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1. Introduction

In all control problems there are certain degrees of uncertainty with re-
spect to the process to be controlled. The structure of the process and/or
the parameters of the process may vary in an unknown way. There are sev-
eral ways to handle these types of uncertainties in the process. Feedback
in itself makes the closed loop system, to some extent, insensitive against
process variations. Fixed parameter controllers can also be designed to
make the closed loop system robust against process variations. Such con-
trollers must, by nature, be conservative in the sense that the bandwidth
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of the closed loop system has be decreased to reduce the influence of the
variation in the process. Another way to handle uncertainties is to use an
adaptive controller. In the adaptive controller there are attempts to iden-
tify or estimate the unknown parameters of the process. Most adaptive
controllers have the structure shown in Figure 1, which is a self-tuning
adaptive control system. The inputs and the outputs of the process are fed
to the estimator block, which delivers information about the process to the
controller design block. The design block uses the latest process information
to determine the parameters of the controller. The adaptive controller thus
consists of an ordinary feedback loop and a controller parameter updating
loop. Different classes of adaptive controllers are obtained depending on the
process information that is used in the controller and how this information
is utilized.

To obtain good process information it is necessary to perturb the pro-
cess. Normally, the information about the process will increase with the
level of perturbation. On the other hand the specifications of the closed
loop system are such that the output normally should vary as little as pos-
sible. There is thus a conflict between information gathering and control
quality. This problem was introduced and discussed by A. A. Feldbaum in
a sequence of four seminal papers from 1960 and 1961, see the references.
Feldbaum’s main idea is that in controlling the unknown process it is nec-
essary that the controller has dual goals. First the controller must control
the process as well as possible. Second, the controller must inject a probing
signal or perturbation to get more information about the process. By gain-
ing more process information better control can be achieved in future time.
The compromise between probing and control or in Feldbaum’s terminology
investigating and directing leads to the concept of dual control.

Feldbaum showed that a functional equation gives the solution to the
dual control problem. The derivation is based on dynamic programming
and the resulting functional equation is often called the Bellman equation.

The solution to this equation is intractable from a numerical point of
view and only a few very simple examples have been solved, analytically
or numerically. There is thus a great need for looking at different approxi-
mations that can lead to simpler suboptimal solutions with dual features.
In the suboptimal dual controllers it is necessary to introduce both cau-
tious and probing features. Both parts of the control action can be obtained
in numerous ways and different proposed schemes will be classified into
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Figure 1 Self-tuning adaptive control system.
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a handful of principles. This article gives an overview of adaptive dual
control. To do so it is also necessary to introduce some concepts from the
general field of adaptive control.

2. Stochastic adaptive control

To formulate the adaptive dual control problem we must specify the model
for the process, the admissible control signals, and the specifications (loss
function) for the closed loop system.

Introduce the following notations: y(k) is the process output, u(k) is the
control signal, θ(k) is a vector of the unknown parameters of the process,
θ̂(k) is the current estimate of the process parameters, and P(k) is the
parameter uncertainty. Inputs up to time k− 1 and outputs up to time k
are collected into the vector

Y k =
[

y(k) y(k− 1) u(k− 1) . . . y(0) u(0)
]

It is assumed that the process is described by the discrete time model

y(k+ 1) = f (u(k),Y k, θ(k), ζ (k))

where ζ (k) is a stochastic process driving the process and/or the param-
eters of the process. The probability distribution of ζ is assumed known.
This implies that the output at the next sampling instance, k + 1 is a,
possibly nonlinear, function of the control signal to be determined at time
k, some, not necessarily all, of the elements in Y k, and of the unknown
process parameters. It is assumed that the function f (⋅) is known. This
implies that the structure of the process is known but that there are un-
known parameters, θ(k).

The admissible controllers are causal functions n(⋅) of all information
gathered up to time k, i.e. Y k. If the parameters of the process are known
the control signal at time k is also allowed to be a function of θ(k).

The performance of the closed loop system is measured by a loss func-
tion, that should be as small as possible. Assume that the loss function to
be minimized is

JN = E

{
1
N

N∑
k=1

h(y(k), u(k− 1), yr(k), k)
}

(1)

where y is the process output, yr is the reference signal, h(⋅) is a positive
convex function, and E denotes mathematical expectation taken over the
distribution of ζ . This is called an N-stage criterion. The loss function
should be minimized with respect to the admissible control signals u(0),
u(1), . . . , u(N − 1). A simple example of the loss function is

JN = E

{
1
N

N∑
k=1

(y(k) − yr(k))2
}

(2)

The parameters of the process can be described in several different
ways, for instance, as
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• Random walk

• Random walk with local and global trends

• Jump changes

• Markov chain

Random walk implies that the parameters are drifting due to an under-
lying stochastic process. In the Markov chain model the parameters are
changing between a finite number of possible outcomes. Depending on the
type of variation of the process parameters it is necessary to use differ-
ent estimation methods. It is thus assumed that the parameter variation
is described in stochastic terms where the probability distribution of the
process is known.

