
A control-theoretical approach
to thread scheduling for multicore processors

Alessandro Vittorio Papadopoulos, Roberto Carone, Martina Maggio and Alberto Leva

Abstract— Feedback control has been applied to computing
systems, usually taking a designed system and closing a loop
to adjust some of its parameters. However, the design of
computing systems components as controllers have shown
advantages with respect to state-of-the-art techniques,
especially in the scheduling domain, where uniprocessor
schedulers have been designed as discrete-time control
structures. However, the most recent computing devices (from
smartphone to personal computers) have more than one
core and the devised techniques cannot be applied to this
context directly. This paper provides the necessary foundation
to address the multicore scheduling problem as a control
problem, as an extension of the uniprocessor case. We qualify
the quantities to be measured and used as feedback signals for
tackling the extension. We also present some control solutions
and compare them using a simulator, publicly available to
foster the research on the topic. The comparison shows that
the devised policies have low computational complexity but
achieves very good results in terms of scalability.

Keywords: Control-based task scheduling, operating systems,
multicore processors.

I. INTRODUCTION AND MOTIVATION

Multicore architectures have been widely used as a way
to extend computers’ performance beyond Moore’s law.
The multicore chips don’t necessarily run as fast as the
highest performing single-core models, but they are aimed
at improving overall performance by handling more work
in parallel [9]. However, exploiting the available parallelism
on these platforms is often hindered by many factors, the
most important ones being the application parallelism and
the operating systems scheduling policies.

Notable and used approaches employ various techniques
to adapt or extend existing scheduling functionalities to the
multicore case [3]. However, these techniques may result
in an increased computational complexity, and in solutions
that do not suitably scale with the number of cores. In [4]
the authors argue that “high performance on multicore
processors requires that schedulers be reinvented”. This is
a general trend that can be found in all the computing
infrastructures [23]. Solutions based on game-theoretical

A.V. Papadopoulos, Department of Automatic Control, Lund University,
Sweden, alessandro.papadopoulos@control.lth.se

M. Maggio, Department of Automatic Control, Lund University, Sweden,
martina.maggio@control.lth.se

A. Leva, Dipartimento di Elettronica, Informazione e Bioingegneria
Politecnico di Milano, Italy, alberto.leva@polimi.it

R. Carone, graduate student at the Dipartimento di Elettronica, Infor-
mazione e Bioingegneria

This work was partially supported by the Swedish Research Council (VR)
for the projects “Cloud Control” and “Power and temperature control for
large-scale computing infrastructures”, and through the LCCC Linnaeus and
ELLIIT Excellence Centers.

approaches have been proposed [2], [18], [29]. However, they
typically focus on specific aspects of interest, such as power
consumption minimization or quality of service provisioning.
Indeed, the proposed solutions do not adopt a modular and
hierarchical approach to the problem, resulting in a lack of
flexibility.

Recently, control theory has been applied in the computer
science domain with very promising results [10], espe-
cially in the context of “self-adapting” or “self-managing”
systems [5]–[8], [12], [26]. Initially, the use of control
theory consisted in adding another architectural layer to
adapt existing systems [21]. Typically, early works gave
system components for granted, and added a control layer on
top of the existing components to improve their behaviour.
Sticking to the application domain of this paper — the
operating system scheduling problem — a reservation-based
scheduler is controlled by acting on the reservations in
order to enhance soft real-time capabilities [1], guarantee
quality of service [18], or even guarantee hard real-time
constraints [24]. However, a pure control-theoretical design
can overcome many of the technological limitations and
create “more controllable” systems [11]. Lately, researchers
advocated a shift from “controlled” to “control-enabled”
computing systems. In control-enabled systems, critical com-
ponents are entirely designed as controllers [15], [25]. In the
following, we take the control-enabled viewpoint and apply
it to multicore scheduling.

As discussed in [14], the scheduler of a single-core pro-
cessor can be realized as a cascade control structure. The
inner loop guarantees the desired CPU share among the
active threads, while the outer one ensures that the scheduler
regains control with a desired period. Comparative tests like
those in [17], [19] showed the advantages of the proposed
scheduler versus traditional (non control-enabled) ones, in
terms of both performance and computational simplicity.
In [16] a complete stability proof was provided, and it was
also indicated how to translate fairness and responsiveness
requirements, as expressed in the Computer Science commu-
nity, into setpoints for the proposed scheduler. Furthermore,
the scheduler was implemented in a microcontroller kernel
named Miosix, released under the GPL license1, and already
used for embedded systems [19] and wireless sensor network
applications [27], [28].

