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ABSTRACT
In the last years, cloud computing received an increasing
attention both from academia and industry. Most of the
solutions proposed in the literature strive to limit the effect
of uncertain and unpredictable behaviors that may occur in
cloud environments, like for example flash crowds or hard-
ware failures. However, managing uncertainty in a cloud
environment is still an open problem. In such a panorama,
the service provider is not able to define suitable Service
Level Objectives (SLO) that are easy to measure, and con-
trol. In this work we analyze two of the critical problems
that are encountered in cloud environments, but seldom dis-
cussed or addressed in the literature: (1) how to reduce the
uncertainty providing suitable control interfaces at different
levels of the computing infrastructure; (2) how to assess per-
formance evaluation in order to get probabilistic guarantees
for the SLOs. We here briefly describe the two problems
and envision some possible control-theoretical solutions.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

Keywords
Cloud computing, performance evaluation, uncertainty man-
agement

1. INTRODUCTION
The idea of using feedback control for managing complex
computing systems functionalities has been very successful
in the last two decades [1]–[5]. However, as suggested also
in [6], while low level functionalities, such as task schedul-
ing or memory management, can be easily modeled without
much uncertainty, the higher layers are affected by different
sources of uncertainty. As a result, high level functionali-
ties are typically more difficult to control, and in some cases
heuristic techniques might perform better than control-the-
oretical approaches [7].

Such an uncertainty can be linked to two facts. First, most
of the high level functionalities are “closer to the environ-
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ment” where the computing system operates. This means
that many external factors are directly affecting the perfor-
mance of the considered functionality. For example, in the
case of a load-balancer, its performance will be affected by
the incoming traffic, the enqueued requests, and by the type
of request; all these factors will affect the response time of
the single request from the user perspective[8]–[11], possibly
yielding bad performance, thus loss of customers. More im-
portant, these factors are just external, i.e., they cannot be
affected by any component, but their effect can be limited.

Second, the uncertainty may not come from environment,
but from “internal phenomena” of the computing infrastruc-
ture, i.e., from the lower layers of the system. For example,
it is almost impossible to track an incoming request down to
the thread that is in charge of serving it; and the adopted
scheduling policy may affect the response time for the sin-
gle request. Therefore, an internal behavior, i.e., something
that in principle we can control, will introduce an uncer-
tainty that cannot be easily compensated. Indeed, whereas
the process of abstraction from the lower layers while de-
signing new high functionalities is a desirable feature, the
interfaces provided by the lower layers to the higher ones
practically limit the controllability also of high level quanti-
ties, e.g., the response time of a request.

Providing the “right interfaces” towards the other layers be-
comes particularly relevant whenever control theory comes
into play, since the “right measurements” or the “right ac-
tuators” to control the desired quantities must be available
in order to obtain good performance. For example, most
of the research conducted on task scheduling was assuming
to modify some parameters of the existing scheduling algo-
rithm [1], [12], instead of redesigning as a new controller the
scheduler itself as done in [13]. In [14] the authors prove
that this approach gives better results, thanks to the fact
that the right interfaces for the scheduler have been exposed,
and the controller is not acting on some quantities that will
indirectly affect the scheduling policies, like for example the
nice number. Similar remarks can be found in [15]–[19].

Whatever is the source of uncertainty, either external or
internal, it typically hinders the possibility of obtaining re-
peatable results, especially in cloud environments, which are
somehow in the upper layers of the computing infrastruc-
ture. In cloud computing, the evaluation of different algo-
rithms or policies is indeed a hard task due to non-repeatable



experiments. Many papers propose some novel and inter-
esting techniques aimed at solving well known important
problems in the context of cloud computing, e.g., admission
control [20], [21], load balancing [11], auto-scaling [22]–[24],
etc., but up to date, most of them show their effectiveness
against other approaches in few specific cases. This is due to
the lack of standardized benchmarking, and to the difficulty
in managing stochastic or uncertain behaviors.

On the other hand, the service providers need to guarantee
certain Service Level Objectives (SLOs) to their customers.
Sturm et al. [25] define some features that a SLO should
fulfill. Among them, three of them reflect the discussion
above, i.e., a SLO must be controllable, repeatable, and mea-
surable. While the first is affected by internal phenomena,
the last two properties, are affected both from internal and
from external factors. In particular, the measurable part
should include probabilistic guarantees on the obtainable
performance, which, to the best of the author’s knowledge,
is seldom carried out in most of the proposed techniques.

