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Abstract - The present work is concerned with the model order reduction of positive
linear systems. Generally, well-established model reduction methods applied to positive
systems do not guarantee the positivity of the approximation. To this end we examine
some of the reasons for this behaviour and present a new method based on Balanced
Truncation. Further, we compare the results of this approach with those of reduction
methods especially developed for positive linear systems.
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Notation and Symbols

Below is a list of frequently used symbols and notations.

Rn n-dimensional real space
Cn n-dimensional complex space
iR imaginary axis
Rn
+ nonnegative orthant

Rn×n all n× n real matrices
Cn×n all n× n complex matrices
A ≫ 0 each element is positive
A = 0 each element is nonnegative
A > 0 positive de�nite
A ≥ 0 semi-positive de�nite
A−1 inverse
A♯ Moore-Penrose inverse
diag(a1, . . . , an) diagonal n× n matrix with ai as its diagonal entries
σ(A) spectrum
tr(A) trace
rg(A) range
ker(A) kernel (nullspace)
rk(A) rank
det(A) determinant
AT transpose
λi(A) i-th eigenvalue of A
I identity matrix of dimension n
aij (i,j)-th entry of A
α complex conjugate of α ∈ C
ℜ(λ) real part of λ ∈ C
|α| absolute value of α ∈ C
|A| component wise absolute value of a matrix A ∈ Cn×n

∥A∥2 2-norm
⟨α, β⟩ scalar product
∥G∥∞ H∞-norm of G(s)
H2 H2 space
F [x(t)] Fourier transform of x(t)
L [x(t)] Laplace transform of x(t)
:= de�ned as

v
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Introduction

This thesis is about model order reduction of positive linear systems and aims to give a
comparison between well-established approaches and those that were especially developed
for the treatment of positive systems.

Mathematical modelling of biological, chemical and physical systems often yields complex
high-dimensional models resulting e.g. from system identi�cation [13] or discretized
partial di�erential equations [4] [26]. A serious problem of these models is that they are
hard to analyse and simulate, which is why lower-dimensional systems are preferred over
complex ones. Approximating high-order models by reduced ones is the essential idea
of model order reduction in control and has received considerable attention during the
past decades e.g. in [11] [12] [23] [24] [30]. In case of a linear time-invariant system, the
model reduction problem can be described as the approximation of a system

G :

{
ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t)
(0.1)

with state variables x ∈ Rn, input u ∈ Rm and output y ∈ Rp, for small m, p and large
dimension n.[4] [12] Amongst the many optimality criteria for linear approximations,
most common is to consider the error with respect to the H∞-norm, concerning the the
frequency domain, or the H2-norm regarding the input-output behaviour.[12] [30] For
this purpose di�erent reduction methods have been developed, but most famous became
those based on projection approaches, such as Balanced Truncation and Krylov subspace
methods. Both will be discussed in Chapter 3 and 5, respectively.

A class of linear systems which is of particular interest, is given by the so-called positive
linear systems and will be introduced in Chapter 1. These systems are characterized
by the nonnegativity of the output and state variables for every nonnegative input and
initial state. Systems with such positivity constraints are often found in the context of
measured quantities e.g. temperature or mass �ow (see Chapter 7).
In order to perform a good simulation it is natural to preserve these properties after
performing model order reduction. Unfortunately, we will see in Chapter 2, that positive
systems are de�ned on cones instead of linear subspaces and therefore conventional
reduction methods are not able to guarantee the preservation of the positivity. In fact,
it will turn out, that this is in a large part also a positive realization problem.

As a consequence, new methods have been developed in [7][14][22], which will be
presented and discussed in Chapter 3 and 4. Furthermore, we will investigate in Chapter
3 and 5 for which positive systems Balanced Truncation and Krylov subspace methods

vii
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can still be applied and use these results to develop a new approach in Chapter 6.
This approach is be based on a lesser-known symmetry characterization of balanced
single-input-single-output systems. Concluding, we compare the quality among all the
presented methods in Chapter 7.



1. Positive Linear Systems

In this chapter, we look at the two basic concepts of positive linear systems, external
(input-output) and internal (input-state-output).
For this purpose we �rst introduce the notion of stricly positive (nonnegative) vectors

and correspondingly strictly positive (nonnegative) matrices. The entries of a real vector
v ∈ Rn and a real valued matrix A ∈ Rn×m are denoted by vi and aij , respectively. We
say

v is a strictly positive vector, v ≫ 0 :⇔ vi > 0 for all i
v is a nonnegative vector, v = 0 :⇔ vi ≥ 0 for all i

A is a strictly positive matrix, A ≫ 0 :⇔ aij > 0 for all (i, j)
A is a nonnegative matrix, A = 0 :⇔ aij ≥ 0 for all (i, j)

Observe the di�erence between the notation of a strictly positive (nonnegative) matrix
and a (semi-)positive de�nite matrix, which we denote as A > 0 and A ≥ 0, respectively.
Naturally, we use all these notations to describe the relation between two arbitrary
elements, e.g. A ≥ B is de�ned by A−B ≥ 0.
A real vector valued function u(t) ∈ Rn is called nonnegative if and only if u(t) = 0 ∀t.

1.1. Continuous Time Systems

The notations above allow us to give the de�nition of external positivity of a linear system.
In this section we will focus on continuous time systems and discuss the discrete case in
the subsequent section.

De�nition 1.1 (Externally positive linear system)

A linear system (A,B,C,D) is called externally positive if and only if its forced
output (i.e. the output corresponding to a zero initial state) is nonnegative for every
nonnegative input.[6]

Recalling the well-known representation of the impulse response matrix of a continuous-time
linear system:

g(t) := CeAtB +Dδ(t), (1.1)

where δ(t) denotes a delta-dirac impulse, we are able to give a better mathematical
description of an externally positive system.

1



2 1.1. CONTINUOUS TIME SYSTEMS

Theorem 1.1 (External positivity)

A linear system (A,B,C,D) is externally positive if and only if its impulse response
is nonnegative, i.e. g(t) = 0, ∀t ≥ 0.[6]

Proof : I Necessity: Since δ(t) is a positive input, g(t) = 0, ∀t ≥ 0 by de�nition of external
positivity.

I Su�ciency: Assuming g(t), u(t) = 0, the output to the system with zero initial state
is given by:

y(t) =

∫ t

0

g(τ)u(t− τ)dτ ⇒ y(t) = 0.

Since the transfer function G(s) of a state-space system (A,B,C,D) is nothing else than
the Laplace transformation of g(t), i.e.

G(s) = C(sI −A)−1B +D = L [g(t)] :=

∫ ∞

0
g(t)e−stdt,

it follows by the nonnegativity of g(t) that

G(0) = 0 ⇒ |G(iω)| 5
∫ ∞

0
|g(t)||e−iωt|dt 5

∫ ∞

0
|g(t)|dt =

∫ ∞

0
g(t)dt = G(0),

where | · | denotes the component wise absolute value.

According to [30], the H∞-norm of a system G(s) is de�ned as

∥G∥∞ := sup
ω

σ{G(iω)} = sup
ω

∥G(iω)∥2,

where σ denotes the largest singular value of G(iω). Consequently by ∥A∥2 ≤ ∥|A|∥2 we
get the following lemma.

Lemma 1.1 (Gain of a positive system)

For the H∞-norm of the transfer function of a positive system it holds:

∥G∥∞ = ∥G(0)∥2.

A closer look at g(t) tells us immediately, that if eAt, B, C,D = 0 ⇒ g(t) = 0. In the
next example we will see, this is not a necessary assumption for external positivity, but
it will be for our second positivity de�nition, the so called internal positivity.
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Example 1.1 (External, but not internally positive system)
Let us consider the following single-input-single-output (SISO) system.

A :=

(
−1 0
−1 −2

)
, b :=

(
1
0

)
, c :=

(
0 −1

)
.

This system has eigenvalues λ1 = −1 and λ2 = −2. Thus the impulse response can be
expressed by

g(t) = αeλ1t + βeλ2t.

Moreover, g(0) = cb = 0, which yields α = −β and then

ġ(t) = α(λ1e
λ1t − λ2e

λ2t).

Since ġ(0) = cAb = 1, we have α =
1

λ1 − λ2
> 0 and thus, g(t) = 0, ∀t ≥ 0.

An obvious disadvantage of Theorem 1.1 is, that in many cases it is not possible to
check easily whether the impulse response of a system is nonnegative or not. Still there
is a useful exclusion criteria for external positivity based on the poles of the system.

Lemma 1.2 (Dominant Pole)

The transfer function of an external positive system has at least one real dominant
pole.[5]

Proof : A dominant complex pole leads to a long-term behaviour of g(t) which is oscillating
and thus the impulse responses becomes negative.

As a consequence of Lemma 1.2 we can also give a condition on the zeros in case of a
SISO system.

Lemma 1.3 (Real Zeros)

The real zeros of an externally positive SISO system are smaller than the dominant
pole.[6]

Proof : Assume there is a zero z0 ∈ R that is greater than the real dominant pole. By
this assumption z0 lies within the radius of convergence of G(s) and therefore by the
nonnegativity of g(t)

G(z0) =

∫ ∞

0

g(t)e−z0tdt > 0,

which is a contradiction. Thus, there cannot exist any zero, that is greater or equal to the
real dominant pole.
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For internal positivity it is much easier to check whether a system is externally positive
or not (see Theorem 1.3). Therefore we will draw most of our attention to this class of
systems and introduce them with the next de�nition.

De�nition 1.2 (Internally Positive Linear System)

A linear system (A,B,C,D) is called (internally) positive if and only if its state
and output are nonnegative for every nonnegative input and every nonnegative initial
state.[6]

The di�erence between internal and external positivity is obviously the additional condition
of the nonnegativity of the state vector and hence every positive linear system is externally
positive. The de�nition requires explicitly a nonnegative output for every nonnegative
inital state and nonnegative input. Thus it su�ces to consider the particular pair
[x(0) = ei, u(0) = 0] for the analysis of (A,B,C,D) [6], where ei denotes the i-th
unit vector in Rn.

Looking at the state-space-representation of a (cont.) linear system (0.1), it becomes
clear, that C = 0 has to hold in order to provide internal positivity: if x(0) = ei, u(0) = 0
and cij < 0 for at least one j, it will lead immediately to a negative output and therefore
C = 0 is a necessary condition for (internal) positivity.

A similar consideration can be done for D by switching the roles of x(0) and u(0).
Together C,D = 0 are su�cient and necessary conditions for a nonnegative output
under the assumption of a nonnegative state and input.

All that remains is the analysis of the state-equation:

ẋ(t) = Ax(t) +Bu(t) (1.2)

For this purpose we start with some important de�nitions and results for a certain class
of matrices, the so called Metzler matrices (or sometimes −Z-matrices) [2].

De�nition 1.3 (Metzler- and Z-matrix)

If A + αI = 0 with α ∈ Rn, then A is called a Metzler matrix or essentially

nonnegative, short A
e

= 0.

A is called a Z-matrix if −A
e

= 0 and hence a Metzler matrix is also called a
-Z-matrix.

A Metzler matrix is in a manner of speaking a matrix with nonnegative o�-diagonal
entries.
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Remark: If A + αI = 0, then it follows by the series representation of the exponential
function.

0 5 eA+αI = eAeαI ⇔ eA = 0 (1.3)

Thus the matrix exponential of a −Z-matrix is always nonnegative and therefore eAt = 0
for all t ≥ 0.

An important subclass of Metzler matrices are the so called −M -matrices [2].

De�nition 1.4 (M-matrix)

A matrix A ∈ Rn is called an M-matrix, if −A
e

= 0 and ℜ(λ) ≥ 0, ∀λ ∈ σ(A), where
ℜ(λ) denotes the real part of λ.

Analogous: A is a -M-matrix if A
e

= 0 and ℜ(λ) ≤ 0, ∀λ ∈ σ(A).

This is, all the eigenvalues of a −M -matrix are suited in the left complex plane and the
matrix is stable. The most important results about asymptotically stable −M -matrices
are summarized in the following theorem.

Theorem 1.2 (Asymptotically stable −M-matrix)

Let A be a −Z-matrix, then the following statements are equivalent [2]:

(i) A is a nonsingular −M -matrix

(ii) ℜ(λ) < 0, ∀λ ∈ σ(A)

(iii) If A = B − αI with B = 0, then ρ(B) < α.

(iv) (−A)−1 = 0

(v) ∃D > 0 diagonal : AD +DAT < 0.

Proof : (i) ⇒ (ii): By the nonsingularity of A it follows, that its determinant

det(A) =
n∏

i=1

λi ̸= 0 with λi ∈ σ(A).

Hence, by de�nition of a −M -matrix we can conclude, that all real eigenvalues of A have
to be strictly negative and only strictly imaginary eigenvalues can ful�l ℜ(λ) = 0.
Let α > 0 be su�ciently large, such that A+ αI = 0, then λ+ α ∈ σ(A+ αI), ∀λ ∈ σ(A).
Consequently, if A possesses a strictly imaginary eigenvalue λ̃, then ℜ(λ̃ + α) > λ0, ∀λ0 ∈
σ(A) ∩ R and therefore |λ̃+ α| > |λ0|. But this contradicts the Frobenius-Perron-Theorem
(Theorem 1.5).
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(ii) ⇒ (i): Clear by '(i) ⇒ (ii)'.

(ii) ⇒ (iii): Again by Theorem 1.5 there exists a λ0 ∈ σ(B), such that λ0 = ρ(B) ≥ 0.
Since λ0 = λ + α for a λ ∈ σ(A) and ℜ(λ) < 0 by assumption, we conclude α > 0 and
consequently by Pythagoras |λ+ α|2 < α2.

(iii) ⇒ (ii): In the same way as '(ii) ⇒ (iii)'.

(iii) ⇒ (iv): Since (ii) and (iii) are equivalent, it follows from '(ii) ⇒ (i)', that A = B − αI

is invertible. By assumption A−1 = (B − αI)−1 =
1

α
(
1

α
B − I)−1 and ρ(

1

α
B) < 1.

By the well-known Neumann series theorem [17] we conclude

(−A)−1 =
∞∑
i=0

1

αi+1
Bi = 0.

(iv) ⇒ (v): Let x := (−A)−1e, with e =
(
1, . . . , 1

)T
.

Then by assumption

Dx := diag
(
x1, . . . , xn

)
:=

x1

. . .

xn

 > 0

and thus
ADxe = Ax = −e ≪ 0 (1.4)

Observe, since (−A)−1A = −I and A is −Z-matrix, it follows by assumption that aii < 0.
By (1.4) we conclude then, that AD is strictly diagonally dominant. The same can be done
for AT : let y := (−A)−T e, then Dy := diag

(
y1, . . . , yn

)
> 0 and ATDye = Ay = e ≪ 0.

Consequently, eTDyADx = Dxe ≪ 0 and DyADxe = Dye ≪ 0 and therefore DyADx is
row and column diagonally dominant.
With the help of Gershgorin's circle theorem [3] we receive

P := DyADx +DxA
TDy < 0,

because P is strictly diagonally dominant with pii < 0. Multiplying from both sides with
D−1

y = D−T
y leads to

ADxD
−1
y +D−1

y DxA
T = D−T

y PD−1
y < 0.

Hence, D := DxD
−1
y concludes the proof.

(v) ⇒ (ii): Follows directly by Lemma 3.1.

Now we are ready to turn back to equation (1.2) and describe the properties of (A,B)
in order to satisfy the condition of a nonnegative state vector. We make a consideration
similar to what has been done in [16] or [6]. Let us start with the case u(t) = 0:

ẋ(t) = Ax(t).
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If x(t) lies on the boundary of the positive orthant Rn
+, i.e if x(t) contains an element xi

equal to zero, then the corresponding derivative ẋi(t) has to be nonnegative in order to
keep xi nonnegative. This is obviously equivalent to the fact that the o�-diagonal entries
have to be nonnegative and hence A has to be a Metzler matrix. Since we only consider
asymptotically stable systems, we can conclude with the help of Theorem 1.2, that A
has to be a nonsingular −M -matrix and hence its diagonal entries have to be strictly
negative as seen in the proof to Theorem 1.2.
As for D, a negative entry in B and a corresponding u(t) = 0 would lead to a violation
of ẋi(t) = 0 , which is why we can conclude that B has to be nonnegative.
In conclusion we have shown that A being a Metzler matrix and B = 0 are su�cient and
necessary conditions to assure a nonnegative state vector. Altogether we summarize the
following characterization of positive linear systems.

Theorem 1.3 (Continuous Positive Linear System)

A (cont.) linear system (A,B,C,D) is positive if and only if A is a −M -matrix and
B,C,D = 0.

1.2. Discrete Time Systems

For discrete time systems the de�nitions of external and internal positivity remain the
same. The di�erence compared to continuous time systems is, that a discrete system
represents its own recursive solution algorithm [10]. The solution to the state can be
given explicitly by the recursion

x(t) = At−t0x(t0) +
t−1∑
k=t0

At−k−1Bu(k). (1.5)

with an initial state x(t0) at time t0. Consequently, we can consider immediately x(t+1),
instead of ẋ(t). Analogous to the delta-dirac impulse, a pulse in discrete time is de�ned
as

δd(t) :=

{
1 for t = 0

0 for t > 0
(1.6)

and thus for discrete time the impulse response (x(0) = 0), is given by

gd(t) = C

t−1∑
k=0

At−k−1Bδd(k) +Dδd(t) =

{
D for t = 0

CAt−1B for t > 0
(1.7)

Obviously, for an discrete externally positive system it is necessary that

CAt−1B = 0 for t > 0 and D = 0.
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By recursion (1.5) this is also a su�cient condition, i.e Theorem 1.1 is valid in discrete
time, too. In the same way, as in the continuous case, the transfer function of a discrete
system is given by the Z -transformation of its impulse response, i.e.

G(z) = C(zI −A)−1B +D = Z [gd(t)] =
∞∑
t=0

gd(t)

zt
.

Notice, by setting gt := gd(t), the series expansion of the continuous time impulse
response can be written as

CeAtB +Dδ(t) = C

∞∑
i=0

Aiti

i!
B +Dδ(t) =

∞∑
i=1

gi
t(i−1)

(i− 1)!
+Dδ(t), (1.8)

and gt is also known as Markov coe�cients.

For a discrete internally positive system it is clear, that A,B,C,D = 0 is su�cient.
The necessity of this condition can be readily seen by considering x(t + 1) instead of
ẋ(t) in the proof to Theorem 1.3. Then in case that x(t) is on the boundary of Rn

+, e.g.
x(t) = ei, x(t+1)i = aii has to remain positive. Thus we can state the discrete analogous
of Theorem 1.3 as follows.

Theorem 1.4 (Discrete Positive Linear System)

A discrete linear system (A,B,C,D) is positive if and only if A,B,C,D = 0.

In Lemma 1.2 we have discovered that for a (cont.) positive system, A must have a real
dominant pole. With an extension of the so-called Frobenius-Perron-Theorem [16] [18]
one can make the same conclusion for the discrete case.

Theorem 1.5 (Frobenius-Perron Extension)

Let A ≫ 0, then there exists a real λ0 > 0 and a x0 ≫ 0 such that

(i) Ax0 = λ0x0

(ii) λ0 > |λ|, ∀λ ∈ σ(A) \ {λ0}.

In case of A = 0, the same statements can be made by replacing the strict relations
with ≥ and =, respectively.

Proof : I We start with the case A ≫ 0:
Let λ0 denote the maximal value for which Ax − λx = 0, for some x ∈ Rn

+ \ {0}. It is
obvious, that a lower bound for λ0 is provided by λ = 0, but it is also possible to �nd an

upper bound. Let ∥A∥∞ := maxi
n∑

j=1

|aij |, then

∥Ax∥∞ ≤ ∥A∥∞∥x∥∞ ⇒ (Ax)i ≤ ∥A∥∞ max
i

{xi},∀x ≥ 0
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and ∥A∥∞ is an upper bound for λ.
Let x0 ∈ Rn

+ \ {0} be a vector ful�lling Ax0 − λ0x0 = 0, then by A ≫ 0 it follows that
λ0 > 0 and Ax > 0 for all x ∈ Rn

+ \ {0}. Consequently, A(Ax0 − λ0x0) > 0 and equal to
zero if and only if Ax0 = λ0x0. By looking at

0 < A(Ax0 − λ0x0) = A(Ax0)− λ0(Ax0),

we observe, that λ0 is not maximal regarding the vector Ax0 ≫ 0 and this a contradiction
to the maximality of λ0. Thus Ax0 = λ0x0 ≫ 0, which concludes the proof of (i) for A ≫ 0.
Considering any other eigenvalue λ ∈ σ(A) \ {λ0} with eigenvector y, it is easy to see that

A|y| − |Ay| ≥ 0

and equivalently
A|y| − |λ||y| ≥ 0.

Then by de�nition of λ0 it must hold λ0 ≥ |λ|. The strict inequality is readily seen by an
su�ciently small eigenvalue shift α > 0, such that A − αI ≫ 0. Using the �rst part we
conclude

|λ− α| ≤ λ0 − α.

If there existes a complex λ ∈ σ(A) \ {λ0} such that |λ| = λ0, then by Pythagoras
|λ − α|2 > (λ0 − α)2 and we have a contradiction to the maximality of λ0 − α. This
concludes the whole proof for A ≫ 0.

I Now we treat the case A = 0:

Let ∆ be a strictly positive matrix. Then Ak := A+
1

k
∆ with k ≥ 1 de�nes a sequence of

strictly positive matrices converging towards A.
Thus, by the �rst part of the proof, we know there exists a strictly dominant eigenvalue
λk > 0 of Ak. By Gershgorin's circle theorem [3] it follows from the de�nition of Ak, that
λ1 ≥ λ2 ≥ · · · ≥ r, where r denotes the spectral radius of A. Therefore {λk}k≥1 de�nes a
monotonically decreasing convergent sequence.
Since {vk}k≥1 de�nes a bounded sequence within the compact unit-ball, we can extract a
convergent subsequence {vki}ki≥1, according to the well-known theorem of Bolzano-Weierstraÿ.
Consequently, by the positivity of vk and λk we conclude

lim
i→∞

vki = v∗ = 0 with ∥v∗∥ = 1 and lim
i→∞

λki = λ∗ ≥ r.

In the end we get
Av∗ = lim

i→∞
Akivki = lim

i→∞
λkivki = λ∗v∗

and therefore λ0 := λ∗ = r and v0 := v∗.

Notice, that if Amx0 = λ0x0 for some m > 0, then Ax0 = m
√
λ0x0. Hence, if A

m ≫ 0 ,
we can apply Theorem 1.5 and get the same statements as for A ≫ 0.

Corollary 1.1

Let A = 0 and assume Am ≫ 0 for some m > 0. Then we can make for A the same
conclusions as for a positive matrix in Theorem 1.5.
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In order to �nd an answer, when such an m > 0 exists, we need to look at a certain class
of matrices, called irreducible matrices [18].

De�nition 1.5 (Reducible matrix)

Let A ∈ Rn×n, then A is called reducible if there exists a permutation matrix π, such
that

πTAπ =

(
B1 ∗

B2

)
with square matrices B1 and B2. If A is not reducible, then it is called irreducible.

Interesting property of the largest eigenvalue for irreducible nonnegative matrices is given
by the following lemma and theorem.

Lemma 1.4

If A is irreducible nonnegative matrix with a multiple dominant eigenvalue, then
tr(A) = 0. [18]

Theorem 1.6

A is a irreducible nonnegative matrix with unique largest eigenvalue if and only if
Am ≫ 0 for some m > 0. [18]

For reducible nonnegative matrices this statements hold generally not true, what we
can see for example if we assume A to be the identity. However, reducible nonnegative
matrices have the property of having multiple nonnegative eigenvalues, which we can
conclude from the following lemma.

Lemma 1.5

Let A be a reducible nonnegative matrix, then there exists a permutation matrix π
such that

πTAπ =


B1 ∗ ∗ ∗

B2 ∗ ∗
. . . ∗

Bk

 ,

where each Bi is irreducible or equal to zero. [18]

This means, the eigenvalues of A = 0 are given by the eigenvalues of Bi = 0 and it is
possible to diagonalize πTAπ by a blockdiagonal matrix. Hence, according to Theorem
1.5, there must exists at least one nonnegative eigenvector to each Bi corresponding to
the largest eigenvalue of Bi.



2. Positive Realization

A clear drawback of Theorem 1.3 is the fact, that a simple state-space transformation can
already destroy the nonnegativity of (B,C,D) and the Metzler matrix property of A. In
this case all that is left is the nonnegativity of the impulse response. On the other side,
as we demonstrate in Example 2.1, the nonnegativity of the impulse response does not
guarantee a minimal positive realization. This chapter will treat the problem of positive
realizability.

For a �rst order system with transfer function

G(s) =
1

s+ α1
M with M ∈ Rk×m (2.1)

it can be seen, that the nonnegativity of the impulse response g(t) implies the positivity
of the minimal realization of G(s). By the nonngetivity of g(t) it follows M = 0 and its
rank rk(M) of M must be equal to one, due to the fact that G(s) is a system of �rst
order. For instance by applying Singular Value decomposition, we can decompose M
into two positive vectors C ∈ Rk and BT ∈ Rm: let M = UΣV T with

Σ =

(
σ1

0

)
∈ Rk×m, U ∈ Rk×k and V ∈ Rm×m.

then MMT = UΣ2UT = 0 and MTM = V Σ2V T = 0. We conclude that in each case
the �rst column u1 of U and v1 of V is an eigenvector to the largest eigenvalue σ1.
Consequently, by Theorem 1.5, u1, v1 = 0 up to a negligible sign-change and therefore
we can de�ne

A := −α1, B :=
√
σ1|v1|T , C :=

√
σ1|u1|, (2.2)

which is a positive minimal realization of G(s).

This implication does not hold for systems of higher orders in general and hence, the
minimal realization of a positive system does not need to be just a transformation of a
positive realization. In order to get the positive realization of an (internally) positive
system, we may need to increase the state-space dimension.

Example 2.1 (Nonpositive minimal realization)
Let us consider the system (A, b, c) with

A :=


−2 0 0 1
1 −2 0 0
0 1 −2 0
0 0 1 −2

 , b := cT :=


1
0
0
1

 .

11
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The transfer function of this system is given by

G(s) =
2s2 + 7s+ 7

(s+ 1)(s2 + 4s+ 5)
=

2s2 + 7s+ 7

s3 + 5s2 + 9s+ 5
,

which has poles at −1 and −2 ± i. However, by a straight forward calculation of the
characteristic polynomial of a 3×3-Metzler matrix Ã and a comparison of its coe�cients
with s3 + 5s2 + 9s+ 5, it follows

−ã11 − ã22 − ã33 = 5 and ã11ã22 + ã11ã33 + ã22ã33 ≥ 9.