Different types of prediction error methods can be used to obtain the
probability distribution of the parameters. If the process is linear in the
parameters and if the parameter variations can be described by a Gaussian
process then the distribution is fully characterized by the mean value θ̂(k)
and the covariance matrix P(k). The covariance matrix is used as a mea-
sure of the uncertainty of the parameter estimates. The future behavior of
P(k) depends on the choice of the control signal.

The model, with the description of its parameter variations, the admis-
sible control laws, and the loss function are now specified. The adaptive
control problem has been transformed into an optimization problem, where
the control signals over the control horizon have to be determined. One of
the difficulties in the optimization problem is to anticipate how the future
behavior (or formally the behavior of the distribution function) of the pa-
rameter estimates will be influenced by the choice of the control signals.
The controllers minimizing (1) are very different if N = 1 or if N is large.

The stochastic adaptive control problem can be attacked in many differ-
ent ways. Many adaptive controllers are based on the separation principle.
This implies that the unknown parameters are estimated separately from
the design part. The separation is sometimes optimal and is in other cases
used as an assumption. The separation principle holds, for instance, for the
Gaussian case and when the process is linear in the unknown parameters,
and the loss function is a quadratic function.

Assume that for the known parameter case the optimal controller is

u(k) = nknown(Y k, θ(k))

The simplest adaptive controller is thus obtained by estimating the un-
known process parameters θ̂(k) and then use them as if they were the
true ones, i.e. use the controller

u(k) = nknown(Y k, θ̂(k))

An adaptive controller of this kind is said to be based on the certainty
equivalence principle. Self-tuning controllers are, in general, of this kind.

The control actions determined in the design block, when using the
certainty equivalence principle, do not take any active actions that will
influence the uncertainty.
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An optimal adaptive controller should also take the quality of the pa-
rameter estimates into account when designing the controller. Poor esti-
mates, or information, should lead to other control actions than good es-
timates. A simple modification of the certainty equivalence controller is
obtained by minimizing the loss function (1) only one step ahead. This
leads to a controller that also uses the uncertainties of the parameter es-
timate. This type of controller is called a cautious controller. The cautious
controller has the form

ucautious(k) = ncautious(Y k, θ̂(k), P(k))

The cautious controller obtained when the control horizon in (1) is N = 1 is
sometimes also called a myopic controller, since it is short-sighted and looks
only one step ahead. The cautious controller hedges against poor process
knowledge. A consequence of this caution is that the gain in the controller
is decreased. With small control signals less information will be gained
about the process and the parameter uncertainties may increase and even
smaller control signals will be generated. This vicious circle leads to turn-
off of the control. This problem mainly occurs for systems with strongly
time-varying parameters. An adaptive control scheme is sometimes also
denoted weakly dual if it uses the model uncertainties when deriving the
control signal.

The certainty equivalence and the cautious controllers do not deliber-
ately take any measure to improve the information about the unknown pro-
cess parameters. They are thus non-dual adaptive controllers. The learning
is “accidental” or “passive”, i.e. there is no intentional probing signal intro-
duced.

Example Consider an integrator process in which the gain is changing
in a stochastic way, i.e. we have the model

y(k) − y(k− 1) = θ(k)u(k− 1) + e(k)

where e(k) is white noise. The gain of the integrator is modeled as

θ(k+ 1) = ϕθ(k) + v(k)

where ϕ is known and v(k) is white noise.
The certainty equivalence controller that minimizes the variance of the

output is given by

u(k) = − 1
θ̂(k+ 1) y(k)

It is immediately clear that this controller is not good when θ̂ = 0. The
cautious controller is

u(k) = − θ̂(k+ 1)
θ̂ 2(k+ 1) + pθ (k+ 1) y(k)

where pθ is the uncertainty of the estimate θ̂ . By including the parameter
uncertainty the gain in the controller is decreased when pθ becomes large.
The cautious controller is also less sensitive than the certainty equiva-
lence controller to parameter errors when θ̂(k + 1) is small. The gain in
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the cautious controller approaches zero when pθ increases, i.e. there is a
possibility that the control action is turned off when the excitation of the
process decreases. The cautious controller approaches the certainty equiv-
alence controller when pθ approaches zero.