In this paper, we provide an extension of the mentioned
scheduler to the multicore case. In particular, the problem of
multicore scheduling is here addressed as a control problem,

1Miosix is available at http://www.miosix.org.

by suitably formalizing the objectives, the control interfaces,
and proposing a first set of relocation policies that can take
into account different aspects of interest. The aim of this
paper is twofold. First, the paper proposes a multicore sched-
uler, necessary to take advantage of modern architectures and
operating systems. Then, it shows how the proposed control
approach allows for a neat problem formulation, and leads
to solutions that build on top of the developed uniprocessor
scheduler, to the advantage of modularity.

II. BACKGROUND

In this section we provide some background material
on control-enabled scheduling in the single-core case. The
interested reader can refer to [14], [16] for the details omitted
herein.

The scheduling approach of [14] is based on a discrete-
time dynamic model for the thread pool that takes the form{

τt(k) = b(k−1)+δb(k−1)
τr(k) = ∑N

i=1 τt,i(k)
(1)

where N is the number of threads, τt,i ∈ R+, i = 1, . . . ,N
is the vector of their time allocations, τr ∈ R+ is the time
between two rounds, i.e. two subsequent interventions of the
scheduler, counted by the integer index k ∈ N.

Rr(z) α(k) Rt(z) P(z)

∑

τ◦r
+

bc

+

τ◦t
+

b
+

δb
+ τt

−+−
τr

Fig. 1: Block diagram representing single-core scheduling.

Figure 1 shows the scheduler block diagram: P(z) repre-
sents the thread pool, Rt(z) computes the vector of thread
bursts b(k) ∈ R+N

to make τt(k) follow a set point τ◦t (k).
The set point is obtained by partitioning the measured τr(k)
according to a vector α(k)∈ [0,1]N . The vector α(k) is such
that ∑N

i=1 αi(k) = 1. The bursts are additively corrected by
the burst correction bc(k) ∈ R output by Rr(z), to also have
τr(k) ∈ R+ follow its set point τ◦r (k). A diagonal integral
regulator is used for Rt(z), while Rr(z) is a Single-Input
Single-Output (SISO) PI.

To generate the vector α(k)according to the type of thread,
e.g., periodic, sporadic, batch, etc., the approach described
in [16] is here used. The proof of stability of the time-varying
control system can be found in [16].

Summarising, the single-core scheduler is capable of man-
aging a thread pool maintaining weighed fairness as dictated
by Rt(z), governing responsiveness by means of τ◦r (k), and
facing thread pool variations. On top of this scheduler, that
operates at the core level, the multi-core one proposed herein
is built.

III. PROBLEM STATEMENT AND CONTROL DESIGN
GUIDELINES

There are sine main issues in multicore processors, which
can be translated into control objectives. Mainly, these issues
are balancing the load among different cores and enforcing
bounds on the cores heating and consumed power. The
second objective is usually reached with techniques like
frequency scaling, that reduce the performance of the system,
while mitigating the effects of temperature gradients across
the chip. Effectively managing how the load is spread among
the cores is the key issue to be addressed, and since over-
utilized cores are typically the hotspots on the chip, often
balancing the load correctly automatically enforces temper-
ature management constraints.

Notice also that, compared to an inter-core context switch,
the migration of a thread has a high cost, since it means
invalidating the cache lines of the originating core, and a
potentially high number of cache misses when the thread
is attributed to the destination one. Finally, in some cases
load balancing and thermal control may conflict, since the
same “load” (as measured with the soft sensors available in
modern operating systems) may activate various core units,
imposing different power consumption.

For this reasons, in this paper we use as a control objective
the “desired load distribution” instead of the more used “load
balancing”. The former is more general and flexible than the
latter. For example, one may want a certain distribution of the
loads across the cores for thermal issues, or to deliberately
leave a core with a reduced burden in a view to accept load
bursts.

Starting from the considerations above, we here sketch the
design guidelines.

1) Thread migrations ought to occur with a lower fre-
quency with respect to the control bandwidth of core-
level scheduling. This suggests a third loop around the
cascade structure of the core-level scheduler of Figure 1.

2) Given the cost of migrations, said third loop is best
designed as event-triggered.

