
Reverse Flooding: exploiting radio interference for efficient
propagation delay compensation in WSN clock synchronization

Federico Terraneo∗, Alberto Leva∗, Silvano Seva∗, Martina Maggio†, Alessandro Vittorio Papadopoulos†
∗Politecnico di Milano, Milano, Italy. Email: {federico.terraneo,alberto.leva}@polimi.it,silvano.seva@gmail.com

†Lund University, Lund, Sweden. Email: {martina,alessandro}@control.lth.se

Abstract—Clock synchronization is a necessary component
in modern distributed systems, especially Wireless Sensor
Networks (WSNs). Despite the great effort and the numerous
improvements, the existing synchronization schemes do not yet
address the cancellation of propagation delays. Up to a few
years ago, this was not perceived as a problem, because the
time-stamping precision was a more limiting factor for the
accuracy achievable with a synchronization scheme. However,
the recent introduction of efficient flooding schemes based on
constructive interference has greatly improved the achievable
accuracy, to the point where propagation delays can effectively
become the main source of error.

In this paper, we propose a method to estimate and compen-
sate for the network propagation delays. Our proposal does not
require to maintain a spanning tree of the network, and exploits
constructive interference even to transmit packets whose con-
tent are slightly different. To show the validity of the approach,
we implemented the propagation delay estimator on top of the
FLOPSYNC-2 synchronization scheme. Experimental results
prove the feasibility of measuring propagation delays using
off-the-shelf microcontrollers and radio transceivers, and show
how the proposed solution allows to achieve sub-microsecond
clock synchronization even for networks where propagation
delays are significant.

I. INTRODUCTION

Clock synchronization in distributed systems is a problem
with a long history [14, 15]. Recently, the diffusion of
Wireless Sensor Networks (WSNs) has drawn more attention
to specific variants of the problem. Indeed, there are many
different clock synchronization problems, depending on the
settings and the desired properties that a synchronization
scheme should achieve. The following work is cast in the
framework of multi-hop master-slave clock synchronization.

In the specific problem addressed herein, the network is
composed by a certain number of slave nodes organized
in hops, and a single master node. The master node has
a limited transmission range and directly reaches nodes
belonging to Hop 1. Those nodes re-broadcast the messages
received from the master node thus reaching nodes that are
farther away. These nodes belong to Hop 2 and can receive
master communications only thanks to re-transmissions.
The procedure can be repeated adding an arbitrarily large

This work was partially supported by the LCCC Linnaeus and ELLIIT
Excellence Centers and the Swedish Research Council (VR) for the
projects “Cloud Control” and “Power and temperature control for large-
scale computing infrastructures”.

number of nodes and hops. The problem, in this case, is to
synchronize the clocks of all the slave nodes to the clock of
the master node, irregardless of the hop they belong to.

While there are quite a few solutions for the master-slave
multi-hop synchronization problem [5, 20, 22, 26], none of
them takes directly into account the propagation delay of the
packets on the network. Historically, the propagation delay
was not a big issue. The most limiting factor to what a syn-
chronization scheme could achieve was the time-stamping
precision. However, quoting from [25], “While [propagation
delay] is not a problem if time-stamping precision is worse
than about 1 µs, it starts to be a significant source of error
at appreciably finer precisions”.

The recent introduction of flooding schemes based on
constructive interference like Glossy [6], has changed the
WSN synchronization scenario. Making flooding insensitive
to MAC-induced delays has allowed to disseminate timing
information with unprecedented precision, thus being an
enabler to the use of WSNs for real-time and time sensi-
tive applications. Moreover, skew compensation techniques
have also advanced, allowing for sub-microsecond precision
also in ultra-low power networks [26]. In these conditions,
propagation delays become a problem to be addressed.

In this paper we present a delay compensation method that
can be built on top of any asymmetric master-slave clock
synchronization scheme based on constructive interference
flooding. This paper makes the following contributions.
• It enhances a master-slave synchronization scheme,

exploiting the proposed method to estimate and com-
pensate for the propagation delay from the master node
to any slave node in a WSN without the need for a
spanning tree of the network.

• As a second methodological contribution, it presents a
technique to allow the concurrent transmission of mul-
tiple packets having a different payload. The method is
capable of exploiting the constructive interference de-
spite the different payloads, resulting in an intelligible
message for the intended recipient.

To show the applicability of the technique we implemented
the proposed delay compensator on top of the FLOPSYNC-
2 synchronization scheme [26], showing how the method
improves time synchronization in a WSN where sensors are
deployed within a radius that causes propagation delay to
be the major source of error.



Hop 0

M

Hop 1

1 2

3

Hop 2

4 5

6

7

8

9

Figure 1. Flooding graph example with nodes’ radio ranges.

II. PROBLEM STATEMENT

Consider a multi-hop WSN with one master node and a
certain number of slave nodes. Each node is equipped with
a flooding-based synchronization scheme.

If we assume that nodes do not move, it is possible to
define a flooding graph for the network. The flooding graph
is a subgraph of the directed graph connecting all nodes of
hop h with all nodes of hop h+ 1 for each network hop.
The edges missing in the flooding graph with respect to
the complete one are due to distances. In fact, if a receiver
node is not in the radio range of the transmitter one, the
corresponding edge is removed from the flooding graph.

Figure 1 shows an example. The Hop 0 is composed by
the master node, marked with the letter M. Nodes 1, 2 and
3 belong to Hop 1, since they are in the radio range of
the master node (depicted in the figure with a dotted circle
centered on the master node). Nodes 4, 5 and 6 belong to
Hop 2, since they are in the radio range of at least one
of the nodes belonging to Hop 1. The remaining nodes,
7 and 8, belong to Hop 3 – their radio ranges are not
shown to simplify the picture. Hop 3 illustrates also another
characteristic of the network. Nodes belonging to a hop do
not, in general, receive packets from all the nodes in the
previous one. In the case of Hop 3, node 7 belongs to the
radio range of node 4 (and would not receive any packet
from node 5 and 6), node 8 belongs to the radio range of
both node 5 and node 6 (but not of node 4) and node 9
receives packets only from node 6. As nodes belonging to
a hop can receive packets from multiple nodes belonging
to the previous one, in general the flooding graph is not
a tree. This motivates the need to exploit the constructive
interference between packets transmitted by nodes that are
close to each other.

