sufficient to derive how to compute prox γ

2 ‖·‖2r
. This is

done in Algorithm 1 on page 33 for r ∈ [1,min{m,n}]. Explanatory derivations can be found
in Subsection A.4. For integer-valued r similar derivations are presented in [22].

Finally, observe that if r ∈ N and

σr(γN +Z)>
(
1+ γ

−1)
σr+1(γN +Z),(21)

it follows from the derivations of prox γ

2 ‖·‖2r
(see Subsection A.4 and in particular (47)) that

prox 1
2γ
‖·‖2r

(
γN +Z

γ

)
=

γN +Z
γ
− 1

1+ γ
svdr

(
γN +Z

γ

)
.
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Therefore, (20) implies that

proxγ f (Z) =
1

1+ γ
svdr (γN +Z) .(22)

We will use this fact in Subsection 4.4 to show a tight relationship with the non-convex
Douglas-Rachford algorithm.

4.3. Douglas-Rachford limit point properties. A comparison between the Douglas-
Rachford limit points and the optimality conditions for (A) and (B) (see Theorem 3), gives
that all limit points Z? = limk→∞ Zk of (17c) can be expressed as

Z? = M?+ γD?,(23)

where D? and M? are solutions to (A) and (B), respectively. Given M?, Z? and γ , this allows us
to determine D?. Moreover, by inspection of the Douglas-Rachford iterations, it can be shown
that several known properties of the standard SVD-approximation remain true, if proxg(X) is
preserving them.

PROPOSITION 4. Let N and g be as in Problem 1. Then the following hold:
i. Let N ∈ S and proxg(X) ∈ S for all X ∈ S. Then (A) and (B) have solutions D?,M? ∈ S.

ii. Let Nv = 0 and proxg(X)v = 0 for all X with Xv = 0. Then (B) has a solution M? such
that M?v = 0.

In particular, the solution to Problem 1 preserves these properties, if (B) has a unique solu-
tion without a duality gap in (C).

Proof. Using [66, Theorem 2] it holds that prox γ

2 ‖·‖
2
r∗
(X) has the same singular vectors as

X . Therefore, prox γ

2 ‖·‖
2
r∗
(X) preserves these properties and i. and ii. are proven by starting the

Douglas-Rachford iterations for (B) with Z0 = 0. The last claim follows with Proposition 3.

There are numerous reasonable choices of g such that Proposition 4 applies, a few examples
will be discussed in Sections 6 to 8.

According to Theorem 2, σr(N +D?) 6= σr+1(N +D?) is a sufficient condition for the
uniqueness of a solution to (B). Note that without this assumption, a solution to Problem 1
does not necessarily preserve the properties in Proposition 4. This can be used to construct
non-trivial examples where σr(N +D?) = σr+1(N +D?) (see Subsection 6.1.2).

4.4. Non-convex Douglas-Rachford (NDR). Another approach to solve Problem 1 is
to directly apply the Douglas-Rachford method to the non-convex problem

(24) min
M∈Rn×m

[
1
2
‖N−M‖2

F +χrank(M)≤r(M)+g(M)

]
.

This has the advantage that we are guaranteed to get a solution of desired rank, if the iter-
ates converge. Recently, some local convergence guarantees for the non-convex Douglas-
Rachford have appeared in the literature (see [34, 35, 55]). Here, we add to these findings by
showing that the non-convex Douglas-Rachford reduces locally to its convex counterpart if
Theorem 2 applies. To this end, we start by deriving proxγ f̄ (Z) where

f̄ (M) :=
1
2
‖N−M‖2

F +χrank(M)≤r(M).
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We get

proxγ f̄ (Z) = argmin
M∈Rn×m

rank(M)≤r

(
γ

2
‖N−M‖2

F +
1
2
‖M−Z‖2

F

)

= argmin
M∈Rn×m

rank(M)≤r

(
γ +1

2
‖M‖2

F −〈γN +Z,M〉
)

= argmin
M∈Rn×m

rank(M)≤r

∥∥∥∥γN +Z
γ +1

−M
∥∥∥∥2

F
.

Hence, by Proposition 1

1
1+ γ

svdr (γN +Z) ∈ proxγ f̄ (Z).

Next let D? and M? be solutions to (A) and (B), respectively. If the convex Douglas-
Rachford iterations are applied to (B), then it follows by (23) that Z? = γD?+M? is a limit
point to (17c). Assuming that σr(N +D?) 6= σr+1(N +D?), it holds that

(1+ γ
−1)σr+1(γN +Z?) = (1+ γ

−1)σr+1(γ(N +D?)+M?) = (1+ γ)σr+1(N +D?)

< (1+ γ)σr(N +D?) = σr(γ(N +D?)+M?) = σr(γN +Z?).

By the continuity of the singular values (see [59, Corollary 4.9]), this allows us to conclude
that (21) applies in a sufficiently small neighborhood of Z?. Then (22) implies that for all Z
within this neighborhood we get

proxγ f̄ (Z) = proxγ f (Z),

where f (M) := 1
2‖M‖

2
r∗−〈N,M〉+ 1

2‖N‖
2
r∗. Hence, the convex and non-convex Douglas-

Rachford iterations locally coincide. Furthermore, the Douglas-Rachford iterations cannot
escape from this neighborhood, because the sequence ‖Z?− Zk‖F of the convex Douglas-
Rachford is known to be non-increasing (see [20]). Thus proving local convergence of the
non-convex Douglas-Rachford when σr(N +D?) 6= σr+1(N +D?).

Notice that if there is a zero duality-gap in (C), then it follows by Theorem 3 and (23)
that the convex and non-convex Douglas-Rachford have limit points that correspond to a
solution to Problem 1, even if σr(N +D?) = σr+1(N +D?). We will see in Sections 6 to 8
that the non-convex Douglas-Rachford iterations can converge to these solutions. However,
this may not be the case for all choices of Z0, since proxγ f̄ (Z) is not necessarily unique
(see Subsection 6.1.2). Moreover, it is shown in Subsection 7.3 that if there is a duality-gap
in (C), then the choice of γ can be crucial for the existence of a limit-point of the non-convex
Douglas-Rachford.

Finally, observer that proxγ f̄ (Z) only requires to determine the dominant r singluar val-
ues and singluar vectors. Hence, sparse SVD solvers such as in [47] can be used to determine
a dominant SVD and to gain more computational speed with large-scale problems. The same
holds true for proxγ f (Z), where maybe a larger dominant SVD, but usually not a full SVD,
needs to be determined.
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5. Other approaches. In the following we compare the r∗ approach to other methods
that intend to solve Problem 1. These methods will also be used for numerical comparisons
throughout the subsequent sections.

5.1. Nuclear Norm Regularization. One of the most widely used methods to approx-
imate a solution to Problem 1 is the so-called nuclear norm regularization. It borrows tech-
niques from sparse regularized regression or Lasso (see [61]), i.e. estimating a sparse solution
x̂ to a linear system of equations Ax̂≈ b by solving

min
x

1
2
‖Ax−b‖2

2 +µ‖x‖`1 ,

where ‖ · ‖2 is the Euclidean norm, ‖x‖`1 = ∑i≥1 |xi| and µ ≥ 0 is a regularization parameter.
A small number of non-zero singular values is equivalent to the matrix having low rank.
Therefore, for given N ∈ Rn×m, a corresponding matrix version reads

(25) min
M∈Rn×m

1
2
‖N−M‖2

F +µ‖M‖1∗+g(M),

where g : Rn×m→R∪{∞} is a given closed proper convex functional. The simplicity of this
convexification as well as the results in [23, 24, 56] stimulated a big growth in applying this
approach in many different areas (see [23, 24, 52, 56]). However, to get a specific rank, µ

must be chosen a priori, which is often challenging. Commonly one assumes that the rank,
as a function of µ , looks like a staircase, i.e. a large µ decreases the rank too much whereas
a small µ may leave it too large. In order to find the best possible approximation, one usually
likes to keep µ as small as possible, which on the other hand could end up in a costly search.