3) Modularity and scalability call for a hierarchical struc-
ture, where cores internally compute comprehensive
indexes signaling their willingness to accept load or
their necessity to give some away, while a centralized
entity monitors the indexes and enforces the desired
policy.

Taking such an approach has several advantages. The
first one is a natural isolation with respect to core-level
scheduling, a tunable computational effort (for example by
using index thresholds for triggering reallocations), a reduced
inter-core communication (indexes are computed locally),
and the encapsulation of the internal features of cores.

It is worth noticing that state-of-the-art schedulers hardly
take into account the issues above. A significant example
is the so-called Completely Fair Scheduler (CFS), called
SCHED OTHER in the Linux kernel [13], [22]. The CFS
attempts to achieve an even distribution of both CPU share
(intra-core) and load (extra-core) by actuating thread relo-

Quantity Value

Avg. # Migrations per Thread 2098.59
Std. # Migrations per Thread 160.212
Max. # Migrations per Thread 2422
Min. # Migrations per Thread 1689
Migrations 209859

TABLE I: Statistics on the experiment.

cation with a high frequency (if necessary) and thus a fine
time granularity, often resulting in an excessive number of
context switches and migration.

In order to show how relevant and time-consuming the ab-
sence of a control structure like the one just envisaged could
be, we here show some experimental data obtained with a the
scheduler benchmarking tool rt-muse2. The experiments
were performed on a machine with an Intel Core i7-3520M
(4 cores at 2.9GHz) equipped with the Linux kernel 3.13.0-
48 (the most up to date packaged version of the kernel). We
run in parallel 100 threads {θ1,θ2, . . . ,θ100}, scheduled with
CFS. All the threads can run on 3 of the 4 cores, to avoid
invalidating the results by overloading the entire machine.
The threads share 11 resources {r0,r1, . . . ,r10}, meaning that
they can lock each of the resources in order to perform
their tasks. The first resource, r0, is shared among all the
threads, while {r1,r2, . . . ,r10} are shared by groups of 10
threads each. The second resource, r1 is shared by the set
of threads {θ1, . . . ,θ10}; r2 is shared by the set of threads
{θ11, . . . ,θ20}, and so on. Each thread θi is configured to
execute the following operations in loop until stopped.

1) θi locks the resource r0;
2) holding the lock on r0, θi performs 5 thousands math-

ematical operations;
3) after the operations are terminated, θi releases the

resource r0;
4) θi performs 10 thousands mathematical operations;
5) θi locks the other resource, e.g., r1 for threads belonging

to the set {θ1, . . . ,θ10};
6) holding the lock on the second resource, θi performs 5

thousands mathematical operations;
7) θi releases the locked resource.

The threads continuously execute the loop until stopped. In
our experiment, we stopped the threads after 25 minutes.
During the 25 minutes, we logged all the occurred migra-
tions, including the time a migration happened, the thread
that migrated, and source and destination for the migration.
During the experiments threads were migrated 209859 times.
Table I shows some statistics on the experiment. Notice that
even the thread that migrates the least, still migrates about
1.126 times per second. Figure 2 shows the distributions
of the frequencies of the inter-arrival time between two
subsequent migrations of a single thread, for each core. It
is worth noticing that most of the migrations happen with
an inter-arrival time that is less than 100ms, while some of

2rt-muse is publicly available at https://github.com/
martinamaggio/rt-muse

200

400

1 1 12
64

215

317

18 12

Fr
eq

ue
nc

y
(c

1)

200

400

1 8
75

148

418

158

1

Fr
eq

ue
nc

y
(c

2)
10−6 10−5 10−4 10−3 10−2 10−1 100 101 102

200

400

3 1
67

115

370

148

Interarrival time [s]

Fr
eq

ue
nc

y
(c

3)

Fig. 2: Frequencies of the interarrival time for each core with
CFS.

them happen with an inter-arrival time that is even in the time
scale of some micro-seconds, i.e., even lower than the typical
thread execution time (the interval of time between when the
thread starts executing and when the scheduler regain control
over the core).

Summarizing, the authors believe that present multicore
schedulers lack a modular structuring, and that the conse-
quent actuation policies can result in much time wasted in
useless thread relocations, and even fall short of perfection
at achieving load, thermal, and power balance. The solutions
proposed herein attempt to address such issues.