The rest of the paper is thus focusing on two main research
challenges, sketching some possible ideas on how they might
be addressed:

1. How can one guarantee controllability of a cloud sys-
tem, and to which extent.

2. How can one provide SLOs that are repeatable, and
measurable.

2. ADDRESSING CONTROLLABILITY
One of the large challenges for feedback computing in cloud
applications is that most of the components were not de-
signed having controllability, or “self-adaptivity”, in mind
[16].

Since computing systems are moving toward dealing with
continuously changing and unpredictable execution environ-
ments and user interactions, their design must allow for self-
adaptation [26]. Controllability will require a paradigm shift
in how computing systems at large are conceived, which has
to come out with appropriate theories, design practices, and
training to enable engineers creating software that is control-
lable by design. Such software would provide formally guar-
anteed self-adaptation capabilities off-the-box, overcoming
the limitations of trying to control software not designed to
be controlled.

2.1 Possible solutions
In order to address controllability issues, and, at the same
time, to reduce the uncertainty present in the higher lay-
ers of the computing infrastructure, one should design an
end-to-end integrated design of the computing hierarchy. In
other words, one should modify, and possibly redesign all the
layers of the computing infrastructure, accounting for con-
trol wherever is needed, and providing reasonable interfaces
among the different layers. This must be done after hav-
ing analyzed and decided which are the high level objectives
that one wants to achieve.

In some sense, one can compare computing systems with
power plants, and consider what has been done in the last

decades [27], [28]. At the very beginning, most of the control
systems were pretty rudimentary, and the overall plant was
managed in a very inefficient way. However, the advances in
control theory, and the availability of reliable physical mod-
els, enabled the possibility of automatizing many processes
in power plants increasing their efficiency, and resilience [29].
As a consequence, starting from the lower layers of the plant
– closer to the actual physical phenomenon that was to be
controlled – control strategies for higher levels were designed
aimed at coordinating and synchronizing the lower layers,
and at the same time achieving higher efficiency, and in-
creasing productivity. It is worth noticing that such a de-
sign paradigm permitted to reduce the uncertainty coming
from the lower layers, also thanks to the adoption of robust
control design techniques [30]. Hence, on top of these lay-
ers, high level functionalities of the plant were constructed
with less difficulties, but keeping controllability of the plant
in mind [31]. An interesting historical perspective on how
control theory affected, and is still affecting different kind of
industries can be found in [32].

On the other hand, computing systems were constructed on
top of layers often based on heuristics, and, more impor-
tant, that were not conceived having control in mind. As a
consequence, obtaining reliable mathematical models of the
lower layers is too difficult, and control capabilities are then
limited. Sticking to the parallel example, it is interesting to
notice how the uncertainty of the controlled variables in a
power plant is decreasing while going towards the top layers
of the hierarchy, while the exact opposite phenomenon can
be observed in computing systems.

It is thus needed to define suitable control design patterns
that can be used to design computing systems, and how they
can be combined together. This is not an easy task since it
will require to include in the design of cloud computing sys-
tems the integration of high level goals, functional and non-
functional requirements, and to rethink and redesign how
the different components interact and cooperate/compete
together to achieve their own goals. The adoption of math-
ematical models of the computing phenomena would help
in the development of control paradigms for computing sys-
tems.

There is some active research on these topics, especially in
the software engineering community. They both consider
top-down, e.g., [33], and bottom-up approaches, e.g., [34],
[35], or a combination thereof in order to achieve better
controllability of computing systems. Noteworthy, a holistic
approach of a cloud computing system, and, more in gen-
eral, of control-based computing infrastructure is definitely
a large challenge [36].

Of course, much has been done over the last 30 years in
computer science, and the challenge is not only how one
can redesign the computing layers, but also how to deal
with backward compatibility issues. Think, for example, to
the introduction of IPv6 and all the backward compatibility
problems that are still present with IPv4.

In any case, such a design could possibly benefit from the
large experience that has been done in power systems, in
order to address similar problems. One industrially relevant



example is the management of alarms [37]. In power plants,
indeed, there is a large amount of alarms that need to be
quickly managed, in order to avoid damages to the plant
or to the environment. Similar problems can be encoun-
tered in cloud computing, where alarms typically indicate a
flash crowd, a hardware failure, or a malfunctioning of cer-
tain component of the infrastructure [24]. All these things
must be managed promptly, in order to avoid the system to
collapse, to lose customers, or to provide the service with
limited capacity for long time [34].