3. Optimal dual controllers

To understand some of the difficulties of calculating the optimal dual con-
troller we will give the functional equation that can be used to calculate
the dual controller. For simplicity, consider the quadratic loss function (2).
Assuming a model that is linear in the parameters the separation principle
is optimal. The optimal controller is decomposed into two parts: an esti-
mator and a feedback regulator. The estimator generates the conditional
probability distribution of the state given the measurements Y k. This dis-
tribution is called the hyperstate of the process and is denoted ξ (k). There
is no distinction between the parameters and the other state variables in
the hyperstate. The controller is then able to handle very rapid parameter
variations.

The feedback regulator is a nonlinear function mapping the hyperstate
into the control signal, see Figure 2. The hyperstate includes the parameter
estimates, their accuracy, and old inputs and outputs of the system. Notice
the similarity with the self-tuning controller in Figure 1. The structural
simplicity of the controller is obtained thanks to the introduction of the
hyperstate. The output signal is included in in the hyperstate, but in Figure
2 the ordinary feedback loop is kept to further illustrate the similarity with
an ordinary adaptive controller. Unfortunately, the hyperstate will be of
very high dimension making the calculations difficult.

The general multi-step optimization problem can be solved using the
idea of dynamic programming. Assuming that the properties of the stochas-
tic variables in the process are known we can define

V (ξ (k), k) = min
u(k−1) ... u(N−1)

E


N∑

j=k

(y( j) − yr( j))2
∣∣Y k−1


where V (ξ (k), k) can be interpreted as the minimum expected loss for the
remaining part of the control horizon given data up to k− 1, i.e. Y k−1.
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Figure 2 Block diagram of an adaptive controller obtained from stochastic control
theory.
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Figure 3 A possible shape of the loss Jk as function of the control signal u and
for three different values of a scalar hyperstate ξ . The absolute minima for the
three cases are marked by dots.

It can be shown that if the optimal dual controller exists it must satisfy
the Bellman equation

V (ξ (k), k) =
min

u(k−1)
Jk = min

u(k−1)
E
{
(y(k) − yr(k))2 + V (ξ (k+ 1), k+ 1) hY k−1

} (3)

The difficulty with this equation is the nested minimization and mathemat-
ical expectation. The minimization in (3) is done over one variable, u(k−1),
but the problem is that the dimension of the hyperstate is very large, which
complicates the minimization as well as evaluating the conditional expec-
tation. Also it is difficult to give conditions for when the solution to the
dynamic programming solution actually exists.

The choice of u(k−1) influences the immediate loss, the future parame-
ter estimates, their accuracy, and also the the future values of the outputs
of the process. The controller will thus have the desired dual feature in
contrast to the certainty equivalence and cautious controllers.

Except for very special cases the Bellman equation has to be solved
numerically. Since both V and u have to be discretized it follows that
the storage requirement increases drastically with decreasing grid size.
Optimal dual controllers have thus only been calculated for some very
simple and specialized cases. The resulting control law will be nonlinear
in the parameter estimates and the covariance matrix of the parameter
estimates. The simple examples give, however, some useful indications how
suboptimal dual controllers can be constructed.

To illustrate how the optimal dual can switch between probing and
regulating consider Figure 3. In the figure the function Jk in (3) is given for
three possible values of a scalar hyperstate. Jk has several minima. For the
dashed curve local minimum to the left gives the absolute minimum, while
for the full line case the two local minima have the same value. Finally,
for the dash-dotted curve the local minimum to the right represents the
absolute minimum. The control action will thus switch in character when ξ
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is changed. This can be interpreted as that the control action is switching
between probing and control actions.

The minimization over several steps to obtain the dual controller makes
is possible for the controller to introduce probing in the beginning or when
the information about the process is poor and still gaining by being able to
make a better control towards the end of the control horizon.

4. Suboptimal dual controllers

The difficulties to find the optimal solution have made it interesting to find
approximations to the loss function or to find other ways to change the con-
troller such that a dual feature is introduced. The suboptimal adaptive dual
controllers can be constructed in essentially two ways. Either by various
approximations of the optimal dual control problem or by reformulating
the problem such that a simple solution can be calculated that still has
some dual features. Some ways to construct suboptimal dual controllers
are:

• Adding perturbation signals to the cautious controller

• Constraining the variance of the parameter estimates

• Approximations of the loss function

• Modifications of the loss function

• Finite parameter sets

4.1 Perturbation signals
The turn-off phenomenon is due to lack of excitation. The intentional ad-
dition of a perturbation signal is one way to increase the excitation of the
process and to increase the accuracy of the estimates. Typical added sig-
nals are pseudo-random binary sequences, square-waves, and white noise
signals. The perturbation can be added all the time or only when the un-
certainty of a process parameter is exceeding some limit. The controller
may have the form

uperturb(k) = ucautious(k) + up(k)

where up is the intentional perturbation signal. The addition of the extra
signal will naturally increase the probing loss but may make it possible
to improve the total performance by decreasing the control loss in future
steps. A drawback with the introduction of the perturbation signal is that
there is no systematic way of deciding when to add the signal and how
large the signal should be.