We would like each node to be able to reliably estimate
the propagation delay from the master node to it. This is
complicated by the fact that the flooding graph is not a
tree and that nodes do not possess knowledge about its

structure. In fact, with a spanning tree and knowledge about
the tree structure, each node i could estimate via round-trip
delay measurements the propagation delay δi→p from its sole
predecessor p and could simply ask to the predecessor the
cumulated delay δM→p from the master M to p. Then the
node i would have an estimate of the delay from the master:
δM→i = δi→p + δM→p. We propose a solution based on the
same principles, that takes into account the nature of the
graph and the constructive interference in the transmissions.

The main difficulties when dealing with the flooding graph
and constructive interference are the following.

1) The node i does not have a single predecessor p but
a set of predecessors Pi = {p1, . . . , pn} and receives
the flooded timing information by the entire set of pre-
decessors; round-trip measurements in such a scenario
need to take this into account.

2) When node i queries nodes in Pi for their cumulated
delay from the master node, they will simultaneously
send back (potentially) different responses, that should
be fused in a meaningful manner.

3) The node i does not know which are the nodes that form
the set Pi. More in general nodes should query one
another for round-trip times along the flooding graph,
but none of them knows the structure of the graph. One
of the major strength of interference-based flooding –
not knowing which are the nodes that constructively
interfere to provide timing information – turns here into
a problem.

In Section III we describe how a node can estimate
the propagation delay from its predecessor set Pi without
knowing which nodes belong to it. In Section IV we propose
an encoding method to fuse the different responses about
the cumulated delay from the master node. Neither of these
two require knowledge of the flooding graph. Section V
describes a suitable Time Division Multiple Access (TDMA)
method so that all the nodes of the network can perform the
two tasks just mentioned. Section VI presents and discusses
experimental results.

III. LAST-HOP DELAY MEASUREMENT

In this section we show how a node i can measure the
propagation delay from its predecessor set Pi (in contrast
to the propagation delay from a single node). The first step
is to define which nodes belong to the predecessor set Pi.
In so doing, we ensure that the node does not need any
information about the flooding graph.

Consider node 4 in the example of Figure 1 (to help the
reader, node 4, its predecessor set and the master node are
shown in Figure 2). The node is placed in the radio range
of nodes 1, 2 and 3, but the distances between these nodes
and node 4 are different – node 1 and 2 are closer to the
node while the distance from node 3 is larger.

During flooding, node 4 receives the packets sent concur-
rently by nodes node 1 and 2 thanks to the constructive



M

1 2

3

4

Figure 2. Example of flooding and the capture effect.

interference. However, since node 3 is farther, its signal
is received as weaker than those of nodes 1 and 2. Due
to capture effects [16], the packet sent from node 3 is
shadowed by the stronger signals of nodes 1 and 2. Indeed,
flooding schemes like Glossy require all nodes to transmit
with the same power [6]. This ensures that nodes that are
more distant, thus having a higher propagation delay, have
a weaker signal.

A node p belonging to the previous hop is either at a
comparable distance with the closest nodes, having enough
power to interfere constructively, or its transmission is shad-
owed by capture effects. In case the node is at a comparable
distance with the closest ones, its cumulative propagation
delay from the master δM→p is also comparable to the one
of the closest nodes. With respect to Figure 2, δM→1 and
δM→2 are comparable, while δM→3 could be different, but
its transmission is not processed by node 4. This property
allows us to define the predecessor set P of node i as the
set of the closest nodes in the previous hop that are received
with a comparable power. In the example, P4 = {1,2}.

Once the predecessor set Pi is defined, node i needs to
measure the last-hop propagation delay. To do so without
knowing the flooding graph, the key idea is to replicate in a
round-trip measurement the same conditions of concurrent
transmission that occur during flooding. To achieve this, we
reserve a short time window after flooding, where the MAC
protocol is still disabled and the radio channel is still clear
from access contention.

Referring again to the example in Figure 2, within its time
window, node 4 can initiate the measurement by sending a
packet with its hop number minus one (in the example, 1).
The difference with respect to standard round-trip estimation
is the packet content. While in standard round-trip estimation
the request packet contains the unique id of a node, in this
case the packet contains the hop that should respond to the
message. This is exemplified in the top part of Figure 3.

Due to the radio range of the node and the definition of
hops, the packet sent by node i can only be received by nodes
belonging to the previous, same and subsequent hop. A node
m that receives the packet checks that the content matches

M

1 2

3

4 5

6

7

8

9

Hop 1

Node 4 in hop 2
sends round-trip

request addressing
nodes in hop 1

M

1 2

3

4 5

6

7

8

9

Nodes 5 and 7, not
in the addressed hop 1,

do not respond

Shadowed response
from node 3

Constructive
interference

of nodes 1
and 2

Figure 3. Round-trip measurement initiated by node 4 – request (top) and
response (bottom).

its own hop number. In case it does not, the node simply
ignores the request. Otherwise, m waits for a fixed time τw
and then replies with another packet. As we have assumed
that all nodes transmit at the same power, the radio ranges
are symmetric, and the packet sent by node 4 is received by
nodes 1, 2, 3, 5 and 7. Nodes 5 and 7 ignore the packet,
while the others process it. Notice that also node 3 receives
the request packet. The distance of node 3 does not make
any difference in this case, since a single packet is being
sent, contrary to multiple interfering ones. After a fixed time,
nodes 1, 2 and 3 reply with an answer packet to node 4,
replicating the same concurrent transmission condition of
flooding – in this case, the response packet sent by node 3
will again be shadowed by the stronger signal of nodes 1
and 2 – as shown in the bottom part of Figure 3.