IV. THE PROPOSED CONTROL SCHEME

The proposed scheme has a hierarchical structure. Each
core hosts a scheduler, endowed with an additional software
component called the core load monitor. The purpose of the
monitor is to compute an index indicating whether the core
needs to have its load reduced, or is on the contrary willing to
accept new threads. All the cores communicate with another
component, a central thread dispatcher, which can force the
migration of a thread from a core to another. In our scheme,
the thread dispatcher runs on the first core that boots and
awakens the others. The dispatcher has access to the indexes
computed by the monitors via the processor internal bus, and
uses the provided information to take decisions.

A. Preliminaries and notation
Definition 1 (Multicore system): A multicore system can

be characterized by the following quantities.
• C= {c1,c2, . . . ,cNc} is the set of Nc cores in the system.

Each core executes a scheduler like that of Figure 1.
• T = {θ1,θ2, . . . ,θNθ } is the set of Nθ threads running

in the system.
• S : N×T×C→{0,1} is a localization function which

determines at each time instant k, what if a thread θ ∈T
is running on the core c ∈ C. Therefore, S(k,θ ,c) = 1
if θ is running on c, S(k,θ ,c) = 0 otherwise.

• αθ (k)∈ [0,1] for θ ∈T is the CPU share that the thread
θ desires. The values of αθ (k) are such that

∑
θ∈T

αθ (k)≤ Nc ∀k ∈ N.

Notice that each αθ (k) is in the range [0,1] because a
single thread cannot occupy more than the totality of the
CPU time provided by one core. Consistently, the sum of
all the αθ (k) is supposed to not exceed Nc. Recall that,
for each core, αθ (k) represents the percentage of the core
that should be used by thread θ at time k. Here, some
CPU time may be deliberately left idle, thereby allowing to
purposely under-utilize a core if this is necessary. To recover
the case of [14] one can simply suppose that convenient
“slack” distribution coefficients are introduced, but this is
neglected in the following as it is irrelevant for the aim of
this work.

In the following, to lighten the notation, we shall treat
all the quantities just mentioned as available processor-wide,
although in a real implementation they are composed of
elements updated by different entities in different instants.

B. The core load monitors
At each k-th intervention of its local scheduler, the load

monitor of core c ∈ C can compute the local load request
Lc(k) of that core as

Lc(k) = ∑
θ∈T

S(k,θ ,c)αθ (k) ∀c ∈ C. (2)

Now, suppose that the core is requested by the upper levels of
the control hierarchy to have an actual load L◦c(k). Therefore,
one can define the core normalised load error as

εc(k) =
Lc(k)−L◦c(k)

Lc(k)
∀c ∈ C, (3)

where εc > 0 means that the core would need unloading,
while εc < 0 signals that it could accept additional threads.

Finally, the quantities made available processor-wide by
each load monitor are εc(k) as per (3), and the time integrated
overload index Oc(k). Oc(k) is reset every time a thread is
moved from core c to another core. Defining k0

c as the first
intervention of the scheduler of core c following the last
thread reallocation performed by the dispatcher on threads
that were executing on c, the overload index Oc(k) becomes

Oc(k) =
k

∑
h=k0

c

max(0,εc(h))τrc(h) ∀c ∈ C, (4)

where τrc(·) is the round duration of core c.

C. The thread dispatcher

The dispatcher runs contextually with the scheduler of the
hosting core 1, and since it is expected that its actions are
sporadic with respect to core-level scheduling, the round du-
ration set point for the hosting core is largely irrelevant. The
thread dispatcher operation can be summarized as follows.

1) The dispatcher reads the desired core loads;
2) it then read the last values of Oc and εc made available

by each core;
3) based on the received information, it decides whether or

not to perform a reallocation. The simplest reallocation
triggering rule is to check that at least one Oc exceeds
a threshold Oc and at least one εc is negative, i.e., at
least one core is not over-utilized;

4) if the dispatcher wants to perform a migration, the
following steps are executed:
a) the dispatcher determines the source s ∈ C and

destination d ∈ C cores, and the thread(s) to move,
with a convenient dispatching rule;

b) it then uses the available operating system primitives
to move the thread(s);

c) finally, it resets the overload index Os(k) of the
source core s to zero, and k0 of (4) to the current
time.

5) if no migrations have to be performed, nothing happens
and the core is released for the execution of other
activities.