This gives
(−4− ã22 − ã33)(ã22 + ã33) ≥ 9

or equivalently
(ã22 + ã33 + 2)2 ≤ −5.

Hence, the system does not have a minimal realization, which is positive.

2.1. Reachability, Observability and Realizability

In the following we want to investigate where the reasons lie, that not every externally
positive SISO-systems system has a positive minimal realization. Furthermore, we will
show that for second-order systems, external positivity is equivalent to internal positivity.
For this purpose we start with the de�nitions of reachable and observable sets with respect
to a nonnegative input.

Let us consider the linear time-invariant SISO-system (A, b, cT )

ẋ = Ax+ bu,

y = cTx, (2.3)

then, as in [1] [6] [19], the reachable and observable sets, with respect to nonnegative
inupts, are de�ned as follows.

De�nition 2.1 (Reachable set)

Let X∞(A, b) be the set of all points that can be reached within �nite time from the
origin by nonnegative inputs, i.e.

X∞(A, b) := {x | x =

∫ t

0
eA(t−τ)bu(τ)dτ, t ≥ 0, u ≥ 0 integrable}.

Then we de�ne the reachable set Xr as

Xr := Xr(A, b) := X∞(A, b).
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De�nition 2.2 (Observable set)

Let Xo(c
T , A) be the set of all states, that cause a nonnegative output for all t ≥ 0 if

u(t) = 0, i.e.
Xo := Xo(c

T , A) := {x | ⟨c, eAtx⟩ ≥ 0, ∀t ≥ 0},

where ⟨·, ·⟩ denotes the scalar product. Then Xo is called the observable set.

Note, do not confuse Xr and Xo with the reachable and observable subspaces of a system,
which are given by the ranges of P and Q in (3.2) and (3.4), presented in the next chapter.

By looking at the de�nition of X∞(A, b) it is easy to see that X∞(A, b) is a convex
cone because of the linearity of the system (see Appendix): assume x1, x2 ∈ X∞(A, b)
are two states steered by u1 and u2 in time t1 ≥ t2. Then by setting

ũ2(τ) :=

{
0, 0 ≥ τ < t1 − t2

u2(τ), t1 − t2 ≤ τ ≤ t1

we can steer the system from the origin to

x0 := αx1 + βx2, α, β ≥ 0

by the positive input

u0 := αu1 + βũ2.

Since Xo is the dual set to {eAT tc, ∀t ≥ 0}, it is closed and convex (Lemma A.1). We
can conclude the same by its property of being the dual cone to Xr. In order to do this
we need to show, that every x ∈ Xr can be approximated similar as the points in Xo.[1]
[19]

Lemma 2.1

If Cr denotes the smallest convex cone containing the set

{x | x = eAtb, t ≥ 0}

then

Xr = Cr.

Proof : For a real-valued interval [0, t] ⊂ R, it holds

∫ t

0

eA(t−τ)bδ(τ − τ0)dτ =


eA(t−τ0)b, τ0 ∈]0, t[
1
2e

A(t−τ0)b, τ0 = 0 or τ = b for t > 0

0, otherwise.

(2.4)
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Let v ∈ {x | x = eAtb,∀ t ≥ 0}, then by equation (2.4) we �nd with u(τ) := 2δ(τ) a
nonnegative input such that v ∈ X∞(A, b). Since Cr and Xr are both convex, we conclude
Cr ⊂ Xr.

Suppose x ∈ X∞(A, b). Since eAtb ∈ Cr ∀t ≥ 0 we get because of its cone property
eA(t−τ)bu(τ)∆ ∈ Xr with 0 ≤ τ ≤ t and ∆ ≥ 0. Consequently if we approximate

x =

∫ t

0

eA(t−τ)bu(τ)dτ

by its Riemann-sum SN , we get by convexity of Cr

x ≈ SN :=
N∑
i=1

eA(t−τi)bu(τi)(τi − τi−1) ∈ Cr with τ0 = 0 < τ1 < · · · < τN = t.

Since SN de�nes a convergent series of Cr, its limit lies in Cr and therefore

x = lim
N→∞

SN ∈ Cr.

Observe the similarity between Xo and Cr. By de�nition of the dual cone and the fact
that every dual cone is closed, it holds

Xr(A, b)
∗ = C∗

r = {y | ⟨eAtb, y⟩ ≥ 0, ∀t ≥ 0}

= {y | ⟨b, eAT ty⟩ ≥ 0, ∀t ≥ 0}
= Xo(b

T , AT ).

Since Xr is closed and convex, we get by Theorem A.1, X∗∗
r = Xr.

Lemma 2.2 (Dual Cone)

Xr(A, b)
∗ = Xo(b

T , AT ) and Xo(c
T , A)∗ = Xr(A

T , c). [19]

In the following we want to �nd out more about the geometric structure of Xr and Xo in
case of external positivity and relate them to (externally positive) minimal realizations.

Lemma 2.3

Let (A, b, cT ) be an externally positive system, then Xr ⊆ Xo.[19]

Proof : By Lemma 2.1 and its proof we know, that a vector x ∈ Xr can be arbitrarily close
approximated by a nonnegative �nite linear combination of Cr

x =
N∑
i=1

eAtib∆i.
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According to Theorem 1.1

cT eAtb ≥ 0 ∀t ≥ 0

and therefore

cT eAtx =

N∑
i=1

cT eA(t+ti)b∆i ≥ 0, ∀t ≥ 0 ⇒ x ∈ Xo.

Theorem 2.1 (Minimal Realization)

(A, b, cT ) is a minimal realization if and only if Xr(A, b) is solid and Xo(c
T , A) is

pointed.[19]

Proof : By Lemma 2.2 and Theorem A.2 we only have to show the statement for either Xr or
Xo and the other follows by duality. Notice, in fact we will basically use the same arguments
as to prove Theorem A.2.

Suppose Xo is not pointed, then as in the proof of Theorem A.2 there must be a line
αv ∈ Xo ∀α ∈ R and v ∈ Rn

+ \ {0} for which cT eAtαv ≥ 0 holds.
Consequently,

cTAv = 0 ∀t ≥ 0,

and thusQv = 0, which means that v has no in�uence on the output and cannot be observed.
This contradicts the minimality of the realization.

In the other case, if the realization is not observable, there must exist a nonzero vector
w ∈ Rn such that

cT eAtw = 0 ∀t ≥ 0,

and as before there would exist a line in Xo, such that αw ∈ Xo ∀α ∈ R, which contradicts
the pointedness.

A direct consequence of Lemma 2.3 and Theorem 2.1 is the following result about minimal
realizations of externally positive systems. The same follows from the results in [19], but
by assuming external positivity, we can give a much shorter proof here.

Theorem 2.2

Let (A, b, cT ) be a minimal realization of an externally positive system. Then Xr and
Xo are proper cones.

Proof : By Theorem 2.1 we only need to show the pointedness of Xr and solidness of Xo.

Let us assume Xr is not pointed. Then

∃x ∈ Rn : x ∈ Xr ∩ −Xr.
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According to Lemma 2.3, Xr ⊆ Xo and hence

x ∈ Xo ∩ −Xo,

which means Xo would be pointed. Since we have assumed to have a minimal realization
this is a contradiction to Theorem 2.1. Again, the same statement for Xo follows by the
duality of Xr and Xo.

These results show which strict requirements have to be ful�lled for a minimal realization
of a positive system. The questions is now, by looking at Xr and Xo, what is the
distinction between internal and external positivity of a minimal realization.

Theorem 2.3 (Minimal Positive Realization)

Let (A, b, cT ) be a minimal realization of a strictly proper transfer function G(s). Then
G(s) possesses a positive realization if and only if there exists a polyhedral cone Xp,
such that

(i) (A+ λI)Xp ⊂ Xp for some λ ≥ 0,

(ii) Xr ⊂ Xp ⊂ Xo.[19]

In the proof of the theorem as well as in the subsequent conclusions we will need the
following lemma.

Lemma 2.4

(i) Xr(A, b) = Xr(A+ λI, b), Xo(c, A) = Xo(c, A+ λI), ∀λ ∈ R

(ii) eAtXr ⊂ Xr, eAtXo ⊂ Xo, ∀t ≥ 0.[19]

Proof : The �rst statement follows by cT e(A+λI)tx = eλtcT eAtx, the de�nition and cone
property of Xo and Lemma 2.2.
For the second statement we just need to notice, that eAteAt̃ = eA(t+t̃) and apply it to the
de�nition of Xr and Xo.

Now we are ready to prove the main theorem of this chapter.

Proof to Theorem 2.3 : I Su�ciency: By de�nition of a polyhedral cone we can write Xp

as Xp = PRk
+ with P ∈ Rn×k. Consequently from assumption (i) we conclude

(A+ λI)P = PKA, with KA ∈ Rk×k
+ ,

and de�ne

Ap := KA − λI
e

= 0.
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By the de�nition of Cr and assumption (ii), b ∈ Xr ⊂ Xp. Hence, there exists a vector
bp ∈ Rk

+ such that
Pbp = b.

Again, with the same arguments it holds c ∈ Xr(A
T , c) = Xo(c

T , A). Since Xp ⊂ Xo it
follows by the de�nition of a dual set, that X∗

o ⊂ X∗
p and consequently c ∈ X∗

p . Then by

the de�nition of the dual set, there must exist a vector cp ∈ Rk
+ such that

cp = PT c.

Noticing that AP = PAp and thus AkP = Ak−1(AP ) = Ak−1PAp = · · · = PAk
p we can

compare the impulse responses of the system (A, b, cT ) and (Ap, bp, c
T
p ) as follows

cT eAtb = cT
∞∑
k=0

Aktk

k!
Pbp = cTP

∞∑
k=0

Ak
pt

k

k!
b = cTp e

Aptbp.

Hence, it holds for the transfer functions

cTp (sI −Ap)
−1bp = cT (sI −A)−1b,

and (Ap, bp, c
T
p ) is a positive realization of G(s).

I Necessity: Assume (Ap, bp, c
T
p ) is a positive realization of G(s) of dimension N.

By setting λ := maxi=1,...,n{−apii} we de�ne a nonnegative matrix Ãp by

Ãp := Ap + λI and Ã := A+ λI.

It is readily noted, that (Ãp, bp, c
T
p ) and (Ã, b, cT ) are both realization of G(s − λ), where

(Ã, b, cT ) is a minimal realization. With the help of Lemma 2.4 (i) we get

Xr(A, b) = Xr(Ã, b) and Xo(c
T , A) = Xo(c

T , Ã),

and thus in order to conclude the prove it is su�cient to show that there exists a polyhedral
cone Xp ⊂ Rn such that

(i) ÃXp ⊂ Xp,

(ii) Xr(Ã, b) ⊂ Xp ⊂ Xo(c
T , Ã).

We will �nd such a polyhedral cone by doing so for the observable part of (Ãp, bp, c
T
p ).

Let us transform the system (Ãp, bp, c
T
p ) into the observable canonical form:

T−1
o ÃpTo =

(
A11 0
∗ ∗

)
, T−1

o bp =

(
b1
∗

)
, cTp To =

(
cT1 0

)
.

Since (A11, b1, c1) is observable, we can transform it into the controllable canonical form

Aaa := T−1
c A11Tc =

(
ÃT ∗
0 ∗

)
, ba := T−1

c b1 =

(
c
0

)
, ca := cT1 Tc =

(
bT ∗

)
.

and retrieve the minimal realization (ÃT , c, bT ). The reason why we use this form instead
of (Ã, b, cT ), is that by transposing we get the same matrix structure as for the observable
form. Notice, this is only possible for SISO-systems. Then, by de�ning

T :=

(
Tc

I

)
To,
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we get a system

T−1ÃpT =

(
Aaa 0
∗ ∗

)
, T−1bp =

(
ba
∗

)
, cTp T =

(
cTa 0

)
and T−1 =

(
(T−1)a

∗

)
.

We have partitioned the system in exactly this way because of the zero-matrices that we
will need in the following and the fact, that we can express (Ãp, bp, cp) in terms of (Ã, b, c).
Given a matrix Q, we de�ne by cone{Q} the polyhedral cone generated by the columns of Q.
If we set Xk := (cone{(T−1)a})∗ then X∗

k = cone{(T−1)a} and AaaX
∗
k = cone{Aaa(T

−1)a}.
By looking at (

(T−1)a
∗

)
Ãp =

(
(T−1)aÃp

∗

)
=

(
Aaa 0
∗ ∗

)(
(T−1)a

∗

)
we observe

(T−1)aÃp = Aaa(T
−1)a.

Hence,

AaaX
∗
k = cone{(T−1)aÃp} ⊂ cone{(T−1)a} = X∗

k ,

where the inclusion follows by Ãp = 0. Consequently, by the de�nition of a dual cone
AT

aaXk ⊂ Xk. Because b and c are nonnegative we get

ba = (T−1)ab ∈ X∗
k and because cTa (T

−1)a = c, ca ∈ Xk.

Let us write the polyhedral cone Xk as

Xk = cone

{(
P
∗

)}
and de�ne Xp := cone{P},

where P denotes the matrix of the �rst n rows, corresponding to Ã in AT
aa. Then by

considering the corresponding parts of P in ba and ca, it is straightforward to see that

ÃXp ⊂ Xp, b ∈ Xp and cT ∈ X∗
p . (2.5)

Thus condition (i) is veri�ed and it is left so show condition (ii).

By (2.5) we get Ãib ∈ Xp, ∀i ≥ 0 and therefore by Lemma A.2 eÃtb =
∞∑
i=0

Ãib ∈ Xp, ∀t ≥ 0.

Together with Lemma 2.1 we get conclude Xr(Ã, b) ⊂ Xp.

In the same way we can show the second inclusion. By the Ã-invariance of Xp it follows

again ÃTX∗
p ⊂ X∗

p and hence as before Xr(Ã
T , c) ⊂ X∗

p . From the de�nition of a dual cone,

Theorem A.1 and Lemma 2.2 we get X∗∗
p = Xp ⊂ Xr(Ã

T , c)∗ = Xo(c
T , Ã).

In Lemma 2.3 we got, that Xr is a subset of Xo and hence it would be a perfect candidate
for Xp. Unfortunately we know, not every externally positive system has a positive
realization of dimension equal to the order. In this case Xr is either not polyhedral
or not (A + λI)-invariant. The next lemma will show the relation between these two
properties.
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Lemma 2.5

Let Xp ⊆ Rn and A ∈ Rn×n. Then eAtXp ⊂ Xp ∀t ≥ 0 if and only if there exists a
λ ≥ 0, such that (A+ λI)Xp ⊂ Xp.[19]

Proof : I Su�ciency: Let us assume there exists an x ∈ eAtXp \ Xp, then by the cone
property of Xp

eηteAt = e(A+ηI)t /∈ Xp, ∀η.

Consequently, by series expansion it holds

e(A+ηI)t =

∞∑
i=0

(A+ ηI)ix

i!
ti /∈ Xp,∀η, ∀t ≥ 0

Together with Lemma A.2 this is a contradiction to (A + λI)Xp ∈ Xp. Observe for this
direction a closed convex cone Xp would have been su�cient.

I Necessity: Let Xp be generated by the set {p1, . . . , pN} and X∗
p by {q1, . . . , qN ′}. Hence

by de�nition of the dual cone and by assumption

⟨qj , pi⟩ ≥ 0 and ⟨qj , eAtpi⟩ ≥ 0, ∀t ≥ 0, 1 ≤ i ≤ N, 1 ≤ j ≤ N ′ (2.6)

Again by de�nition of X∗
p , the existence of a λ ≥ 0 such that (A+λ)Xp ⊂ Xp, is equivalent

to

∃λ ≥ 0 : ⟨(A+ λI)pi, qj⟩ = ⟨qj , (A+ λI)pi⟩ ≥ 0, 1 ≤ i ≤ N, 1 ≤ j ≤ N ′.

If ⟨qj , Api⟩ ≥ 0 then it is obvious by (2.6), that

⟨qj , (A+ λijI)pi⟩ ≥ 0, ∀λij ≥ 0,

and we set λij = 0. If ⟨qj , Api⟩ < 0 and ⟨qj , pi⟩ > 0 we can de�ne

λij := −⟨qj , Api⟩
⟨qj , pi⟩

> 0,

and it holds ⟨qj , (A + λijpi⟩ ≥ 0. For the case ⟨qj , pi⟩ = 0, we have to take a look at the
series expansion of ⟨qj , eAtpi⟩

0 ≤ ⟨qj , eAtpi⟩ = ⟨qj , pi⟩+ ⟨qj , Api⟩t+R(t) = ⟨qj , Api⟩t+R(t), ∀t ≥ 0 and R(t) ∈ O(t2).

Hence, by dividing by t ≥ 0 yields

⟨qj , Api⟩+ R̃(t), ∀t ≥ 0 with R̃(t) ∈ O(t),

and we can conclude ⟨qj , Api⟩ ≥ 0, because for su�ciently small t ≥ 0 it holds

|R̃(t)| ≤ |⟨qj , Api⟩|.

Setting λ := maxi,j λij concludes the proof.
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As a consequence of Lemma 2.4 (ii) and Lemma 2.5 it follows, that if Xr is polyhedral
then it is also (A − λI)-invariant. Unfortunately, neither the location of a polyhedral
cone Xp nor the determination if Xr is polyhedral, is an easy solvable problem and to
the authors knowledge there exists no systematic way.

An exception is the case of a second-order system. In this case we know from Lemma
A.3 and Theorem 2.2 that Xr is always polyhedral.

Corollary 2.1 (First- and Second Order Realizability)

Every �rst- and second-order externally positive system has a positive realization.

Still, in the view of positivity preserving model order reduction, the same problems will
remain and thus it is more advisable to stick to the preservation of the matrix properties,
as we will do now to get an explicit expression of a second-order system.

2.2. Second-Order Realization and Special Cases

In the following we will show an easy way to get a second-order positive realization and
discuss some special cases of higher dimensional positive realizations.
By equation (1.8) and the rules for Laplace transformation we know that we can write
any (discrete- and continuous-time) transfer function,

G(p) =
β1p

n−1 + β2p
n−2 + · · ·+ βn

pn + α1pn−1 + · · ·+ αn
,

as a series of Markov coe�cients

G(p) =

∞∑
i=1

gi
pi
. (2.7)

Applying polynomial long division on G(p) and comparing the coe�cients with equation
(2.7) yields that for the �rst n Markov coe�cients[6]

βi = gi +
i−1∑
k=1

αkgi−k, i = 1, . . . , n. (2.8)

Among many canonical realizations of a SISO-tranfer function G(s), the most well-known
are the observable canonical form

Ao =


0 0 · · · 0 −αn

1 0 · · · 0 −αn−1

0 1 · · · 0 −αn−2
...

...
...

...
0 0 · · · 1 −α1

 bo =


βn
βn−1

βn−2
...
β1

 , co =
(
0 0 · · · 0 1

)
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and the controllable canonical form

Ac = AT
o , bc = cTo , cc = bTo .

Beside those two canonical forms, there exist two further interesting realizations called
Markov form and Dual Markov form [6], which follow directly from the �rst two by
consideration of equation (2.8).
The Markov form is given by

AM = Ao, bM =


1
0
0
...
0

 , cTM =
(
g1 g2 · · · gn−1 gn

)

and its dual by

AM∗ = AT
M , bM∗ = cM , cTM∗ = bTM .

Observe, by the proof to Theorem 1.2 none of these realizations is suitable for a continuous-time
positive system, since in this case all the diagonal entries have to be smaller than 0.
Fortunately for a discrete system we only need A = 0.

Theorem 2.4

Let G(z) be the transfer function of a discrete externally positive system with αi ≤ 0,
i = 1, ..., n, then the system is positively realizable with dimension n by the Markov
form and its dual.[6]

For a positive continuous-time system (A, b, cT ) it follows by the de�nition of a−M -matrix,
that there must exist an γ > 0, such that A+ γI = 0. Hence, the system (A+ γI, b, cT )
possesses nonnegative Markov coe�cients and its transfer function is given by

Gα(s) = cT (sI −A+ γI)−1b = cT ((s− γ)I −A)−1b = G(s− γ).

Applying Lemma 2.4 leads to the following theorem.

Theorem 2.5

Let G(s) be the transfer function of a continuous-time externally positive system. If
there exists an γ > 0, such that the Markov coe�cients gγi of G(s−γ) are nonnegative
and the corresponding αγi are nonpositive, then there exists a positive realization of
dimension n.[6]
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Observe, γ cannot be chosen arbitrarily: assume we have have a Markov form positive
realization (AM , bM , cTM ) of G(z − γ), then the positive continuous-time realization is
given by (AM − γI, bM , cTM ). By looking at the Markov form we notice, that the trace of
AM − γ is given by

tr(AM − γ) = −(n− 1)γ + (−γ − α1) with α1 ≤ 0.

Consequently,

γ = − tr(AM + γ) + α1

n
≥ − tr(AM + γ)

n

and we have found a lower bound. Since the trace of a matrix is invariant under similarity
transformations and equal to the sum of all eigenvalues, we can conclude the following
result.

Theorem 2.6

Assume G(s) is the transfer function of a continuous-time externally positive system
and there exists a γ > 0, such that the Markov coe�cients gγi of G(s − γ) are
nonnegative and the corresponding αγi are nonpositive. Then it has to hold

γ ≥ − 1

n

n∑
i=1

pi,

where pi denote the poles of G(s).

Now let us consider the second-order case. Corollary 2.1 tells us, that each externally
positive transfer function

G(s) =
β1s+ β2

s2 + α1s+ α2
(2.9)

can be positively realized with a state-space dimension equal to 2. By Lemma 1.2 we
know that the dominant pole of G(s) has to be real and therefore G(s) consists of two
real poles p1, p2 < 0. Since G(s− γ) can then be written as

G(s− γ) =
β1(s− γ) + β2

(s− (γ + p1))(s− (γ + p2))

it follows for αγ1 and αγ2 that

αγ1 = −(γ + p1)− (γ + p2) = −2γ − (p1 + p2) and αγ2 = (γ + p1)(γ + p2).

Observe, since αγ1 , αγ2 ≤ 0, αγ1 gives the same condition as Theorem 2.6.

Let γ := −p1 + p2
2

then

αγ2 = (−p1 + p2
2

+ p1)(−
p1 + p2

2
+ p2) = (

p1 − p2
2

)(
p2 − p1

2
) = −(p1 − p2)

2

4
≤ 0,
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and thus we found a discrete realization given by

AM =

(
0 (p1−p2)2

4
1 0

)
, bM =

(
1
0

)
, cTM =

(
gγ1 gγ2

)
.

Together with equation (2.8) we get the following continuous-time positive reali-zation

Ap =

p1 + p2
2

(p1−p2)2

4

1
p1 + p2

2

 , bp =

(
1
0

)
, cTp =

(
β1 β2 − β1

p1 + p2
2

)
. (2.10)

It easy to show that another realization of G(s) is given by

Ap =

(
p2 0

β2 + β1p1 p1

)
, bp =

(
1
0

)
, cTp =

(
β1 1

)
.[6] (2.11)

Since β1 > 0 by equation (2.8) and p2 ≤ p1 < 0, all we need to verify for internal
positivity is that

β2 + β1p1 > 0.

This is equivalent to show that p1 > −β2

β1
. Since −β2

β1
represents a real zero of the system,

the internal positivity follows by Lemma 1.3.

Notice, for both realizations we avoid to show the nonnegativity of the impulse response.
In comparison to Theorem 2.3, we also do not need to �nd the boundaries of Xr. Thus,
we found an shorter and more applicable proof for the equivalence of external and internal
positivity for second-order continuous-time systems.

Theorem 2.7 (Second Order Positive Realization)

Let G(s) be a second-order transfer function given by equation (2.9). Then G(s) is
externally positive if and only if β1 > 0 and the system possesses a real dominant pole
p1 such that β2 + β1p1 > 0.
If G(s) is externally positive, then it possesses an internally positive realization given
in (2.10) or (2.11).

All these problems of positive realizability, that we have encountered in this section and
the section before, are basically the main di�culties we have to deal with, when we want
to preserve the (internal) positivity of a system after performing model order reduction.
Especially problematic is, that even if we have an externally positive reduced system, we
cannot estimate how large its positive realization gets, as seen in Example 2.1.



3. Balanced Truncation

Amongst the di�erent reduction methods one has turned out to be simple and e�cient,
the so-called Balanced Truncation. The main advantage of Balanced Truncation is its
interpretation with the help of energy functions and the providence of a good error bound
estimation in the H∞-norm.

The easiest way to perform model order reduction is to remove successively uncontrollable
and unobservable states in order to gain a minimal realization. In fact, this means
nothing else than getting a realization with identical reachable and observable space.
This idea can be interpreted and generalized with the help of energy functions and
Lypunov equations.

It is a well-known result, if we de�ne P by

AP + PAT = −BBT , σ(A) ⊂ C− (3.1)

P =

∫ ∞

0
eAtBBT eA

T tdt, (3.2)

the range rg(P ) of P is equal to the reachable subspace. P is called the Controllability
Gramian. The same consideration can be done for the observable subspace.

Let Q be de�ned by

ATP + PA = −CTC, σ(A) ⊂ C− (3.3)

Q =

∫ ∞

0
eA

T tCTCeAtdt, (3.4)

then rg(Q) is again equal to the observable subspace and Q is called the Observability
Gramian.

The equations (3.1) and (3.3) give obviously an indirect way of testing, whether a
system is controllable/observable and are named after its discoverer Lypunov equations.
Lyapunov equations are especially important in the context of stability, which we want
to explain with the next Lemma.

24
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Lemma 3.1

Let P be the solution to

AP + PAT = −H, (3.5)

then

1. ℜ(λi(A)) ≤ 0 if P > 0 and H ≥ 0

2. ℜ(λi(A)) < 0 if P > 0 and H > 0,

where λi(A) denotes the i-th eigenvalue of A.[30]

Proof : Let v be an eigenvector to the eigenvalue λ of AT , i.e. AT v = λv. Then by assumption

v̄T (AP + PAT )v = 2(λ̄+ λ)v̄TPv = −v̄THv ≤ 0

and since P > 0 it follows that λ̄+ λ = ℜ(λ) ≤ 0.