In general, even with the best possible choice of µ , this heuristic does not return an op-
timal solution to Problem 1. In particular, also for the simple case g = 0, one usually cannot
choose µ such that the SVD-approximation, as required by Proposition 1, is obtained. Fur-
thermore, there is no certificate for checking whether a solution is a minimizer of Problem 1.

5.2. Rank Regularization. Similar to the nuclear norm regularization, it has been sug-
gested in [44, 43] to directly regularize on the rank, i.e.

min
M∈Rn×m

[
1
2
‖N−M‖2

F +µrank(M)+g(M)

]
,

where µ ≥ 0 is a regularization parameter and g : Rn×m → R∪ {∞} a closed and proper
convex functional. Since this problem is still non-convex, one needs to find a convex proxy
of f (M) := 1

2‖N−M‖2
F + µrank(M). The conjugate and bi-conjugate functionals of f are

given by (see [44, 43])

f ∗(D) =
1
2
‖N +D‖2

F −
1
2
‖N‖2

F −
1
2

min{m,n}

∑
i=1

min{2µ,σ2
i (N +D)},

f ∗∗(M) =
1
2
‖M−N‖2

F +
1
2

min{m,n}

∑
i=1

(
2µ−max{0,

√
2µ−σi(M)}2

)
.(26)

Hence, by Fenchel-duality (see Lemma A.1 and Proposition A.3) it holds that

min
M∈Rn×m

[ f (M)+g(M)]≥− min
D∈Rn×m

[ f ∗(M)+g∗(−D)] = min
M∈Rn×m

[ f ∗∗(M)+g(M)] .(27)
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Assume that there is no duality gap in (C) with solutions D? and M? to (A) and (B),

respectively. Choosing σ2
r (N+D?)

2 ≥ µ ≥ σ2
r+1(N+D?)

2 , it is readily seen that

f ∗(D?) =
1
2
‖N‖2

F −
1
2
‖N +D?‖2

r +µr =
1
2
‖N−M?‖2

F +µr+g(M?),

where the last equality follows by Propositions 2 and 3. Hence,

1
2
‖N−M?‖2

F +µr+g(M?)≥− min
D∈Rn×m

[ f ∗(D)+g∗(−D)]≥ 1
2
‖N−M?‖2

F +µr+g(M?),

yielding equality in (27). Thus, this method obtains the same guaranteed optimal solutions as
previously discussed for (A) and (B). Evidently, there is a strong relationship to Proposition 2
and Theorem 2. However, if there is a duality-gap, then the solutions may differ from those
with non-integer valued r∈ [1,min{m,n}] and it is unclear which method yields better results.
Notice that, as in the case of real-valued r, Berge’s maximum Theorem can be applied since
f ∗ is continuous in µ . Again, this implies that the rank of the solutions is robust to small
perturbations in µ . Nevertheless, there is no staircase behavior as one exhibits for real-valued
r and the nuclear norm regularization (see Figure 9b in Subsection 8.1). Thus, since a good
choice of the regularization parameter is usually a priori unknown, one is required to sweep
over a large set of possible choices of µ .

The proximal-operator of f ∗∗ is computable (see [44, 43]) and therefore there are several
first order optimization methods (see Subsection 4.2) that can be used to compute a minimizer
of the right hand side in (27). Nevertheless, this usually limits one to choices of g that posses
a cheaply computable proximal operator of g for even small dimensional examples. It is
currently unknown if (26) is SDP-representable.

5.3. Projection-based methods. In the following let g(M) = χC (M) be the character-
istic function of a closed convex set C . If the projection onto C is computable, then there are
several other heuristics of which a few are outlined next.

5.3.1. Lift-and-project Algorithm (LP). The idea of the so-called lift-and-project al-
gorithm (see [16]) is to interchangeably perform a standard SVD-approximation of desired
rank and project the result orthogonally onto the convex set C , which again increases the
rank. By starting with N as the first iterate, one hopes to keep the distance to N small. Natu-
rally, this algorithm always returns the standard SVD-approximation of N if it lies within C .
Unfortunately, it is generally difficult to know whether the algorithm converges and if a pos-
sible limit point gives a satisfactory error (see [16]). However, if C is a closed convex cone,
then one can show that the Frobenius norm is decreased in every step and the convergence is
guaranteed.

5.3.2. Alternating Least-Squares (ALS). All the so far considered approaches share
the drawback that when implemented, their iterates usually need to converge in order to
guarantee a feasible solution. The so-called alternating least-squares method is a way of
overcoming this drawback by working with iterates that lie in C and are of desired rank.

Given V0 ∈ Rr×n \{0} such that {U ∈ Rm×r : UV0 ∈ C }\{0} 6= /0 one interchangeably
solves

Uk := argmin
UVk−1∈C

‖N−UVk−1‖2
F ,

Vk := argmin
UkV∈C

‖N−UkV‖2
F ,
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with k ≥ 1. Thus the rank constraint is explicitly taken into account by forming UkVk. Note
that alternating least-squares without constraints converges for almost all V0 to a standard
SVD-approximation (see [58]). The results in Section 6 indicate that for certain choices of C ,
this method also converges to an optimal solution if σr(N +D?) 6= σr+1(N +D?). Moreover,
there are examples where its solution attains the lower-bound of Proposition 2 even though
σr(N +D?) = σr+1(N +D?). In fact, this method often reproduces the same solutions as the
non-convex Douglas-Rachford algorithm (see Subsection 4.4).

Nevertheless, in many cases ALS may not be a good choice since it is often unclear how
to choose V0.

6. Non-negative low-rank approximation. A particularly well studied low-rank ap-
proximation problem is the case of preserving non-negativity constraints.

PROBLEM 2.

minimize ‖N−M‖2
F

subject to M ∈ Rn×m
≥0

where Rn×m
≥0 := {X ∈ Rn×m : xi j ≥ 0} and N ∈ Rn×m

≥0 .

Note that this is the same as Problem 1 with g = χRn×m
≥0

. The probably most well-known ap-
proach to this problem is the so-called non-negative matrix factorization (see [7, 41]). Given
N ∈ Rn×m

≥0 one intends to find a solution to

min
U∈Rn×r

≥0 ,

V∈Rr×m
≥0

‖N−UV‖2
F .

Non-negative matrix factorization (NNMF) is often approximately solved by applying alter-
nating least-squares (see [41] and Subsection 5.3.2). However, to require both, U and V to be
non-negative might be very conservative, since Problem 2 only requires the product UV to be
non-negative.

6.1. Examples. In the following we look at examples with a non-negativity constraint
in order to illustrate several results that have been discussed in the previous sections.