4.2 Constrained one-step-ahead minimization
Another class of suboptimal dual controllers is obtained by minimizing the
loss function one-step-ahead under certain constraints. The constraints are
used to guarantee a certain level of accuracy of the parameter estimates.
Suggested constraints are, for instance, to limit the minimum value of
the control signal or to limit the variance of the parameter estimates by
intentionally increasing the gain in the controller.
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4.3 Approximations of the loss function
One approach to obtain a suboptimal dual controller is to make a serial
expansion of the loss function in the Bellman equation. The expansion can
be done around the certainty equivalence or the cautious controllers. The
numerical computations are, however, still quite complex and the approach
has mainly been used when the control horizon is short.

Another approximation is to solve the two-step minimization problem
(N = 2). A suboptimal dual controller with a two-step horizon is deter-
mined. The suboptimal dual control modifies the cautious controller design
by numerator and denominator correction terms which depend upon the
sensitivity functions of the expected future cost and avoids the turn-off and
slow convergence. The two step problem gives clues how to make sensible
approximations that retain the dual features.

A third way to make an approximation of the loss function is to modify
the available information in the evaluation of the loss function. One such
modification is to assume that no further information will be available
when evaluating the mean value in the Bellman equation.

4.4 Modifications of the loss function
An approach that is similar to constrained minimization is to extend the
one-step-ahead loss function. The idea is to add terms in the loss function
that are reflecting the quality of the parameter estimates. This will prevent
the cautious controller from turning off the control. It is important to add
as simple terms as possible to make it easy to numerically be able to find
the resulting controller.

One possibility is to add terms depending on the covariance matrix of
the parameter estimates. This leads to a loss function of the form

E
{
(y(k+ 1) − yr(k+ 1))2 hY k

}
+ λ f (P(k+ 2))

where λ is a weighting factor and P(k+ 2) is the first time at which the
covariance is influenced by u(k).

Another possibility is to extend the quadratic loss function with a term
that reflects the need to gather as much information as possible about the
unknown parameters. This gives the loss function

E
{
(y(k+ 1) − yr(k+ 1))2 − λ(k+ 1)ν 2(k+ 1)hY k

}
where ν is the innovation or prediction error, i.e.

ν(k+ 1) = y(k+ 1) − ŷ(k+ 1, θ̂(k+ 1))

For this loss function it is possible to find a closed form solution for the
control signal.

4.5 Finite parameter sets
When the parameter set contains a finite number of elements it is easier to
numerically solve the dual control problem. The number of possible com-
binations will be considerably reduced since the mathematical expectation
in the Bellman equation is then replaced by a summation.

9



5. When to use dual control?

Non-dual adaptive controllers are successfully used today in many applica-
tions. When may it be advantageous to use a controller with dual features?
One obvious situation is when the time horizon is short and when the ini-
tial estimates are poor. It is then necessary to rapidly find good estimates
before reaching the end of the control horizon. It has been suggested that
dual controllers are suitable for economic systems. The reason is the short
time horizon and the highly stochastic parameters in the processes.

Another situation when to use dual control is when the parameters of
the process are changing very rapidly. This is a situation that is not very
common in practice. There are, however, processes where the parameters
are changing fairly rapidly and the gain is also changing sign. This is the
situation when the process has an even nonlinearity and it is desired to
operate the process close to the extremum point. The gain of the linearized
model will then change sign and at the same time some of the parameters
may be small. One successful example reported in the literature is grinding
processes in the pulp industry. This application is probably the first true
application of suboptimal dual control to process control. The controller
is an active adaptive controller, which consists of a constrained certainty
equivalence approach coupled with an extended output horizon and a cost
function modification to get probing.

6. Summary

The solution to the optimal adaptive control problem over an extended
time horizon leads to a controller that have dual features. It uses control
actions as well as probing actions. The solution of the dual control problem
is intractable from a computational point of view. Approximations to obtain
simpler suboptimal dual controllers are thus used instead.

There are many ways to obtain suboptimal dual controllers. Many of
the approximations use the cautious controller as a starting point and
introduce different active probing features. This can be done by including
a term in the loss function that reflects the quality of the estimates. To
introduce a dual feature this term must be a function of the control signal
that is going to be determined and it should also contain information about
the quality of the parameter estimate. The suboptimal controllers should
also be such that they easily can be used for higher-order systems.
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