One of the advantages of the adopted triggering rule
is the possibility to enforce a modular and hierarchical
control structure. For example, if some cores are over-
utilized for long time but none can accept load, this could be
forwarded to some other higher-level controller that can act
on voltage and frequency to compensate for it, if necessary.
The proposed scheme makes such controllers well identified,
with precisely defined inputs and outputs, and could be
composed in convenient (e.g., override) structures to deal
with conflicting requirements in a formally specified manner.
The choice of the threshold Oc how fast the system is to
detect an overload. Care has to be taken for its choice, since
too low values of the threshold usually result in a higher
number of migrations, while too high values may result
in no migrations but temperature issues since one core is
continuously overloaded.

As can be seen, the communication between the thread
dispatcher ant the core load monitors has an asynchronous
nature, where the data made available by the latter entities
to the former play the role of the communication shared
memory. This can clearly cause some delay in the interven-
tion of the dispatcher. However, that delay is structurally
limited to twice the maximum τrc among the cores. Thanks
to the underlying control-based scheduler, a reliable estimate
of that delay is thus twice the maximum set point for the
round times. The delay under question could be reduced
by conveniently managing runqueue-like data structures
at the core level, which is beyond the scope of this work. In
any case, if sporadic reallocations happen in the system, this

becomes of low importance.

V. PROPOSED DISPATCHING RULES

A migration at time k is uniquely determined by three
components Mk = (s,θ ,d). The source s ∈ C is determined
by the load monitor whenever Os > Os, and the set of the
threads running on s is defined as Ts := {θ ∈ T|S(k,θ ,s) =
1}. The thread θ ∈ Ts to be migrated, and the destination
core d ∈C\{s} must be determined by the dispatching rule.
We here propose four different dispatching rules that can be
adopted for thread migration in a multicore scheduler. The
advantage of these policies relies on their low computational
complexity, allowing for their use in a real-time system.

A. Simple

In this dispatching rule a random thread θ is selected
among those running on the core(s) that signaled the ne-
cessity of a relocation. The destination source is selected as

d = argmin
c∈C\{s}

Lc(k) (5)

The main advantage of such a rule is computational simplic-
ity.

B. Load aware

Let us define the spare capacity of a core c ∈ C as

ac(k) =(L◦c −Lc(k))
+ ∀c ∈ C, (6)

where the x+ represents the positive part of the number x.
The thread θ ∈ Ts to be migrated, and the destination core
d ∈ C\{s} can be selected as

(θ ,d) = argmax
i∈Ts,c∈C\{s}

(ac(k)−αi(k)) . (7)

The idea of this policy is to migrate threads with low CPU
share request to the core with the highest spare capacity.

C. Load normalised

In the two previous policies, the desired utilization L◦c of
each core is just an input to the system, and it is constant.
This policy is a natural extension of Load aware. The idea
is to adapt the value of the desired utilization every ∆U
interventions as

L◦c(k) =
1

Nc
∑
c∈C

Lc(k), ∀c ∈ C,k = ∆U ,2∆U , . . . (8)

namely, the desired load is obtained as the average of the
actual loads. The underlying idea of this policy is to balance
the overall load among the different cores by dynamically
adapting the set points. Then, the Load aware rule is applied
for the relocation as above. In this case, the adaptation period
∆U is the only parameter of the method.

Notice that this policy could be easily modified with
a weighted distribution of the load among the cores, for

instance introducing weights dependent on the temperature
Tc ∈ R of the core as

L◦c(k) =wc(k,Tc) ∑
c∈C

Lc(k), ∀c ∈ C,k = ∆U ,2∆U , . . . (9)

with ∑
c∈C

wc(k,Tc) = 1, wc(k,Tc) ∈ [0,1] . (10)

In this case, wc can be chosen close to zero if the temperature
of the core is high, and close to one otherwise.

D. Turn-over

This solution is analogous with an old but quite assessed
management policy for overload prevention, named “stop
and go” [20] since one or more cores are stopped when
necessary, typically by means of clock gating. The idea here
is to extend stop and go by (a) allowing a core to have
its available computational power reduced, without however
being disabled completely, and (b) determine which core(s)
to temporarily “unload” based on the proposed indexes. Also,
here the load of the unloaded core(s) is relocated to the
others, which reduces the service quality degradation, and
further motivates the different name of “turn over”. The
parameters of this policy, in addition to Oc, are
• the off-time ∆TO for the unloaded core(s),
• and L◦: the desired utilization setpoint when a core is

in an off-time phase (zero if it is disabled completely).
The policy is actuated by unloading the core coff ∈C that

signals the necessity of a thread reallocation by moving the
core setpoint to L◦, while the other setpoints can be computed
as

L◦c(k) =
1

Nc−1 ∑
c∈C

Lc(k), (11)

and then applying the Load aware rule above. Notice that the
main purpose of this approach is not meant to minimize the
number of migration, but to spread the load among the cores
with low power consumption, while unloading the ones with
high power consumption.