The i-th node can measure the time difference between its
packet transmission and the reception and, knowing τw, can
estimate the propagation delay from the nodes that belong
to Pi, without knowing them.

IV. CUMULATED DELAY ESTIMATION

Once the node i has an estimate of the last-hop delay, it
needs to obtain an estimate of the sum of all the propagation
delays for each additional hop that separates it from the
master. We solve the problem recursively, querying nodes in



the previous hop for their cumulated delay from the master.
Although the capture effects ensure that constructive inter-

ference occurs only between nodes at a comparable distance
from the receiver, one should also take into account noise
in round-trip measurements and small distance differences.
These may cause the nodes in a predecessor set to have
similar but not equal delay measurements from the master.
For example, nodes 1 and 2 in Figure 2 may have similar
but not equal cumulated delay values, δM→1 = δM→2 + ε

for small values of ε . While this is not a problem for the
estimate of the last-hop delay, it becomes a problem for the
cumulated delay. Since the nodes do not have knowledge of
the flooding graph, they cannot simply query one specific
node. In the example, if node 4 knew its predecessors, it
could simply ask the cumulated delay to 1 and 2 separately,
and then average the response. However, nodes 1 and 2 will
transmit their responses concurrently.

To date, WSN interference was studied [2, 18, 31] and
constructive interference used to transmit the same packet.
We propose a method to fuse packets with different payloads
and transmitted simultaneously from multiple sources.

To better understand what happens when different packets
are received concurrently, it is necessary to briefly discuss
the operation of an IEEE 802.15.4 radio, which is the most
common standard for WSN. A packet is composed of a 4-
byte preamble, used for the receiver to lock on the incoming
data, followed by a one-byte start frame delimiter that
marks the packet beginning. The following byte indicates
the packet length. The payload follows, and finally a two-
byte Cyclic Redundancy Check (CRC) terminates the packet.
Data is grouped in 4-bit nibbles, and for each nibble a
sequence of 32 bit from a look-up table is sent over the
radio. This introduces redundancy in the transmitted data,
improving reception in adverse conditions. The receiver, at
each 32 decoded bits, attempts to find which of the 16
possible sequences best matches the received signal, and
outputs the corresponding nibble.

The minimum transmission unit is one nibble, and when
packets with different payloads are sent concurrently, every
nibble that has the same value in all packets interferes
constructively. On the contrary, nibbles that have different
values interfere destructively, resulting in unpredictable nib-
bles being received.

A. Concurrent transmission through bar graph encoding

We propose to utilize an ad hoc encoding, which we
denote as bar graph encoding, that results in intelligible
packets even when some nibbles interfere destructively.

To better explain the concept behind the bar graph encod-
ing, assume to have an 8-bytes-long packet payload and to
encode a number, bounded in the range between 0 and 16
as the number of consecutive 0xf nibbles starting from the
beginning of the packet, leaving all other nibbles as 0x0. The
number 0 would be encoded with a packet full of 0x0, the

number 16 with a packet full of 0xf and, for example, the
number 5 as fffff00000000000. When sending two
different numbers, for example 5 and 8, the two packets

fffff00000000000
ffffffff00000000

will be transmitted, and the generic received packet will
look like fffffXXX00000000, with X being an un-
predictable value. This encoding allows us to concurrently
transmit different values, that the radio channel itself merges.
In principle, the received unpredictable values could differ
from 0x0 and 0xf, thus simplifying the estimate of the
maximum and minimum index in the packet of the values
sent concurrently. However, experimental results have shown
that with high likelihood the unpredictable nibbles are a
random pattern of either 0x0 or 0xf, while different values
occur with a significantly lower probability.

In our proposal, the nodes send the cumulated delay using
the bar graph encoding. Since the differences between the
values sent by different nodes are small, we also assume
that any possible value between the bounds of the sent one is
acceptable. In the example above, the packet decoding would
be successful if any value between 5 and 8 was returned.

With bar graph encoding, packets need to be sent without
a CRC, otherwise the failed CRC due to nibble errors would
result in the packet being discarded. Although the 802.15.4
standard prescribes a CRC at the end of each packet, radio
transceivers such as the CC2520 have an option to disable
its transmission. Packet decoding and validation is imple-
mented by identifying the boundary from the left where two
consecutive nibbles are different from 0xf, and the boundary
from the right where two consecutive nibbles are different
from 0x0. If the difference between the two boundaries is
greater than a threshold, the packet is considered invalid
and discarded. Otherwise, the average value between the
two boundaries is considered as the transmitted number
from the predecessor set. Notice that this decoding algorithm
is robust to non-consecutive nibble errors anywhere within
the payload. This favors correct reception also in adverse
conditions, such as concurrent transmission of long packets.
The full C++ implementation of the decoding algorithm used
in the experimental evaluation is shown in Listing 1.

802.15.4 packets have a maximum length of 127 bytes,
thus the proposed technique permits the transmission of a
number in the range [0,254]. Assuming nodes with a 24MHz
crystal, thus the timestamping resolution is ∼ 42ns, as in the
experimental results, this allows us to handle propagation
delays of up to 10.58 µs. In turn, we can synchronize nodes
in a range of about 3km from the master with the maximum
precision allowed by our timestamping resolution. To handle
larger distances, it is possible to lower the propagation delay
resolution. As an extreme example, with a resolution of 1 µs,
the range would extend to about 75km.