Remark: The solution to a Lyapunov equation as in (3.5) is unique if and only if
λi(A) + λ̄j(A) ̸= 0, ∀i, j. Hence, the solution can be attained by solving a system of
equations and it is not required to solve the integral explicitly.[30]

Let us assume the situation of an uncontrollable system (A,B,C,D) with Controllability

Gramian P =

(
P1

0

)
, P1 > 0. Inserting P into equation (3.1) and partitioning the

system matrices A, B and C, leads to

0 = AP + PAT +BBT =

(
A11P1 + P1A

T
11 +B1B

T
1 P1A

T
21 +B1B

T
2

A21P1 +B2B
T
1 B2B

T
2

)
⇒ B2 = 0, A21 = 0.

Consequently, the transfer function G(s) = C(sI −A)−1B +D = C1(sI −A11)
−1B1.

The result is not surprising, but we can see how simple it is to reduce uncontrollable
states of a system with the help of Lyapunov equations. Since this will be the essential
idea of this chapter, we summarize it in the following Lemma.
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Lemma 3.2

Let (A,B,C,D) be the state-space realization of a stable system with transfer function

G(s) and Controllability Gramian P =

(
P1

0

)
, P1 > 0. Partitioning the system

according to P into

A =

(
A11 A12

A21 A22

)
, B =

(
B1

B2

)
, C =

(
C1 C2

)
,

such that

A11P1 + P1A
T
11 = −B1B

T
1 ,

AT
11P1 + P1A11 = −CT

1 C1,

results in a controllable state-space system (A11, B1, C1, D), which is also a realization
of G(s).[30]

Remark: By switching the roles of P and Q =

(
Q1

0

)
the same can be done, which

leads to an observable state-space realization (A11, B1, C1, D) of G(s).

Beside the range of P , the interesting property of the Controllability Gramians is the
interpretation, that it measures how di�cult it is to reach a certain state in a stable
system.

Lemma 3.3 (Control of Minimal Energy)

Let x0 be a reachable state, i.e. x0 ∈ rg(P ). Among all controls u, steering the system

from 0 to x(0) = x0 over the interval ] − ∞, 0], u(t) = BT e−AT tP ♯x0 minimizes the
energy Ec(u) =

∫ 0
−∞ ∥ u(τ) ∥2 dτ = x0P

♯x0.[28]

The minimization is done over the interval ]−∞, 0] and thus all possible controls steering
the system to x0 over an interval [t1, 0], with t1 < 0, are considered.
Further, P ♯ denotes the Moore-Penrose pseudoinverse of P , which results from its Singular
Value Decomposition by

P = UT

(
Σ 0
0 0

)
U, Σ = diag

(
s1, . . . , sn

)
, s1 ≥ s2 ≥ · · · sn > 0, U−1 = UT

and

P ♯ := UT

(
Σ−1 0
0 0

)
U.
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Hence, depending on the eigenvalues of P , there are states requiring more energy compared
to others to reach them. Now, the idea could be to transform the system with x = Uξ,
resulting in the system (Ã, B̃, C̃, D̃) := (UTAU,UTB,CU,D){

ξ̇(t) = Ãξ(t) + B̃u(t),

y(t) = C̃ξ(t) + D̃u(t),

with diagonal Controllability Gramian P̃ = UPUT =

(
Σ 0
0 0

)
.

Then P̃ ♯ =

(
Σ−1 0
0 0

)
and Ec(u) = ξT0 P̃

♯ξ0 =
1

si
for ξ0 = ei. Therefore its maximum is

attained in
1

sn
. We may conclude to proceed as for uncontrollable states and suppress

those states ξi, that correspond to small values in P̃ . This would lead to a stable system
(Lemma 3.1), but in many cases also to a very big H∞-error between the original and
the truncated system.[30]

The same consideration is valid for the observability of a state. The more in�uence
a state has on the system output, the easier it is to observe. If x(0) = x0 denotes the
state to observe and we set the input u ≡ 0, then the output of the system is given by
y(t) = CeAtx0. As before for u we consider the energy Eo(y) of y,

Eo(y) =

∫ ∞

0
y(τ)T y(τ)dτ =

∫ ∞

0
xT0 e

AT τCTCeAτx0dτ = xT0 Qx0

and note, the smaller xT0 Qx0, the harder it is to observe x0.

Analogous to P , we could again diagonalize Q = UT

(
Σ 0
0 0

)
U and transform the

system by x = UT ξ with new Observability Gramian Q̃ =

(
Σ 0
0 0

)
. Unfortunately, the

neglection of states, which are hard to observe (small Eo), can lead to a big H∞-error as
well.[30]

Example 3.1 (High Truncation Error)
Let

G(s) :=

 4

s+ 1
0

0
4

s+ 1


be a system with a state-space representation

A :=

(
−2 0
0 −2

)
, B :=

(
2 0
0 2

α

)
, C :=

(
2 0
0 2α

)
.
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Then it is easy to see, that the Gramians are given by

P =

(
1

1

α2

)
, Q =

(
1

α2

)
.

Consequently, the weaker the second state to reach/observe the easier it is to observe/reach.
Truncating this state leads to a system

A := −2, B :=
(
2 0

)
, C :=

(
2
0

)
,

with transfer function

G1(s) :=

 4

s+ 1
0

0 0

 .

Then by Theorem 1.1 it follows, that ∥G∥∞ = ∥G − G1∥∞ = 4, which gives a relative
error of 100 %.

Notice, Eo(y) =
∫∞
0 y(τ)T y(τ)dτ is nothing else than the scalar product in the well-known

Hilbert Space L2 [30]. By Parsevals formula [21] we can describe this in the frequency
domain as

∥y∥22 =
∫ ∞

0
ȳT (τ)y(τ)dτ =

1

2π

∫ ∞

−∞
Y

T
(iω)Y (iω)dω =

1

2π

∫ ∞

−∞
∥Y (iω)∥22dω,

where Y (iω) = F [y(t)] denotes the Fourier-Transformation of y(t). In words the equations
says, that the total energy of a signal in time-domain is equal to its total energy in
frequency domain.
Using that Y (iω) = G(iω)U(iω), we can conclude the following inequality

∥y∥22 =
1

2π

∫ ∞

−∞
∥Y (iω)∥22dω ≤ 1

2π

∫ ∞

−∞
∥G(iω)∥22∥U(iω)∥22dω ≤ ∥G∥2∞∥u∥22.

Observe, by looking at the Fourier transformation of a sinusoid

F (sin(ω0t)) =
√
2π

δ(ω − ω0)− δ(ω + ω0)

2i

and the well-known properties of δ(t) as in equation 2.4, we �nd an input to give equality
at the maximizing frequency ω0 of a SISO-system. In the MIMO-case such an input can
also be constructed by considering the Singular Value Decomposition of G(iω) as done
in [30]. Thus

∥G∥∞ = sup
∥u∥2 ̸=0

∥y∥2
∥u∥2

. (3.6)

Soon, this fact will be very important to prove the error-bound of a truncated system.
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3.1. Standard Balanced Truncation

The problem with the considered truncation approaches is obviously, that a state which
is hard to observe does not need to be hard to reach and vice versa. Consequently the
neglection of states, which are hard to observe and to reach at the same time, is the only
feasible way. This leads us to the concept of balancing a system, which is based on the
following theorem.

Theorem 3.1 (Balancing Transformation Matrix )

Let P and Q be two real positive semi-de�nite matrices. Then there exists a
non-singular matrix T such that

Pb := T−1PT−T = diag
(
Σ,Σp, 0, 0

)
, Qb := T TQT = diag

(
Σ, 0,Σq, 0

)
,

with diagonal Σ, Σp, Σq > 0 [30]

Proof : We only show the proof for the case P,Q > 0 and refer otherwise to [30].
Let P be decomposed by Singular Value Decomposition into

P = UΣPU
T ,

and de�ne
L := UΣ

1
2

P .

By another Singular Value Decomposition of LTQL into

LTQL = V Σ2V T ,

and we de�ne
T := LV Σ− 1

2 .

Then it it straightforward to verify that

T−1PT−1 = Σ
1
2V TL−1LLTL−TV Σ

1
2 = Σ

and
TTQT = Σ− 1

2V TLTQLV Σ
1
2 = Σ

Let P and Q be the Gramians of a linear system (A,B,C,D) and T the corresponding
matrix given in Theorem 3.1. Transforming the system by the equation x = Tξ results
in the new state-space representation

(Ab, Bb, Cb, Db) := (T−1AT, T−1B,CT,D), (3.7)

with the Gramians Pb and Qb as de�ned in Theorem 3.1. The zero matrices in Pb and Qb

correspond to uncontrollable and unobservable states, which can be neglected without
causing an error (Proposition 3.2). Thus the important information is collected in

Σ = diag
(
σ1Ik1 , . . . , σNIkN

)
, σ1 > σ2 > · · · > σN > 0, ki > 0, i = 1 . . . N (3.8)
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and {σ1, . . . , σN} are called the Hankel Singular Values of (Ab, Bb, Cb, Db).

Observe,

PbQb = T−1PQT =

(
Σ2
1

0

)
⇒ {σ2

1, . . . , σ
2
N} = σ(PQ) \ {0} (3.9)

and the columns of T have to be eigenvectors of PQ.

Finally we are able to identify states, which are both hard to reach and to observe.
A state-space realization (Ab, Bb, Cb, Db), possessing the identical Controllability and
Observability Gramians is then called a Balanced Realization.

The �nal step is to decide which states to truncate and to partition the system according
to those.

If our balanced state-space system is given by{
ξ̇(t) = Abξ(t) +Bbu(t),

y(t) = Cbξ(t) +Dbu(t),

we know, states that correspond to small Hankel Singular Values have the least in�uence
and cause the smallest error when truncated. Hence, the question that is left is, how big
the error might become. An answer to this has been given e.g. in [24] and [30].

Theorem 3.2 (Balanced Truncation and Error Bound)

Suppose (Ab, Bb, Cb, Db) is the balanced realization of an asymptotically stable system
with transfer function G(s), Gramians Σ = diag

(
Σ1,Σ2

)
,

Σ1 = diag
(
σ1Ik1 , . . . , σrIkr

)
,Σ2 = diag

(
σr+1Ikr+1 , . . . , σNIkN

)
and Hankel Singular Values σ1 > · · · > σr > σr+1 > · · · > σN > 0.

Partitioning the system matrices Ab, Bb and Cb accordingly to Σ1 results in a
truncated system (Ar, Br, Cr, Dr) := (A11, B1, C1, D) with transfer function Gr(s)
which is balanced, controllable, observable and asymptotically stable.

Moreover, it holds for the H∞-error

∥G(s)−Gr(s)∥∞ ≤ 2

N∑
i=r+1

σi. (3.10)
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Proof : Note, since A is asymptotically stable and Σ > 0, we assume implicitly, that (A,B)
is controllable and (A,C) observable. According to Lemma 3.2, this is not a restriction.
Partitioning the system into(

ξ̇1
ξ̇2

)
=

(
A11 A12

A21 A22

)(
ξ1
ξ2

)
+

(
B1

B2

)
u,

y =
(
C1 C2

)(ξ1
ξ2

)
+Du,

gives the reduced system

ξ̇r = A11ξr +B1u,

yr = C1ξr +Du,

and the following Lyapunov equations

A11Σ1 +Σ1A
T
11 = −B1B

T
1 , (3.11)

AT
11Σ1 +Σ1A11 = −CT

1 C1, (3.12)

A21Σ1 +Σ2A
T
12 = −B2B

T
1 , (3.13)

AT
12Σ1 +Σ2A21 = −CT

2 C1. (3.14)

Since B1B
T
1 ≥ 0 it follows by Lemma 3.1 that A11 is a stable matrix. Now let us assume

there exists a purely imaginary eigenvalue iω of A11 with an eigenbasis collected in the
matrix V , i.e.

A11 = iωV and V
T
AT

11 = −iωV
T
.

By multiplying equation (3.12) from the left with V
T
and from the right with V we get

iωV
T
Σ1V − iωV

T
Σ1V = −V

T
CT

1 C1V ⇔ V
T
CT

1 C1V = 0

and hence
C1V = 0. (3.15)

Thus, multiplying (3.12) with V only from the right side yields

AT
11Σ1V = −iωΣ1V and V

T
Σ1A11 = iωV

T
Σ1. (3.16)

Using these equations after multiplying equation (3.11) from the left with V
T
Σ1 and from

the right with Σ1V leads to

iωV
T
Σ2

1V − iωV
T
Σ2

1V = −V
T
Σ1B1B

T
1 Σ1V ⇔ V

T
Σ1B1B

T
1 Σ1V = 0

and therefore
BT

1 Σ1V = 0. (3.17)

As before this yields
A11Σ

2
1V = iωΣ2

1V (3.18)

by multiplying equation (3.11) only from the right side with Σ1V . Obviously, this means
Σ2

1V consists of eigenvectors of A11 to the eigenvalue iω, which is why there must exist a
matrix M such that Σ2

1V can be expressed as

Σ2
1V = VM.
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Furthermore, rg(V ) is an Σ2
1-invariant subspace and thus for every eigenvalue λ ∈ σ(M)

with eigenvector wλ it holds
Σ2

1V wλ = λV wλ,

which shows, that λ ∈ σ(Σ2
1) with an eigenvector in rg(V ). Hence, we can choose V such

M = Σ̂2
1

with a diagonal Σ̂1, whose diagonal entries are subset of those belonging to Σ1. Further, by
multiplication of equation (3.13) with Σ1V from the right we get from equation (3.17), that

A21Σ
2
1V +Σ2A

T
12Σ1V = 0.

Similar, if we multiply equation (3.14) with Σ2 from the left and V from the right, we can
conclude by equation (3.15), that

Σ2
2A21V +Σ2A

T
12Σ1V = 0. (3.19)

Together we receive

A21Σ
2
1V = Σ2

2A21V ⇔ A21V Σ̂2
1 = Σ2

2A21V ⇔ (Σ2
2)

−1A21V Σ̂2
1

After assumption Σ1 and Σ2 do not have common diagonal entries and hence the same
holds for Σ̂2

1 and Σ2
2. This leaves us with the conclusion

A21V = 0,

which allows us to write (
A11 A12

A21 A22

)(
V
0

)
= iω

(
V
0

)
.

But this is a contradiction, since we have assumed A to be asymptotically stable and
therefore A11 cannot possesses a purely imaginary eigenvalue. Consequently, the reduced
system is asymptotically stable with the Gramians Σ1, which also means, that (A11, B1) is
controllable and (A11, C1) observable.

Now, we take care of the error bound estimation. For this purpose we rewrite (3.1) as

ATΣ−1 +Σ−1A = −Σ−1BBTΣ−1.

Since (
Σ−1BBTΣ−1 −Σ−1B
−BTΣ−1 I

)
=

(
Σ−1B
−I

)(
BTΣ−1 −I

)
≥ 0

we get (
ATΣ−1 +Σ−1A Σ−1B

BTΣ−1 −I

)
≤ 0

or equivalently (
ATΣ−1 +Σ−1A Σ−1B

BTΣ−1 0

)
≤
(
0 0
0 I

)
.

Rewriting the left side of this inequality results in(
A B
I 0

)T (
0 Σ−1

Σ−1 0

)(
A B
I 0

)
≤
(
0 0
0 I

)
. (3.20)
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Let us de�ne
z(t) := A21ξr(t) +B2u(t),

and assume that ξ(0) = 0 and ξr(0) = 0. Multiplying (3.20) from the right withξ1 + ξr
ξ2
2u


and from the left with its transpose, gives then

ξ̇1 + ξ̇r
ξ̇2 + z
ξ1 + ξr

ξ2


T 

0 0 Σ−1
1 0

0 0 0 Σ−2
2

Σ−1
1 0 0 0
0 Σ−1

2 0 0



ξ̇1 + ξ̇r
ξ̇2 + z
ξ1 + ξr

ξ2

 ≤ 4uTu

or equivalently
2(ξ̇1 + ξ̇r)

TΣ−1
1 (ξ1 + ξr) + 2(ξ̇2 + z)TΣ−1

2 ξ2 ≤ 4uTu (3.21)

By applying partial integration we get

2

∫ T

0

(ξ̇1(t) + ξ̇r(t))
TΣ−1

1 (ξ1(t) + ξr(t))dt = (ξ1(T ) + ξr(T ))
TΣ−1

1 (ξ1(T ) + ξr(T ))

and

2

∫ T

0

ξ̇T2 (t)Σ
−1
1 ξ2(t)dt = ξT2 (T )Σ

−1
1 ξ2(T ).

Consequently, integrating over the inequality (3.21) gives(
ξ1(T ) + ξr(T )

ξ2(T )

)T

Σ−1

(
ξ1(T ) + ξr(T )

ξ2(T )

)
+ 2

∫ T

0

zT (t)Σ−1
2 ξ2(t)dt ≤ 4

∫ T

0

uT (t)u(t)dt

and by the positive de�niteness of Σ−1 we get

2

∫ ∞

0

zT (t)Σ−1
2 ξ2(t)dt ≤ 4∥u∥22. (3.22)

A similar consideration can be done for (3.3). Rewriting the equation as(
A
I

)T (
0 Σ
Σ 0

)(
A
I

)
= −CTC

and multiplying it from the right with (
ξ1 − ξr

ξ2

)
and from the left with its transposed, leads to

ξ̇1 − ξ̇r
ξ̇2 − z
ξ1 − ξr

ξ2


T 

0 0 Σ1 0
0 0 0 Σ2

Σ1 0 0 0
0 Σ2 0 0



ξ̇1 − ξ̇r
ξ̇2 − z
ξ1 − ξr

ξ2

 = (y − yr)
T (y − yr).
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As before partial integration yields(
ξ1(T )− ξr(T )

ξ2(T )

)T

Σ

(
ξ1(T )− ξr(T )

ξ2(T )

)
−2

∫ T

0

zT (t)Σ2ξ2(t)dt ≤ −
∫ T

0

(y−yr)
T (t)(y−yr)(t)dt

and consequently

−2

∫ ∞

0

zT (t)Σ2ξ2(t)dt+ ∥y − yr∥22 ≤ 0. (3.23)

Suppose now, we perform the truncation successively for each Hankel Singular Value,
starting with the states belonging to σN and calling the truncated system GN−1. Then
we can assume Σ2 = σNI and we get by multiplying (3.22) with σ2

N and adding it to (3.23),
that

∥y − yN−1∥2 ≤ 2σN∥u∥2,

which is according to (3.6) equivalent to

∥G−GN−1∥∞ ≤ 2σN .

By expanding G−Gr to a telescope sum and using the triangle inequality, we get

∥G−Gr∥∞ = ∥G−GN−1 +GN−1 + · · ·+Gr+1 −Gr∥∞ ≤ 2
N∑

i=r+1

σi.

Note, the error bound does only depend on the Hankel Singular Values given by (3.9). By
contrast, the multiplicity ki of σi is not important. But if the system possesses Singular
Values σi ≈ σj , we cannot assume, that the in�uence on the upper error bound will be
close to 2σi. Instead we have to expect 2σi + 2σj ≈ 4σi.

Example 3.2 (Close Hankel Singular Values [30])
Let us consider the transfer function

G(s) =

n∑
i=1

bi
s+ ai

with ai, bi > 0. This is obviously a positive system with ∥G(s)∥∞ =
∑n

i=1

bi
ai

and a

realization

A := diag
(
−a1, . . . ,−an

)
and BT = C =

(√
b1 . . .

√
bn
)
.

Then by (3.1) and (3.3), it follows

AP + PAT = ATQ+QA = BBT = CTC,

which leads to P and Q with entries

pij = qij =

( √
bibj

ai + aj

)
.
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Thus σi = λi(P ) = λi(Q) and

n∑
i=1

σi = tr(P ) =
n∑

i=1

bi
2ai

=
1

2
∥G∥∞.

By choosing ai = bi = α2i we attain P = Q → 1
2I as α → ∞ and therefore σi → 1

2 . This
shows the tightness of the error bound.

Observe, scaling a system G(s) by k, i.e. G̃(s) := kG(s), also scales the reduced-order
system and the Hankel Singular Values by the factor k. Consequently for a for very
small/large k, we attain a very small/large error. In order to perform a fair comparison
we need to consider the relative error

∥G−Gr∥∞
∥G∥∞

≤ 2

∥G∥∞

N∑
i=r+1

σi = 2

N∑
i=r+1

σ̃i, with σ̃i =
σ1

∥G∥∞
.

For asymptotic stability it might be important to truncate all states, that correspond to
the same Hankel Singular Value.

Example 3.3 (Unstable Balanced Truncation)
The system (A,B,C) given by

A :=

−2 0 0
0 0 0.5
0 −0.5 −2

 , C = B = diag
(
2, 0, 2

)
,

is clearly a balanced asymptotically stable system with P = Q = diag
(
2, 1, 1

)
. Thus, if

we truncated only the third state, we would obtain an unstable system.

3.2. Balanced Truncation Algorithm

Let T =
(
T1 T2

)
be the balancing matrix of Theorem 3.1, partitioned according to Σ1

of Theorem 3.2, and T−1 =

(
S1

S2

)
. Then the balanced system is given by

Ab = T−1AT =

(
S1AT1 S1AT2

S2AT1 S2AT2

)
,

Bb = T−1B =

(
S1B
S2B

)
,

Cb = CT =
(
CT1 CT2

)
,

Db = D.

Thus the reduced system can be written as

Ar = S1AT1, Br = S1B, Cr = CT1, Dr = D (3.24)
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and we observe, instead of balancing the whole system we only need to �nd T1 and S1

with S1T1 = I. For P,Q > 0 we saw in the proof to Theorem 3.1 how to get them in
a systematic way. In case of P,Q ≥ 0, we can proceed in almost the same manner to
achieve a balanced truncated system, without balancing the original one.

As before, P can be decomposed into

P = U

(
ΣP 0
0 0

)
UT ,

and we de�ne

L := U

(
Σ

1
2
P 0
0 0

)
.

The di�erence compared to P > 0 is obviously, that L does not have full rank. By
considering the Singular Value Decomposition of Q

Q = UQ

(
ΣQ 0
0 0

)
UT
Q

it is clear, that σ(LTQL) = σ(PQ). Thus, Singular Value Decomposition yields

LTQL = V

(
Σ2
1 0
0 0

)
V T .

Let V =
(
v1, . . . , vNσ , . . . , vn

)
, with Nσ := k1 + · · ·+ kN corresponding to the notations

of Theorem 3.2. Then we can de�ne the matrices T1 and S1 as follows

T1 = L
(
v1, · · · , vrσ

)
diag

(
σ1Ik1 , . . . , σrIkr

)− 1
2 ,

S1 = diag
(
σ1Ik1 , . . . , σrIkr

) 1
2

uT1
...

uTrσ

L♯ = T ♯
1

with rσ := k1 + · · ·+ kr. Notice, if we choose rσ = Nσ, we get

S1PST
1 = Σ

1
2
1 V

TL♯LLTL♯T V Σ
1
2
1 = Σ1,

T T
1 QT1 = Σ

− 1
2

1 V TLTQLV Σ
− 1

2
1 = Σ1,

and end up with a balanced realization, that has truncated all uncontrollable and unobservable
states, i.e. a minimal realization.

3.3. Singular Perturbation Balanced Truncation

A property of Balanced Truncation, as we have introduced it now, is that

lim
s→∞

Gr(s) = lim
s→∞

G(s).

This is easy to see since Dr = D. With a bit more care it is possible to get Gr(0) = G(0)
instead, meaning that the stationary property is preserved.
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Corollary 3.1

Suppose we are in the position of Theorem 3.2. The system of the truncated states
(A22, B2, C2, D) is also balanced and asymptotically stable.

Proof : In the same way as for A11.

Let us partition the balanced system, which has already truncated all the uncontrollable
and observable states, as follows(

ξ̇1
ξ̇2

)
=

(
A11 A12

A21 A22

)(
ξ1
ξ2

)
+

(
B1

B2

)
u, (3.25)

y =
(
C1 C2

)(ξ1
ξ2

)
+Du.

We know the system is in stationary state if and only if there is no change of ξ1 and ξ2
after some time or equivalently, when ξ̇1 = 0 and ξ̇2 = 0. Thus replacing ξ2 by its static
relationship will preserve the stationary property of G(s). Setting ξ̇2 = 0 gives

0 = A21ξ1 +A22ξ2 +B2u ⇔ ξ2 = −A−1
22 (A21ξ1 +B2u)

and is well de�ned by Corollary 3.1. Inserting this expression of ξ2 in (3.25) results in a
reduced system

ξ̇1 = Arξ1 +Bru

y = Crξ1 +Dru

with

Ar = A11 −A12A
−1
22 A21, Br = B1 −A12A

−1
22 B2,

Cr = C1 − C2A
−1
22 A21, Dr = D − C2A

−1
22 B2. (3.26)

This variation of Balanced Truncation, preserving the stationary property, is called
Singular Perturbation Balanced Truncation [10] and leaves Theorem 3.2 unchanged. For
a better distinction we refer in the following to our �rst variant as Standard Balanced

Truncation.

In contrary to Standard Balanced Truncation, where it is su�cient to calculate the terms
in (3.24), Singular Perturbation Balanced Truncation requires to calculate all the terms
of the balanced realization. Since Balanced Truncation is independent of the state-space
representation of the original system, we just need to choose rσ = Nσ in the forgone
section.

Remark: Generally, neither of both Balanced Truncation methods preserve the physically
meaning of the state.
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3.4. Balanced Truncation of Positive Systems

Let us turn our focus back to positive systems. In general Balanced Truncation applied
to positive systems does not result in positive truncated systems, as we can see in the
following example.

Example 3.4 (Nonpositive Reduced System)
Consider the following positive system

A :=

−3 1 0
0 −4 1
0 0 −3

 , B :=

3
0
2

 , C :=
(
5 4 1

)
.

By reduction to second order we obtain the system

A2 :=

(
−2.57 0.34
−0.34 −2.82

)
, B2 :=

(
4.13
0.27

)
, C2 :=

(
4.13 −0.27

)
,

which has poles in −2.70 ± 0.31i. According to Lemma 1.2, this cannot be a positive
system.

Remark: We already know a minimal representation of a positive system does not have
to have the same amount of states as its positive realization. In turn, neglecting the states,
that correspond to the zero matrices in Pb and Qb can have the e�ect of destroying the
positive realization, though the procedure does not cause an error in the transfer function.

The reason why we could not consider the easier case of n = 2 in Example 3.4 is a
consequence of the next theorem.

Theorem 3.3 (Positive First Order Balanced Truncation)

Let (A1, B1, C1, D1) be the reduced �rst order system attained by Standard Balanced
Truncation of a positive system (A,B,C,D).Then (A1, B1, C1, D1) is always positive
and asymptotically stable with �rst order positive realization (A1, |B1|, |C1|, D1).