6.1.1. Image compression. A common example in the literature (see [3, 21]) is to use
the SVD for image compression. Given a grey-scale picture, one maps the pixels to a matrix
of corresponding grey-scale values, typically integer values in {0, . . . ,255}, and performs a
low-rank approximation of rank r. If r is sufficiently small, then the factors of the low-rank
approximation are cheaper to store than the original matrix. Since the matrix is non-negative,
it is very natural to keep this constraint intact. We apply all the methods that have been
discussed so far to the Baboon-image in Figure 3a. A comparison among the relative errors of
the methods as well as the normalized lower-bound obtained from (B), is shown in Figure 3b.

By the Perron-Frobenius Theorem (see [39, Theorem 8.4.4]) the rank-1 standard SVD-
approximation is always non-negative. This reveals a major drawback of the nuclear norm
heuristic for this problem, since it usually cannot recover standard SVD-approximations.
Moreover, we observe that all the SVD-based methods produce results of similar quality.
In fact, alternating least-squares (ALS), non-convex Douglas-Rachford (NDR) and the r∗ ap-
proach give solutions that coincide numerically with the lower-bound, i.e. there is a zero
duality gap for all ranks. The errors of the lift-and-project method are only slightly larger, but
not visible in this plot.



LOW-RANK OPTIMIZATION WITH CONVEX CONSTRAINTS 17

(a) Baboon – 298×298 pixels.
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Figure 3: Non-negative Baboon-image approximation.

Non-negative matrix factorization (based on alternating least-squares), however, tends
to produce larger errors with increasing rank. Overall, the nuclear norm heuristic performs
significantly worse than any of the other methods.

6.1.2. Asymmetric optimal approximations. Let N ∈ S∩Rn×n
≥0 and D? be a solution

of (A) corresponding to Problem 2. According to Theorem 2 and Proposition 4 we know
that if σr(N +D?) 6= σr+1(N +D?), then svdr(N +D?) ∈ S is the unique solution to (B)
and Problem 2. In the following we will see that preservation of symmetry may no longer be
valid for an optimal non-negative approximation if σr(N +D?) = σr+1(N +D?).

Consider Problem 2 with r = 2 and symmetric

N =


√

5−1
2 1 3
1 4 1
3 1

√
5−1
2

 .

A non-symmetric solution to this is

M? =

0
√

5+1
2

√
5+3
2

2 3
√

5+1
2

2 2 0

 .

Indeed, since N is symmetric, its singular values are given by the absolute value of its eigen-
values

{
± 7−

√
5

2 ,3+
√

5
}

. Then with ‖N −M?‖F = 7−
√

5
2 and Proposition 1 we conclude

that M? and M?T are optimal non-negative rank-2 approximations of N. Thus, by Corollary 1
it follows that D? = 0 and σ2(N +D?) = σ3(N +D?). Furthermore, it implies that M? and
M?T are solutions to (B).

Since the solution set of a convex problem is convex, all points αM?+(1−α)M?T with
α ∈ [0,1] must be solutions to (B). However, rank

(
αM?+(1−α)M?T )= 3 for all α ∈ (0,1).
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Thus we cannot expect to numerically find the rank-2 solutions by solving (B) (see Figure 2c).
In particular, let either of the discussed Douglas-Rachford algorithms (see Subsections 4.2
and 4.4) be initialized with Z0 ∈ S. Then Proposition 4 implies that they may converge to a
symmetric solution, which can be shown to be non-optimal for Problem 2.

Nevertheless, it is interesting to note that under random initialization, NDR and ALS
often converge to an optimal solution.

7. Matrix Completion. Assuming that the entries of a matrix are only partially known,
the so-called matrix completion problem asks when and how the unknown elements can be
recovered. The low-rank assumption turned out to be suitable for theoretical developments as
well as for many practical applications (see [11, 12, 13, 56, 67]). This leads to the following
problem.

PROBLEM 3.

(28)
minimize rank(M)

subject to mi j = zi j, (i, j) ∈I

where I is an index set.

One of the most popular methods for solving Problem 3 is the technique introduced in [12].
It states that if Z ∈ Rn×n then with high probability it is a solution to

(29)
minimize ‖M‖1∗

subject to mi j = zi j, (i, j) ∈I

if card(I ) ≥ Cn1.2rank(Z) log(n), where card(I ) denotes the cardinality of I and C is a
constant. Similar to that, it has been shown in [56] that (29) is able to detect a lowest rank
solution. This means that one does not expect any other matrix of lower rank than Z having
those partially known entries. Note that this formulation can be considered as a special case
of Proposition 2 with r = 1, because

min
M∈Rn×m

rank(M)≤r

[
1
2
‖M‖2

F +g(M)

]
≥− min

D∈Rn×m

[
g∗(−D)+

1
2
‖D‖2

r

]
= min

M∈Rn×m

[
1
2
‖M‖2

r∗+g(M)

]
,

(30)

where g(M) = χM (M) and M := {M ∈ Rn×n : mi j = zi j, (i, j) ∈I }.
However, we suggest to keep the flexibility of r as a tuning parameter intact and consider

instead

(31)
minimize ‖M‖r∗

subject to mi j = zi j, (i, j) ∈I ,

where it is possible to sweep over real-valued r ≥ 1. In Subsections 7.1, 7.2 and 7.4 we will
see that this may significantly improve the quality of completion. Finally, let us see what is
required of Z to be a solution to (31).

THEOREM 4. Let Z ∈ Rn×m with r = rank(Z) and I ⊂ [1, . . . ,n]× [1, . . . ,m]. Then Z is
a solution to (31) if and only if there exists D? ∈ Rn×m with Z = svdr(D?) and d?

i j = 0 for all
(i, j) /∈I .

Proof. Let g(M) = χM (M) and M := {M ∈ Rn×m : mi j = zi j, (i, j) ∈I }. Then

g∗(D) = sup
M∈M

〈D,M〉< ∞ ⇔ ∀(i, j) ∈I : di j = 0.
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Hence, by Theorem 3 the existence of D? such that Z = svdr(D?) is necessary for Z to be a
solution to (31).

Assume that there exists D ∈ Rn×m such that Z = svdr(D) and di j = 0 for all (i, j) /∈I .
Then, by Theorem 3 it follows that Z ∈ ∂

1
2‖D

?‖2
r . According to Proposition A.4 this is

equivalent to D? ∈ ∂
1
2‖Z‖

2
r∗ and therefore for all Z̃ ∈M it holds that

1
2
‖Z̃‖2

r∗ ≥
1
2
‖Z‖2

r∗+ 〈D?, Z̃−Z〉= 1
2
‖Z‖2

r∗.

This shows the sufficiency and concludes the proof.

7.1. Some motivational examples. Next we want to demonstrate that r > 1 may help
to complete matrices where r = 1 fails. To this end, consider the rank-2 matrices

Z1 =

0 1 1
1 1 1
1 1 1

 , Z2 =

2 0 1
0 2 1
1 1 1

 , Z3 =

0 1 1
1 2 3
1 3 4

 .

We would like to recover these matrices under the assumption that the zero entries are the
only unknown ones. By Theorem 4 we know that (31) with r = 2 can do that. It can be
shown, e.g. by Proposition 4, that solving (29) is equivalent to determining

min
t∈R
‖Zi(t)‖1∗, i = 1,2,3(32)

where

Z1(t) :=

t 1 1
1 1 1
1 1 1

 , Z2(t) =

2 t 1
t 2 1
1 1 1

 , Z3(t) =

t 1 1
1 2 3
1 3 4

 .