The request sent by a node i (4 in the example) to its
predecessor set Pi (in the example P4 = {1,2}) for the



1 pair<int,bool> decode(unsigned char *packet, int len)
2 {
3 int pktLenNibble = 2*len;
4 int fromLeft = pktLenNibble - 1;
5 bool twoInaRow = false;
6 for(int i = 0; i < pktLenNibble; i++)
7 {
8 unsigned char mask = (i & 1) ? 0x0f : 0xf0;
9

10 if((packet[i/2] & mask) != mask)
11 {
12 if(twoInaRow)
13 {
14 fromLeft = i - 2;
15 twoInaRow = false;
16 break;
17 } else twoInaRow = true;
18 } else twoInaRow = false;
19 }
20 if(twoInaRow) fromLeft--;
21

22 int fromRight = 0;
23 twoInaRow = false;
24 for(int i = pktLenNibble - 1; i >= 0; i--)
25 {
26 unsigned char mask = (i & 1) ? 0x0f : 0xf0;
27 if((packet[i/2] & mask) != 0x00)
28 {
29 if(twoInaRow)
30 {
31 fromRight = i + 2;
32 twoInaRow = false;
33 break;
34 } else twoInaRow = true;
35 } else twoInaRow = false;
36 }
37 if(twoInaRow) fromRight++;
38

39 // If the destructive interference part of the packet
40 // is too large, discard the packet by returning false
41 const int threshold = 6;
42 if(fromRight - fromLeft > threshold)
43 return make_pair(0,false);
44

45 return make_pair((fromLeft + fromRight + 1) / 2,true);
46 }

Listing 1. Bar graph encoding decoder algorithm.

cumulated delay from the master, can be made implicit in
the round-trip request packet described in Section III. The
answer can be piggybacked to the round-trip answer packet,
resulting in both round-trip estimation and cumulated delay
communication with a single packet exchange.

V. THE COMPLETE SCHEME

This section describes how the last-hop delay measure-
ment and the cumulated delay reception are composed to
properly estimate the delay from the master. We assume for
the moment that a network of n nodes is already formed, and
that each node has a unique id and knows its hop number,
which is true if a flooding scheme like Glossy [6] is used.

It is possible to reserve a short time interval after each
flooding, to be used for propagation delay estimation. During
this time interval, the MAC protocol used by the nodes in
ordinary operations needs to be disabled, as done during
flooding. The interval is composed of s time slots, with
1≤ s≤ n. During these time slots, using a TDMA scheme,
each node can estimate its propagation delay from the
nodes in the previous hop, as explained in Section III.

Notice that the use of a TDMA scheme requires good clock
synchronization, hence the use of a synchronization scheme
like FLOPSYNC-2 [26] that guarantees low synchronization
error. Since n is known and each node knows its id, a simple
round-robin scheme can be used for the TDMA. This means
that all the nodes periodically estimate their propagation
delay from the previous hop every dn/se synchronization
periods. The parameter s allows the scheme to trade off the
radio bandwidth usage (and thus power consumption) for
the speed at which a node becomes aware of propagation
delay changes and, as will be shown in the following, the
time required for network formation.

The overall operation of the scheme for one of the TDMA
slots is summarised in Figure 4. During each of the k time
slots a single node (hereinafter, i, as the initiator), belonging
to hop h, can send a propagation delay request packet. This
packet is sent in broadcast, and the node timestamps its
local Start Frame Delimiter (SFD) occurring at τi,start. The
request has a two-byte payload. The first byte is a packet
type field identifying it as a round-trip request, and the
second byte is h− 1. The nodes whose hop number is not
h−1 ignore the packet.

The nodes in the predecessor set Pi act collectively
as the predecessor p, thanks to constructive interference.
The predecessor, upon getting the request, waits for a fixed
retransmission delay τw, known network-wide and used to
account for the transceiver turnaround and the duration of
the request packet, as well as to absorb any software-induced
jitter. The predecessor sends its response packet, and the
initiator i timestamps the corresponding SFD (occurring
at τi,end). The response packet contains the predecessor’s
cumulated delay δM→p, encoded in bar graph form. Note
that there is no need to include a timestamp neither in the
request nor in the response packets.

Node i then takes the difference τi,end − τi,start, and
subtracts the retransmission delay τw, the duration of a four-
byte preamble plus SFD, and an additional short time – a
transceiver-specific parameter that can be easily measured in
a laboratory setting – for the lag in the SFD detection. The
result, as evidenced in Figure 4, is twice the propagation
delay from the predecessor, whence the measurement of
δp→i. Finally, by inspecting the response packet content, the
initiator obtains the value of δM→p, therefore completing the
estimate of the full delay from the master δM→i.

This process is prone to three main source of errors:

• possible variations in the propagation delay due for
example to scattering caused by moving obstacles;

• jitter in the SFD lag entity;
• quantization in turning the round-trip time in a mea-

surement counted in clock ticks.

The first error source is highly environment-dependent,
and hardly any general consideration can be made on it.
That is why in the following we show both indoor and



TX turnaround

preamble
SFD

τi,start
length

payload
CRC

τi,end

Initiator i time

Start of
operation

Retransm. delay τw

End of
operation

TX turnaround
preamble SFD length

payload (bar graph)Predecessor p time

Measured time interval
Known time intervals
SFD detection lag
2 × propagation delay

Figure 4. Overall timeline for the proposed delay measurement scheme.

outdoor experiments, testifying that the caused errors are
within a tolerable range. For the latter two causes, the SFD
detection lag has a small variance [25], so the resulting error
is comparable with one tick of the counting clock. Since we
used off-the-shelf components, we can conjecture that our
finding is general.

Using the estimate of the cumulated delay δM→i node i
can compute a compensation term ci(k) at time instant k
(k counts the number of times the node has transmitted a
propagation delay request packet). The compensation term
ci(k) is then applied at the clock of node i to enhance
synchronization.

First, ci(k) is subjected to a sanity check to eliminate evi-
dent outliers, verifying for example that the round-trip delay
from the last hop is not outside the radio range. Despite this
sanity check, two other issues should be taken into account.
First, it is important to reduce as much as possible the jitter
of the compensation term caused by measurement errors
and moving obstacles. Second, synchronization schemes like
FLOPSYNC-2 [26] guarantee clock monotonicity. In the
application of the correction term ci(k) we should ensure
to preserve this property.