Proof : Let P and Q be the Gramians to a positive system (A,B,C,D), explicitly given by
the equations (3.2) and (3.4).
By implication (1.3) we know

eAt = 0 ∀t ≥ 0 ⇒ eAtB,CeAt = 0 ∀t ≥ 0.

Hence P and Q are nonnegative matrices and we conclude PQ = 0. In (3.9) we noticed the
Hankel Singular Values of a system are eigenvalues of PQ and the columns of T given by
Theorem 3.1 correspond to its eigenvectors.
We �rst consider the case if σ1 is a unique Hankel Singular Value. By Theorem 1.5 there
exists a nonnegative right-eigenvector v1 to the largest eigenvalue σ1, i.e.

PQv1 = σ1v1 with T =
(
v1, . . . , vn

)
.
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If we denote the rows of T−1 by wT
i , i.e. T

−1 =

wT
1
...

wT
n

 and recall that

Qb = TTQT =


Σ

0
Σq

0

 ⇔ QT = T−T


Σ

0
Σq

0

 ,

we conclude

0 5 Qv1 = w1σ1 ⇒ w1 = 0,

and w1 is a nonnegative left-eigenvector of PQ to the eigenvalue σ1.

Hence by Theorem 3.2,

A1 = wT
1 Av1 < 0, B1 = wT

1 B = 0, C1 = Cv1 = 0, D1 = D = 0.

In case of a σ1 with multiplicity k1 > 1, we have seen in Example 3.3, that A1 = 0 is possible.
On the other hand, since the k1-th order reduced system, which belongs to all σ1, is according
to Theorem 3.2 asymptotically stable, there must exist at least one asymptotically stable
�rst approximation. We want to show now, that in this case positivity is still preserved.

We start with the case, that PQ is irreducible. Since σ(PQ) contains a multiple σ2
1 , it

follows by Theorem 1.6, that tr(PQ) = 0. This is obviously a contradiction, which is why
PQ can only be reducible.

If PQ is reducible, then it follows by Lemma 1.5, that there exist k1 linear independent
nonnegative eigenvectors to the eigenvalue σ2

1 . Hence, as in the case of a unique σ1 we can
obtain an asymptotically stable �rst order approximation with B1, C1, D1 = 0.

In all the cases Theorem 1.3 concludes the proof.

Remark: Theorem 3.3 is in general not transferable to Singular Perturbation Balanced
Truncation. For example, if we truncate the system in Example 3.4 to �rst order, then
we result in a system (A1, B1, C1, D1) = (−2.61, 4.16, 4.16, 0.03).

Observe, a reduced order system resulting of Balanced Truncation is independent of
the state-space representation of the original system. Hence, Theorem 3.3 gives a new
way of testing, whether it is possible that a system possess a positive realization or not.

Corollary 3.2

If for the reduced �rst order system G1(s) =
1

(s− α1)
M of a transfer function G(s)

does not hold M = 0, then G(s) is not a positive system.

Remark: By reducing the truncated system of Example 3.4 to �rst order, it is clear that
this can only be a necessary condition.
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3.4.1. Balanced Truncation with respect to Lyapunov Inequalities

A �rst order approximation is not always su�cient, of course. In Chapter 6 we will give
an extension of Theorem 3.3 to higher orders in case of a SISO-system.
Before doing so we want to investigate some methods that have already dealt with higher
order approximations. Until today, there are to the author's knowledge three methods
[7], [14] and [22] concerning model order reduction of positive systems. The method in
[22] is based on Balanced Truncation with respect to Lyapunov Inequalities and will be
discussed in this section.

The idea is, instead of considering the Lyapunov equations (3.1) and (3.3), to regard

AP + PAT +BBT ≤ 0,

ATQ+QA+ CTC ≤ 0, (3.27)

with P,Q ≥ 0.

In the same way as for the Gramians we can apply Theorem 3.1 to any solution pair
(P,Q) satisfying the Lyapunov Inequalities (3.27) and obtain a balanced system

(Ab, Bb, Cb, Db) := (T−1AT, T−1B,CT,D)

with

Pb = T−1PT−T = diag
(
Σ,Σp, 0, 0

)
and Qb = T TQT = diag

(
Σ, 0,Σq, 0

)
, (3.28)

ful�lling

AbPb + PbA
T
b +BbB

T
b ≤ 0,

AT
b Qb +QbAb + CT

b Cb ≤ 0, (3.29)

and

Σ = diag
(
σ1Ik1 , . . . , σNIkN

)
for some σ1 > σ2 > · · · > σN > 0.

In this case we call {σ1, . . . , σN} the Generalized Hankel Singular Values, because for the
truncation they will play the same role as the Hankel Singular Values.

In fact, it is readily seen, that the proof in Theorem 3.2 does not change for Lyapunov
Inequalities and thus performing truncation on (Ab, Bb, Cb, Db) with respect to theGeneralized
Hankel Singular Values leaves the statements of Theorem 3.2 and Corollary 3.1 almost
completely invariant: the di�erence is, that P and Q do not necessarily represent the
controllable and observable subspaces any more and hence we cannot assume the minimality
of the truncated system. Since this is obviously a generalization of Balanced Truncation,
we refer to it as Generalized Balanced Truncation.
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By the consideration of Lyapunov Inequalities we gain a degree of freedom that allows
us to use P and Q to shape a certain balancing transformation matrix T . In order to
guarantee a positive truncated system, the �rst idea would be to get a matrix T such
that

Bb = T−1B = 0 and Cb = CT = 0.

The easiest way to ful�l these requirements is to attain a matrix T = 0 with T−1 = 0.
This brings us to the de�nition of a certain class of matrices, called Monomial Matrices

[2].

De�nition 3.1 (Monomial Matrix)

Let A be a matrix that can be expressed by the matrix product A = πD, where D
is diagonal and invertible and π a permutation matrix. The matrix A is then called
monomial or generalized permutation matrix.

In the following Lemma we will see why this class of matrices is so important for our
idea.

Lemma 3.4

If A is a nonnegative matrix, then its inverse A−1 is nonnegative if and only if A is
monomial.[2]

Proof : ISu�ciency: Clear by A−1 = D−1π.

INecessity: If A =
(
a1, . . . , an

)
and A−1 =

(
s1, . . . , sn

)T
, then it has to hold

sTi aj =

{
1 if i = j

0 if i ̸= j

Since ai, si = 0 ∀i, it must hold by linear independence of {si, i = 1, . . . , n}, that ai contains
at least (n− 1) zeros. Consequently A is a monomial matrix.

Hence our problem reduces to �nd P and Q ful�lling (3.27), such that the eigenvectors
of PQ can be represented by a permutation matrix. This is the case if and only if PQ
is diagonal. Fortunately we know by Theorem 1.2 (v), if A is an asymptotically stable
-M-matrix, there exist diagonal matrices P,Q > 0 such that

AP + PAT < 0 ⇔ ∃λp > 0 : AP + PAT ≤ −λpI,

ATQ+QA < 0 ⇔ ∃λq > 0 : ATQ+QA ≤ −λqI.

Scaling P and Q to P̃ :=
P ∥ B ∥22

λp
and Q̃ :=

Q ∥ C ∥22
λq

provides us with feasible diagonal

solutions to the Lyapunov Inequalities in (3.27).
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Obviously P̃ Q̃ is diagonal and applying Theorem 3.1 leads then to a monomial transformation
matrix T = πT̄ with diagonal T̄ > 0 and permutation matrix π. As for normal Balanced
Truncation we get a balanced system (Ab, Bb, Cb, Db) as de�ned in (3.7) with

T−1PbQbT =

(
Σ1

0

)
⇒ T̄ =

(
T̄1

I

)
and because of the permutation we can assume w.l.o.g. that the Generalized Hankel
Singular Values are in descending order.

Multiplying a−Z-matrix with a positive diagonal matrix preserves the sign of each matrix
element, thus Ā := T̄−1AT̄ is −Z-matrix. It is straightforward to see, that this also holds
for Ab = πTAπ and consequently (Ab, Bb, Cb, Db) is a positive system by Theorem 1.3.
Standard Truncation of such a system yields an approximation (Ar, Br, Cr, Dr), which
is again positive, because Br, Cr, Dr = 0 and Ar is a −M -matrix as the principle minor
of a −M -matrix.

The same conclusions can be done for the Singular Perturbation Truncation. Since
A21,A21 = 0 and −A−1

22 = 0 by Theorem 1.2 (iv), we see immediately Br,Cr,Dr = 0
as de�ned in (3.26). The −M -property of Ar can be seen by noticing, that

Ar = A11 −A12A
−1
22 A21

is the Schur complement of a −M -matrix: it is well-known [30] that(
A11 A12

A21 A22

)−1

=

(
A−1

r −A−1
r A12A

−1
22

−A−1
22 A21A

−1
r A−1

22 +A−1
22 A21A

−1
r A12A

−1
22

)
5 0 (3.30)

and thus −A−1
r = 0. Since −A12A

−1
22 A21 = 0 it follows that Ar is a −Z-matrix and

therefore by Theorem 1.2 (iv), Ar must be a nonsingular −M -matrix.
For the reduced system we can summarize the following result.

Theorem 3.4

Let (Ab, Bb, Cb, Db) be the balanced realization of an asymptotically stable positive
system G(s) with respect to the Lyapunov Inequalities given in (3.29) and diagonal
solutions Pb, Qb ≥ 0 as in (3.28). Then regardless of whether applying Standard
Balanced Truncation or Singular Perturbation Balanced Truncation the reduced-order
system (Ar, Br, Cr, Dr) is again asymptotically stable and positive.
For the error-bound it holds the same as in Theorem 3.2.

Note, for the computation of the reduced system, it is not necessary to compute the
balanced realization itself. Let us assume without loss of generality T̄ = T̄1 and de�ne

Ā := πTAπ, B̄ := πTB, C̄ := Cπ, D̄ := D.
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By splitting T̄1, Ā, B̄ and C̄ according to the truncation candidates into

T̄1 =

(
T̄11

T̄12

)
, Ā =

(
Ā11 Ā12

Ā21 Ā22

)
, B̄ =

(
B̄1

B̄2

)
, C̄ =

(
C̄1 C̄2

)
,

we can rewrite the resulting balanced system as

˙(ξ1
ξ2

)
=

(
T̄−1
11 Ā11T̄11 T̄−1

11 Ā12T̄12

T̄−1
12 Ā21T̄11 T̄−1

12 Ā22T̄12

)(
ξ1
ξ2

)
+

(
T̄−1
11 B̄1

T̄−1
12 B̄2

)
u,

y =
(
C̄1T̄11 C̄2T̄12

)(ξ1
ξ2

)
+ D̄u.

We observe, the truncated system (T̄−1
11 Ā11T̄11, T̄

−1
11 B̄1, C̄1T̄11, D̄) results by the transformation

x = T̄−1
11 ξ of (Ā11, B̄1, C̄1, D̄), which is a positive system itself. Thus, for the computation

of the reduced model, it is su�cient to determine the permutation matrix π, which can
e.g. be done by calculating the Singular Value Decomposition of PQ with

PQ = π

(
Σ1

0

)
πT .

It can easily been seen, that the same holds in case of appyling Singular Perturbation
Balanced Truncation.

Observe, since the reduced system (Ā11, B̄1, C̄1, D̄) is just a permutation of the original
system, the Gramians are preserved up to a permutation. The advantage is, that we are
keeping the physical meaning of each state. On the other hand we are basically left with
the same problems as for an unbalanced system in the sense of Lyapunov Equalities.
Thus we have to expect large Generalized Hankel Singular Values and a big truncation
error. In fact, during numerical experiments, especially for SISO-systems, it turned out,
that this method has poor approximation properties compared to the �rst order reduction
via Balanced Truncation with respect to Lyapunov equalities.

Example 3.5 (Large Truncation Error)
Let us consider for instance the system

A := −diag
(
1, 1, 1

)
, BT = C =

(
1 1 1

)
with transfer function

G(s) =
3

s+ 1
.

By application of Balanced Truncation we obtain, according to Theorem 3.3, a minimal
�rst order positive realization. In contrast, Generalized Balanced Truncation leads to

G1(s) =
1

s+ 1
,

which gives an absolute error ∥G−G1∥∞ = 2.
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In order to minimize the error of Generalized Balanced Truncation, it is essential to
minimize the Generalized Hankel Singular Values, i.e. to attain many small values in
PQ. A diagonal solution, as given in the proof to Theorem 1.2, is therefore not advisable.
Instead Semide�nite Programming, a sub�eld of convex optimization, can be used to solve
the Lyapunov inequalities. For the reason, that minimization of all eigenvalues is clearly
not a convex problem, i.e. cannot be expressed as a convex function, an alternative is to
minimize the trace and use a two step procedure as proposed in [22]. This procedure is
based on the following algorithm.

Algorithm 3.1 (Minimization of the Generalized Hankel Singular Values)

(i) For j = 0 let P0 be the solution to (3.27) s.t. min tr(P ).

(ii) For any j and �xed Pj−1, solve (3.27) for Qj s.t. min tr(Pj−1Q).

(iii) For �xed Qj �nd Pj s.t. αj = min tr(Pj−1Q) and (3.27).

If
αj−1 − αj

αj
< TOLα, for a prescribed tolerance TOLα, then we have obtained

optimal P = Pj and Q = Qj .
Otherwise set j := j + 1 and continue with (ii).

In the �rst step we apply Algorithm 3.1 to the whole system. Subsequently, we make a
decision about the truncation candidates. The second step serves the purpose of getting
a sharper error bound and does the same as in the �rst step, but restricted to those
values in P and Q, that correspond to the truncation candidates.

Remark: The minimization of the trace does not guarantee, that we choose the best
truncation candidates. Still, empirically it su�ces in most cases.



4. Model Reduction of Positive Systems

based on the Bounded Real Lemma

Beside the Hankel Singular Values in case of Balanced Truncation, there exists another
well-known condition for a bound of the H∞ truncation error, given by the so-called
Bounded Real Lemma [30]. In this chapter we discuss two iterative methods, developed
in [7] and [14], which are based on this lemma.

Theorem 4.1 (Bounded Real Lemma)

Let (A,B,C,D) be a state-space representation of G(s). Then G(s) is asymptotically
stable and satis�es ∥G∥∞ < γ if and only if there exists a matrix P > 0, such thatATP + PA PB CT

BTP −γI DT

C D −γI

 < 0. (4.1)

Let

Gr :

{
ẋr(t) = Arxr(t) +Bru(t),

yr(t) = Crxr(t) +Du(t)

be a reduced-order approximation of (0.1). By denoting, x̂ =
(
xT xTr

)T
and e = y− yr,

we can represent the error system (G(s)−Gr(s)) as

Ge :

{
˙̂x(t) = Âx̂(t) + B̂u(t),

e(t) = Ĉx̂(t) + D̂u(t)
(4.2)

with

Â =

(
A 0
0 Ar

)
, B̂ =

(
B
Br

)
, Ĉ =

(
C −Cr

)
and D̂ = D −Dr.

Then the H∞-error of the approximation can be described as

∥G−Gr∥∞ = ∥Ge∥∞,

45
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and by Theorem 4.1 it follows, that ∥Ge∥∞ < γ if and only if there exists a matrix P̂ ,
such that

Π :=

ÂT P̂ + P̂ Â P̂ B̂ ĈT

B̂T P̂ −γI D̂T

Ĉ D̂ −γI

 < 0. (4.3)

In contrary to just �nding P̂ , which could be solved by semide�nite programming, in this
situation P̂ is coupled by its product with Â and B̂ and consequently with Ar and Br,
which are variables themselves. Our aim is now to resolve this coupling by introducing
a new matrix variable with �exible structure.

4.1. Iterative Linear Matrix Approach I

Let us collect the system matrices of the reduced system in a matrix

Gr :=

(
Ar Br

Cr Dr

)
and de�ne

Ā :=

(
A 0
0 0

)
, B̄ :=

(
B
0

)
, C̄ :=

(
C 0

)
, D̄ := D,

F̄ :=

(
0 0
I 0

)
, M̄ :=

(
0 I
0 0

)
, N̄ :=

(
0
I

)
, H̄ :=

(
0 −I

)
., (4.4)

Then we can express the error system Ge in terms of Gr as follows

Â = Ā+ F̄GrM̄, B̂ = B̄ + F̄GrN̄ , Ĉ = C̄ + H̄GrM̄, D̂ = D̄ + H̄GrN̄ . (4.5)

Observe, since Π < 0 it holds that Π−1 < 0 and henceP̂ F̄
0
H̄

T

Π−1

P̂ F̄
0
H̄

 < 0.

Thus for any matrix S > 0, there must exist an α > 0 such that

−αS −

P̂ F̄
0
H̄

T

Π−1

P̂ F̄
0
H̄

 < 0. (4.6)

By Schur complement and its application to the inverse of a negative de�nite matrix, as
given in (3.30), we get

Πe :=


ÂT P̂ + P̂ Â P̂ B̂ ĈT P̂ F̄

B̂T P̂ −γI D̂T 0

Ĉ D̂ −γI H̄

F̄ T P̂ 0 H̄T −X

 < 0 with X := αS.
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Consequently the existence of the matrices P̂ ,X > 0, such that Πe < 0, is equivalent to
the Bounded Real Lemma. We want to use this fact to construct an equivalent expression
in terms of the matrices given in (4.4). For this purpose we de�ne

T :=


I 0 0 0
0 0 I 0
0 0 0 I

−U I −V 0

 ,

where U := GrM̄ and V := GrN̄ . T is obviously invertible because of its full row rank,
which is why we can de�ne Πp by

Πp := T TΠeT < 0.

Expanding Πp yields

Πp =


ĀT P̂ + P̂ Ā− UTXU P̂ F̄ + UTX P̂B̄ − UTXV C̄T

F̄ T P̂ +XU −X XV H̄T

B̄T P̂ − V TXU V TX −V TXV − γI D̄T

C̄ H̄ D̄ −γI

 < 0

and we observe, that P̂ is completely decoupled from Gr. Instead we have constructed a
new coupling with X, which is however much more �exible, since X is arbitrary up to a
scaling factor. Let us summarize this result in the following Lemma.

Lemma 4.1

Let Ge be the error system given in (4.2) and expressed in terms of (4.4). Then Ge

is asymptotically stable and satis�es ∥Ge∥∞ < γ if and only if there exist matrices
P̂ ,X > 0 such that Πp < 0.

Observe, so far all the results hold for any reduced-order system. If we could �xate U
and V , our problem could be easily solved by convex optimization. In the following we
want to decouple U and V from Gr and treat them as variables. At the same time we
want to incorporate the required positivity constraints.

Let L be a matrix of the same size and partitioning as Gr, such that

L :=

(
L1 L2

L3 L4

)
∈ P (4.7)

i.e. L1 is a nonsingular −M -matrix and L2, L3, L4 = 0. By assuming

Gr = X−1L ⇔ L = XGr (4.8)
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with diagonal X > 0, we can rewrite Πp as
ĀT P̂ + P̂ Ā P̂ F̄ + M̄TLT P̂ B̄ C̄T

F̄ T P̂ + LM̄ −X LN̄ H̄T

B̄T P̂ N̄TLT −γI D̄T

C̄ H̄ D̄ −γI

−


UTXU 0 UTXV 0

0 0 0 0
V TXU 0 V TXV 0

0 0 0 0

 < 0 (4.9)

Expressing the second term of (4.9) with the help of

Φ :=
(
M̄ 0 N̄

)
, Ψ :=

(
U 0 V

)
,

leads to

−

UTXU 0 UTXV
0 0 0

V TXU 0 V TXV

 = −ΦTG T
r XGrΦ

= −ΦTG T
r XGrΦ+ (Ψ− GrΦ)

TX(Ψ− GrΦ)

= −ΨTLΦ− ΦTLTΨ+ΨTXΨ. (4.10)

Consequently (4.9) is equivalent to

Πp =


Πp11 P̂ F̄ + M̄TLT Πp13 C̄T

F̄ T P̂ + LM̄ −X LN̄ H̄T

ΠT
p13 N̄TLT Πp33 D̄T

C̄ H̄ D̄ −γI

 < 0 (4.11)

with

Πp11 := ĀT P̂ + P̂ Ā− UTLM̄ + M̄TLTU + UTXU

Πp13 := P̂ B̄ − M̄LTV − UTLN̄ + UTXV

Πp33 := −V TLN̄ − N̄TLTV + V TXV − γI

in case that (Ar, Br, Cr, Dr) is a positive system. It is readily seen, that we can generalize
this result to arbitrary matrices Ũ and Ṽ as follows. If we de�ne Ψ̃ :=

(
Ũ 0 Ṽ

)
, we

can write (4.10) as

−ΦTG T
r XGrΦ ≤ −ΦTG T

r XGrΦ+ (Ψ̃− GrΦ)
TX(Ψ̃− GrΦ)

= −Ψ̃TLΦ− ΦTLT Ψ̃ + Ψ̃TXΨ̃. (4.12)

Thus, if

Π̃p(Ũ , Ṽ ) :=


Π̃p11 P̂ F̄ + M̄TLT Π̃p13 C̄T

F̄ T P̂ + LM̄ −X LN̄ H̄T

Π̃T
p13 N̄TLT Π̃p33 D̄T

C̄ H̄ D̄ −γI

 < 0
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where

Π̃p11 := ĀT P̂ + P̂ Ā− ŨTLM̄ + M̄TLT Ũ + ŨTXŨ

Π̃p13 := P̂ B̄ − M̄LT Ṽ − ŨTLN̄ + ŨTXṼ

Π̃p33 := −Ṽ TLN̄ − N̄TLT Ṽ + Ṽ TXṼ − γI

and
Gr = X−1L (4.13)

it follows by Lemma 4.1, that ∥Ge∥∞ < γ with a positive solution (Ar, Br, Cr, Dr).
Let us summarize this result in the following theorem.

Theorem 4.2

Ge is asymptotically stable and satis�es ∥Ge∥∞ < γ with a positive system
(Ar, Br, Cr, Dr) if and only if there exists a P̂ > 0, matrices Ũ and Ṽ , a diagonal
X > 0 and L ∈ P such that Π̃p(Ũ , Ṽ ) < 0. Then we can write Gr = X−1L.

As mentioned before, if we already knew Ũ and Ṽ , solving Π̃p(Ũ , Ṽ ) < 0 for P , X and
L is a convex problem. Thus our problem reduces to how to choose them properly.

4.2. Algorithm: Iterative Linear Matrix Approach I

Now, we want to propose a method how to �nd Ũ and Ṽ iteratively. For this purpose we
notice �rst, if X, L and P̂ are �x, there must exist an α ∈ R for every Ũ and Ṽ , such
that

Π̃p(Ũ , Ṽ ) < α


I

0
I

0

 . (4.14)

By (4.10) and (4.12) it follows, that α attains its minimum for

Ũ = X−1LM̄ and Ṽ = X−1LN̄. (4.15)

On the other hand it is clear, that for �xed Ũ and Ṽ , we can always attain solutions
P̂ ,X, L and α, satisfying (4.14), by convex optimization.

Consequently, if we start with Ũ = Ũ0 and Ṽ = Ṽ0 and �nd solutions P̂ , X and L
ful�lling (4.14) for the smallest possible α, we can decrease α monotonically by updating
Ũ and Ṽ as in (4.15). When α reaches a nonnegative level we have found a positive
approximation (Ar, Br, Cr, Dr) accordingly to Theorem 4.2. The case that α converges
to a positive value will be treated later.

A good way of choosing Ũ0 and Ṽ0 can be found by considering the expression of the
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error system matrices in (4.5) and using (4.3). If we cannot �nd solutions Q̂, V0, U0

ful�lling

ΠP (U0, V0) :=

(Ā+ F̄U0)
T Q̂+ Q̂(Ā+ F̄U0) Q̂(B̄ + F̄ V0) (C̄ + H̄U0)

T

(B̄ + F̄ V0)
T Q̂ −γI (D̄ + H̄V0)

T

C̄ + H̄U0 D̄ + H̄V0 −γI

 < 0,

then, according to Theorem 4.1, there does not exist any solution satisfying this error
bound. As before, �nding these solutions is not a convex problem because of the products
Q̂F̄U0 and Q̂F̄V0. We can overcome this obstacle by de�ningW0 := U0Q̂ and considering
its dual problem, i.e. we apply the Bounded Real Lemma to GT

e , which leaves the error
bound unchanged. Thus we getĀQ̂+ F̄W0 + Q̂ĀT + F̄ TW T

0 Q̂C̄T +W T
0 H̄T B̄ + F̄ V0

C̄Q̂+ H̄W0 −γI D̄ + H̄V0

(B̄ + F̄ V0)
T (D̄ + H̄V0)

T −γI

 < 0 (4.16)

and �nding the solutions Q̂, V0 and W0 is a convex problem.
In this case the connection between U0, V0 and Gr is not important to us, why solving
for W0 is feasible. Especially because of our positivity constraints on Gr, we cannot do
the same for achieving a positive reduced-order system.

We have already seen, if there exist a diagonal X > 0, P̂ > 0 and G ∗, such that Πp < 0,
then we conclude by (4.12), for su�ciently small

∥(Ψ0 − G ∗Φ)TX(Ψ0 − G ∗Φ)∥2 with Ψ0 :=
(
U0 0 V0

)
it holds Π̃p(U0, V0) < 0, with L = XG ∗. Since X can be very large, as seen in (4.6), we
need a way of minimizing ∥Ψ0 −G ∗Φ∥2. Such a method can be concluded from the next
theorem.

Theorem 4.3 (Initial Optimization)

Let ϵ > 0 be su�ciently small and Φ and Ψ0 as de�ned before, then the following
statements are equivalent:

(i) There exists a solution G ∗, such that ∥Ge∥∞ < γ and ∥Ψ0 − G ∗Φ∥2 ≤ ϵ.

(ii) ∥Ψ0Φ⊥∥2 ≤ ϵ and ΠP (U0, V0) < 0.

where Φ⊥ denotes a matrix consisting of a basis of the kernel of Φ, i.e. ΦΦ⊥ = 0.

Proof : (i) ⇒ (ii) : Φ as de�ned before is explicitly given as

Φ =

(
0 I 0 0 0
0 0 0 0 I

)
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and thus Φ⊥ has the form

Φ⊥ =


I 0 0
0 0 0
0 I 0
0 0 I
0 0 0

 .