First we show that finding the lowest rank solution may not be sufficient to recover the
true matrix. In case of Z1 we get that rank(Z1(t)) = 1 if and only if t = 1. Moreover, for
u :=

(
−1 0.5 0.5

)T it holds that ‖uuT‖F < ‖Z1(1)‖F and Z1(1)u = 0. Hence, as required
by Theorem 4, D? = Z1(1)− uuT guarantees that Z1(1) is the unique solution to (29) and
therefore the nuclear norm heuristic does not recover Z1.

Next we show that non-uniqueness in (29) is another issue that can be avoided with the
proposed approach in Theorem 4. Since Z2(t) is symmetric, it holds that

‖Z2(t)‖1∗ ≥ trace(Z2(t))≡ 5

with equality if and only if Z2(t) � 0. It is readily seen that Z2(t) � 0 if and only if
t ∈ [0,2], which implies that all of these points are solutions to the nuclear norm heuristic
(29). However, a numerical solver for (29) does not necessarily determine Z2.

Finally, observe that the nuclear norm heuristic does not always determine the lowest
rank solution. It holds that rank(Z3(t)) ≥ 2 with equality if and only if t = 0. Moreover, it
can be verified that ‖Z3‖1∗ > ‖Z3(0.1)‖1∗. Thus Z3 is not a solution to (29).

These examples show that additional knowledge about the true rank as well as the min-
imality in the Frobenius norm (see (30)) can be utilized with ‖ · ‖r∗ to possibly gain better
completion. The following subsections will demonstrate the same behavior for a larger ex-
ample and a practical application.

Finally, note that in view of (25) one may also consider

(33)
minimize

1
2
‖M‖2

F +µ‖M‖1∗

subject to mi j = zi j, (i, j) ∈I ,
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where one sweeps over µ ≥ 0. This is a strategy that has been discussed earlier in [10].
Applied to the previous examples, this approach is also able to recover Z1, Z2 and Z3 with
µ = 0. Nevertheless, we will see that generally there may not be any µ that leads to a low-rank
solution.

7.2. Numerical Example. The following example is intends to show a numerical com-
parison among (31) and (33). Let Z = svd5(H) where H ∈ R10×10 is a Hankel-matrix of the
following structure

H =

1 1 1 1
1 0

1 0
1 0 0 0



 .

Moreover, let the index-set of the known entries be I = {(i, j) : zi j > 0}.
Figure 4 shows the relative completion errors as well as the obtained ranks of the solu-

tions M?
r of (31) for different integer-valued r. The corresponding results for M?

µ , obtained
by sweeping over µ ≥ 0 in (33), are presented in Figure 5.

The solution to the nuclear norm heuristic M?
1 (r = 1), gives the worst completion error

and full rank. Notice that n1.2rank(Z) log(n)� card(I )= 22 which is why one cannot expect
that the example lies within the scope of this method. In contrast, M?

5 (r = 5) recovers the true
matrix and is a sweet spot among all solutions. In fact, this also guaranteed by Theorem 4
since I ⊂ {(i, j) : hi j = 0}. Furthermore, there is no µ such that rank(M?

µ)< 10.

1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

r

‖Z
−

M
? r
‖ F

‖Z
‖ F

(a) Relative completion error of M?
r .
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6

8

10

r

ra
nk
(M

? r
)

(b) Rank of M?
r .

Figure 4: Relative completion error and ranks obtained with (31) for different values of r.

7.3. Example: Non-convex Douglas-Rachford. In the following we use Theorem 4
to construct examples where the nuclear norm heuristic as well as the r∗-approach fail to
determine a solution to Problem 3. This helps to understand why the non-convex Douglas-
Rachford (see Subsection 4.4) may still be able to find those solutions and that, unlike in the
convex Douglas-Rachford, the choice of γ is crucial.

First note that the existence of D? in Theorem 4 is equivalent to having an R∈Rn×m such
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Figure 5: Relative completion error and ranks obtained with (33) for different values of µ .

that

RT Z = 0, ZRT = 0, σ1(R)≤ σr(Z),(34a)
zi j + ri j = 0 for all (i, j) /∈I .(34b)

Let us define for t ∈ [−1,1] the following unitary rank-1 matrix

Z :=
(

t√
1− t2

)(
t
√

1− t2
)
=

(
t2 t

√
1− t2

t
√

1− t2 1− t2

)
.

Correspondingly, all R ∈ R2×2 that fulfill (34a) are given by

R = k
(√

1− t2

−t

)(√
1− t2 −t

)
=

(
1− t2 −t

√
1− t2

−t
√

1− t2 t2

)
where k ∈ [−1,1]. If I = {(1,2),(2,1),(2,2)}, it follows that (34b) can be satisfied if and
only if t2 ≤ 1

2 . Hence, despite the fact that the solution to Problem 3 is unique, neither the
nuclear norm heuristic nor the r∗ approach is able to determine it if t2 > 1

2 .
Next let us look at the limit-points of the non-convex Douglas-Rachford. Assume X?,

Y ? and Z? are limit-points of the iterations (17a)–(17c) of the non-convex Douglas-Rachford
applied to

min
M∈Rn×m

rank(M)≤r

[
1
2
‖M‖2

F +g(M)

]
with g(M) = χM (M) and M := {M ∈ Rn×n : mi j = zi j, (i, j) ∈I }.

By (17a) and (17c) it follows that X? = 1
1+γ

svdr(Z?) = Y ?. Moreover, if R? := Z?−
svdr(Z?) then (17b) implies that

γx?i j + r?i j = 0 for all (i, j) /∈I .

Therefore, the non-convex Douglas-Rachford has a limit-point at X? ∈M if and only if there
exists R ∈ Rn×m such that

RT X? = 0, X?RT = 0, σ1(R)≤ (1+ γ
−1)σr(X?),

x?i j + ri j = 0 for all (i, j) /∈I ,
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where the inequality follows by the fact that (1+γ)σr(X?)=σr(Z?)≥σ1(R?)= γσ1(γ
−1R?).

Thus, in the non-convex Douglas-Rachford R is allowed to be (1+ γ−1)-times as large as in
(34a). For sufficiently small γ > 0 it follows that all rank-r elements in M are limit-points.
Applied to Z and I from above, we conclude that for all t ∈ [−1,1] there exists γ > 0 such
that non-convex Douglas-Rachford has a limit-point at Z. Indeed, numerical computations
suggest that the algorithm also converges to Z.

Nevertheless, this also demonstrates that a wrong choice of γ may prevent the existence
of a limit-point.

7.4. Covariance completion. Consider

ẋ(t) = Ax(t)+Bu(t),

where A ∈ Rn×n and B ∈ Rn×m with m≤ n and u(t) is a zero-mean stationary stochastic pro-
cess. For Hurwitz A and reachable (A,B) it has been shown (see [27, 28]) that the following
are equivalent:

i. X := limt→∞ E
(
x(t)xT (t)

)
� 0 is the steady-state covariance matrix of x(t), where E(·)

denotes the expected value.
ii. ∃H ∈ Rm×n : AX +XAT =−(BH +HT BT ).

iii. rank
(

AX +XAT B
BT 0

)
= rank

(
0 B

BT 0

)
.

In particular, H = 1
2 E
(
u(t)uT (t)

)
BT if u is white noise. In [15, 45, 67, 68, 69] the problem

of unknown B and only partially known X has been addressed as follows.

PROBLEM 4.

(35)

minimize rank(M)

subject to x̂i j = xi j, (i, j) ∈I

AX̂ + X̂AT =−M

X̂ � 0.