The first issue is solved using a lowpass filter on the
compensation term. Denoting by ci(k) the compensation
term computed by the procedure of Figure 4, the actually
applied cappliedi (k) is defined as

cappliedi (k) = a · cappliedi (k−1)+(1−a) · ci(k) (1)

when k > 0. The first term cappliedi (0) is set to ci(0) to
speed up convergence with the available information, i.e, at
node boot the first propagation delay measure is used as
first guess for the filter initialization. The unity minus the
value of the filter pole a∈ [0,1) is interpreted as the one-step
attenuation for a pulse outlier: For example, setting a = 0.75
causes such an outlier to be attenuated by a factor of four.
Notice that the cumulated propagation delay δM→p that is
sent to the next hop is the filtered value, to counteract the
accumulation of jitter across multiple hops.

For the second issue, the FLOPSYNC-2 virtual clock is
corrected by a quantity that starts from zero at the instant
of the generic k-th measurement, and reaches ci(k) expo-
nentially within one FLOPSYNC-2 synchronization period
T . This is obtained with an additional first-order lowpass
filter in the same form as (1), its pole being computed so
that the slope of the virtual clock never goes below a given
percentage of the slope forecast by FLOPSYNC-2.

A. Network formation

So far we assumed the network to be formed. The last
remark for the full scheme is about network formation.
When a node first boots, it waits its turn in the TDMA
schedule, and then sends a propagation delay request packet.
If it receives an answer from nodes in its predecessor set,
it initializes the filter and starts answering to propagation
delay requests for the next hop. In case a node receives a
request but has not yet received its cumulated delay from
at least one node of its predecessor set, the node does not
answer the request. When this happens, within the first dn/se
synchronization periods all nodes of the first hop had a
chance to measure their delay from the master, and thus
will be able to respond to future requests from the next hop
nodes. In the worst case, the time it takes for all the nodes
of a network of hmax hops to become aware of propagation
delays is dn/se ·hmax synchronization periods.

VI. EXPERIMENTAL RESULTS

This section shows experimental results to support our
proposal. We run our delay compensator on a WSN com-
posed of nodes built around a CC2520 transceiver and an
ARM Cortex-M3 microcontroller running at 24MHz, with a
timestamping resolution of 42ns. The software is written in
C++, as an application for the Miosix operating system1 and
available for download2. In the experimental assessment we
try to test for the worst conditions, in some cases also forcing

1http://miosix.org/
2http://miosix.org/flopsync.html



0m 10m 20m 30m 40m 50m 60m 70m

-40ns

-20ns

0

+20ns

+40ns

Nodes Distance

Figure 5. Propagation delay measurement error (indoor).

0m 20m 40m 60m 80m 100m 120m
-40ns

0

+40ns

+80ns

Nodes Distance

Figure 6. Propagation delay measurement error (outdoor).

the network to behave unnaturally – e.g., preventing nodes
to exploit potential edges or testing constructive interference
with skew and interferences beyond reasonable values.

A. Measuring the single-hop propagation delay

The first set of experiments assesses the viability of mea-
suring propagation delays using round-trip measurements
with off-the-shelf microcontrollers and radio transceivers.
The task is challenging as individual nodes in WSNs are
often placed at small distances – although a multi-hop
network can be quite large – thus requiring high resolution
time measurements to estimate the previous hop delay.

We used the microcontroller available resources, imple-
menting hardware-timed packet transmission and hardware-
based packet arrival timestamping, as done for FLOPSYNC-
2 [26]. This allows us to control the radio with a time
granularity of one timer tick. The inevitable noise in the
measurements, in the form of time jitter, turns here to our
advantage, as it permits to sample the propagation delay
below the quantization limit imposed by the timestamping
resolution [21]. Thanks to the filtering applied to the raw
measures the average propagation delay measurement error
was reduced below one timer tick (42ns).

Our experimental setup consists in two nodes, serving
as initiator and predecessor, exchanging packets as shown
in Figure 4. For all the experiments, we positioned the
nodes and left them in the same position for five minutes,
collecting propagation delay measurements every second.
We then computed the error as the measured value minus the
nominal one, computed dividing the (known) distance by the
speed of radio waves in air. We repeated the experiment in
two different conditions. The first experiment is performed
indoor, in a corridor, varying the distances of the nodes by
10m for each experiment. In indoor conditions, a few people
interacted, randomly, with the setup. Figure 5 shows the
mean value and standard deviation of the computed error
for different distances. The second experiment is performed
outdoor, on a street pavement, varying the nodes distances

1 2 3 4 5 6
-100ns

-50ns

0

+50ns

hop

Figure 7. Multi-hop propagation delay measurement error.

with a 20m step. In this second case, many people and
vehicles were moving around during the experiment, thereby
making scattering relevant. Figure 6 summarizes the results.

As can be seen, the indoor experiment results in average
errors below one timer tick, while in the outdoor experiment,
the scheme tends to overestimate the nominal propagation
delay. This is not surprising, as the presence of people
between nodes obstructed their line of sight, forcing radio
waves to follow a longer path. In both cases the technique
allows for delay measurement at the clock tick timescale in
a reliable manner. To the best of the authors’ knowledge,
this was not possible to date with off-the-shelf hardware.

B. Measuring the multi-hop propagation delay

We also performed multi-hop propagation delay experi-
ments, to assess how the delay accumulates as the number
of hops increases. The experimental setup resembles the
previous one, but uses multiple nodes and performs mea-
surements using the TDMA schedule described in Section V.
Every node, except the master, acts alternatively as initiator
to measure the propagation delay from the previous hop,
and as predecessor for the next hop. Although bar graph
encoding was used to transfer the cumulated propagation
delay, a single node per hop was used. The efficacy of the
bar graph encoding is tested separately in the following.

Figure 7 shows the propagation delay measurement error
and standard deviation as a function of the hop count. In this
experiment all nodes were placed at a multiple of 68m —
e.g., the sixth hop is 408m away from the master. Although
the propagation delay measurement error increases with the
hop count, the relative error, i.e, the average error divided
by the total propagation delay remains fairly constant and
always below 5% of the real value. Our proposal therefore
cancels at least 95% of the error induced by propagation
delays for a clock synchronization scheme. Moreover, the
standard deviation does not increase with the hop count.