VI. SIMULATION EXAMPLES

We here present the results obtained with the proposed
policies in two different scenarios. The results have been
performed using a python simulator3. For all the experiments
the load monitor has Oc = 2, ∀c ∈ C.

A. First scenario: 32 threads on 4 cores

In the first scenario the thread pool is composed of 32
threads, that must be run on 4 cores, for 200 scheduling
rounds. The αθ (k) is constant and equal for all the considered
threads. The round time τrc is equal for all the cores. In the
experimental results, we omit the Load aware policy, since
the figures are qualitatively identical to the ones obtained
with the simple one.

Figure 3 shows the results obtained with the Simple
dispatching rule. The plots on the left column show the

3The simulator is released under the GPL license and publicly
available at https://github.com/apapadopoulos/
MultiCoreMigrationSimulator

0

0.5

1
c 1

Load request Lc % Overload Oc/Oc

0

0.5

1

c 2

0

0.5

1

c 3

0 50 100 150 200
0

0.5

1

k

c 4

0 50 100 150 200

k

Fig. 3: Simulation results with the Simple dispatching rule
(22 migrations with Oc = 2, 20 migration with Oc = 3).

0

0.5

1

c 1

Load request Lc % Overload Oc/Oc

0

0.5

1

c 2

0

0.5

1

c 3

0 50 100 150 200
0

0.5

1

k

c 4

0 50 100 150 200

k

Fig. 4: Simulation results with the Load normalised dispatch-
ing rule (5 migrations).

requested load while the plots on the right column show the
percentage of overload, computed as Oc/Oc. The utilization
setpoint for the four cores are L◦c1

= 0.25, L◦c2
= 0.5, L◦c3

=
0.75, and L◦c4

= 1.0 respectively. The blue line refers to a
simulation with with the threshold Oc is set to 3, while the
red line shows the result for Oc set to 2. As can be observed,
changing the threshold speeds up the convergence of the
migrations. The rule migrates threads from the cores that are
overloaded with respect to their setpoint (in the example, c1
and c2), to the ones that are not overloaded. More precisely,
when the integrated overload index reaches the threshold,

0

0.5

1

c 1

Load request Lc % Overload Oc/Oc

0

0.5

1

c 2

0

0.5

1

c 3

0 50 100 150 200
0

0.5

1

k

c 4

0 50 100 150 200

k

Fig. 5: Simulation results with the Turn-over dispatching rule
(35 migrations).

a thread is migrated out of the corresponding core and the
index is reset. If the overload index reaches the threshold
again, this causes a subsequent migration.

The results of the Load normalised dispatching rule are
shown in Figure 4. We set ∆U = 20 so as to adapt the
utilization setpoint every 20 rounds. The initial utilization
setpoint is the same as for the simple policy, and it is adapted
according to (8). The convergence to the set point is slower,
but on the other hand the number of migrations is lower than
with the Simple rule.

Figure 5 shows the results obtained with to the Turn-over
dispatching rule. In this case, intuitively, the core utilization
set points take essentially the role of an upper bound on
their burden, as can be seen in the results. The number of
migrations can be high, especially for the re-distribution of
the unloaded cores’ work, but migrations tend to be clustered
in specific small time intervals, while for the rest of the
time no thread is migrated. The parameters chosen for this
example are ∆TO = 20, SB = 0.2 and Oc = 2.

B. Second scenario: Scalability

In the second scenario we analyze how the number of
migrations scales with the number of cores and with the
number of threads. Since the turn-over policy is not meant
to minimize the number of migrations, but it is based on
Load aware, we here do not consider it. We simulated 1500
scheduling rounds, with the a varying number of threads,
Nθ ∈ {100,128,250,256,500,512,1000,1024}, and with a
varying number of cores, Nc ∈ {2,4,8,16,32,64,128,256}.
At the beginning of the simulation, the threads are all on the
first core, while all the other cores are unloaded, which is
the most critical situation.