3. ADDRESSING REPEATABILITY AND
MEASURABILITY

Whatever is the considered computing infrastructure, even
in the case of a control-theoretical integrated solution as pro-
posed in the previous section, some sources of uncertainty
still remain: flash crowds, hardware or software failures, etc
will always affect the performance of the computing infras-
tructure. Interestingly, in some cases, uncertainty is also
deliberately “injected” in the computing system as “approx-
imate computing” in order to get higher computing perfor-
mance; approximate computing can be both at the hardware
level [38]–[40], and at the software level [41]–[43].

Independently of the source of uncertainty, the service provi-
der should be able to offer some guarantees (possibly proba-
bilistic), about some quantities of interest, in order to define
understandable, repeatable and measurable SLOs. It is clear
that cloud computing has so many diverse sources of uncer-
tainty, that properly defining SLOs becomes a really hard
task. Deterministic measurements of SLOs are practically
impossible to obtain in a cloud infrastructure, due to many
stochastic phenomena affecting the system. This hinders
the possibility to have “repeatable experiments”, at least in
a strict sense.

The same problem comes when a new method is proposed
in the literature and it should be evaluated against previous
ones. As anticipated, the community has not agreed yet on
a standard benchmark, or on standard procedures for carry-
ing out such an evaluation. Thus, for example, determining
what autoscaler is the best among the numerous ones pro-
posed in the literature [44] is not so simple, and it depends
on the specific stochastic realizations of different variables
that were considered in the evaluation. This applies to virtu-
ally any functionality in a cloud environment, ranging from
service admission control, to load balancing, up to VM place-
ment [36]. Even though this is a well known issues, most of
the work in the literature just limit the evaluation of the
proposed methodologies to few experiments and providing
no probabilistic bounds on the obtainable performance.

Therefore, the research question becomes: How can one
properly define SLOs that can be measurable and repeat-
able in a cloud infrastructure?

3.1 Possible solutions
The only possibility to deal with the mentioned uncertain
and stochastic behaviors is to adopt a probabilistic approach,
as also suggested in [45]. However, in order to formally pro-
vide grounded probabilistic guarantees, one should follow
these steps:

1. define an ideal (possibly deterministic) behavior for
the SLO, y◦(·), independent of the sources of uncer-
tainty;

2. set a prescribed risk ε that this ideal behavior is not
met;

3. perform experiments over a sensible finite horizon T in
order to evaluate which is the maximum distance ρ be-
tween the ideal behavior y◦(·), and the measured per-
formance ym(·) with a certain method m ∈ M, where
M is the set of all the possible methodologies. No-
tice that ym(·) is a stochastic quantity, since it is af-
fected by all the uncertain and unexpected behaviors
described so far.

Formally, one can formulate the performance evaluation prob-
lem as a chance constrained optimization problem (CCP),
i.e.,

CCPm : min
ρ
ρ (1)

subject to: P{dT (y◦, ym) ≤ ρ} ≥ 1− ε.

for all the possible methodologies m ∈ M, where dT (·, ·)
computes the distance between the desired behavior of the
system y◦(t), and the actual behavior ym(t), over a finite
horizon T , and should be suitably chosen according to the
specific application. The solution ρ?m for a given CCPm
is the maximum distance from the ideal behavior of the
SLO for the considered method m. Among all the possi-
ble methodologies in the set M, then, one should choose the
methodology with minimum ρ?m.

Unfortunately, solving a generic CCP is an NP-hard prob-
lem [46], [47]. However, randomized methods have been
developed in the control community in order to obtain ap-
proximate solutions ρ̂?m to the CCP (1) with a very high
confidence [48]–[50], and with a limited number of experi-
ments.

From the service provider perspective, such an approach
offers a way to define specific measurable quantities, and
confidence intervals with probabilistic guarantees that can
be used to properly define new SLO. In addition, it is also
defining procedures to evaluate and formally assess the per-
formance of different functionalities. According to this per-
spective, the repeatability would not be in terms of obtain-
ing the very same quantitative results, but obtaining similar
probabilistic properties for the considered functionality.

4. CONCLUSION
Cloud computing received a lot of attention in the last years.
However, managing uncertainty in a cloud environment is
still an open problem. On one side, this paper discussed the
problem of using control theory to decrease the uncertainty
in the higher levels of the computing infrastructure, rang-
ing from the hardware level, scaling up to the cloud. On the
other hand, service providers should be aware of such uncer-
tainty while defining their SLOs, since it is mining the pos-
sibility of having measurable and repeatable performance.
This was related to the performance evaluation of different
methodologies, which is a problem that, to date, was not ad-
dressed in a general way in the cloud community, and that
could benefit by some results present in the control one.
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[3] M. Kihl, G. Cedersjö, A. Robertsson, and B. Aspernäs,
“Performance measurements and modeling of database servers”,
in 6th Int. Workshop on Feedback Control Implementa-
tion and Design in Computing Systems and Networks, ser.
FeBID, 2011.