The problem has been solved in the same manner as Problem 3 i.e. by convexifing rank(M)
with ‖M‖1∗. However, since some practical examples only supply up to 2n known entries of
specific structure (see [67, 68, 69]), it is not surprising that the quality of completion is often
not satisfactory.

Instead, in [32] its generalization as in (31) is considered, i.e.

(36)

minimize ‖M‖r∗

subject to x̂i j = xi j, (i, j) ∈I

AX̂ + X̂AT =−M

X̂ � 0,

where it is possible to sweep over r ≥ 1. Again, one may also consider

(37)

minimize
1
2
‖M‖2

F +µ‖M‖1∗

subject to x̂i j = xi j, (i, j) ∈I

AX̂ + X̂AT =−M

X̂ � 0,

while sweeping over µ ≥ 0.
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7.4.1. Example: Discretized Heat-Equation. Let us illustrate these approaches by a
numerical comparison. Consider the two-dimensional heat-equation

Ṫ = ∆T =
∂ 2

∂x2 T +
∂ 2

∂y2 T

on the unit-square. Finite difference discretization on a uniform grid with step size h = 1
N+1

gives

∆Ti j ≈ −
1
h2 (4Ti j−Ti+1, j−Ti, j+1−Ti−1, j−Ti, j−1),

where Ti j are the temperatures of the inner grid points as indicated in Figure 6. By letting the

T41

T31

T21

T11

T42

T32

T22

T12

T43

T33

T23

T13

T44

T34

T24

T14

x

y

ξ2

ξ1

ξ4

ξ3

h

Figure 6: Discretized grid on the unit square with inputs ξ1, . . . ,ξ4.

boundaries of the unit-square be the inputs, we receive a linear system

ẋ(t) =
1
h2 Ax(t)+

1
h2 Bξ (t)(38)

where A ∈ RN2×N2
is the Poisson-matrix and B = [bi j] ∈ RN2×4 with bi j = 0 except for the

following cases:

bi1 := 1, for i = 1,2, . . . ,N

bi2 := 1, for i = N,2N, . . . ,N2

bi3 := 1, for i = N (N−1)+1,N (N−1)+2, . . . ,N2

bi4 := 1, for i = 1,N +1, . . . ,N (N−1)+1.

Moreover, let ξ (t) be generated by a low-pass filtered white-noise signal w(t) with unit co-
variance E

(
w(t)w(t)T

)
= I and

ξ̇ (t) =−ξ (t)+w(t).

As mentioned before, the extended covariance matrix

Xe := E
(
xexT

e
)
=

(
X Xxξ

Xξ x Xξ

)
with xe :=

(
x(t)
ξ (t)

)
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is then determined by

AeXe +XeAT
e =−BeBT

e ,

where Ae :=
(

A B
0 −I

)
, Be :=

(
0
I

)
and X is the steady-state covariance matrix of x(t).

In the following we assume that only the first and third input channels are used, i.e. we
remove the second and fourth columns from B and adjust Ae, Be and ξ (t), accordingly. An
interpolated colormap of X is shown in Figure 7a, where the black lines indicate the known
entries. Figure 7b displays the relative completion error of the solutions obtained by (36) and
(37) with dependency on r and µ . We observe that the error obtained by (36) in r = 2 is
the smallest and in fact it is of rank 2. This implies that there is no duality-gap. In contrast,
the best solution that originates from (37) (with µ = 4.23) is of rank 3 and has an error that
is about 1.5 times as large. Figure 8 illustrates these differences through the interpolated
colormaps.

4 8 12 16

4

8

12

16

0.02

0.04

0.06

0.08

0.10

(a) Colormap of the steady-state state covariance
matrix with inputs ξ1 and ξ3 and known en-
tries.

0 2 4 6 8 10 12 14 16

0.2

0.4

r, µ

‖X
−
(·)
‖ F

‖X
‖ F

(b) Relative errors:
r∗ approach dependent on r
nuclear norm heuristic (37) dependent on µ .

Figure 7: Interpolated colormap of the steady-state covariance matrix and relative errors de-
pendent on r and µ obtained by (36) and (37).

8. Hankel matrices. In the field of system and control, the rank of a Hankel opera-
tor/matrix is crucial, since it determines the complexity (order) of a linear system. By that
it tells how costly it is to simulate a system or to implement a controller (see [3, 70]). For
this reason, much focus was put into areas such as model order reduction. Even though the
celebrated Adamyan-Arov-Krein Proposition (see [3, 53]) answers the question of optimal
low-rank approximation of infinite dimensional Hankel operators, the following finite dimen-
sional case still remains open.

PROBLEM 5.

minimize
M

‖N−M‖2
F

subject to rank(M)≤ r

M ∈H ,

where N ∈H := {H : H is Hankel}.
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(a) Solution obtained by (36) with r = 2.
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(b) Solution obtained by (36) with r = 1.
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(c) Solution obtained by (37) with µ = 4.23.
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(d) Solution obtained by (37) with µ = 0.

Figure 8: Interpolated colormaps of the completed covariance matrices obtained by (36) and
(37).

Only the optimal rank-1 approximation in case of the spectral norm ‖ · ‖1 has been deter-
mined in [2]. Moreover, for so-called linear externally positive systems the problem of non-
negativity preserving Hankel-operator approximation has been considered in [30].

8.1. Numerical Example. In the following we compare the r∗ approach with the regu-
larization methods in Subsections 5.1 and 5.2 as well as the lift-and-project algorithm from
Subsection 5.3.1. To this end, let N ∈ R10×10 be the following Hankel matrix

N =

1 2 9 10
2 9

9 2
10 9 2 1




The relative errors together with the relative lower bound are shown in Figure 9a. For

r = 1, . . . ,4 there is a zero duality gap and therefore the lower bound is achieved by the
rank-regularization method (see Subsection 5.2) as well as the non-convex Douglas-Rachford
and the r∗ norm. Moreover, even when Theorem 2 cannot guarantee a zero duality gap, it
appears that those methods and the lift-and-project algorithm are close to the lower bound
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and outperform the nuclear norm heuristic. Nonetheless, in order to get these (sub-optimal)
solutions, we had to sweep over real-valued r and µ , respectively. The dependency of the
rank on these parameters is displayed in Figure 9b.
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(b) Ranks:
nuclear norm heuristic dependent on µ

r∗ approach dependent on r
rank-regularization dependent on µ

Figure 9: Relative error and rank dependency on r and µ – Hankel matrix preservation.

In contrast to the nuclear norm regularization and the r∗ norm, that show the expected
staircase behavior, the rank-regularization method seems to exhibit a non-intuitive oscillation,
which complicates the search for an optimal µ , e.g. via a bisection algorithm.

9. Multivariate reduced-rank regression. In multivariate linear regression one wants
to estimate a regression matrix C ∈ Rn×m assuming the underlying linear model

Y =CX +E

where Y ∈ Rn×K is a matrix with K measurements of n response variables, X ∈ Rm×K are
the corresponding predictor variables and E ∈Rm×K is Gaussian white-noise. Assuming that
rank(X) = m < T one can determine the well-known least-squares estimator

Ĉ = Y XT (XXT )−1,

which is a minimizer of minC ‖Y −CX‖2
F . Let ĉk and yk denote the k-th row of Ĉ and Y ,

respectively, then

ĉk = ykXT (XXT )−1

and therefore ĉk only depends on the k-th response variable yk. Hence, the estimator does not
account for possible correlations among the response variables.