C. Combining responses with the bar graph encoding

This section shows the capabilities of the proposed bar-
graph encoding. We tried to maximize the repeatability
of these experiments. For that, we engineered a special
node by connecting a microcontroller to three transceivers.
Two of these transceivers transmitted in bar graph form
similar but not equal numbers with the same transmission
power. Packets were transmitted skewed by a variable time
∆t. The third transceiver was configured to concurrently



Sent

Lost

Received

Failed

Decoded

Correct

False pos.

Figure 8. Classification of packets for the bar graph test.

transmit with less power (to emulate a longer distance) a
different number, thus acting as an interferer. This setting is
representative of the situation described in Figure 3, with
a predecessor set of two near nodes and a set of three
responding nodes, the third one being shadowed by distance.

We then used two further nodes to receive data from the
predecessor set. The first one was located at a distance of
5m with respect to the transmitting setup, the other at 60m.
The choice of both a near and a far predecessor further
generalizes the results.

The test involved sending roughly 6 ·105 packets, divided
in all the possible combination of transmission skew be-
tween the equally powerful transmitters, in the set {80ns,
160ns, 320ns, 640ns}, and interferer power in the set
{off, −18dBm, −7dBm, −2dBm}. As illustrated by the
decision tree represented in Figure 8, the outcomes of said
transmissions are classified in four categories:
• correct, decoded and yielding a response within the

values transmitted by the predecessor set nodes;
• false positive, causing the decoding algorithm to suc-

ceed but to output a number not in the expected range
(most frequently, matching the interferer);

• failed, causing the algorithm to report the packet as too
corrupted to be decoded;

• lost, not received for any reason.

80ns 160ns 320ns 640ns 80ns 160ns 320ns 640ns 80ns 160ns 320ns 640ns 80ns 160ns 320ns 640ns

80

90

100
Correct False pos. Failed Lost

off -18dBm -7dBm -2dBm

80ns 160ns 320ns 640ns 80ns 160ns 320ns 640ns 80ns 160ns 320ns 640ns 80ns 160ns 320ns 640ns

70

80

90

100
Correct False pos. Failed Lost

off -18dBm -7dBm -2dBm

Figure 9. Bar graph test – receiver node placed at 5m from the transmitter,
16 bytes payload (top) and 64 bytes payload (bottom).

Results are reported as the percentage of packets falling
into each category. Figure 9 shows the result for a node

80ns 160ns 320ns 640ns 80ns 160ns 320ns 640ns 80ns 160ns 320ns 640ns
0

20

40

60

80

100
Correct False pos. Failed Lost

off -7dBm -2dBm

80ns 160ns 320ns 640ns 80ns 160ns 320ns 640ns 80ns 160ns 320ns 640ns

0

20

40

60

80

100
Correct False pos. Failed Lost

off -7dBm -2dBm

Figure 10. Bar graph test – receiver node placed at 60m from the
transmitter, 16 bytes payload (top) and 64 bytes payload (bottom).

distance of 5m with a packet length of 16 and 64 Bytes,
while Figure 10 (with a different vertical scale) reports
the results for a 60m distance. In Figure 10 the power of
−18dBm is not reported as this would be equivalent to
putting the interferer outside the radio range of the receiver.

Considering the results for the 5m distance, when the
interfering power is compatible with a significant distance
difference (up to −7dBm) and the transmission skew is
within the Glossy tolerance of 0.5 µs [6], more than 97%
of the packets are decoded correctly, regardless of payload
length. Results for the 60m distance show a more relevant
difference between short and long packets, with the 16 Bytes
case resulting in at least 86% correct packet reception, and
the 64 Bytes dropping to a minimum of 80%.

Indeed, the technique fails only if either of the conditions
above is violated. However, a skew above 500 µs would
undermine the applicability of the Glossy flooding scheme
itself, and can be easily avoided with a well timed packet
retransmission delay. For what concerns a comparable power
interferer, this is ruled out by geometrical reasons. In detail,
using a model for the attenuation of radio waves in air [24],
a node to have a −2dB difference from a node at 5m from
the receiver would need to be located at 6.3m, thus having
a distance from the predecessor set of only 1.3m. In such a
case, its propagation delay would not be different from the
other nodes in the predecessor set, and thus it would not
send a packet with a different number causing interference.
Applying the same reasoning to the case where nodes are
spaced 60m apart results in the node sending at −2dBm
being 15.5m apart from the predecessor set, a difference of
less than two timer ticks. Also in this case, the node would
not cause interference. In practice, therefore, we can rule
out the failing conditions.



68m

M

1a

1b

2

3a

3b

4

Counter

GPIO GPIO

Figure 11. Network topology for the full scheme assessment.

D. Assessing the full scheme

The last experiment considers the integration of the pro-
posed propagation delay compensator with a clock syn-
chronization scheme, to assess the achieved improvement.
Seven nodes were used for this test, using the FLOPSYNC-
2 scheme configured with the default parameters for indoor
use, a synchronization period of 60s, and α = 3/8 [26].

The logical network topology of the setup is described
in Figure 11. This setup was chosen to have a significant
cumulated propagation delay from the master node to the
last hop. Moreover, two nodes were employed for Hop 1 and
3 to test the effect of constructive interference in round-trip
packet exchanges. For this experiment the flooding scheme
was slightly altered, to force in software the network topol-
ogy by manually assigning each node to a hop. This allowed
to fold the logical topology in order to have the master node
and node 4 physically next to each other, while forcing
the flooded packets to follow the entire 272m path. The
application software running on the network periodically
raised a pin on the microcontroller (in a hardware timed
way, avoiding software jitter) at prescribed intervals. Having
the master and last node close together allowed to connect
their pins to an SR620 frequency counter, configured in time
interval measurement mode to log the clock synchronization
error. This counter has a sub-nanosecond resolution, far less
than the measured time intervals.