Figure 6 shows the obtained results as a function of the

0

500

1000

1500
m

ig
ra

tio
ns

Simple Nθ = 100
Nθ = 128
Nθ = 250
Nθ = 256
Nθ = 500
Nθ = 512
Nθ = 1000
Nθ = 1024

0

500

1000

1500

m
ig

ra
tio

ns

Load aware

0 50 100 150 200 250
0

500

1000

1500

Nc

m
ig

ra
tio

ns

Load normalized

Fig. 6: Number of migrations as a function of the number
of cores.

number of cores, while Figure 7 presents the same informa-
tion as a function of the number of threads. The number of
migrations in all the policies has a linear relationship with
respect to the number of threads while it seems to be fairly
constant with respect to the number of cores. This is an
interesting result. Indeed, a migration policy should not be
affected by the number of cores.

In the end one can conclude that Load normalization
behaves better than the other policies both in the first and
in the second scenario. Indeed, Load normalization allows to
obtain the least amount of migrations, and a more predictable
behaviour. At the same time its computational complexity is
limited.

VII. CONCLUSIONS AND FUTURE WORK

We have revisited the problem of multicore thread schedul-
ing and migration with a control-theoretical attitude, extend-
ing previous uniprocessor results. We have formulated the
problem as a control problem, allowing for the introduction
of suitable interfaces and objectives that can be achieved with
a modular and hierarchical control structure. The contribution
of this paper is the design of the thread dispatcher. The
dispatcher works on top of the uniprocessor scheduler and
serves as a higher-level controller, possibly implementing
a simple policy as well as a power-aware one. We have
also proposed some potential policies, that could be further
refined. We believe that the main contribution of this paper
resides in the structure of the overall control mechanism. The

0

500

1000

1500

m
ig

ra
tio

ns

Simple Nc = 2
Nc = 4
Nc = 8
Nc = 16
Nc = 32
Nc = 64
Nc = 128
Nc = 256

0

500

1000

1500

m
ig

ra
tio

ns

Load aware

200 400 600 800 1000
0

500

1000

1500

Nθ

m
ig

ra
tio

ns

Load normalized

Fig. 7: Number of migrations as a function of the number
of threads.

proposed structure allows for the design and implementation
of novel techniques that are able to easily scale up to the
multicore case, while maintaining a low computational com-
plexity. We have shown with simulation results the behaviour
of the policies and developed a simulator that is distributed
freely to foster future research in multicore scheduling.

REFERENCES

[1] L. Abeni, L. Palopoli, G. Lipari, and J. Walpole, “Analysis of a
reservation-based feedback scheduler”, in Proc. 23rd IEEE Real-time
Systems Symposium (RTSS02), Austin TX, USA, 2002, pp. 71–80.

[2] I. Ahmad, S. Ranka, and S. Khan, “Using game theory for scheduling
tasks on multi-core processors for simultaneous optimization of
performance and energy”, in Parallel and Distributed Processing.
IEEE Int. Symposium on, 2008, pp. 1–6.

[3] J. Anderson, J. Calandrino, and U. Devi, “Real-time scheduling on
multicore platforms”, in Real-Time and Embedded Technology and
Applications Symposium. Proc. of the 12th IEEE, 2006, pp. 179–190.

[4] S. Boyd-Wickizer, R. Morris, and M. F. Kaashoek, “Reinventing
scheduling for multicore systems”, in Proc. of the 12th Conf. on Hot
Topics in Operating Systems, ser. HotOS’09, Berkeley, CA, USA:
USENIX Association, 2009, pp. 21–25.

[5] S. Chauhan, A. Sharma, and P. Grover, “Developing self managing
software systems using agile modeling”, ACM SIGSOFT Software
Engineering Notes, vol. 38, no. 6, pp. 1–3, 2013.

[6] S. Cheng, V. Poladian, D. Garlan, and B. Schmerl, “Engineering self-
adaptive systems through feedback loops”, in Software engineering
for self-adaptive systems, B. Cheng et al., Eds., Berlin, Germany:
Springer, 2009, pp. 48–70.

[7] Y. Diao et al., “Self-managing systems: A control theory foundation”,
in Proc. 12th IEEE Int. Conf. and Workshops on Engineering of
Computer-Based Systems, Phoenix, AZ, USA, 2005, pp. 441–448.