In order to get estimators that include these correlations, one may restrict oneself to
rank(C) = r < min{m,n} (see [40, 64]). Assuming that C = AB, where A ∈ Rn×r and
B ∈ Rr×m, a physical interpretation of this assumption on C can be given (see [64]). If X
consists of information that is used to send T messages Y over r channels, then BX can be
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considered a code for the information and ABX the decoded messages which are intended to
be close to Y . Hence, given X , Y and r one would like to solve the problem

PROBLEM 6.

minimize
C

‖Y −CX‖2
F

subject to rank(C)≤ r.

Assuming that rank(X) = m < K, an explicit solution can be determined as follows. Let
X =U

(
Σ 0

)(
V1 V2

)T be an SVD of X with Σ ∈ Rm×m, then

‖Y −CX‖2
F = ‖Y

(
V1 V2

)
−
(
CUΣ 0

)
‖2

F = ‖YV1−CUΣ‖2
F +‖YV2‖2

F .

Hence, Problem 6 reduces to

(39)
minimize

C̃
‖YV1−C̃‖2

F

subject to rank(C̃)≤ r.

By Proposition 1 we know that a minimizer of (39) is given by svdr(YV1) and therefore
Ĉ = svdr(YV1)Σ

−1UT is a solution to Problem 6. Observe that Problem 6 can also be stated
as

minimize
M

1
2
‖Y −M‖2

F +χL (M)

subject to rank(M)≤ r,

where L = {M : M =CX for some C ∈ Rn×m} and thus fits into the scope of Proposition 2.
Indeed, if rank(X) = m then rank(M) = rank(C) and solving

(40) minimize
M

1
2
‖M‖2

r∗−〈Y,M〉+χL (M)

leads to the same solution as above if svdr(YV1) is unique. This can be shown by considering
the dual of (40). By Proposition 2 we get

maximize
D

1
2
‖Y +D‖2

r

subject to DXT = 0,

where D? = Y (V T
1 V1− I) is a feasible maximizer such that svdr(Y +D?) = svdr(YV1V T

1 ) =
ĈX is a solution to (40).

Finally notice that further convex constraints on C can be added to (40) and by that more
classes of regressors can be defined and computed.

10. Discussion and future developments. In this work, a method to determine optimal
low-rank approximations with convex constraints has been studied. The main benefits of the
r∗ approach are that it is essentially parameter free, gives a certificate of optimality and does
not depend on a particular initialization. Whereas factor based approaches such as alternat-
ing least-squares are also parameter free, they depended on its initialization and therefore
are less applicable for general convex constraints, which can be handled with regularization
approaches. The r∗ approach combines the benefits of both approaches. Moreover, we have
seen that it can be turned into a parameter dependent method, where unlike other approaches
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the parameter has a clear relationship to the desired rank (see Subsection 3.2). As a result, a
generalization of (29) to solve the matrix completion problem has been suggested. Further-
more, we have linked this approach to the rank-regularization method (see Subsection 5.2).
Nevertheless, the r∗ norm, in contrast to the rank-regularization method, is known to have an
SDP-representation.

Since standard interior-point methods for SDPs are known to have iterations that grow
unfavorably with dimension, the Douglas-Rachford splitting algorithm is used to gain com-
putability for problems of larger dimensions. Based on that it was possible to show that
several other useful properties known from the SVD-solution may be preserved (see Propo-
sition 4). Moreover, it allowed us to show local convergence of the non-convex Douglas-
Rachford if Theorem 2 applies. This motivates the overall usefulness of the non-convex
Douglas-Rachford for solving Problem 1. This work is merely a starting point of investigat-
ing its power for solving the problems considered here. Further developments in this direction
are likely to contribute to a better understanding of the duality-gap cases. One could start by
linking the results in Subsection 4.4 to the known local convergence results in the vector case
(see [35]). Moreover, it would be of great interest if, alike the nuclear norm minimization, r∗
approach also fits into the scope of Matrix Manifold Optimization (see [1, 51, 63]).

The numerical examples in this paper indicate the superiority of the r∗ approach and
others over the nuclear norm heuristic. Since the r∗ approach is as general as the nuclear norm
heuristic, we suggest to use the r∗ approach, instead. In fact, several other authors (see [4,
18, 22, 42, 50]) have recently used the r∗ norm to replace the nuclear norm, i.e. another
regularization with multiplicative parameter as in (33). However, neither taking advantage of
its own regularization character nor the optimality.

Notice that despite the nice geometric interpretation (see Subsection 3.1), we were only
able to guarantee a zero duality gap in simple cases such as Theorem 4. Investigating this
further may lead to more deterministic guarantees.

Finally, observe that most of the results can be extended to Hilbert-Schmidt operators.
As mentioned in Section 8, the finite dimensional case may be significantly more difficult
than the infinite-dimensional one.

A. Appendix.

A.1. Unitarily invariant norms. The following results can be found e.g. in [39].

PROPOSITION A.1. Let A,B ∈ Rn×m, then

〈A,B〉 ≤
min{m,n}

∑
i=1

σi(A)σi(B).

COROLLARY A.1. Let A,B ∈ Rn×m then

min{m,n}

∑
i=1

σi(A)σi(B) = max{〈A,UBV 〉 : U and V are unitary}.

In the following we say that g(·) : Rn→ R≥0 is a symmetric gauge function if and only if
i. g(·) is a norm.

ii. ∀x ∈ Rn : g(|x|) = g(x), where |x| denotes the element-wise absolute value.
iii. g(Px) = g(x) for all permutation matrices P and all x.

PROPOSITION A.2. ‖ · ‖ is a unitarily invariant norm on Rn×m if and only if

‖X‖= g(σ1(X), . . . ,σmin{m,n}(X)),

where g is a symmetric gauge function.
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A.2. Convex Optimization. The following definitions and results from convex opti-
mization (see [5, 37, 48, 57]) are used throughout the paper. In the following we assume that
all functionals are defined on a real Hilbert space X with inner product 〈·, ·〉. The domain of
a functional f on X is defined as dom f := {x ∈ X : f (x)< ∞}.

DEFINITION A.1. Let f : X →R∪{∞} be a functional with dom f 6= /0, minorized by an
affine functional i.e. ∃(x∗,b) ∈ X×R : f (x)≥ 〈x,x∗〉−b for all x ∈ X. Then,

f ∗(x∗) := sup
x∈X

[〈x,x∗〉− f (x)]

is called its conjugate (dual) functional. Further, the bi-conjugate functional of f is defined
as f ∗∗ := ( f ∗)∗.

DEFINITION A.2. A convex functional f : X → R∪{∞} with dom f 6= /0 is
• proper if dom f 6= /0.
• closed if the epigraph {x : f (x)≤ t,x ∈ dom f} is a closed set for all t ∈ R.

It is known that f ∗∗ = f if only if f is a closed and proper convex functional.

LEMMA A.1. Let f ,g : X → R∪{∞} be functionals as in Definition A.1. Then

min
x∈X

[ f (x)+g(x)]≥−min
x∈X

[ f ∗(x)+g∗(−x)] .(41)

PROPOSITION A.3. Let f ,g : X → R∪ {∞} be closed and proper convex functionals.
Assume that ri(dom f ) ∩ ri(domg) 6= /0 and ri(dom f ∗) ∩ ri(domg∗) 6= /0, where ri(·) denotes
the relative interior. Then,

min
x∈X

[ f (x)+g(x)] =−min
x∗∈X

[ f ∗(x∗)+g∗(−x∗)].