Since, ΦT
⊥Φ⊥ = I, it follows that ∥Φ⊥∥2 = 1 and by assumption that

∥Ψ0Φ⊥∥2 = ∥Ψ0Φ⊥ − G ∗ΦΦ⊥∥2 ≤ ∥Ψ0 − G ∗Φ∥2∥Φ⊥∥2 ≤ ϵ

Let Q̂ be a solution that satis�es ΠP (G ∗M̄,G ∗N̄) < 0. Then ΠP (U0, V0), with the same Q̂,
can be expressed as

ΠP (U0, V0) = ΠP (G
∗M̄,G ∗N̄) + Ξ,

where

Ξ :=

(U0 − G ∗M̄)T F̄T Q̂+ Q̂F̄ (U0 − G ∗M̄) F̄ (V0 − G ∗N̄) (U0 − G ∗M̄)T H̄T

(V0 − G ∗N̄)T F̄T 0 (V0 − G ∗N̄)T H̄T

H̄(U0 − G ∗M̄) H̄(V0 − G ∗N̄) 0


Consequently, if Ψ0−G ∗Φ =

(
U0 − G ∗M̄ 0 V0 − G ∗N̄

)
is su�ciently small, it follows by

the negative de�niteness of ΠP (G ∗M̄,G ∗N̄), that ΠP (U0, V0) < 0 with the solution Q̂.

(ii) ⇒ (i) : By choosing G ∗ = Ψ0Φ
T and noticing, that ΦΦT = I, we can write

(Ψ0 − G ∗Φ)
(
ΦT Φ⊥

)
=
(
0 Ψ0Φ⊥

)
.

It is obvious, that
(
ΦT Φ⊥

)
is an invertible matrix with

(
Φ
ΦT

⊥

)(
ΦT Φ⊥

)
= I.

Consequently,

Ψ0 − G ∗Φ =
(
0 Ψ0Φ⊥

) (
ΦT Φ⊥

)−1

and by assumption

∥Ψ0 − G ∗Φ∥2 = ∥
(
0 Ψ0Φ⊥

)
∥2∥

(
ΦT Φ⊥

)−1 ∥2 ≤ ϵ.

Showing that ∥Ge∥∞ < γ follows as before by ΠP (U0, V0) < 0 and

ΠP (G
∗M̄,G ∗N̄) = ΠP (U0, V0)− Ξ < 0

for a su�ciently small ϵ.

Observe, if we can �nd U0 and V0, such that ∥ΨΦ⊥∥2 = 0 with ΠP (U0, V0) < 0, then
Π̃p(U0, V0) < 0. Further, for �xed Q̂, it is a convex problem to solve ΠP (U0, V0) < 0,
such that G ∗ = ΨΦ⊥ represents a positive system. Thus, we can already include our
positivity constraints into the optimization of the initial values.

Let us summarize the algorithm as we have developed it so far. The condition ∥Ψ0Φ⊥∥2 =
σ̄(Ψ0Φ⊥) ≤ ϵ will be expressed with help of its Schur complement equivalence.
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Algorithm 4.1 (Initial Value Optimization)

(i) Solve the initial problem (4.16) to get U0 and V0 and set j = 0.

(ii) For any j and �xed Ψj =
(
Uj 0 Vj

)
�nd a solution Q̂j to ΠP (Uj , Vj) < 0.

(iii) For �xed Q̂j �nd an optimized Ψ∗
j =

(
U∗
j 0 V ∗

j

)
and ϵ∗j such that

ϵ∗j = min
Ψj=[Uj 0 Vj ]

ϵj s.t.


ΠP (Uj , Vj) < 0(

−ϵjI (ΨjΦ⊥)
T

ΨjΦ⊥ −I

)
< 0

ΨjΦ⊥ ∈ P

(iv) If
|ϵ∗j − ϵ∗j−1|

|ϵ∗j |
< TOLinit or j = MAXiter, where TOLinit is a prescribed tolerance

and MAXiter a maximal number of iterations, then optimal initial matrices
U∗
0 = U∗

j and V ∗
0 = V ∗

j are obtained.
Otherwise set Ψj+1 := Ψ∗

j , j := j + 1 and go to step (ii).

Algorithm 4.2 (Iterative LMI Approach)

(i) Set j = 0 and Uj := U∗
0 and Vj := V ∗

0 obtained by Algorithm 4.1

(ii) For any j and �xed Uj and Vj �nd optimal P̂ ∗ > 0, diagonal X∗
j > 0, L∗

j ∈ P
and α∗

j , such that

α∗
j = min

P̂j ,Xj ,Lj

α s.t. Π̃p(Uj , Vj) < αj


I

0
I

0

 .

(iii) If α∗
j ≤ 0, then an optimal G ∗

r = (X∗
j )

−1L∗
j is found.

If
|α∗

j − α∗
j−1|

|α∗
j |

< TOLα or j = MAXiter, for a prescribed tolerance TOLα and

an maximal number of iterations MAXiter, then α∗
j has probably converged to

a positive value and we stop without a solution.
Otherwise, set j := j + 1,

Uj+1 := (X∗
j )

−1L∗
jM̄, Vj+1 := (X∗

j )
−1L∗

jN̄

and continue with step (ii).
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Now we want to treat the case, when we cannot �nd an α ≤ 0. For the initial value
determination we already considered the dual problem GT

e . By de�ning Ud := F̄Gr and
Vd := H̄Gr we can write

ÂT := ĀT + M̄TUT
d , B̂T := B̄T + N̄TUT

d , Ĉ := C̄T + M̄TV T
d , D̂T := D̄T + N̄TVd.

Then analogously to Ge, we can de�ne

Π̃d(Ũ , Ṽ ) =


Π̃d11 Π̃d12 Π̃d13 B̄

Π̃T
d12

−Z LT H̄T N̄

Π̃T
d13

H̄L Π̃d33 D̄

B̄T N̄T D̄T −γI

 < 0

where

Π̃d11 := ĀQ̂+ Q̂ĀT − ŨLT F̄ T + F̄LŨT + ŨZŨT

Π̃d12 := Q̂M̄T + F̄L

Π̃d13 := Q̂C̄T − F̄LṼ T − ŨLT H̄T + ŨZṼ T

Π̃d33 := −Ṽ LT H̄T − H̄LṼ T + Ṽ ZṼ T − γI

Theorem 4.4

GT
e is asymptotically stable and satis�es ∥GT

e ∥∞ < γ with a positive system
(Ar, Br, Cr, Dr) if and only if there exists a Q̂ > 0, matrices Ũ and Ṽ , a diagonal
Z > 0 and L ∈ P such that Π̃d(Ũ , Ṽ ) < 0. Then we can write Gr = LZ−1.

In the same way as for the primal algorithm, we can obtain initial matrices U0 and V0,
by applying the Bounded Real Lemma to Ge. The Dual Iterative LMI Approach can
then be given as follows.



54 4.3. ITERATIVE LINEAR MATRIX APPROACH II

Algorithm 4.3 (Dual Iterative LMI Approach)

(i) Set j = 0 and Uj := U0 and Vj := V0.

(ii) For any j and �xed Uj and Vj �nd optimal Q̂∗ > 0, diagonal Z∗
j > 0, L∗

j ∈ P
and β∗

j , such that

β∗
j = min

Q̂j ,Zj ,Lj

β s.t. Π̃d(Uj , Vj) < βj


I

0
I

0

 .

(iii) If β∗
j ≤ 0, then an optimal G ∗

r = L∗
j (Z

∗
j )

−1.

(iv) If
|β∗

j − β∗
j−1|

|β∗
j |

< TOLβ or j = MAXiter, for a prescribed tolerance TOLβ and

a maximal number of iterations MAXiter, then β∗
j is probably converged to a

positive value or converges so slow, that we stop without a solution.

(v) Otherwise, set j := j + 1,

Uj+1 := F̄L∗
j (Z

∗
j )

−1, Vj+1 := H̄L∗
j (Z

∗
j )

−1

and continue with step (ii).

The motivation behind the additional consideration of the dual approach is, that an
optimal solution in primal direction does not imply the optimality in dual direction and
vice versa. Consequently if α converges to a positive value with G α

r := Gr, we can de�ne
U0 = F̄G α

r and V0 = H̄G α
r to use them as the initial matrices in the dual approach.

Conversely, if β converges to a positive value with G β
r := Gr, we can to the same by

de�ning U0 = G β
r M̄ and V0 = G β

r N̄ and applying the primal approach. This procedure
can be repeated until either α and β converge or one of them becomes nonnegative.

4.3. Iterative Linear Matrix Approach II

In this section we want to have a look at another approach to decouple Ar and Br from
P̂ , as presented in [7]. It is readily seen, since the Schur complement of negative de�nite
matrix is also negative de�nite, that the existence of P̂ > 0 such that Π < 0 holds if and
only if there exists P̃ > 0, such that

Θ :=

(
ÂT P̃ + P̃ Â+ ĈT Ĉ P̃ B̂ + ĈT D̂

B̂T P̂ + D̂T Ĉ −γ2I + D̂T D̂

)
< 0. (4.17)
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P̃ and P̂ ful�l the relation P̃ = γP̂ . Further, if (4.17) is valid, then there must exist a
su�ciently small ϵ > 0, such that(

ÂT P̃ + P̃ Â+ ĈT Ĉ + ϵÂT P̃ Â P̃ B̂ + ĈT D̂

B̂T P̂ + D̂T Ĉ −γ2I + D̂T D̂ + ϵB̂T P̃ B̂

)
< 0. (4.18)

In order to apply Schur complement equivalence to (4.18), we notice

Θ−
(

I ϵB̂

I + ϵÂ 0

)T (−ϵ−1P̃ 0

0 −ϵ−1P̃

)(
I ϵB̂

I + ϵÂ 0

)
=

=

(
−2ϵ−1P̃ + ĈT Ĉ ĈT D̂

D̂T Ĉ −γ2I + D̂T D̂

)
which leads to a decoupling of Â and B̂ with P̃ as follows

−2ϵ−1P̃ + ĈT Ĉ ĈT D̂ I I + ϵÂT

D̂T Ĉ −γ2I + D̂T D̂ ϵB̂T 0

I ϵB̂ −ϵP−1 0

I + ϵÂ 0 0 −ϵP−1

 < 0.

If we de�ne then

Ãr := ϵAr, B̃r := ϵBr, X := ϵ−1P X̃ := ϵP−1

with

X =

(
X11 X12

XT
12 X22

)
, X̃ =

(
X̃11 X̃12

X̃T
12 X̃22

)
,

it follows by another Schur complement equivalence for Ĉ and D̂, that

Θe :=



−2X11 −2X12 0 I 0 I + ϵAT 0 CT

−2XT
12 −2X22 0 0 I 0 I + ÃT

r −CT
r

0 0 −γ2I ϵBT B̃T
r 0 0 DT −DT

r

I 0 ϵB −X̃11 −X̃12 0 0 0

0 I B̃r −X̃T
12 −X̃22 0 0 0

I + ϵA 0 0 0 0 −X̃11 −X̃12 0

0 I + Ãr 0 0 0 −X̃T
12 −X̃22 0

C −Cr D −Dr 0 0 0 0 I


< 0.

Theorem 4.5

Let (A,B,C,D) be an asymptotically stable positive system with transfer function
G(s). Then a reduced-order asymptotically stable positive system Gr with ∥Ge∥∞ < γ
exists if and only if we can �nd ϵ > 0, X, X̄ > 0, a −M -matrix Ãr and B̃r, Cr, Dr = 0
such that Θe < 0 and XX̄ = I.

Observe, in Θe all the variables are decoupled. Hence without the requirement XX̄ = I,
we would be left with a convex problem.
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4.4. Algorithm: Iterative Linear Matrix Approach II

In the following we will see how to treat this coupling of X and X̄ with the help of the
so-call Convex Cone Linearization Algorithm (CCL) [9]. The basic idea of this algorithm
is to minimize tr(XX̄) with respect to positive de�nite matrices X, X̄ ∈ Rn×n ful�lling

(
X I
I X̄

)
≥ 0. (4.19)

If (4.19) holds, then by considering its Schur complement, we conclude

X − X̄ ≥ 0 ⇔ X̄
1
2XX̄

1
2 − I ≥ 0, (4.20)

and thus

tr(XX̄) = tr(X̄
1
2XX̄

1
2 ) ≥ n. (4.21)

It is obvious, that equality can be achieved ifXX̄ = I, but by considering the diagonalization
X̄

1
2XX̄

1
2 = T TDT with D ≥ 0, it follows by (4.20) and (4.21) that

D − I ≥ 0 and tr(XX̄ − I) = tr(D − I) ≥ 0.

Hence, tr(XX̄) = n if and only if XX̄ = I and we can reduce our problem of �nding
XX̄ = I to the minimization of tr(XX̄) with respect to (4.19).
Since minimizing tr(XX̄) is not a convex problem either, it will be solved by considering
its linearisation. At a given, feasible point (X0, X̄0) a linear approximation can be given
as

tr(XX̄) ≈ c+ tr(XX̄0 + X̄X0), c ∈ R

From Theorem 3.1 we know, that the product of two matrices P,Q ≥ 0 has exclusively
nonnegative eigenvalues and hence tr(PQ) ≥ 0. Applying this to XX̄0 and X̄X0 leads
to

tr(XX̄0 + X̄X0) = tr(XX̄0) + tr(X̄X0) ≥ 0. (4.22)

Thus, the smaller tr(XX̄0+X̄X0) the smaller tr(XX̄). The idea of the CCL-algorithm is
to minimize tr(XX̄0+ X̄X0), which a convex problem, because X and X̄ are decoupled.
The whole CCL-algorithm can be described as follows.
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Algorithm 4.4 (Convex Cone Linear Approximation Algorithm)

(i) Let (X0, X̄0) be a feasible solution of (4.19) and set j = 0.

(ii) For any j and �xed (Xj , X̄j) �nd an optimal solution (X∗, X̄∗) to

Pk : min
(X,X̄)

tr(XX̄j + X̄Xj) s.t. (4.19).

(iii) If a stopping criterion is ful�lled, then an optimal (X∗, X̄∗) is found.
Otherwise set j := j + 1,

Xj+1 := X∗, X̄j+1 := X̄∗

and go to step (ii).

By de�ning tj := tr(Xj+1X̄j + X̄j+1Xj) and by the optimality of of tj with respect to
Pk, it follows immediately that

tj ≤ tr(XjX̄j−1 + X̄jXj−1) = tj−1

Thus {tj} is a monotonically decreasing sequence, which converges according to (4.22).

Now we are ready to give the whole algorithm in order to ful�l the requirements of
Theorem 4.5.

Algorithm 4.5 (CCL-based LMI Approach)

(i) For given reduced order r and error bound γ, let (X0, X̄0) be a feasible solution
s.t. (4.19) and Θe < 0. If the solutions exists set j = 0, otherwise stop without
a solution.

(ii) For any j and �xed (Xj , X̄j) �nd an optimal solution (X∗, X̄∗, Ār, B̄r, Cr, Dr, ϵ)

tj := min
X,X̄

tr(XX̄j + X̄Xj) s.t.

{
(4.19)

Θe < 0

(iii) Set Ar := ϵ−1Ār, Br := ϵ−1B̄r, P̃ := ϵX∗ and plug them into Θ. If Θ < 0, then
a reduced order system, satisfying the prescribed error bound, is found.

If
tj − tj−1

tj
> TOLδ or j < MAXiter, for a prescribed tolerance TOLδ and the

maximal number of iterations MAXiter, set j := j + 1,

Xj+1 := X∗, X̄j+1 := X̄∗

and go to step (ii). Otherwise stop without a solution.
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Remark: The CCL-algorithm also works without the constraint in (4.19), which is why it
could be used as an alternative to minimize tr(PQ) in order to minimize the Generalized
Hankel Singular Values in Subsection 3.4.1. From the experience of numerical examples
this does not add any advantage. In contrary, by using Algorithm 3.1 instead of the
CCL-algorithm, the convergence of the algorithm discussed in this section is much slower.

In Chapter 7 we will see, even though both methods in this chapter are based on the
Bounded Real Lemma, the method of Section 4.1 gives signi�cantly better results than
the just presented one. Still, we should notice, that both methods are based on LMIs,
which restricts its application to low dimensional systems due to the high numerical e�ort
of performing the required optimizations. A conventional solver e.g. SeDuMi possesses
a complexity of O(n2m2.5 +m3.5), where n stands for the number of decision variables
and m for the number of rows in the LMI [20].



5. Krylov Subspace Methods

In the previous chapter we have encountered the problem, that the performance of model
order reduction methods can depend strongly on the dimension of the system we would
like to reduce. However, the occurrence of systems consisting of several thousand states,
called large-scale systems, is not unusual. Applying LMI approaches as well as Balanced
Truncation to such systems requires far more computational power than we have at our
disposal today. A way of getting around this problem is given by the so-called Krylov

subspace methods [4][12], which will be covered in this chapter.

The problem of large scale systems originates from the context of solving a system of
linear equations

Ax = b, A ∈ Rn×n, b ∈ Rn

with "very large" dimension n. Since direct solving methods such as LU- and
QR-decomposition et al. possess a complexity of O(n3), those methods can easily reach
the limit of computational power. Overcoming this problem in case of a system with
random A is probably impossible. However, if A is sparse, i.e. A contains "su�ciently
many" zeros, it is feasible to approximate the solution.
For this purpose iterative methods with complexity O(n2) have been developed .[27] A
particular class within those iterative methods are the Krylov subspace methods [27].
In the following we will not discuss the solvers itself, but we are interested in their
fundamental concepts, which will be used for developing a model order reduction method.

5.1. Arnoldi Iteration

The basic idea of all Krylov subspace methods is the (orthogonal) projection of A onto
the Krylov subspace Km(A, b), which we de�ne now.

De�nition 5.1 (Krylov subspace)

For A ∈ Rn×n, b ∈ Rn the Krylov subspace of dimension m is de�ned as

Km(A, b) := span{b, Ab, . . . , Am−1b}.

The orthogonal projection of A onto Km(A, b) should be interpreted by the following
linear operator Km(A, b) → Km(A, b): for given x ∈ Km(A, b) apply A to it and perform
an orthogonal projection of Ax back into Km(A, b).

59
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The orthogonal projector of Rn onto Km(A, b) can be described with the help of a
modi�ed Gram-Schmidt iteration applied to Km(A, b), known as the Arnoldi iteration

algorithm.

Given A ∈ Rn×n, b ∈ Rn \ {0} we can set similar to Gram-Schmidt

w0 := b, v1 :=
w0

∥w0∥2
w1 := Av1 − ⟨v1, Av1⟩v1, v2 :=

w1

∥w1∥2
...

...

wm := Avm −
∑m

j=1⟨vj , Avm⟩vj , vm+1 :=
wm

∥wm∥2

and attain an orthonormal basis {v1, . . . , vm} of Km(A, b) if wi ̸= 0 for 1 ≤ i ≤ m − 1.
Otherwise the Krylov subspace dimension is smaller then m, i.e. Km(A, b) ⊆ Kk(A, b)
for some k < m and we consider the projection onto Kk(A, b) instead.

By de�ning

Hm :=


⟨v1, Av1⟩ ⟨v1, Av2⟩ · · · ⟨v1, Avm⟩
∥w1∥2 ⟨v2, Av2⟩ · · · ⟨v2, Avm⟩

. . .
. . .

...
∥wm−1∥2 ⟨vm, Avm⟩

 and Vm :=
(
v1 . . . vm

)
,

we can write

AVm = VmHm + wmeTm.

Observe, since V T
mVm = I and V T

mwm = 0, we obtain

V T
mAVm = Hm =


h11 h12 · · · h1m
h21 h22 · · · h2m

. . .
. . .

...
hm,m−1 hmm


and A is an upper Hessenberg matrix with respect to the orthonormal basis of Km(A, b).
Further, if x ∈ Rn, then VmV T

mx ∈ Km(A, b) and

V T
m (x− VmV T

mx) = 0.

Obviously, VmV T
m is an orthogonal projection and the projection of Ax onto Km(A, b) can

be written as VmV T
mAx. Therefore, the linear operator VmV T

mA describes the orthogonal
projection ofA ontoKm(A, b). Moreover, if we write x ∈ Km(A, b) in the basis {v1, . . . , vm}
as Vmξ, then

VmV T
mAx = VmV T

mAVmξ = Vmη,
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with

η := Hmξ.

Again, we can say that Vmη is the representation of η in the standard basis and consequently
Hm can be interpreted as the matrix representation VmV T

mAx with respect to the basis
{v1, . . . , vm}.

The Algorithm to the Arnoldi Iteration can be described e�ciently in the following
form.

Algorithm 5.1 (Arnoldi Iteration Algorithm)

Let b ̸= 0 be arbitrary and set v1 :=
b

∥b∥2
.

FOR j = 1, . . . ,m
z := Avj
hij := ⟨vi, z⟩, i = 1, . . . , j

wj := z −
∑j

i=1 hijvi
hj+1,j := ∥wj∥2

IF hj+1,j = 0: STOP

ELSE vj+1 :=
wj

hj+1,j

END

END

5.2. Lancozos Iteration & Biorthogonalization Algorithm

In case that A is symmetric, it is readily seen that

Hm = HT
m =


α1 β1

β1 α2
. . .

. . .
. . . βm−1

βm−1 αm

 with βi > 0 ∀i. (5.1)

The Arnoldi Algorithm simpli�es to the so-called Lanczos Iteration Algorithm, which
requires the determination of maximal three entries per iteration.
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Algorithm 5.2 (Lanczos Iteration Algorithm)

Let b ̸= 0 be arbitrary and set v1 :=
b

∥b∥2
, v0 = 0 and β0 = 0.

FOR j = 1, . . . ,m
z := Avj
αj := ⟨vj , z⟩
z := z − αjvj − βj−1vj−1

βj := ∥z∥2

IF βj = 0: STOP

ELSE vj+1 :=
z

βj

END

END

This idea can be generalized to the so-called Biorthogonalization Algorithm. If we insist
on getting a tridiagonal Hm, even if A is not symmetric, we need to give up the use of
unitary transformation matrices.
Let A = V TV −1 for a nonsingular, but generally not unitary V and a tridiagonal T .

If we de�ne W := V −T and take the transpose of A, we receive the equivalent equation
AT = WT TW−1 and it is obvious that W TV = V −1V = I. Though the columns of V do
not form an orthogonal basis, they are orthogonal to the columns of W . The central idea
of the Biorthogonalization Algorithm is to �nd such matrices V and W with biorthogonal

columns.

In the view of the Arnoldi and Lanczos Iteration, our aim is to determine matrices

Vm =
(
v1, . . . , vm

)
, Wm =

(
w1, . . . , wm

)
such that

W T
mVm = I and W T

mAVm = Hm =


α1 γ1

β1 α2
. . .

. . .
. . . γm−1

βm−1 αm

 .

We will �nd such matrices by computing two biorthogonal bases

v1, . . . , vm of Km(A, v1) and w1, . . . , wm of Km(AT , w1).

Again, Biorthogonalization can be performed by a modi�cation of Gram-Schmidt.

Given A ∈ Rn×n and v1, w1 ∈ Rn with ⟨v1, w1⟩ = 1, we set

ṽk+1 := Avk −
k∑

j=1

⟨Avk, wj⟩vj , w̃k+1 := ATwk −
k∑

j=1

⟨ATwk, vj⟩wj
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and

vk+1 :=
ṽk+1

βk
, wk+1 :=

w̃k+1

γk

such that
⟨ṽk+1, w̃k+1⟩

βkγk
= ⟨vk+1, wk+1⟩ = 1.

It is easy to see, that vk ⊥ span{w1, . . . , wk−1} = Kk−1(A
T , w1), why

k−2∑
j=1

⟨Avk, wj⟩vj =
k−2∑
j=1

⟨ATwk, vj⟩wj = 0.

Then by de�ning

αk := ⟨Avk, wk⟩

Hm attains the desired tridiagonal form.

As before, since

VmW T
mx = x,

for x ∈ Km(AT , v1), we can interpret Hm as the matrix representation of the projection
of A onto Km(AT , v1).

The Biorthogonalization Algorithm can be described e�ciently as follows.

Algorithm 5.3 (Biorthogonalization Algorithm)

Let v1, w1 ̸= 0 be arbitrary with ⟨v1, w1⟩ = 1. Set β0 = γ0 = 0 and v0 = w0 = 0.
FOR j = 1, . . . ,m

vj+1 := Avj
wj+1 := ATwj

αj := ⟨vj+1, wj⟩
vj+1 := vj+1 − αjvj − βj−1vj−1

wj+1 := wj+1 − αjwj − γj−1wj−1

βj := |⟨vk+1, wk+1⟩|
1
2

γj := sign(⟨vk+1, wk+1⟩)βj

IF βj = 0: STOP

ELSE vj+1 :=
vj+1

βj
, wj+1 :=

wj+1

γj

END

END
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5.3. Model Reduction via Coe�cient Matching

Now we are interested in how the forgoing theory applies to model order reduction of
linear control systems. For this purpose let us consider SISO-systems represented as

G :

{
ẋ(t) = Ax(t) + bu(t),

y(t) = cx(t)
(5.2)

where A ∈ Rn×n and b, cT ∈ Rn.

By applying Arnoldi iteration to Km(A, b) for some m < n with

rg(Vm) = Km(A, b) and V T
mVm = I,

we can de�ne a reduced order system as

Â := V T
mAVm ∈ Rm×m, b̂ := V T

m b ∈ Rm and ĉ = cVm ∈ R1×m.

For the reduced order system (Â, b̂, ĉ) we will not be able to �nd an error bound or
guarantee its stability, instead the motivation behind this procedure is given by (2.7)
and the following theorem.

Theorem 5.1 (Markov Coe�cient Matching by Arnoldi)

If Vm is obtained from the application of Arnoldi's Iteration Algorithm to A and b,
then

ĉÂk−1b̂ = cAk−1b, k = 1, . . . ,m

i.e. the �rst m Markov coe�cients of (Â, b̂, ĉ) and (A, b, c) match.[4]

Proof : In (5.1) we have seen, that VmV T
m is the orthogonal projection of Rn onto Km(A, b).

Thus
b ∈ rg(Vm) ⇒ Vmb̂ = VmV T

m b = b.

We can continue in the same and get

Ab ∈ rg(Vm) ⇒ VmÂb̂ = VmV T
mAVmV T

m b = VmV T
mAb = Ab

...