[8] A. Filieri et al., “Software engineering meets control theory”, in 10th
International Symposium on Software Engineering for Adaptive and
Self-Managing Systems, ser. SEAMS 15, 2015.

[9] D. Geer, “Chip makers turn to multicore processors”, Computer, vol.
38, no. 5, pp. 11–13, 2005.

[10] J. Hellerstein, Y. Diao, S. Parekh, and D. Tilbury, Feedback Control
of Computing Systems. Hoboken, NJ, USA: John Wiley & Sons,
2004.

[11] C. Karamanolis, M. Karlsson, and X. Zhu, “Designing controllable
computer systems”, in Proc. 10th Conf. on Hot Topics in Operating
Systems, Berkeley, CA, USA, 2005, pp. 9–15.

[12] J. Kephart and D. Chess, “The vision of autonomic computing”,
Computer, vol. 36, no. 1, pp. 41–50, 2003.

[13] A. Kumar, “Multiprocessing with the completely fair scheduler”,
IBM developerWorks, 2008.

[14] A. Leva and M. Maggio, “Feedback process scheduling with simple
discrete-time control structures”, Control Theory Applications, IET,
vol. 4, no. 11, pp. 2331–2342, 2010.

[15] A. Leva, M. Maggio, A. Papadopoulos, and F. Terraneo, Control-
based Operating System Design. London, UK: IET, 2013.

[16] A. Leva, A. Papadopoulos, and M. Maggio, “A general control-
theoretical methodology for runtime resource allocation in computing
systems”, in Decision and Control (CDC), 2013 IEEE 52nd Annual
Conf. on, 2013, pp. 3487–3492.

[17] M. Maggio, F. Terraneo, A. Papadopoulos, and A. Leva, “A PI-based
control structure as an operating system scheduler”, in Proc. IFAC
Conf. on Advances in PID Control PID’12, 2012, pp. 329–334.

[18] M. Maggio, E. Bini, G. C. Chasparis, and K.-E. Årzén, “A game-
theoretic resource manager for RT applications”, in 25th Euromicro
Conference on Real-Time Systems, ECRTS 2013, Paris, France, July
9-12, 2013, 2013, pp. 57–66.

[19] M. Maggio, F. Terraneo, and A. Leva, “Task scheduling: A control-
theoretical viewpoint for a general and flexible solution”, ACM Trans.
Embed. Comput. Syst., vol. 13, no. 4, 76:1–76:22, 2014.

[20] R. Mall, Real-Time Systems: Theory and Practice. Pearson Educa-
tion, 2009.

[21] P. Oreizy et al., “An architecture-based approach to self-adaptive
software”, IEEE Intelligent systems, vol. 14, no. 3, pp. 54–62, 1999.

[22] C. Pabla, “Completely fair scheduler”, Linux Journal, vol. 2009, no.
184, Article No. 4, 2009.

[23] A. V. Papadopoulos, “Design and performance guarantees in cloud
computing: Challenges and opportunities”, in 10th International
Workshop on Feedback Computing, 2015.

[24] A. V. Papadopoulos, M. Maggio, A. Leva, and E. Bini, “Hard real-
time guarantees in feedback-based resource reservations”, Real-Time
Systems, vol. 51, no. 3, pp. 221–246, 2015.

[25] A. V. Papadopoulos, M. Maggio, F. Terraneo, and A. Leva, “A
dynamic modelling framework for control-based computing system
design”, Mathematical and Computer Modelling of Dynamical Sys-
tems, pp. 1–21, 2014.

[26] M. Salehie and L. L. Tahvildari, “Self-adaptive software: Landscape
and research challenges”, ACM Tran. on Autonomous and Adaptive
Systems (TAAS), vol. 4, no. 2, pp. 1–42, 2009.

[27] F. Terraneo et al., “FLOPSYNC-2: Efficient monotonic clock syn-
chronisation”, in Proceedings of the 35th IEEE Real-Time Systems
Symposium, ser. RTSS, 2014, pp. 11–20.

[28] F. Terraneo et al., “Reverse flooding: Exploiting radio interference
for efficient propagation delay compensation in wsn clock syn-
chronization”, in Proceedings of the 36th IEEE Real-Time Systems
Symposium, ser. RTSS, 2015.

[29] G. Wu, Z. Xu, Q. Xia, and J. Ren, “An energy-aware multi-core
scheduler based on generalized tit-for-tat cooperative game”, Journal
of Computers, vol. 7, no. 1, 2012.