Moreover, if the minimum on the left is attained at some x0 and the minimum on the right by
some x∗0, then

f ∗(x∗0) = 〈x0,x∗0〉− f (x0),

g∗(−x∗0) = 〈x0,−x∗0〉−g(x0).

DEFINITION A.3. Let f : X → R∪{∞} be a functional. Then

∂ f (x0) := {x∗0 ∈ X : f (x)≥ f (x0)+ 〈x− x0,x∗0〉}

is called the subdifferential of f at x0. Moreover, each x∗0 ∈ ∂ f (x0) is referred to as a subgra-
dient of f at x0.

PROPOSITION A.4. Let f : X→R∪{∞} be a closed and proper convex functional. Then
the following statements are equivalent:

i. x∗0 ∈ ∂ f (x0).
ii. f ∗(x∗0) = 〈x0,x∗0〉− f (x0).

iii. x0 ∈ ∂ f ∗(x∗0).
iv. f (x0) = 〈x0,x∗0〉− f ∗(x∗0).

For x ∈ Rn and r ∈ [1,n] we define ‖x‖r :=
√

gr(x) with

gr(x) := max{x2
i1 + · · ·+ x2

idre−1
+(r−brc)xidre : 1≤ i1 < i2 < · · ·< idre ≤ n}.

The following Lemma on the subgradients of ‖ · ‖r has been shown in [18] for r ∈ N. We
simply extend it to the real-valued case.
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LEMMA A.2. Let r ∈ [1,n], r̄ := dre and σ ∈ Rn
≥0 with

σ1 ≥ ·· ·> σr̄−t+1 = · · ·= σr̄ = · · ·= σr̄+s > · · · ≥ σn,(42)

where t = r̄ and s = n− r̄ if σ1 = σr̄ and σn = σr̄, respectively. Then v ∈ ∂‖σ‖r if and only if
i. 1≤ i≤ r̄− t: vi =

σi
‖σ‖r .

ii. r̄− t +1≤ i≤ r̄+ s: vi = τi
σr̄
‖σ‖r with 0≤ τi ≤ 1, ∑

r̄+s
i=r̄−t+1 τi = t− r̄+ r.

iii. r̄+ s+1≤ i≤ n: vi = 0.

Proof. Let r ∈ [1,n] and σ ∈ Rn
≥0 as in (42). Then

‖σ‖r = max
I⊂{1,...,n}

card(I )=r̄

gI (σ),

where gI (σ) :=
√

∑i∈I \max(I ) σ2
i +(r−brc)σ2

max(I )
and card(I ) denotes the cardinality

of I . Since ‖σ‖r 6= 0 it follows (see [38, Proposition 4.3.1]) that the sub-differentials of
‖ · ‖r evaluated at σ are given by

∂‖σ‖r = conv{∇gI (σ) : I ⊂ {1, . . . ,n}, card(I ) = r̄, gI (σ) = ‖σ‖r} ,(43)

where ∇ denotes the gradient operator with respect to σ . Next we determine the gradient at
these points where ‖σ‖r = gI (σ). Then, by assumption (42) it holds that {1, . . . , r̄− t} ⊂I
and therefore

• 1≤ i≤ r̄− t: ∂gI (σ)
∂σi

= σi
‖σ‖r .

• i ∈I ∩{r̄− t +1, . . . , r̄+ s}\max(I ): ∂gI (σ)
∂σi

= σi
‖σ‖r .

• i = max(I ): ∂gI (σ)
∂σr̄

= (r−brc)σi
‖σ‖r .

• r̄+ s+1≤ i≤ n: ∂gI (σ)
∂σi

= 0.
Thus, by (43) it holds that v ∈ ∂‖σ‖r if and only if

i. 1≤ i≤ r̄− t: vi =
σi
‖σ‖r ,

ii. r̄− t +1≤ i≤ r̄+ s : vi = τi
σr̄
‖σ‖r with 0≤ τi ≤ 1 and ∑

r̄+s
i=r̄−t+1 τi = t− r̄+ r,

iii. r̄+ s+1≤ i≤ n: vi = 0,
where the last part of the second condition follows from

∑
i∈I

∂gI (σ)

∂σi
= (t− r̄+ r)

σr̄

‖σ‖r
.

From Lemma A.2 and [66, Theorem 2] the following Proposition follows in the same way as
in [18] for r ∈ N.

PROPOSITION A.5. Let A ∈ Rn×m, r ∈ [1,min{m,n}] and r̄ := dre. Further, let an
SVD of A be given by A = ∑

min{m,n}
i=1 σiuivT

i with σr̄−t 6= σr̄−t+1 = · · · = σr̄ = · · · = σr̄+s 6=
σr̄+s+1, where t = r̄ and s = min{m,n}− r̄ if σ1 = σr̄ and σmin{m,n} = σr̄, respectively. Then
M ∈ ∂‖A‖r if and only if

M =
1
‖A‖r

(
r̄−t

∑
i=1

σiuivT
i +σr̄

(
ur̄−t+1 . . . ur̄+s

)
T
(
vr̄−t+1 . . . vr̄+s

)T

)
,

where T � 0, ‖T‖1∗ = t + r̄− r and ‖T‖1 ≤ 1. In particular, if σr̄ 6= σr̄+1 or σr̄ = 0 then
rank(M)≤ r̄.
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A.3. Proof of Lemma 1.
Proof. Let 1≤ r ≤ q := min{m,n} and

g(x1, . . . ,xq) := ‖diag(x1, . . . ,xq)‖r.

Then ‖ · ‖r is a unitarily invariant norm by Proposition A.2, because g is a symmetric gauge
function. Now, let M ∈ Rn×m, then by Corollary A.1

‖M‖2
r = max{〈MT M,UPV 〉 : U and V are unitary},

with P :=
(

Ir 0
0 0m−r

)
. If MT M = ∑

m
i=1 σi(M)uiuT

i we can define a projection Pr := ∑
r
i=1 uiuT

i

such that ‖M‖2
r = 〈Pr,MT M〉.

Since ‖ · ‖r∗ inherits the unitary invariance, we have

‖M‖r∗ = ‖Σ‖r∗ = max
‖X‖r≤1

〈Σ,X〉 ≤ max
∑

r
i σ2

i (X)=1

q

∑
i=1

σi(M)σi(X)

= max
∑

r
i σ2

i (X)≤1

[
r

∑
i=1

σi(M)σi(X)+σr(X)
q

∑
i=r+1

σi(M)

]
,

with Σ := diag(σ1(M), . . . ,σq(M)). The last inequality follows by Proposition A.1 and can
be attained. Hence,

‖M‖∗r = max
∑

r
i s2

i =1

q

∑
i=1

σi(M)si ≥ max
∑

r
i s2

i =1

r

∑
i=1

σi(M)si =
r

∑
i=1

σ
2
i (M),

with equality if and only if rank(M)≤ r.

A.4. Derivation of prox γ

2 ‖·‖2r
(·).

prox γ

2 ‖·‖2r
(Z) = argmin

X

(
γ

2
‖X‖2

r +
1
2
‖X−Z‖2

F

)
.

which is equivalent to

X? = prox γ

2 ‖·‖2r
(Z) ⇔ 0 ∈ ∂X

(
γ

2
‖X‖2

r +
1
2
‖X−Z‖2

F

)∣∣∣∣
X=X?

⇔ Z−X? ∈ γ‖X?‖r ∂X‖X‖r|X=X? .