Ak−1b ∈ rg(Vm) ⇒ VmÂk−1b̂ = VmV T
mAk−1b = Ak−1b, 1 ≤ k ≤ m

In conclusion, since ĉ = cVm it follows

ĉÂk−1b̂ = cVmÂk−1b̂ = cAk−1b, k = 1, . . . ,m

which concludes the proof.
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If Ĝ(s) denotes the transfer function of (Â, b̂, ĉ), then with the help of (2.7), the H∞
error between G(s) and Ĝ(s) can be given as

∥G− Ĝ∥∞ =

∥∥∥∥∥
∞∑

k=m+1

ĉÂk−1b̂− cAk−1b

sk

∥∥∥∥∥
∞

.

Thus, if the Markov coe�cients of G(s) and Ĝ(s) reach their limits of zero su�ciently
fast, a small error can be attained.

Notice, the range of the Kalman controllability matrix is equal to Kn(A, b). Hence,
if the state-space realization of a system is not completely controllable, there must exist
a maximal m < n, such that rk(Km(A, b)) = m. In this case Km(A, b) is A-invariant and
we get

AVm = VmHm.

This is exactly the same problem as the construction of aKalman Controllability Decompositon.
If {w1, . . . , wn−m} is chosen such that {v1, . . . , vm, w1, . . . , wn−m} is an orthonormal basis
of Rn, we can de�ne

T :=
(
Vm W

)
:=
(
Vm w1 · · · wn−m

)
and express AW as

AW = V A2 +WA3.

Thus

AT =
(
AVm AW

)
=
(
AVm V A2 +WA3

)
=
(
Vm W

)(Hm A2

0 A3

)
.

Since b ∈ Km(A, b) we get

b = Vmb1 =
(
Vm W

)(b1
0

)
and consequently

T TAT =

(
Â A2

0 A3

)
and T TB =

(
b̂
0

)
.

In conclusion, Arnoldi's Algorithm can be used in order to remove uncontrollable states,
which does not cause any error. By doing the same to the transposed system, we can go
on and remove unobservable states.
Further, from the proof to Theorem 5.1 we know, that

Vm

(
b̂ Âb̂ · · · Âm−1b̂

)
=
(
b Ab · · · Am−1b

)
,

and hence

rk(
(
b̂ Âb̂ · · · Âm−1b̂

)
) = m.



66 5.3. MODEL REDUCTION VIA COEFFICIENT MATCHING

This means together with the controllability of (Â, b̂, ĉ), that a reduced system, resulting
from Arnoldi's Algorithm, is always controllable.

From the construction of the Biorthogonalization Algorithm we know, that Biorthogonalization
can take care of both, the controllable and the observable subspace. Thus, instead of
applying Arnoldi's Algorithm successively to remove uncontrollable and unobservable
states, the idea could be to use Biorthogonalization with

v1 :=
b√
|bc|

and w1 :=
cT√
|bc|

,

and de�ne then a reduced system as

Â := W T
mAVm, b̂ := W T

mb and ĉ := cVm.

In this case we would expect a lower error compared to Arnoldi's Algorithm, which can
indeed be motivated by the statement of the next theorem.

Theorem 5.2 (Markov Coe�cient Matching by Biorthogonalization)

If Vm and Wm are obtained from the application of the Biorthogonalization Algorithm

to A and (5.3) , then
ĉÂk−1b̂ = cAk−1b, k = 1, . . . , 2m

for Â, b̂, ĉ as de�ned in (5.3).[4]

Proof : Since b ∈ rg(Vm) and WT
mVm = I, it follows immediately by the choice of v1 and w1,

that

Vmb̂ = VmWT
mb = Vm


wT

1 b ̸= 0
0
...
0

 = v1w
T
1 b =

b√
|bc|

c√
|bc|

b = b

Consequently, we can conclude

Ab ∈ rg(Vm) ⇒ VmÂb̂ = VmWT
mAVmWT

mb = VmWT
mAb = Ab

...

Ak−1b ∈ rg(Vm) ⇒ VmÂk−1b̂ = VmWT
mAk−1b = Ak−1b, 1 ≤ k ≤ m

The same can be done with c, i.e. since cT ∈ rg(Wm) and V T
mWm = I, it follows, that

ĉWT
m = cVmWT

m = (V T
m cT )TWm = c.

Thus

(cA)T ∈ rg(Wm) ⇒ ĉÂWT
m = cVmWT

mAVmWT
m = cAVmWT

m = (V T
m (cA)T )WT

m = cA

...

(cAl−1)T ∈ rg(Wm) ⇒ ĉÂl−1WT
m = cAl−1VmWT

m = cAl−1, 1 ≤ l ≤ m
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Summarizing both results leads to

ĉÂl+k−1b̂ = ĉÂl−1WT
mÂVmÂk−1b̂ = cAl−1AAk−1b = cAk+l−1b, 1 ≤ k, l ≤ m

which concludes the proof.

As before, the proof shows, that the reduced system (Â, b̂, ĉ) is always controllable.
Additionally we have(

ĉT ÂT ĉT · · · (ÂT )m−1ĉ
)T

W T
m =

(
cT AT cT · · · (AT )m−1c

)T
which implies that (Â, b̂, ĉ) is also observable.

Comparing the results of numerical experiments indicate, that Balanced Truncation
generally performs a great deal better, regardless of whether Arnoldi or Biorthogonalization
has been used.

Nevertheless, those approaches are iterative methods, which means that an approximation
can be attained very e�ciently. Unfortunately, neither Arnoldi nor Biorthogonalziation
guarantees the stability of the reduced model.

Example 5.1 (Unstable Biorthogonalization)
Let us consider the following system

A :=

−11 3 4
3 −9 5
4 5 −19

 , b :=

5
5
0

 , c :=
(
1 4 4

)
.

Then cAb = 20 and Biorthogonalization cannot even attain a stable �rst order approximation.

For the sake of completeness, we want to mention, that there is a simple way of dealing
with MIMO-systems, which is called Block Arnoldi Algorithm and can be outlined as
follows.

If B ∈ Rn×q with B =
(
b1 · · · bq

)
, then Arnoldi iteration will be applied separately

to A and bi in order to get the matrices V
(i)
m . Subsequently, those matrices will be

collected in one matrix V :=
(
V

(1)
m · · · V

(q)
m

)
. Choosing an orthonormal basis of V

can be done by the computation of a reduced QR-factorization of V . Finally, we choose
the �rst m columns of Q as Vm to de�ne the reduced system.

This method can work for positive MIMO systems, but generally it does not preserve
all the useful properties, that we have in case of a SISO system.

5.4. Coe�cient Matching for Positive Systems

As for Balanced Truncation, Coe�cient Matching generally does not preserve internal
positivity.
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Example 5.2 (External positivity not preserved)
If consider the system

A :=

−26 3 9
3 −23 7
7 7 −31

 , b :=

9.6
2.1
4.6

 , c :=
(
4.9 9.9 1.7

)
,

then Biorthogonalization leads to a second-order system

A :=

(
−12.78 −4.10
4.10 −14.52

)
, b = cT :=

(
8.70
0

)
,

which has poles in −13.65± 4.00i. Thus, by Lemma 1.2, this is neither an external nor
an internally positive system.

Still, in many examples of linear positive SISO systems, Coe�cient Matching performs
fairly well. In the following we will �nd an explanation for this behaviour, which is given
by some interesting properties of the just presented Coe�cient Matching methods.
As mentioned in the introduction to this chapter, large-scale system usually possess a
sparse A matrix, as they result from the discretization of partial di�erential equations.
In Chapter 7 we will see, that those discretization matrices often have the additional
property of being symmetric.
In this case we know from (5.1), that Coe�cient Matching by Arnoldi results in a
symmetric Metzler matrix Â. If A is asymptotically stable and b̂, ĉ = 0, we have found
a positive approximation.

Observe, if A is symmetric and asymptotically stable, then A must be negative de�nite.
By Lanczos Iteration Algorithm we can conclude, that αj = vTj Avj < 0. Since the �rst

column of Vm is given by v1 =
b

∥b∥2
= 0, we can give the following analogue to Theorem

3.3.

Theorem 5.3 (First Order Positive Coe�cient Matching)

Let (Â1, b̂1, ĉ1) be the reduced �rst order system attained from Coe�cient Matching

by Arnoldi for a positive system (A, b, c). Then (Â1, b̂1, ĉ1) is always positive and
asymptotic stability can be guaranteed in case that A = AT or bTAb < 0.

Through out all the discussed reduction methods in the chapters before, the Metzler
Matrix property was basically the main di�culty. Here we haven seen, that the symmetry
ofAmakes it very likely, that Coe�cient Matching by Arnoldi results in an asymptotically
approximation, where Â is guaranteed to be a Metzler Matrix.
The nonnegativity of b̂ is easily assured by the fact, that

b̂ = V T
m b =

(
∥b∥2 0 · · · 0

)T = 0.

Hence, we are left with the problem of a nonnegative ĉ, which generally cannot be
guaranteed. However, as we have just seen for b̂, if cT = kb with k ≥ 0, then ĉ = 0.
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Theorem 5.4

Let (A, b, c) be a positive system with A = AT and b = kcT for k > 0. Then Coe�cient

Matching by Arnoldi always results in an asymptotically stable positive system (Â, b̂, ĉ).

Theorem 5.4 naturally transfers to the use of Biorthogonalization. However, by using
Biorthogonalization, the symmetry of A does not assure the asymptotic stability of
the �rst order reduced system, as seen in Example 5.1. Instead we require cAb < 0.
Further, Biorthogonalization always assures the nonnegativity of b̂ and ĉ by W T

mVm = I.
Nevertheless, if A = AT and b ̸= kcT we need to pay the price, that we might lose the
Metzler Matrix property of Â for a very low order.

Example 5.3 (Low order Biorthogonalization)
Consider the system

A :=


−9 4 0 0
4 −12 3 0
0 3 −6 1
0 0 1 −4

 , b :=


3
3
0
1

 , c :=
(
1 2 4 1

)
,

then Biorthogonalization yields a second-order system

Ab :=

(
−2.70 −1.90
1.90 −5.90

)
, bb = cT :=

(
3.16
0

)
,

which is clearly not symmetric. In contrast Arnoldi gives

Aa :=

−6.37 2.78 0
2.78 −10.03 4.97
0 4.97 −9.89

 , ba :=

4.36
0
0

 , ca :=
(
2.29 3.03 2.59

)
.

The �rst-order approximation by Biorthogonalization leads to a relative error of 0.17,
whereas the third-order system obtained by Arnoldi gives 4.39 · 10−3. Thus, there
are examples for positive systems, where Arnoldi performs a great deal better, than
Biorthogonalization, though the approximation was stable.

In Chapter 7 we will discuss examples, where Biorthogonalization preserves the positivity
for any reduced order and Arnoldi has to stop at a much earlier stage, due to the violation
of c = 0.

In case of a non-symmetric A, Arnoldi will usually not return a symmetric Â, because
the consideration of the additional entries in Hm makes it very unlikely to preserve the
positivity for higher orders. Here, Biorthogonalization is clearly preferable because of its
guaranteed band matrix structure with βj = ±γj . A direct consequence of this is, if a
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system is transformed by a non-unitary transformation matrix, then Coe�cient Matching
does mostly not results in a positive system. In Chapter 6 we will see how to treat cases
where the symmetry properties are destroyed or not given a priori.

Notice, Theorem 5.4 holds still true, if b and c contain negative elements. Hence, any
system with A = AT , b = kcT and k > 0 must be a positive system and can be realized
by Arnoldi/Lanczos. In this sense, Arnoldi/Biorthogonalization/Lanczos cannot only be
used for approximation, but also interpreted as positive realization algorithms. In the
view of Chapter 2, where we have seen, that a positive realization for systems of high
orders is hard to obtain, this is an observation of great importance.

A further interesting property arises, when we focus on the external positivity. Since
our methods match the �rst m, respectively 2m Markov coe�cients, we know from (1.8),
that the error between the impulse responses of G and Ĝ can be given as

|g(t)− ĝ(t)| =

∣∣∣∣∣
∞∑

k=m+1

ĝi − gi
t(k−1)

(k − 1)!

∣∣∣∣∣ ≤
∞∑

k=m+1

|ĝi − gi|
t(k−1)

(k − 1)!

As for the H∞-error we can conclude, if the Markov coe�cients reach their limits of zero
su�ciently fast, a small error can be obtained and thus external positivity preserved.
Unfortunately, we have seen in Example 5.2, that also for these methods we can �nd
counter examples for the preservation of external positivity.

5.5. Iterative Rational Krylov Algorithm

An alternative way of preserving the external positivity of a SISO-system can be found
by minimizing the error between the outputs of the original and the reduced system.
This is the central idea of the so-called H2 Model Order Reduction [12].

Let

Gr :

{
ẋr(t) = Arxr(t) + bru(t),

yr(t) = crxr(t)

be a reduced-order approximation of 5.2, with Ar ∈ Rr×r and br, c
T
r ∈ Rn. If u(t) is an

input, such that ∥u∥2 ≤ 1, then we can describe the error between the output of G(s)
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and Gr(s) by the inverse Laplace-transformation as follows

max
t>0

|y(t)− yr(t)| = max
t>0

∣∣∣∣ 12π
∫ ∞

−∞
(Y (iω)− Yr(iω))e

iωtdω

∣∣∣∣ ≤ 1

2π

∫ ∞

−∞
|Y (iω)− Yr(iω)|dω

≤
(

1

2π

∫ ∞

−∞
|G(iω)−Gr(iω)|2dω

) 1
2
(

1

2π

∫ ∞

−∞
|U(iω)|2dω

) 1
2

≤
(

1

2π

∫ ∞

−∞
|G(iω)−Gr(iω)|2dω

) 1
2

∥u∥2

≤
(

1

2π

∫ ∞

−∞
|G(iω)−Gr(iω)|2dω

) 1
2

=: ∥G−Gr∥H2 .

The H2-norm results from the scalar product of the well-known L2(iR) space [30], which
is a Hilbert space consisting of all matrix-valued functions G on iR ful�lling∫ ∞

−∞
tr(G(iω)G(iω))dω < ∞.

The scalar product of this space is given by

⟨G,H⟩ := 1

2π

∫ ∞

−∞
tr(G(iω)H(iω))dω

for G,H ∈ L2(iR). It can be shown [30], that the set of all matrix functions G(s) ∈
L2(iR), which are analytic in the open right half plane, ℜ(s) > 0, builds a closed subspace
of L2(iR), which is called H2. Moreover, the set of all strictly proper and real rational
transfer functions represents a subspace of H2 [30].
Due to our restriction to real stable SISO-systems we de�ne

⟨G,H⟩H2
:=

1

2π

∫ ∞

−∞
G(iω)H(iω)dω =

1

2π

∫ ∞

−∞
G(−iω)H(iω)dω.

and

∥G∥H2 =
√

⟨G,H⟩H2
.

Notice, since ⟨G,H⟩H2
= ⟨H,G⟩H2

it follows, that ⟨G,H⟩H2
must be real.

In the following we will present a method, which is called Iterative Rational Krylov

Algorithm (IRKA) [12]. This method locally minimizes ∥G−Gr∥H2 , aiming to preserve
stability and due to its relation to Krylov subspaces, it can be applied to large-scale
systems.

The main idea behind the Iterative Rational Krylov Algorithm is a Moment Matching

approach called Rational Interpolation, which we want to discuss now. Moment Matching
consists of �nding a reduced system Gr that interpolates the values of G(s), and maybe
additionally some derivative values, at given points {σ1, . . . , σr} ⊂ C\σ(A), called shifts.
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Since the Iterative Rational Krylov Algorithm uses simple Hermite interpolation, our
problem reduces to the location of Gr, so that

Gr(σk) = G(σk) and G
′
r(σk) = G

′
r(σk), 1 ≤ k ≤ r

or equivalently

cr(σkI−Ar)
−1br = c(σkI−A)−1b and cr(σkI−Ar)

−2br = c(σkI−A)−2b, 1 ≤ k ≤ r.

The expression c(σkI − A)−(j+1)b is called the j-th moment of G(s) in σk and we want
to match the �rst two moments. We will see, that this problem can be solved iteratively
and is strongly related to Arnoldi/Biorthogonalization.
In order to show this we consider a reduced order model Gr constructed by the so-called

Galerkin approximation. The Galerkin approximation has its origin in the solution
approximation of partial di�erential equations [26] and represents a generalization of
the Krylov subspace methods discussed in Section 5.3. In case of a linear system this
method works as follows. Let Vr and Wr be given r-dimensional subspaces of Rn, such
that Vr ∩W⊥

r = {0}, where W⊥
r denotes the orthogonal complement of Wr. The idea is

to �nd an v(t) ∈ Vr, such that

v̇(t)−Av(t)− bu(t) ⊥ Wr for all u(t). (5.3)

In this case the output of the reduced order system is de�ned as yr := cv(t). Let
Vr,Wr ∈ Rn×r denote matrices whose columns consist of a basis of Vr, respectively Wr.
Then we can write v(t) = Vrxr(t) with xr(t) ∈ Rr and we get from (5.3), that

W T
r (Vrẋr −AVrxr(t)− bu(t)) = 0.

This leads to a reduced order system given by

Ar := (W T
r Vr)

−1W T
r AVr, br := (W T

r Vr)
−1W T

r b and cr := cVr. (5.4)

Observe, the nonsingularity of W T
r Vr is a direct consequence of Vr ∩W⊥

r = {0}, because
this is equivalent to the kernel, ker(W T

r Vr), of W
T
r Vr being trivial. Further, if we require

the biorthogonality of Wr and Vr, then by choosing Vr = Kr(A, b) and Wr = Kr(A
T , cT ),

we get the same results as for Biorthogonalization/Arnoldi. With the following Lemma
we will relate this procedure to our interpolation problem.

Lemma 5.1

If σ ∈ C \ {σ(A) ∪ σ(Ar)}, then the following statements hold.

(i) If (σI −A)−1b ∈ Vr, then Gr(σ) = G(σ).

(ii) If (σI −AT )−1cT ∈ Wr, then Gr(σ) = G(σ).

(iii) If both assumptions of (i) and (ii) hold, then Gr(σ) = G(σ) and G
′
r(σ) = G

′
(σ).
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Proof : Our aim is to express G(σ)−Gr(σ) in terms of (σI−A)−1b and (σI−AT )−1cT . This
can be done e�ciently by identifying Vr and Wr by means of the following linear projections

Pr(σ) := Vr(σI −Ar)
−1(WT

r Vr)
−1WT

r (σI −A)

and

P̃r(σ) := (σI −A)Pr(σ)(σI −A)−1.

To verify that these linear mappings are indeed projections, we need to notice, that

(σI −Ar)
−1(WT

r Vr)
−1WT

r (σI −A)Vr = (σI −Ar)
−1(σI −WT

r AVr)

= (σI −Ar)
−1(σI −Ar) = I.

Thus

Pr(σ)
2 = Vr[(σI −Ar)

−1(WT
r Vr)

−1WT
r (σI −A)Vr](σI −Ar)

−1(WT
r Vr)

−1WT
r (σI −A)

= Vr(σI −Ar)
−1(WT

r Vr)
−1WT

r (σI −A) = Pr(σ)

and P̃r(σ)
2 = P̃r(σ). Further, if v ∈ Vr, we can express it as v = Vrx with x ∈ Rr and

Pr(σ)v = Vr(σI −Ar)
−1(WT

r Vr)
−1WT

r (σI −A)Vrx = Vrx = v

Hence, Pr(σ) is a linear projection on Vr and Vr = rg(Pr(σ)). In the same way we can

show, that P̃r(σ)
T
is a linear projection on Wr and Wr = rg

(
P̃r(σ)

T
)
. Consequently,

since W⊥
r is the orthogonal complement of Wr we can conclude, that W⊥

r = ker(P̃r(σ)).
By rewriting Gr(σ) as

Gr(σ) = cPr(σ)(σI −A)−1b = c(σI −A)−1P̃r(σ)b

we attain

G(σ)−Gr(σ) = c(I − Pr(σ))(σI −A)−1b

= c(σI −A)−1(I − P̃r(σ))b

= c(σI −A)−1(I − P̃r(σ))
2b

= c(σI −A)−1(I − P̃r(σ))(σI −A)(I − Pr(σ))(σI −A)−1b (5.5)

From the theory of linear projections [25], we know rg(Pr(σ)) = ker(I − Pr(σ)) and
correspondingly ker(P̃r(σ)) = rg(I − P̃r(σ)), which shows together with (5.5), that (i)
and (ii) hold.
In order to show the same for the derivatives, we need to notice, as long as σ is not an
eigenvalue of A or Ar, we can consider Pr(σ) and P̃r(σ) as matrix-valued functions in σ,
which are analytic in a su�ciently small neighbourhood of σ. Then for su�ciently small ϵ
it follows in the same way as before, that

Vr = rg(Pr(σ + ϵ)) and W⊥
r = rg(I − P̃r(σ + ϵ)).

Thus, together with the series expansion of [(σ + ϵ)I −A]−1

(σI + ϵI −A)−1 = (σI −A)−1 − ϵ(σI −A)−2 +O(ϵ2)
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we get

c[(σ + ϵ)I −A]−1(I − P̃r(σ + ϵ)) = c[(σI −A)−1 − ϵ(σI −A)−2 +O(ϵ2)](I − P̃r(σ + ϵ))

= −ϵc(σI −A)−2(I − P̃r(σ + ϵ)) +O(ϵ2)

and analogously

(I − Pr(σ + ϵ))[(σ + ϵ)I −A]−1b = −ϵ(I − Pr(σ + ϵ))(σI −A)−2b+O(ϵ2).

Consequently by (5.5)
G(s)−Gr(s) = O(ϵ2),

which concludes the proof.

Remark: For complex σ the rg(Vr) and rg(Wr) is considered over the complex space and
therefore the restriction to Vr,Wr ∈ Rn×r is feasible. Equivalently, the same method
can be performed with complex-valued matrices Vr and Wr, where W

T
r is substituted by

W
T
r . However, in this case we would generally not end up with a real-valued state-space

representation.

Theorem 5.5 (Moment Matching)

Let G(s) be a linear system with state-space representation (A, b, c), {σ1, . . . , σr} a set
of distinct shifts, which is closed under conjugation (i.e. all shifts occur in conjugate
pairs) and

Vr := span{(σ1I −A)−1b, . . . , (σrI −A)−1b}
Wr := span{(σ1I −AT )−1cT , . . . , (σrI −AT )−1cT }

linear subspaces in Cn. Then by choosing real matrices Vr,Wr with Vr = rg(Vr) and
Wr = rg(Wr), the de�ned reduced system Gr(s) given in (5.4) matches the �rst two
moments of G(s) in σk for k = 1, . . . , r.

Remark: The vectors (σiI − A)−1b and (σ1I − AT )−1cT do not require the numerically
expensive computation of the inverse. Instead a matrix factorization approach, such as
LU-decomposition should be used. Further, the rank of Wr and Vr are not necessarily
equal to the chosen reduced order. Thus, Moment Matching often achieves a reduced
system of even smaller dimension.

The question is now, how to choose the shifts properly in order to minimize the H2-error.
For this purpose we want to look at a residue description of the scalar product in H2.
Let f(s) be a meromorphic function on an open set D ∈ C, i.e. f(s) is a complex

function, which is holomorphic on D except for its poles. Then we denote by Resλ[f(s)]
the residue of f(s) at a pole λ and thus

Resλ[f(s)] =
1

(k − 1)!

d(k−1)

ds(k−1)
[(s− λ)kf(s)], (5.6)
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where k is the order of λ.

Lemma 5.2 (Residue description of the H2-norm)

Let G(s) and H(s) be two strictly proper, asymptotically stable transfer functions with
poles {λ1, . . . , λn}, respectively {µ1, . . . , µm}, then

⟨G,H⟩H2
=

m∑
k=1

Resµk
[G(−s)H(s)] =

n∑
k=1

Resλk
[H(−s)G(s)].

Proof : The proof is just the application of the well-known Residue Theorem [8] toG(−s)H(s).
By assumption it is clear, that the only singularities of G(−s)H(s) in the left half plane
are the poles of H(s). For su�ciently large R > 0, we can enclose them by the left half
semicircular contour

ΓR := {z ∈ C | z = iω with ω ∈ [−R,R]} ∪
{
z ∈ C

∣∣∣∣ z = Reiθ with θ ∈
[
π

2
,
3π

2

]}
.

If we de�ne then γR(ω) := iω with ω ∈ [−R,R] we can write by the de�nition of the curve
integral

⟨G,H⟩H2
=

1

2π

∫ ∞

−∞
G(−iω)H(iω)dω = lim

R→∞

1

2iπ

∫
γR

G(−s)H(s)ds.

Further, since G(s) and H(s) are strictly proper, we can estimate

lim
R→∞

∣∣∣∣ 1

2πi

∫
Reiθ

G(−s)H(s)ds

∣∣∣∣ ≤ lim
R→∞

1

2π
sup

s=Reiθ
|G(−s)H(s)|Rπ = 0

and thus by the Residue Theorem

⟨G,H⟩H2
= lim

R→∞

1

2iπ

∫
ΓR

G(−s)H(s)ds =

m∑
k=1

Resµk
[G(−s)H(s)].

A direct consequence of Lemma 5.2 and (5.6) is the following corollary about theH2-norm,
which we will use in order to explain the H2-error.

Corollary 5.1

If G(s) is a strictly proper, asymptotically stable transfer function with simple poles
{λ1, . . . , λn}, then

∥G∥H2 =

(
n∑

k=1

Resλk
[G(s)]G(−λk)

) 1
2

.
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Let {λ1, . . . , λn} and {λ̂1, . . . , λ̂r} be the poles of G(s) and a reduced order model Gr(s),
respectively, and assume that the poles of Gr(s) are distinct. Further, let ϕi and ϕ̂j be
de�ned as follows

ϕi := Resλi
[G(s)] for i = 1, . . . , n and ϕ̂j := Resλ̂i

[Gr(s)] for j = 1, . . . , r.

Then the H2-error of the approximation can be expressed as

∥G−Gr∥2H2
=

n∑
i=1

Resλi
[(G(s)−Gr(s))(G(−s)−Gr(−s))]

+

r∑
j=1

Resλ̂j
[(G(s)−Gr(s))(G(−s)−Gr(−s))]

=
n∑

i=1

ϕi(G(−λi)−Gr(−λi)) +
r∑

j=1

ϕ̂j(G(−λ̂i)−Gr(−λ̂i)). (5.7)

From (5.7) we observe, that the H2-error arises due to the mismatches of G(s) and Gr(s)
at −λi and −λ̂i. Since −λ̂i is a priori unknown, the idea could be to set σi := −λi, where
λ1, . . . , λr denote the poles with the largest residues. It has been shown in [11], that this
selection of shifts performs quite well. However, in the following we will show, that the
interpolation in −λ̂i is of greater importance, because as we will see, this represents a
necessary condition for the optimal H2 model reduction.