The experiment was repeated with the both plain
FLOPSYNC-2, and with FLOPSYNC-2 enhanced with the
proposed propagation delay compensation scheme. Table I
shows how the lack of propagation delay compensation
causes the synchronization error of plain FLOPSYNC-2 to
exceed 1 µs, while the enhanced version remains into the
sub-microsecond region. The standard deviation does not
increase significantly by propagation delay estimation. The
difference between the two averages multiplied by the speed
of radio waves in air amounts to 271.7m, a value remarkably
close to the actual distance.

VII. RELATED WORK

Time synchronization protocols can be broadly catego-
rized in two classes: pairwise-synchronization schemes and

Table I
CLOCK SYNCHRONIZATION ERROR AT THE FOURTH HOP WITH AND

WITHOUT PROPAGATION DELAY COMPENSATION.
average standard deviation

plain FLOPSYNC-2 1020ns 696ns
enhanced FLOPSYNC-2 0114ns 687ns

flooding-based schemes. TPSN [7] is one of the most
famous examples belonging to the first class. TPSN needs
to construct a spanning tree of the network, and then
performs synchronization along the edges. This increases
the overhead in terms of packet transmissions and thus
energy consumption, since packets should be sent for the
spanning tree creation and maintenance. The availability of
a spanning tree gives an explicit predecessor information
and allows in principle to estimate the propagation delay,
although this was not done as timestamping resolution was
too limited when the paper was published. The second class,
of which FTSP [20] is the precursor, is based on broadcast
messages, transmitted by a master node to the neighboring
ones and re-broadcast by the receivers for nodes that are
not in the master node radio range. Flooding-based schemes
are used because of their energy efficiency, since a single
transmission can synchronize multiple nodes simultaneously.
Optimized flooding schemes like Glossy [6] are crucial for
this approach. However, flooding based schemes have the
disadvantage that nodes do not know how the network is
composed and therefore cannot easily compensate for the
propagation delay.

Some alternative techniques have been proposed to com-
bine the best of both worlds. Zeng et al. [30] proposed
a measurement architecture using distributed air sniffers,
which provides convenient transmission delay measurement,
and requires no clock synchronization or instrumentation
at the node level. The problem of sniffer placement still
remains NP-hard [29], and the algorithms proposed cannot
be applied to large WSNs. Saifullah et al. [23] analyze the
effect of network delays on WirelessHART networks. This is
a specific case of WSN for industrial process monitoring and
control [1, 3, 10, 17, 19]. The proposed analysis methods
are however focused on obtaining upper bounds on the
end-to-end delay of every real-time periodic data flow in a
WSN. These contributions further highlight the importance
of efficiently estimating propagation delays in the network.

The problem of estimating propagation delays in wireless
communication has been studied also in different areas,
especially in underwater acoustic sensor networks [9, 11,
28], and satellite communication [8, 13]. The solutions
proposed for these domains are exploiting the entity of the
delays – exceeding the millisecond time scale – to improve
the channel capacity. The problem that we faced in this paper
is conversely to compensate for sub-microsecond delays in
order to improve clock synchronization accuracy.

In this paper we have used interference to extract infor-
mation from colliding packets. Collisions were also used to
achieve indoor localization, leveraging capture effect [27].
The idea of exploiting interference is similar to the one
presented in [4], where the initiator of a broadcast commu-
nication is able decode the superposition of ACK packets
thanks to the constructive interference, although this case is
simpler as all interfering packets have the same payload.



Katti et al. [12] proposed a technique called Analog
Network Coding (ANC), that exploits signals transmission
instead of packet transmission, with a similar attitude to our
solution. Instead of trying to avoid interference in commu-
nication, they exploit it to increase the channel capacity.
ANC is based on the idea that two senders can simul-
taneously send different packets on the channel, allowing
packets collision. Since in ANC signals are transmitted, the
collision of two signals results in a signal corresponding
to their sum. The main limitation of this approach is that
of requiring a software-defined radio to gain access to the
received signal and disentangle the received packets. Our bar
graph encoding, conversely, works with commodity radio
transceivers. In addition, ANC is limited to the case of only
two senders, while our proposal does not impose restriction
on the cardinality of the predecessor set.

VIII. CONCLUSION

In this paper we proposed a strategy to estimate the
propagation delay in a WSN without the need to construct
a spanning tree for the network. Our strategy is based on
a custom encoding of the cumulated propagation delay that
allows us to exploit the constructive transmission interfer-
ence also to send similar packets. Our estimation strategy,
implemented on top of the FLOPSYNC-2 synchronization
scheme [26] is here used to enhance flooding-based synchro-
nization schemes with a delay compensator and achieve sub-
microsecond clock synchronization even in networks where
propagation delays are significant.

Future works will concentrate on improving the packet
decoding algorithm to extend the applicability of concurrent
flooding with different payloads, as well as assessing the
performance of the proposed propagation delay compensa-
tion scheme in large scale WSN networks.

REFERENCES

[1] T. Abdelzaher, Y. Diao, J. Hellerstein, C. Lu, and X. Zhu. “Introduc-
tion to Control Theory And Its Application to Computing Systems”.
In: Performance Modeling and Engineering. 2008, pp. 185–215.

[2] C. A. Boano, T. Voigt, N. Tsiftes, L. Mottola, K. Römer, and M. A.
Zúñiga. “Making Sensornet MAC Protocols Robust against Interfer-
ence”. In: Wireless Sensor Networks. Vol. 5970. 2010, pp. 272–288.

[3] G. Buttazzo. “Research Trends in Real-time Computing for Embed-
ded Systems”. In: SIGBED Rev. 3.3 (2006).

[4] P. Dutta, R. Musaloiu-E., I. Stoica, and A. Terzis. “Wireless ACK
Collisions Not Considered Harmful”. In: HotNets. 2008, pp. 19–24.