Let r̄ := dre and an SVD of X? be given by X? = ∑
min{m,n}
i=1 σi(X?)uivT

i such that

σr̄−t(X?)> σr̄−t+1(X?) = · · ·= σr̄(X?) = · · ·= σr̄+s(X?)> σr̄+s+1(X?),

where t = r̄ and s = n− r̄ if σ1(X?) = σr̄(X?) and σmin{m,n}(X?) = σr̄(X?), respectively.
Further, let U2 :=

(
ur̄−t+1, . . . ,ur̄+s

)
and V2 :=

(
vr̄−t+1, . . . ,vr̄+s

)
. Then, by Proposition A.5

Z = (1+ γ)
r̄−t

∑
i=1

σi(X?)uivT
i +σr̄(X?)U2(I + γT )V T

2 +
min{m,n}

∑
i=r̄+s+1

σi(X?)uivT
i

with ‖T‖1 ≤ 1, ‖T‖1∗ = t− r̄+r, T � 0. Using [66, Theorem 2] it follows that Z has the same
singular vectors as X? and therefore T = diag(Tr̄−t+1, . . . ,Tr̄+s) can be chosen to be diagonal.
This gives
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i. 1≤ i≤ r̄− t : σi(X?) = 1
1+γ

σi(Z).

ii. r̄− t +1≤ i≤ r̄+ s : σr̄(X?) = 1
1+γTi

σi(Z).
iii. r̄+ s+1≤ i≤min{m,n} : σi(X?) = σi(Z).

Hence, the main task is to determine s≥ 0, t ≥ 1 and T � 0 such that

σr̄(X?) =
σr̄−t+1(Z)

1+ γTr̄−t+1
= · · ·= σr̄+s(Z)

1+ γTr̄+s
,(44)

where
s

∑
i=1

Tr̄−t+i = t− r̄+ r and Tr̄−t+i ≤ 1, 1≤ i≤ t + s(45)

and

σr̄(X?)>
σr̄−t+1(Z)

1+ γ
> σr̄+s+1(Z).(46)

Next we will show how s, t and T can be determined inductively. Clearly, there exists
Tr̄, . . . ,Tr̄+s0 for some s0 ≥ 0, fulfilling (44) and (45) with t = 1 and s = s0. However, if

1
1+ γ

σr̄−1(Z)≤
σr̄(Z)

1+ γTr̄
,

then requirement (46) is violated. Hence, t = 0 is not a feasible choice and we want to find the
smallest possible t for which this requirement is met after constructing T . Let us assume that
with t = t̃−1 and s = s̃t̃−1, there is no solution that satisfies all three conditions (44)–(46).

Then one can construct Tr̄−t̃+1, . . . ,Tr̄+s̃t̃ fulfilling (44) and (45) with t = t̃ and s = s̃t̃ , as
follows:

Let i≥ 2 and T (i−1)
r̄−t̃+1, . . . ,T

(i−1)
r̄−t̃+i−1 ≤ 1 be determined such

σr̄−t̃+1(Z)

1+ γT (i−1)
r̄−t̃+1

= · · ·= σr̄−t̃+i−1(Z)

1+ γT (i−1)
r̄−t̃+i−1

= σr̄−t̃+i(Z) and
i−1

∑
j=1

T (i−1)
r̄−t̃+ j < t̃− r̄+ r.

Case 1: Assume T (i)
r̄−t̃+i is such that ∑

i
j=1 T (i)

r̄−t̃+ j = t̃− r̄+ r and

σr̄−t̃+i+1(Z)<
σr̄−t̃+i(Z)

1+ γT (i)
r̄−t̃+i

=
σr̄−t̃+ j(Z)(

1+ γT (i−1)
r̄−t̃+ j

)(
1+ γT (i)

r̄−t̃+i

) =
σr̄−t̃+ j(Z)

1+ γT (i)
r̄−t̃+ j

, 1≤ j ≤ i−1.

Then, i = s̃t̃ and Tr̄−t̃+ j = T (i)
r̄−t̃+ j, 1≤ j ≤ i, where

(1+ γT (i−1)
r̄−t̃+i−1)(1+ γT (i)

r̄−t̃+i) = 1+ γT (i)
r̄−t̃+i−1 = 1+ γ

(
t̃− r̄+ r−T (i)

r̄−t̃+i−
i−2

∑
j=1

T (i)
r̄−t̃+ j

)

= i−1+ γ

(
t̃− r̄+ r−T (i)

r̄−t̃+i

)
−
(

1+ γT (i)
r̄−t̃+i

) i−2

∑
j=1

(
1+ γT (i−1)

r̄−t̃+ j

)
yields that

T (i)
r̄−t̃+i =

t̃− r̄+ r−∑
i−1
j=1 T (i−1)

r̄−t̃+ j

i+ γ ∑
i−1
j=1 T (i−1)

r̄−t̃+ j
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Case 2: Assume that there exists T (i)
r̄−t̃+i such that for all j with 1≤ j ≤ i−1

σr̄−t̃+i+1(Z) =
σr̄−t̃+i(Z)

1+ γT (i)
r̄−t̃+i

=
σr̄−t̃+ j(Z)(

1+ γT (i−1)
r̄−t̃+ j

)(
1+ γT (i)

r̄−t̃+i

) =
σr̄−t̃+ j(Z)

1+ γT (i)
r̄−t̃+ j

.

Then i < s̃t̃ and we can set

T (i)
r̄−t̃+i = γ

−1
(

σr̄−t̃+i(Z)
σr̄−t̃+i+1(Z)

−1
)
.

In both cases

T (i)
r̄−t̃+ j = γ

−1
(
(1+ γT (i−1)

r̄−t̃+ j)(1+ γT (i)
r̄−t̃+i)−1

)
, 1≤ j ≤ i−1.

Eventually this procedure will find t, s and T that satisfy (44) – (46). Finally observe that

σr̄(Z)
1+ γ

> σr̄+1(Z) ⇒ s = 0(47)

in which case rank(X?) = r̄ and only t has to be determined. If additionally r̄ = r then T is
the identity matrix and finding t is redundant.

Algorithm 1 Determine X = prox γ

2 ‖·‖2r
(Z)

1: Input: Let γ,r > 0 and Z ∈ Rn×m be given and set r̄ = dre and s = t = Tr̄ = 0.

2: Let Z = ∑
min{m,n}
i=1 σi(Z)uivT

i be an SVD of Z.

3: while
(

r̄ > t AND σr̄−t(Z)≤ (1+γ)σr̄−t+1(Z)
1+γTr̄−t+1

)
or t = 0 do

4: Tr̄−t = 0
5: t = t +1
6: k = r̄− t
7: while s 6= k do
8: k = k+1

9: Tk =
t−r̄+r−∑

k−1
j=r̄+1−t Tj

t+k−r̄+γ ∑
k−1
j=r̄+1−t Tj

10: if σk(Z)
1+γTk

≥ σk+1(Z) then
11: s = k
12: else
13: Tk = γ−1

(
σk(Z)

σk+1(Z)
−1
)

14: end if
15: i = r̄+ t−1
16: while i < k do
17: Ti = γ−1 ((1+ γTi)(1+ γTk)−1)
18: i = i+1
19: end while
20: end while
21: end while
22: Output: X = 1

1+γ ∑
r̄−t
i=1 σi(Z)uivT

i + σr̄(Z)
1+γTr̄

∑
r̄+s
i=r̄−t+1 uivT

i +∑
min{m,n}
i=r̄+s+1 σi(Z)uivT

i .
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