As mentioned initially, our aim is to �nd an r-dimensional reduced order system Gr,
which is stable and optimal in the sense, that it minimizes the H2-error. Thus, if we
de�ne Ωr := {Ĝr | Ĝr stable with dimension r} we can write our optimization problem
as

∥G−Gr∥H2 = min
Ĝr∈Ωr

∥G− Ĝr∥H2 . (5.8)

Obviously, Ωr is not a convex set, why (5.8) may possesses multiple local minimizers and
as a practical matter the global minimizer is hard to obtain.

De�nition 5.2 (Local minimizer)

A reduced system Gr is called a local minimizer, if

∥G−Gr∥H2 ≤ ∥G− Ĝ(ϵ)
r ∥H2 ,

for all su�ciently small ϵ > 0 and for all r-dimensional stable dynamical systems Ĝ
(ϵ)
r

with ∥Gr − Ĝ
(ϵ)
r ∥H2 = O(ϵ).

We already know, that H2 is a Hilbert space and thus one could think about using the
well-known characterization of the element of best approximation in a Hilbert space [17].
Unfortunately, this is not possible, since Ωr is not a closed subspace of H2. In order to
overcome this problem, we have to restrict our solutions to a certain class, which is given
in the next theorem.
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Theorem 5.6

Let {λ̂1, . . . , λ̂r} be a set of distinct points in the open left half plane and de�ne Pr(λ̂) to
be the set of all r-th order strictly proper rational functions with poles at {λ̂1, . . . , λ̂r}.
Then the following holds

(i) Pr(λ̂) is a (closed) (r-1)-dimensional subspace of H2.

(ii) Gr ∈ Pr(λ̂) is an element of best approximation, i.e.

∥G−Gr∥H2 = min
Ĝr∈Pr(λ̂)

∥G− Ĝr∥H2

if and only if
⟨G−Gr,H⟩H2

= 0 ∀H ∈ Pr(λ̂).

Moreover, Gr exists and is unique.

Proof : The �rst statement is obvious due to the strict properness and a �xed denominator
of the elements of Pr(λ̂). The second statement follows directly from the �rst one by the
characterization of the element of best approximation in a Hilbert space [17].

This result can be used to give a necessary condition for the optimality of a reduced
order system Gr with simple poles.

Theorem 5.7 (Local Minimizer)

Let Gr be a local minimizer to G, possessing only simple poles. Then

⟨G−Gr, GrH1 +H2⟩H2
= 0

for all real systems H1 and H2 having the same simple poles as Gr.

Proof : By writing

⟨G−Gr, GrH1 +H2⟩H2
= ⟨G−Gr, GrH1⟩H2

+ ⟨G−Gr,H2⟩H2
= 0

we can observe by Theorem 5.6, that this is equivalent to ⟨G−Gr, GrH1⟩H2
= 0. Further,

let {µ1, . . . , µmr} ⊂ R denote the real poles of Gr(s) and {µmr+1, . . . , µmr+mc} ⊂ C \R the
complex poles in the upper half plane. Then by partial fraction decomposition we can write

H1(s) =

mr∑
i=1

ai
s− µi

+

mr∑
i=mr+1

bis+ ci
(s− µi)(s− µi)

=

mr∑
i=1

ai
s− µi

+

mr∑
i=mr+1

bi(s− αi) + ci
(s− αi)2 + β2

i

,

for some ai, bi, ci ∈ R and µi = αi + iβi.
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This allows us to express ⟨G−Gr, GrH1⟩H2
as follows

⟨G−Gr, GrH1⟩H2
=

mr∑
i=1

ai

⟨
G−Gr,

Gr(s)

s− µi

⟩
H2

+

mr+mc∑
i=mr+1

bi

⟨
G−Gr,

(s− αi)Gr(s)

(s− αi)2 + β2
i

⟩
H2

+

mr+mc∑
i=mr+1

ci

⟨
G−Gr,

Gr(s)

(s− αi)2 + β2
i

⟩
H2

.

In the following we want to show, that each of these terms it equal to zero.

Let {Ĝ(ϵ)
r } be the set of real stable transfer functions as de�ned in De�nition 5.2 with

∥Gr − Ĝ
(ϵ)
r ∥H2 ≤ Cϵ for some constant C > 0. Then for all su�ciently small ϵ > 0

∥G−Gr∥2H2
≤ ∥G− Ĝ(ϵ)

r ∥2H2
≤ ∥(G−Gr) + (Gr − Ĝ(ϵ)

r )∥2H2

= ∥G−Gr∥2H2
+ 2

⟨
G−Gr, Gr − Ĝ(ϵ)

r

⟩
H2

+ ∥Gr − Ĝ(ϵ)
r ∥2H2

.

Hence, for all all su�ciently small ϵ > 0

0 ≤ 2
⟨
G−Gr, Gr − Ĝ(ϵ)

r

⟩
H2

+ ∥Gr − Ĝ(ϵ)
r ∥2H2

. (5.9)

Assume now, that ⟨
G−Gr,

Gr(s)

s− µi

⟩
H2

̸= 0.

By writing Gr(s) =
Pr−1(s)

(s−µi)Qr−1(s)
, for real polynomials Pr−1(s) and Qr−1(s) of degree r−1,

we can de�ne

Ĝ(ϵ)
r (s) :=

Pr−1(s)

(s− µi − (±ϵ))Qr−1(s)
,

where the sign of ±ϵ matches that of

⟨
G−Gr,

Gr(s)

s− µi

⟩
H2

. Then series expansion of Ĝ
(ϵ)
r

yields

Ĝ(ϵ)
r (s) = Gr(s)± ϵ

Gr(s)

s− µi
+O(ϵ2),

which leads to

Gr(s)− Ĝ(ϵ)
r (s) = ∓ϵ

Gr(s)

s− µi
+O(ϵ2).

Consequently, we get

⟨
G−Gr, Gr − Ĝ(ϵ)

r

⟩
H2

= −ϵ

∣∣∣∣∣
⟨
G−Gr,

Gr(s)

s− µi

⟩
H2

∣∣∣∣∣+O(ϵ2)

and

∥Gr − Ĝ(ϵ)
r ∥2H2

= ϵ2
∥∥∥∥Gr(s)

s− µi

∥∥∥∥2
H2

+O(ϵ3),
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which gives together with (5.9)

0 <

∣∣∣∣∣
⟨
G−Gr,

Gr(s)

s− µi

⟩
H2

∣∣∣∣∣ ≤ C̃ϵ

for some constant C̃ > 0. Thus for ϵ → 0 we have a contradiction to (5.5).

Again by writing Gr(s) =
Pr−1(s)

((s−αi)2+β2
i )Qr−2(s)

, for a real polynomial Qr−2(s) of

degree r − 2, we can show in the same way, that⟨
G−Gr,

(s− αi)Gr(s)

(s− αi)2 + β2
i

⟩
H2

= 0 with Ĝ(ϵ)
r :=

Pr−1(s)

(s− αi − (±ϵ))2 + β2
i )Qr−2

and ⟨
G−Gr,

Gr(s)

(s− αi)2 + β2
i

⟩
H2

= 0 with Ĝ(ϵ)
r :=

Pr−1(s)

(s− αi)2 − (±ϵ) + β2
i )Qr−2

,

which concludes the proof.

In (5.7) we have already noticed the the importance of choosing the shifts as σi := −λ̂i

for a reduced system Gr with simple poles {λ̂1, . . . , λ̂r}. Together with Theorem 5.7 it
can be shown, that this is a necessary condition for the optimal H2 model reduction.

Theorem 5.8

Let Gr(s) be an r-dimensional minimizer of the optimal H2 model reduction problem
given in (5.8) and assume the poles {λ̂1, . . . , λ̂r} of Gr(s) to be simple. Then Gr(s)
interpolates G(s) and its derivatives at {−λ̂1, . . . ,−λ̂r}, i.e.

Gr(−λ̂i) = G(−λ̂i) and G
′
r(−λ̂i) = G

′
(−λ̂i) for i = 1, . . . , r.

Proof : Applying Theorem 5.7 with H1 = 0 and arbitrary H2 yields

⟨G−Gr,H2⟩H2
=

r∑
i=1

Resλ̂i
[(G(−s)−Gr(−s))H2(s)]

=

r∑
i=1

Resλi [H2(s)](G(−λ̂i)−Gr(−λ̂i)) = 0

Since Resλ̂i
[H2(s)] is chosen arbitrarily we can conclude G(−λ̂i) = Gr(−λ̂i). Now let us

consider the caseH2 = 0 andH1 arbitrary. Then by assumption of Theorem 5.7, Gr(s)H1(s)

possesses a double pole in λ̂i and together with G(−λ̂i) = Gr(−λ̂i), we can write the residue
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of (G(−s)−Gr(−s))Gr(s)H1(s) at λ̂i as

Resλ̂i
[(G(−s)−Gr(−s))Gr(s)H1(s)] = lim

s→λ̂i

d

ds
[(s− λ̂i)

2(G(−s)−Gr(−s))Gr(s)H1(s)]

= lim
s→λ̂i

(G(−s)−Gr(−s))
d

ds
[(s− λ̂i)

2Gr(s)H1(s)]

− lim
s→λ̂i

(G(−s)
′
−Gr(−s)

′
)[(s− λ̂i)

2Gr(s)H1(s)]

= −(G
′
(−λ̂i)−G

′

r(−λ̂i)) lim
s→λ̂i

[(s− λ̂i)
2Gr(s)H1(s)]

= −(G
′
(−λ̂i)−G

′

r(−λ̂i))Resλ̂i
[Gr(s)]Resλ̂i

[H1(s)].

Thus, we have

⟨G−Gr, GrH1⟩H2
=

r∑
i=1

Resλ̂i
[(G(−s)−Gr(−s))Gr(s)H1(s)]

=
r∑

i=1

−(G
′
(−λ̂i −G

′

r(−λ̂i))Resλ̂i
[Gr(s)]Resλ̂i

[H1(s)] = 0.

As before, by the arbitrariness of Resλ̂i
[H1(s)] we conclude G

′
(−λ̂i) = G

′

r(−λ̂i).

Remark: Observe, by (5.6) it is readily seen, that we can obtain analogous results for
the case of higher order poles, which correspond to the interpolation of higher derivatives.

Although we know now, that the interpolation of G(s) at {λ̂1, . . . , λ̂r} is necessary for
the optimality of the H2-error, there is still the problem remaining, that {λ̂1, . . . , λ̂r}
are a priori unknown. In the following we will solve this problem with the help of the
well-known Newton's method. For this purpose we have to rewrite our problem as a
function of {σ1, . . . , σr}. Let us de�ne

σ :=
(
σ1 · · · σr

)T
and λ(σ) :=

(
λ̃1 · · · λ̃r

)T
,

where {λ̃1, . . . , λ̃r} denote the poles ofGr andGr interpolatesG(s) andG
′
(s) at {σ1, . . . , σr}.

Observe, λ(σ) de�nes a complex function from Cr → Cr. By de�ning a complex function

g(σ) := λ(σ)+ σ.

from Cr → Cr, we get for g(σ) = 0, that λ(σ) = −σ, which is equivalent to Theorem
5.8. Thus g(σ) is the required candidate for Newton's method, which appears as

σk+1 = σk − (I + J)−1(σk + λ(σk)),

where J is the Jacobian matrix of λ(σ).

In [12] it has been shown, that instead of computing J explicitly, J = 0 is a feasible
choice, due to small entries of the Jacobian matrix in the neighbourhood of an H2

optimal σ. This suggests the shift update strategy σk+1 = −λi(Ar) and leads to an
Iterative Rational Krylov Algorithm (IRKA).
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Algorithm 5.4 (Iterative Rational Krylov Algorithm)

(i) Set j = 0 and choose initial shifts {σ(0)
1 , . . . , σ

(0)
r }.

(ii) For any j choose real matrices Vr and Wr such that

rg(Vr) := span{(σ(j)
1 I −A)−1b, . . . , (σ(j)

r I −A)−1b}

rg(Wr) := span{(σ(j)
1 I −AT )−1cT , . . . , (σ(j)

r I −AT )−1cT }

.

(iii) De�ne Ar := (W T
r Vr)

−1W T
r AVr and set σ

(j)
i := −λi(Ar) for i = 1, . . . , r.

(iv) If
|σ(j)

i − σ
(j−1)
i |

|σ(j)
i |

< TOLσ, for a prescribed tolerance TOLσ, then an optimal Gr

is given by

Ar := (W T
r Vr)

−1W T
r AVr, br := (W T

r Vr)
−1W T

r b, cr := cVr.

Otherwise, set j := j + 1 and continue with step (ii).

As explained earlier, a reasonable choice of the initial shifts could be σi := −λi, where
λ1, . . . , λr denote those poles with the largest residue. Unfortunately, the determination
of the residues can be very expensive numerically in case of large-scale systems.
Another approach of choosing the initial shifts is to generate them randomly. During

numerical experiments this turned out to work very e�cient. IRKA always converged to
a stable solution after a small number of iterations.
Instead of using J = 0, J can also be computed explicitly as shown in the end of [12],

which we will not discuss here.

Compared to the Coe�cient Matching approaches of Section 5.3, IRKA provides similar
good results as balanced truncation and results in stable approximations. In many
examples IRKA preserves the external positivity of a system, especially when it comes
to sparse matrices. Still, as for the other Krylov subspaces method this does generally
not hold true, as shown in the following example.

Example 5.4 (IRKA not externally positive)
By considering the same example as in Example 3.4, IRKA results in the second order
system

A2 :=

(
−2.83 −0.32
0.35 −2.56

)
, b2 :=

(
−3.55
0.23

)
, c2 :=

(
−5.04 −3.92

)
,

with poles at −2.70± 0.31i. Thus the reduced system cannot be externally positive.



6. Symmetric Balanced Truncation

In practice a way to combine Balanced Truncation with Krylov subspace methods is
to reduce a system with order much greater than 1000 to m ≈ 1000 and then apply
balanced truncation to attain a system of order r < 100.[4] Unfortunately, neither
balanced truncation nor Krylov subspace methods have to result in a positive system.
Apart from this combination of Krylov subspace methods and Balanced Truncation,
we will present a further relation in this chapter with focus on the positive realization
property of the Krylov subspaces methods. To this end we describe a symmetry characterization
of balanced SISO-systems, which can be used to obtain an extension of Theorem 3.3 to
higher order approximations. Moreover, an algorithm will be proposed in order to use
this result in the context of large-scale positive systems.

In Section 5.4 we have observed the advantage of dealing with systems that consist
of a symmetric A-matrix. Further, we noticed, by showing how to use Arnoldi/Lanczos
for the purpose of obtaining a minimal realization, that the determination of a minimal
realization can always preserve the symmetry property of A. Hence, it naturally arises
the question, if Balanced Truncation, which can be used to attain a minimal realization,
does also preserve the symmetry.

In general we can answer to this question with no, as seen in Example 3.4. Instead let
us start our investigation with a situation similar to Theorem 5.4. If we have a system
(A,B,C), not necessarily SISO, with A = AT and B = kCT for some k > 0, we call the
system symmetric. It follows immediately from (3.2) and (3.4), that

P =

∫ ∞

0
eAtBBT eA

T tdt = k2
∫ ∞

0
eA

T tCTCeAtdt = k2Q.

By diagonalization of kP as kP = T TΣT we can write PQ = k2P 2 = T̃−1Σ2T̃ with
T̃ = 1√

|k|
T . Obviously, T̃ is a balancing transformation matrix and consequently the

balanced system is given by

(Ab, Bb, Cb) := (T̃−1AT, T̃−1B,CT ) = (T TAT,
√

|k|(CT )T ,
√

|k|CT ).

Observe, balancing the system did not only preserve the symmetry property of A, it also
added Bb = CT

b , i.e. (Ab, Bb, Cb) is a symmetric system with k = 1. Such a system
is sometimes called state-space symmetric [15]. Thus, every symmetric system can be
identi�ed with a state-space symmetric one. The application of the truncation step to
(Ab, Bb, Cb) leads to the following lemma.

82
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Lemma 6.1 (Balance Truncation of symmetric systems)

Balanced Truncation preserves the symmetry of any symmetric system.

In case of a SISO-system Lemma 6.1 this equivalent, to what we have we have seen in
Section 5.4. For what follows, we summarize this result in the following theorem.

Theorem 6.1 (Balanced Truncation of symmetric systems)

Let (A, b, c) be a symmetric SISO-system, then Balanced Truncation followed by
Lanczos will always result in a positive reduced-order system.

Theorem 6.1 motivates the question, how much a small perturbation of the symmetry
e�ects the symmetry of the balanced system. To that end let us consider the following
example.

Example 6.1 (Symmetry Perturbation)
Let us consider for instance

A :=

(
−2 1 + 0.1
1 −2

)
, b = cT :=

(
1
0

)
.

Then balancing yield the symmetric system

A :=

(
−1.39 −0.85
−0.85 −2.62

)
, b = cT :=

(
−0.95− 0.31

)
Obviously, for some perturbations of the symmetry the balanced system remains

symmetric. Since every system can be considered a symmetric system with some "large"
perturbation, we know from Example 3.4 that this is not always true. The reason for both
cases is a consequence of the next theorem, which presents a symmetry characterization
regarding balanced SISO-systems and is the central idea of this chapter.

Theorem 6.2 (Absolute symmetry of a balanced system)

Let G(s) be the transfer function of an arbitrary SISO-system. Then there exists a
balanced realization (A, b, c) of G(s), such that (A, b, c) is absolutely symmetric,
i.e.

|A| = |AT | and |b| = |cT |.

Proof : Let (A, b, c) have simple Hankel singular values {σ1, . . . , σn}. Then by de�nition of a
balanced system, its Lyapunov equations can be written as

AΣ+ ΣAT = −bbT ⇔ aijσj + σiaji = −bibj , 1 ≤ i, j ≤ n

ATΣ+ ΣA = −cT c ⇔ aijσi + σjaji = −cicj , 1 ≤ i, j ≤ n (6.1)
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with Σ := diag(σ1, . . . , σn). In particular, we get for i = j

2aiiσi = −b2i = −c2i ⇒ bi = ±ci 1 ≤ i ≤ n. (6.2)

Further, if i ̸= j we can deduce from (6.1)(
σj σi

σi σj

)(
aij
aji

)
=

(
bibj
cicj

)
.

Solving this linear system for
(
aij aji

)T
, yields together with (6.2)(

aij
aji

)
=

1

σ2
j − σ2

i

(
σj −σi

−σi σj

)(
bibj
±bibj

)
=

bibj
σ2
j − σ2

i

(
σj ∓ σi

−σi ± σj

)
=

bibj
σ2
j − σ2

i

(
σj ∓ σi

±(σj ∓ σi)

)
and hence aij = ±aji.

In case of multiple Hankel singular values we can assume w.l.o.g., thatΣ := diag(σ1Ik, σ2, . . . , σn)

for some k > 1. Then by partitioning A =

(
A1 ∗
∗ ∗

)
and b =

(
B1

∗

)
accordingly to σ1Ik,

we can write
σ1(A1 +AT

1 ) = B1B
T
1 .

Thus diagonalizing B1B
T
1 = UT

(
λ 0
0 0

)
U , with λ > 0, yields

σ1(UA1U
T + UAT

1 U
T ) = UB1B

T
1 U

T =

(
λ 0
0 0

)
and it follows for Ã := UA1U

T , that ãij = −ãji, 1 ≤ i, j ≤ k. De�ning T := diag(U, I)
gives a balanced absolute symmetric realization

(Ã, b̃, c̃) := (TATT , TB,CTT ),

which concludes the proof.

The important consequence of Theorem 6.2 is, if Balanced Truncation of a positive
SISO-system is performed up to an order where the reduced system is still symmetric,
then Lanczos will return a positive approximation. In the following we will refer to this
method as Symmetric Balanced Truncation. In worst case this procedure just ends up
with a �rst order positive approximation, which is why Symmetric Balanced Truncation
can be considered an extension of Theorem 3.3.
For the identi�cation of the symmetric part of the balanced realization it is not

necessary to look at A itself. Instead it can be concluded from the proof to Theorem
6.2 that bibj = −cicj if and only if aij = −aji. Thus in case of a positive system, the
i-th leading principle minor of A becomes non-symmetric, when bi = −ci for the �rst time.

Compared to Arnoldi/Biorthogonlization and Generalized Balanced Truncation, this
procedure works for any transfer function, independent of its state-space representation.
Thus we lose the importance of requirements such as the internal positivity or the
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symmetry of a system.
Still, we know from Example 3.4, that the symmetry can only be a su�cient condition.
Beyond the possibility of applying Symmetric Balanced Truncation to positive systems, it
can also be used to attain positive approximations of systems, that are not even externally
positive. This could be of interest e.g. if the model of an (externally) positive system was
attained by system identi�cation and contains small errors, which violate the positivity.
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Figure 6.1.: Impulse response of a nonpositive system G with positve approximaton G2

Example 6.2 (Nonpositive system)
Let us consider the following system

A :=


−2 0 2 −4
0 0 −1 0
−2 1 0 0
0 0 0 −4

 , b = cT :=


−2
0
0
−4

 .

The impulse response of the system can be seen in Figure 6.1 together with its positive
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second-order approximation

A2 :=

(
−5.77 0.31
0.31 −0.05

)
, b2 = cT2 :=

(
4.50
0

)
.

However, in general we can say it is very unlikely to receive a positive approximation
of a nonpositive system. This is reasonable, since in the same way as the preservation
of the positivity, the maintenance of the nonpositivity is natural a requirement on its
reduced model.

Observe, for Ã in the proof to Theorem 6.2, we can also conclude, that aii = 0 for
i = 2, . . . , k. In case of a non-zero two-dimensional system G(s), that has only one
singular value, we can obtain a balanced realization

A =

(
a11 a12
−a12 0

)
, b1 =

(
b11
0

)
, c1 =

(
b11 0

)
.

If this was a positive system, it would hold ∥G∥∞ = G(0) = −cA−1b. Since

A−1 =
1

a12

(
0 −a12
a12 a11

)
it follows, that G(0) = −cA−1b = 0, which is clearly a contradiction. This motivates the
following conjecture, which has been proved only numerically so far.

Conjecture 6.1 (Simple Hankel singular values)

There does not exist a positive SISO-system which possesses a multiple largest Hankel
singular value.

6.1. Symmetric Balanced Truncation Algorithm

By numerical experiments and intuition it can be observed, that especially in presents
of many (dominant) real poles, such as for sparse systems, a higher dimension of the
symmetric part can be expected. As mentioned in the introduction to Chapter 5, those
systems occur very often in the context of discretized partial di�erential equation, which
usually have a very large dimension and possess a symmetric A from the beginning. In
order to use Symmetric Balanced Truncation, we have to reduce the system to dimension
m ≈ 1000, which allows us to apply Balanced Truncation. A natural desire of this
pre-approximation should be, that the dimension of its balanced symmetric part is not
decreased compared to the original balanced system, unless the error of both symmetric
reduced systems is of the same quality.
In the end of Section 5.5 we said, that the Iterative Rational Krylov Algorithm performs

comparable well as Balanced Truncation itself. Indeed, it turned out, during numerical
experiments, that a pre-approximation via IRKA does not add any signi�cant drawback
in the context of Symmetric Balanced Truncation. Thus we can complete our method of
Symmetric Balanced Truncation yielding the following algorithm.
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Algorithm 6.1 (Symmetric Balanced Truncation Algorithm)

(i) For a given positive system of dimension n, choosem such thatm = min{n, 1000}
and apply IRKA starting withm random shifts. Denote the resulting approximation
with Gm.

(ii) Compute a balanced realization (Ab, bb, cb) of Gm.

(iii) Compare the entries of bb and cb in order to identify the smallest k, where bbk ̸=
cbk .

(iv) If k = 2, perform the truncation of (Ab, bb, cb) to obtain a reduced system G2 of
order 2. Then apply Theorem 2.7.

(v) If Theorem 2.7 does not apply, perform the truncation of (Ab, bb, cb) to obtain
a reduced symmetric system Gk−1 of the order k − 1. Then attain a positive
realization of Gk−1 with the help of Lanczos Iteration Algorithm.

Step (iv) is included, since not every second-order positive system needs to be symmetric
after balancing, as seen in the next example.

Example 6.3 (Non-symmetric positive system)
Let a system (A, b, c) be given by

A :=

(
−9 5
5 −10

)
, b :=

(
3
0

)
, c :=

(
5 5

)
.

By balancing this system we get

A :=

(
−4.37 1.01
−1.01 −14.63

)
, b :=

(
−3.90
−0.45

)
, c :=

(
−3.90 0.45

)
For the sake of completeness, we should notice, if the Hankel Singular Values are

close to each other, the symmetric part can be increased sometimes by a permutation
of the balanced system states. However, so far we could not �nd an example, where a
permutation made any signi�cant di�erence.

6.2. Symmetric Balanced Truncation for MIMO-systems

In case of a positive MIMO-system Symmetric Balanced Truncation can usually not
be applied. Of course one reasons is, that we use Lanczos Algorithm for the positive
realization. But more important is, that Theorem 6.2 does not hold generally for
MIMO-systems. Still, there are cases, where this procedure can be transferred.

Let us consider an n-dimensional positive MISO-system with balanced realization (A,B, c)
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and B =
(
b1 · · · bk

)
. With Σ = diag

(
σ1, . . . , σn

)
we can write the Lyapunov equation

(3.27) as
AΣ+ ΣAT = BBT = b1b

T
1 + · · ·+ bkb

T
k .

By assuming, that b1b
T
1 = · · · = bkb

T
k , we can conclude

AΣ+ ΣAT = kbib
T
i = (

√
kbi)(

√
kbi)

T , 1 ≤ i ≤ k and ATΣ+ ΣA = cT c.

From Theorem 6.2 it follows then, that |
√
kbi| =

√
k|bi| = |cT | and |A| = |AT |. Hence,

if (Ar, Br, cr) denotes the reduced system of order r, with symmetric Ar, then Lanczos
applied to (Ar, bri , cr) yields identical positive systems (Ap, bpi , cp) for all i = 1, . . . , k.
Thus a positive realization of (Ar, Br, cr) can be obtained as (A,Bp, cp), where
Bp =

(
bp1 · · · bpk

)
.