[5] J. Elson, L. Girod, and D. Estrin. “Fine-grained network time
synchronization using reference broadcasts”. In: SIGOPS Oper. Syst.
Rev. 36.SI (2002), pp. 147–163.

[6] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh. “Efficient
network flooding and time synchronization with Glossy”. In: IPSN.
2011, pp. 73–84.

[7] S. Ganeriwal, R. Kumar, and M. B. Srivastava. “Timing-sync
Protocol for Sensor Networks”. In: SenSys. 2003, pp. 138–149.

[8] L. Gun and H. Feijiang. “Precise two way time synchronization for
distributed satellite system”. In: FREQ. 2009, pp. 1122–1126.

[9] P. Guo, T. Jiang, G. Zhu, and H.-H. Chen. “Utilizing acoustic
propagation delay to design MAC protocols for underwater wireless
sensor networks”. In: Wireless Comm. and Mobile Computing 8.8
(2008), pp. 1035–1044.

[10] T. He, P. Vicaire, T. Yan, L. Luo, L. Gu, G. Zhou, R. Stoleru,
Q. Cao, J. Stankovic, and T. Abdelzaher. “Achieving Real-Time
Target Tracking UsingWireless Sensor Networks”. In: RTAS. 2006,
pp. 37–48.

[11] P.-H. Huang, M. Desai, X. Qiu, and B. Krishnamachari. “On the
Multihop Performance of Synchronization Mechanisms in High
Propagation Delay Networks”. In: IEEE Trans. Comp. 58.5 (2009),
pp. 577–590.

[12] S. Katti, S. Gollakota, and D. Katabi. “Embracing Wireless Inter-
ference: Analog Network Coding”. In: SIGCOMM. New York, NY,
USA: ACM, 2007, pp. 397–408.

[13] Y. Kito, S. Kubota, F. Takahashi, T. Takahashi, T. Asai, and N.
Katayama. “First challenge of PTP time synchronization experiment
through the experimental satellite for communication, ‘WINDS’”.
In: ISAP. 2012, pp. 1493–1496.

[14] H. Kopetz and W. Ochsenreiter. “Clock Synchronization in Dis-
tributed Real-time Systems”. In: IEEE Trans. Comput. 36.8 (1987),
pp. 933–940.

[15] L. Lamport. “Time, Clocks, and the Ordering of Events in a
Distributed System”. In: Commun. ACM 21.7 (1978), pp. 558–565.

[16] K. Leentvaar and J. Flint. “The Capture Effect in FM Receivers”.
In: IEEE Trans. on Communications 24.5 (1976), pp. 531–539.

[17] S. Lin, G. Zhou, M. Al-Hami, K. Whitehouse, Y. Wu, J. A.
Stankovic, T. He, X. Wu, and H. Liu. “Toward Stable Network Per-
formance in Wireless Sensor Networks: A Multilevel Perspective”.
In: ACM Trans. Sen. Netw. 11.3 (2015), 42:1–42:26.

[18] S. Liu, G. Xing, H. Zhang, J. Wang, J. Huang, M. Sha, and L. Huang.
“Passive interference measurement in Wireless Sensor Networks”.
In: ICNP. 2010, pp. 52–61.

[19] C. Lu, J. A. Stankovic, S. H. Son, and G. Tao. “Feedback Control
Real-Time Scheduling: Framework, Modeling, and Algorithms”. In:
Real-Time Syst. 23.1/2 (2002), pp. 85–126.

[20] M. Maróti, B. Kusy, G. Simon, and A. Lédeczi. “The Flooding Time
Synchronization Protocol”. In: SenSys. 2004, pp. 39–49.

[21] M. McDonnell. “Is electrical noise useful? [Point of View]”. In:
Proceedings of the IEEE 99.2 (2011), pp. 242–246.

[22] S. Ping. “Delay Measurement Time Synchronization for Wireless
Sensor Networks”. In: Intel Research. 2003.

[23] A. Saifullah, Y. Xu, C. Lu, and Y. Chen. “End-to-End Delay
Analysis for Fixed Priority Scheduling in WirelessHART Networks”.
In: RTAS. 2011, pp. 13–22.

[24] S. Saunders and A. Aragón-Zavala. Antennas and Propagation for
Wireless Communication Systems: 2nd Edition. Wiley, 2007.

[25] T. Schmid, P. Dutta, and M. B. Srivastava. “High-resolution, Low-
power Time Synchronization an Oxymoron No More”. In: IPSN.
2010, pp. 151–161.

[26] F. Terraneo, L. Rinaldi, M. Maggio, A. V. Papadopoulos, and A.
Leva. “FLOPSYNC-2: Efficient Monotonic Clock Synchronisation”.
In: RTSS. 2014, pp. 11–20.

[27] J. van Velzen and M. Zúñiga. “Let’s collide to localize: Achieving
indoor localization with packet collisions”. In: PERCOM. 2013,
pp. 336–339.

[28] J. Wen, L. Ding, F. Yang, L. Qian, and C. Sun. “Improved multi-
hop time synchronization for Underwater Acoustic Networks”. In:
WCSP. 2013, pp. 1–6.

[29] W. Zeng, X. Chen, Y.-A. Kim, Z. Bu, W. Wei, B. Wang, and Z. Shi.
“Delay monitoring for wireless sensor networks: An architecture
using air sniffers”. In: MILCOM. 2009, pp. 1–8.

[30] W. Zeng, J. Cote, X. Chen, Y.-A. Kim, W. Wei, K. Suh, B. Wang,
and Z. J. Shi. “Delay monitoring for wireless sensor networks: An
architecture using air sniffers”. In: Ad Hoc Networks 13, Part B.0
(2014), pp. 549–559.

[31] H. Zhang, A. Arora, and P. Sinha. “Learn on the Fly: Data-Driven
Link Estimation and Routing in Sensor Network Backbones”. In:
INFOCOM. 2006, pp. 1–12.