Observe, if we partition A =

(
A11 ∗
∗ ∗

)
and accordingly bi =

(
bi1
∗

)
and c =

(
c1 ∗

)
,

it su�ces to have b11b
T
11 = · · · = bk1b

T
k1 in order to get |

√
kbi1| =

√
k|bi1| = |cT1 | and

|A11| = |AT
11|. Thus, we can proceed in the same way as before and observe, that it is

not necessary to have a positive system with a B-matrix consisting of identical columns.
Of course, the same applies in case of a SIMO-or MIMO-system, where we need to

partition C =
(
cT1 · · · cTm

)T
and assume c1 = · · · = cm or analogously for ci =

(
ci1 ∗

)
,

that c11c
T
11 = · · · = cm1c

T
m1.



7. Numerical Examples

In Chapter 3-6 we have studied many di�erent model reduction approaches, that satisfy
our aim, preservation of the positivity. All of them possess some theoretical advantages
and limitations, which has in�uence on the quality of their approximations in the view
of the relative H∞-error. Based on some practical examples, this chapter will give a
comparison of the quality among all the methods.

The examples presented here were run in MATLABR⃝ Version 7.10.0 on a PC with with
an Intel R⃝CoreTM i5-650 CPU 3.20 GHz. Moreover, YALMIP Version 3 and SeDuMi
Version 1.3 were used for the optimizations with respect to the linear matrix inequalities.
For methods which involve LMIs, we will not be able to show their performance for
large-scale systems, due to the limits of computational power.

Throughout the examples we choose the following tolerances and maximal iterations:

• IRKA: MAXiter = 100 and TOLσ = 1 · 10−8.

• Generalized Balanced Truncation: TOLα = 0.01.

• ILMI I: TOLα = TOLβ = TOLinit = 0.01 and Maxiter = 500.

• ILMI II: TOLδ = 1 · 10−8 and Maxiter = 1000.

These levels turned out to be su�cient and do not add any signi�cant disadvantage during
the optimization of the shifts and the Generalized Hankel Singular Values. Furthermore,
we distinguish between "Symmetric Balanced Truncation (IRKA)" using IRKA and
"Symmetric Balanced Truncation" by direct balancing.
Of course, for ILMI I & II we cannot say if our tolerances are su�cient, but this is a

general problem of these methods. Beside this, it should be noticed, for smaller tolerances
and larger number of iterations, the algorithms become very time-consuming, which can
also be considered as a limit of computational power. Under this consideration we will
stop ILMI I after 1 hour of switching between its dual and its primal approach.
Furthermore, ILMI I & II require a prescribed error bound. We start with a relative

error of 0.1, because in the view of Theorem 3.3, everything above this border would not
justify to use such numerically expensive methods. For the same reason, we will always
decrease the order of the prescribed error bound in case of an increasing dimension of the
approximation. For example, if we attain a �rst order reduced system with an error of
0.04, then we will prescribe an error bound of 0.01 for the second order approximation.
For the sake of fairness we include step (iv) of the Symmetric Balanced Truncation

Algorithm into Arnoldi/Lanczos and Biorthogonalization.
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7.1. Water reservoirs
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Figure 7.1.: System of n water reservoirs

The example of n connected water reservoirs as schematically shown in Figure 7.1, was
presented in [22], in order to show the properties of Generalized Balanced Truncation.
For simplicity all the reservoirs R1, . . . , Rn are assumed to be located on the same level,
i.e the connection between two water reservoirs is always horizontal. We denote with ai
and hi the base area and the �ll level of the reservoir Ri, respectively. Moreover, let Ri

and Rj be connected by a pipe of diameter dij = dji ≥ 0, then the direct �ow fij from
Ri to Rj is assumed to be linearly dependent of the pressure di�erence on both ends.
We consider the external in�ow to reservoir R1 as the input of the system. The output
is given by the sum of all out�ows fo,i of Ri through a pipe with diameter do,i. With the
help of Pascal's law we can describe the system �ows by

fij(t) = d2ij · k · (hi(t)− hj(t)) and fo,i(t) = d2o,i · k · (hi(t)− hj(t)),

where k is a constant representing gravity as well as viscosity and density of the medium.
Thus, the �ll level hi of Ri follows the di�erential equation

ḣi =
k

ai

−d2o,ihi(t) +

n∑
j=1

d2ij(hj(t)− hi(t))

+
1

ai
δ1iu(t),

where δ1i stands for the Delta-Kronecker symbol, i.e. δ1i = 1 if and only if i = 1 and zero
otherwise. Writing this equations as linear state-space system results in a SISO-system

(A, b, c) with b =
(

1
a1

0 · · · 0
)T
, c = k

(
d2o,1 · · · d2o,n

)
and a symmetric A-matrix

with entries

aij :=
k

ai

{
−d2o,i −

∑n
m=1 d

2
im, i = j

d2ij i ̸= j,
with dii := 0.
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In [22] the system was supposed to consist of two substructures, each with �ve reservoirs.
In both substructures each reservoir is assumed be connected to every other reservoir by
a pipe of diameter 1, i.e dij = 1 for i ̸= i, 1 ≤ i, j ≤ 5 and 6 ≤ i, j ≤ 10, respectively.
The connection of the substructures is given by a pipe of diameter d1,10 = d10,1 = 0.2,
between reservoir 1 and 10. Moreover, for simplicity we set ai = 1 and k = 1.

For a reduced order of 5 an error bound of 0.06 was given in [22] by applying Generalized
Balanced Truncation. This coincides with our results and can be compared with the
relative H∞-errors of the other methods, given in the following tabular.

Order 1 4 5

Generalized Balanced Truncation 0.80 0.51 0.01
Symmetric Balanced Truncation (IRKA) 0 - -
Symmetric Balanced Truncation 0 - -
ILMI I 7.65 · 10−5 - -
ILMI II 0.02 - -
Arnoldi/Lanczos 0.80 0 -
Biorthogonalization 0 - -

The results show, that the system is actually of �rst order and thus by Theorem 3.3
Symmetric Balanced Truncation returns a �rst-order positive approximation without
causing an error. The same holds for Biorthogonalization because of its minimal realization
property. Similarly, Arnoldi/Lanczos has removed the uncontrollable states. Notice,
by Theorem 5.3 it follows, that if we apply Arnoldi/Lanczos to the transposed of its
approximation, we also end up with a positive minimal system of �rst order.

With this knowledge, even the �fth order reduced system resulting from Generalized
Balanced Truncation must be considered as a poor approximation. By inheriting the
di�culties of truncating an unbalanced system, Generalized Balanced Truncation cannot
perform any better. For our other examples this will become even more signi�cant.

Although, ILMI I & II are numerically very expensive, in case of such a small system
they terminated within half an hour. We observe, ILMI I performs a great deal better
than ILMI II. Unfortunately, in both cases, we could not �nd a realization of order 4 or
5 with a signi�cantly smaller error.

The �rst-order property of this system is clearly a result of the strong connection and
the homogeneity within the substructures. Therefore an increased dimension (amount
of reservoirs) does not change the order. Instead, let us consider a slight modi�cation of
the out�ows, i.e. we set do,i = 0.1 · i. This system is not of �rst order any longer and
thus we expect larger errors, as shown in the next tabular.
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Order 1 2 5

Generalized Balanced Truncation 1.00 0.98 0.08
Symmetric Balanced Truncation (IRKA) 0.02 1.99 · 10−3 -
Symmetric Balanced Truncation 0.02 1.99 · 10−3 -
ILMI I 0.08 - -
ILMI II - - -
Arnoldi/Lanczos 1.00 1.68 · 10−2 -
Biorthogonalization - - -

For Biorthogonalization the �rst order model is already unstable and hence, this method
is not applicable. In contrast, Symmetric Balanced Truncation led to the best results
and there is no di�erence between IRKA and Balanced Truncation, though the system
is not just reduced to minimality.
ILMI II could not return a model with an error, that is smaller than 0.1. On the other

hand, ILMI I gives a quite good �rst order reduced system, but again no second order
approximation with a smaller error could be found. Beside this, for Arnolid as well as
for Symmetric Balanced Truncation, the highest achievable order for a positive reduced
system is restricted to 2.

As a last point let us consider the same system with n = 250. In this case the
optimizations for ILMI I & II take such a long time, that the �rst optimization already
requires hours. Thus, we are left with Balanced Truncation and the Krylov subspaces
methods, which perform as follows.

Order 1 2 100

Generalized Balanced Truncation 1.00 0.99 0.45
Symmetric Balanced Truncation (IRKA) 0.13 1.51 · 10−3 -
Symmetric Balanced Truncation 0.13 1.51 · 10−3 -
Arnoldi/Lanczos 1.00 0.15 -
Biorthogonalization - - -

The important consequence of the results in this section is, that among all the methods,
only Symmetric Balanced Truncation is robust with respect to an increasing order.
The reason why we could still apply Generalized Balanced Truncation for such a medium
scale system with 250 states is, that for a system with n states, we only need to
optimize 2n variables with 2n rows. As seen in the end of Chapter 4, this gives a
complexity of O((2n)2(2n)2.5 + (2n)3.5), which is already extremely high. In case of the
ILMI-approaches this becomes even worse because of the large amount of rows, which
leads to the exceeding of computational power.

7.2. Compartmental Networks

Compartmental networks built a general class of systems that consist of a �nite number
of homogeneous subsystems (compartments), which all interact with each other and their
environment.[14] Representatively, the interaction of two compartments is schematically
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Figure 7.2.: a) Segment of a compartmental network. b) Compartmental network of 6
components

given in Figure 7.2 a). Observe, the systems in Section 7.1 are classical examples for
compartmental networks. Generally, these networks can be described as follows [14]:
if xi(t) denotes the mass, which compartment i is using at time t, then we denote
with kijxj the mass �ow from compartment j to i and with ko,ixi the sum of all
out�ows of compartment i. Further, the external in�ow of compartment i is given by
Ii =

∑m
j=1 bijuj(t) where uj(t) represents the j-th input source. As for the water reservoir

example, a compartmental network consisting of n compartments can be described by
the linear di�erential equation

ẋi(t) = −ko,ixi(t) +

n∑
j ̸=i

[kijxj(t)− kjixi(t)] +

m∑
j=1

bijuj(t) for i = 1, . . . , n.

The state-space representation of this system is given by A = [aij ]n×n with

aij =

{
−ko,i −

∑n
j ̸=i kji, i = j

kij , i ̸= j
,

and B = [bij ]n×m. In Figure 7.2 a) we can observe the di�erence to the water reservoir
examples: we do not assume any longer, that the in�uence of compartment i to j is
mutual and thus the system does not need to be symmetric. In [14] the following system,
consisting of the 6 compartments as shown in Figure 7.2 b), has been used to demonstrate
the ILMI I approach

A :=



−1.5 0.6 1.0 0 0 0
0.3 −1.9 0.2 0 0 0
0.2 0.5 −2.7 1 0 0
0 0 0.5 −3 0.6 0.5
0 0 0.4 −1.6 0.3 0
0 0 0 0.6 0.5 −1.6

 , B :=



1 0
0 1
0 0
0 0
0 0
0 0


C :=

(
1 1 1 1 1 1

)
Observe, this is a MIMO-system and thus only Generalized Balanced Truncation, Balanced
Truncation to �rst order and the ILMI-approaches can be applied. A comparison of these
methods gives
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Order 1 2 3

Generalized Balanced Truncation 0.78 0.26 0.06
Balanced Truncation to �rst order 0.01 - -
ILMI I 0.01 - -
ILMI II - - -

Hence, as before for the SISO-case, the best results arise from ILMI I and Balanced
Truncation. In contrast ILMI II could not �nd any solution smaller than 0.1. Let us see
how these results transfer to the SISO-case. We transform this non-symmetric example
to a SISO-system by assuming, that compartment C1 and C2 share the same input

source, i.e. B :=
(
1 1 0 0 0 0

)T
. The results for this non-symmetric example are

summarized in the following tabular.

Order 1 2 3

Generalized Balanced Truncation 0.69 0.24 0.06
Symmetric Balanced Truncation (IRKA) 1.70 · 10−3 7.41 · 10−4 -
Symmetric Balanced Truncation 1.70 · 10−3 7.41 · 10−4 -
ILMI I 8.18 · 10−3 - -
ILMI II - - -
Arnoldi/Lanczos 0.26 1.89 · 10−3 -
Biorthogonalization 0.03 5.19 · 10−3 -

ILMI II could not �nd any solution, though the dimension of this system is comparably
low. This shows, together with the the forgone examples, that ILMI II is only of
theoretical interest, but performs not su�ciently well in practice. Another interesting
fact of this example is, that ILMI I performs well for �nding a �rst order system, but by
trying to �nd a higher order approximations, below the error of the �rst order system,
ILMI I ran into numerical problems.
For the other methods we can observe, the quality of their approximations remained

almost the same compared with those of the water reservoir example.

7.3. Heat Equation

The heat equation is an important partial di�erential equation, which is given in the
plain as

Ṫ = △T =
∂2

∂x2
T +

∂2

∂y2
T. (7.1)

By discretizing this system with the help of �nite di�erences [26] and numbering the
discretization points as shown schematically in Figure 7.3, we can write

△Tij ≈ − 1

h2
(4Tij − Ti+1,j − Ti,j+1 − Tj−1,j − Ti,j−1),

where h denotes the grid step. If we consider the temperature on the grid boundaries
to be steered by four di�erent inputs, then we can write Ṫij = △Tij as a linear positive
system with input u1, . . . , u4. For this purpose let us consider the unit-square, discretized
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Figure 7.3.: Discretized heat equation on a quadratic plate

with (n+2)2 points. Since the boundary points are taken by the inputs, our state variable
consists of the n2 inner points as shown in Figure 7.3. Then we can de�ne our system
matrices

A :=


P I 0 · · ·
I P I 0 · · ·

. . .
. . .

. . .

· · · 0 I P I
· · · 0 −I P

 ∈ Rn2×n2
with P :=


−4 1 0 · · ·
1 −4 1 0 · · ·

. . .
. . .

. . .

· · · 0 1 −4 1
· · · 0 1 −4

 ∈ Rn×n,

and B := [bij ] ∈ Rn2×4, where

bi1 :=

{
1, for i = 1, . . . , n

0, otherwise
, bi2 :=

{
1, for i = n, 2n, . . . , n2

0, otherwise
,

bi3 :=

{
1, for i = n(n− 1) + 1, . . . , n2

0, otherwise
, bi4 :=

{
1, for i = 1, n+ 1, . . . , n(n− 1) + 1

0, otherwise
.

By setting x :=
(
T11 . . . Tn1 T12 . . . Tn2 . . . T1n . . . Tnn

)T ∈ Rn2
, we have

discretized (7.1) as

ẋ ≈ 1

h2
Ax+

1

h2
Bu with u :=

(
u1 · · · u4

)T ∈ R4.

As the output of the system we want to consider the average temperature, i.e.

y =
1

n
CT, with C :=

(
1 · · · 1

)
∈ R1×n

Notice, the smaller h the better the approximation of the heat equation. Thus, in case
of a good approximation, the system (A,B,C) will be become large-scale since h = 1

n+1 .
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Let us start the model reduction comparison with a "bad" approximation, due to the
LMI problems for high orders. In particular we choose n = 3 and set u2 = u3 = u4 = 0,
which yields a SISO state-space system of dimension 9. Then our discussed methods
perform as follows

Order 1 2 3 5 8

Generalized Balanced Truncation 0.88 0.70 0.49 0.31 0.07
Symmetric Balanced Truncation (IRKA) 0.02 2.73 · 10−5 0 - -
Symmetric Balanced Truncation 0.02 2.73 · 10−5 0 - -
ILMI I 9.74 · 10−3 - - - -
ILMI II - - - - -
Arnoldi/Lanczos 0.50 0.23 0.08 0 -
Biorthogonalization 0.20 7.94 · 10−3 0 - -

Considering, that we only measure the the average temperature, it is not surprising, that
we cannot observe all the states and thus the state-space representation is not minimal.
Symmetric Balanced Truncations as well as Biorthogonalization end up in a positive
minimal realization. In contrast, Generalized Balanced Truncation gives for an order of
n− 1 a worse result than reduction to �rst order.
In this example, ILMI I gives for a �rst order approximations the best result. However,

as in the previously discussed examples, if we want to improve this error by increasing the
order, the optimization runs into numerical problems. Further notice, the application of
Lanczos to its transposed �fth order system does not result in a positive system this time.

Let us consider the same system with n = 10, i.e a state-space-dimension of 100. Then
we attain

Order 1 9 15 18

Generalized Balanced Truncation 0.99 0.85 0.74 0.31
Symmetric Balanced Truncation (IRKA) 0.15 2.52 · 10−13 - -
Symmetric Balanced Truncation 0.66 2.52 · 10−13 0 -
Arnoldi/Lanczos 0.81 0.14 3.60 · 10−4 5.85 · 10−6

Biorthogonalization 0.5 1.04 · 10−4 0 -

Since direct balancing performs perfectly well, this indicates, that this system always
possesses a symmetric minimal realization. As in all the examples, there is no di�erence
between IRKA and direct balancing, which shows, that IRKA is indeed a reliable precursor.
This is especially important in the context of large-scale systems, what we will consider
now.

In case of n = 30, we have to deal with 900 states and Generalized Balanced Truncation
is not applicable any longer. Thus we are left with the Krylov subspaces methods and
Symmetric Balanced Truncation, which give
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Order 1 11 45 55

Symmetric Balanced Truncation (IRKA) 0.36 8.73 · 10−11 - -
Symmetric Balanced Truncation 0.16 2.37 · 10−10 0 -
Arnoldi/Lanczos 0.93 0.53 2.54 · 10−4 5.85 · 10−6

Biorthogonalization 0.88 1.04 · 10−4 6.32 · 10−12 0

Biorthognalization works in the same way as before, but it is remarkable how much better
Symmetric Balanced Truncation performs.

Notice, from a practical perspective there is no di�erence in which side of the plate
is used as the single-input and thus for all sides we get the same results. Moreover,
since CB =

(
n · · ·n

)
, for all the four possible SISO-systems we even get identical

approximations by applying Biorthogonalization. It is easy to see, that this extends
to Arnoldi and Symmetric Balanced Truncation. Thus, we are in the situation of
Section 6.2, which allows us to apply those methods to the full MISO-system (A,B,C).
If (Ar, br, cr) denotes the approximation of one of the four SISO-systems, then the
reduced MISO-system can be given by (Ar, Br, cr), with Br :=

(
br br br br

)
. Such

an approach is not applicable for the SISO-systems attained by ILMI I. Consequently,
obtaining a MISO-approximation becomes even more expensive due to an in increase
of the number of variables. The results of MISO-system approximations for n = 3 is
summarized in the following tabular.

Order 1 2 3 5 8

Generalized Balanced Truncation 0.95 0.89 0.84 0.69 0.33
Symmetric Balanced Truncation (IRKA) 0.02 2.74 · 10−5 0 - -
Symmetric Balanced Truncation 0.02 2.74 · 10−5 0 - -
ILMI I 9.74 · 10−3 - - - -
ILMI II - - - - -
Arnoldi/Lanczos 0.50 0.23 0.08 0 -
Biorthogonalization 0.20 7.94 · 10−3 0 - -

Except for Generalized Balanced Truncation, all the methods returned the same error as
for the SISO-case. This result can be extended to higher order systems and we conclude,
in case of a MIMO-system the drawbacks of Generalized Balanced Truncation show up
even more.



Conclusions and Open Problems

All positivity preserving model order reduction methods, that were found by the author
till this day, have been discussed in this thesis. As a consequence of high numerical
complexity and generally poor approximation properties, we could observe, that none of
these methods are applicable to high-dimensional systems. This restricts these methods
to systems, where we usually do not see the need to reduce them.

Basically, all the discussed LMI-approaches share the same problem, that they cannot
take advantage of well-established methods, such as Balanced Truncation and Krylov
subspaces methods. The main reason for this lies in the di�culty, that the established
methods mostly do not return a positive approximation, even though the reduced system
might be positively realizable.
To this end, it has been shown, that in case of a symmetric system, the Krylov

subspaces methods can be considered a positive realization algorithm. Moreover, a new
symmetry characterization of balanced SISO-systems has been presented. Combined
with the Krylov subspace methods, this led to the applicability of Balanced Truncation
to positive SISO-systems. Based on its good approximation properties, this method
outperforms the LMI-approaches in most cases. Additionally, we motivated to use IRKA
for a pre-approximation in order to make our new approach applicable to large-scale
systems.

As a consequence of these results the positive realizability of the Krylov subspaces
methods has been extended and we found a way to replace SISO-systems by symmetric
approximations. This could be of great interest e.g. in the context of system analysis.
Beside this, we discovered a new necessary condition for the positive realizability of an
arbitrary transfer function, which avoids the consideration of the impulse response.

In Section 6.2 we transferred the symmetry approach to a certain class of MIMO-systems.
Nevertheless, a full analysis is still missing here. Also the use of other pre-approximation
methods as well as the consequences for time-varying systems, non-linear systems, etc.
have not been investigated so far.
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A. Appendix

A.1. Cones

De�nition A.1 (Cone)

Let X ⊆ Rn, then the set

C(X) := {y | y = αx, α ≥ 0, x ∈ X}

is called the cone hull of the setX andX is said to be a cone if and only ifX = C(X).[6]

De�nition A.2 (Dual Cone)

The dual of a set X ⊆ Rn is de�ned by

X∗ := {y | ⟨y, x⟩ ≥ 0 ∀x ∈ X}.

If X is a cone, we call X∗ its dual cone.[2]

De�nition A.3 (Convex Cone)

A cone X is called convex if it contains the line segment between any two points of it,
i.e.

x1, x2 ∈ X ⇒ αx2 + (1− α)x1 ∈ X, 0 ≤ α ≤ 1,

or equivalently by cone de�ntion

x1, x2 ∈ X ⇒ αx1 + βx2 ∈ X,α, β ≥ 0.[2]

Remark: If X ⊂ Rn, then the smallest convex cone containing X consists of all �nite
nonnegative linear combinations of elements of X.

The dual set is de�ned by the scalar product and hence by the continuity and linearity
of the scalar product, we get it the following result.

Lemma A.1

For every set X, its dual X∗ is a closed convex cone.[2]
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De�nition A.4 (Pointed and Solid Convex Cone)

For a convex cone X we say it is

• pointed if X ∩ −X = {0},

• solid if the interior of X, X̊ ̸= ∅.[2]

De�nition A.5 (Polyhedral Cone)

A cone X ⊂ Rn is called polyhedral, if it is �nitely generated, i.e. if

X = BRk
+

for some natural number k and an n× k matrix B.[2]

A polyhedral cone is in a manner of speaking, a cone with a �nite number of edges. Thus
the cone consists by de�nition of nonnegative linear combinations of �nite number and
is therefore automatically convex. It also has to be closed because of the continuity of
the linear mapping B.

Lemma A.2

Every polyhedral cone is closed and convex.[2]

De�nition A.6 (Proper Cone)

A closed, pointed, solid convex cone is called proper cone.[2]

Lemma A.3

In R2 every closed proper cone is polyhedral.[1]

Proof : Let X be a closed convex cone in R2. Since X is pointed, the maximum angular
between two vectors of X must be strictly smaller than π. By taking exactly the two
vectors of X with maximum angular, the area enclosed by their convex combinations must
lie in X and by assumption of the maximum angular there cannot be any point in X outside
this area.

A direct consequence of the well-known Seperation Theorem in functional analysis [25]
is the following result.
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Lemma A.4 (Seperation Theorem for convex cones)

Let X ⊂ Rn be a closed convex cone and x0 ∈ Rn \X. Then there exists x′ ∈ Rn such
that

⟨x0, x′⟩ < 0 and ⟨x, x′⟩ ≥ 0 ∀x ∈ X.

By the help of this lemma it will be easy to prove the following important theorem about
the dual of a dual cone.

Theorem A.1

X is a closed convex cone if and only if X = X∗∗ := (X∗)∗.[29]

Proof : I Su�ciency: If X∗∗ = X then by Lemma A.1 X is a closed and convex cone.

I Necessity: X∗ = {y | ⟨x, y⟩ ≥ 0 ∀x ∈ X} ⇒ ⟨y, x⟩ ≥ 0 ∀x ∈ X and ∀y ∈ X∗.
Since X∗∗ = {z | ⟨y, z⟩ ≥ 0 ∀y ∈ X∗} it is clear that X ⊂ X∗∗.

Suppose there exists a z0 ∈ X∗∗ \X, then by Lemma A.4 there is a vector x′, such that

⟨z0, x′⟩ < 0 and ⟨x, x′⟩ ≥ 0 ∀x ∈ X.

Hence x′ must be an element of X∗ and therefore ⟨z0, x′⟩ < 0 contradicts the de�nition of
X∗∗.

Observe, if X was not closed, X∗∗ would be equal to the smallest closed convex cone
including X. Next we want to characterize a closed convex cone by its dual.

Theorem A.2 (Duality Theorem)

A closed convex cone X ⊂ Rn is pointed if and only if X∗ is solid. [29]

Proof : I Su�ciency: Suppose X is not pointed, then ∃x̃ ∈ X : x̃ ∈ X ∩ −X, i.e. x̃ and −x̃
are both elements of X and hence αx̃ ∈ X, ∀α ∈ R by de�nition of a cone.
By de�nition of the dual cone, ⟨y, αx̃⟩ ≥ 0,∀y ∈ X∗.

If X∗ is solid, then ∃ϵ > 0, x0 ∈ X∗ : Bϵ(x0) ⊂ X∗ and therefore it is possible to �nd
a y ∈ Bϵ(x0) : ⟨y, x̃⟩ ̸= 0. Choosing α = −sign(⟨y, x̃⟩) contradicts the condition ⟨y, αx̃⟩ ≥ 0.

I Necessity: Assume X∗ is not solid and let {x1, . . . , xk} denote k linear independent
unit vectors of it.

If we could choose k = n, then z =
n∑

i=0

xi is an inner point X∗ :

Let 1 > ϵ > 0 and y ∈ Bϵ(z). Since {x1, . . . , xk} spans the whole Rn we can write

y = z+
n∑

i=0

αixi with
n∑

i=0

α2
i < ϵ2 < 1. Thus |αi| < 1 and therefore y is a nonnegative linear
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combination with coe�cients (1− αi) ≥ 0.

Hence, k < n and it is possible to �nd a vector p ∈ Rn that is orthogonal to the set
{x1, . . . , xk} and ⟨p, x⟩ = 0 ∀x ∈ ±X∗. That implies p ∈ X∗∗ ∩−X∗∗ which is by Theorem
A.1 a contradiction to X being pointed.
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