[4] A. Leva, M. Maggio, A. V. Papadopoulos, and F. Terraneo,
Control-based operating system design. IET, 2013. doi: 10.
1049/PBCE089E.

[5] E. Bini et al., “Resource management on multicore sys-
tems: the ACTORS approach”, IEEE Micro, vol. 31, no.
3, pp. 72–81, 2011. doi: 10.1109/MM.2011.1.

[6] A. V. Papadopoulos, M. Maggio, F. Terraneo, and A. Leva,
“A dynamic modelling framework for control-based comput-
ing system design”, Mathematical and Computer Modelling
of Dynamical Systems, 2014. doi: 10.1080/13873954.2014.
942785.

[7] H. C. Lim, S. Babu, J. S. Chase, and S. S. Parekh, “Au-
tomated control in cloud computing: challenges and oppor-
tunities”, in Proc. 1st Workshop on Automated Control for
Datacenters and Clouds, ser. ACDC, 2009, pp. 13–18. doi:
10.1145/1555271.1555275.

[8] A. Ali-Eldin et al., “How will your workload look like in 6
years? analyzing wikimedia’s workload”, in Proc. IEEE Int.
Conf. on Cloud Engineering, ser. IC2E, 2014, pp. 349–354.
doi: 10.1109/IC2E.2014.50.

[9] P. Bodik et al., “Characterizing, modeling, and generating
workload spikes for stateful services”, in Proc. 1st ACM
Symposium on Cloud Computing, ser. SoCC, 2010, pp. 241–
252. doi: 10.1145/1807128.1807166.

[10] N. R. Herbst, N. Huber, S. Kounev, and E. Amrehn, “Self-
adaptive workload classification and forecasting for proac-
tive resource provisioning”, in Proc. 4th ACM/SPEC Int.
Conf. on Performance Engineering, ser. ICPE, 2013, pp. 187–
198. doi: 10.1145/2479871.2479899.

[11] C. Klein et al., “Improving cloud service resilience using
brownout-aware load-balancing”, in IEEE 33rd Int. Sym-
posium on Reliable Distributed Systems, ser. SRDS, 2014,
pp. 31–40. doi: 10.1109/SRDS.2014.14.

[12] T. Patikirikorala, A. Colman, J. Han, and L. Wang, “A sys-
tematic survey on the design of self-adaptive software sys-
tems using control engineering approaches”, in ICSE Work-
shop on Software Engineering for Adaptive and Self-Managing
Systems, ser. SEAMS, 2012, pp. 33–42.

[13] A. Leva and M. Maggio, “Feedback process scheduling with
simple discrete-time control structures”, IET Control The-
ory & Applications, vol. 4, pp. 2331–2342, 11 2010. doi:
10.1049/iet-cta.2009.0260.

[14] M. Maggio, F. Terraneo, and A. Leva, “Task scheduling:
a control-theoretical viewpoint for a general and flexible
solution”, ACM Trans. Embed. Comput. Syst., vol. 13, no.
4, 76:1–76:22, 2014. doi: 10.1145/2560015.

[15] J. O. Kephart and D. M. Chess, “The vision of autonomic
computing”, Computer, vol. 36, no. 1, pp. 41–50, 2003. doi:
10.1109/MC.2003.1160055.

[16] Y. Brun et al., “Engineering self-adaptive systems through
feedback loops”, in Software Engineering for Self-Adaptive
Systems, ser. Lecture Notes in Computer Science, vol. 5525,
Springer Berlin Heidelberg, 2009, pp. 48–70. doi: 10.1007/
978-3-642-02161-9_3.

[17] M. Maggio, A. V. Papadopoulos, and A. Leva, “On the use
of feedback control in the design of computing system com-
ponents”, Asian Journal of Control, vol. 15, no. 1, pp. 31–
40, 2013, (invited paper). doi: 10.1002/asjc.509.

[18] M. Maggio et al., “Comparison of decision-making strate-
gies for self-optimization in autonomic computing systems”,

ACM Trans. on Autonomous and Adaptive Systems, vol. 7,
no. 4, 36:1–36:32, 2012. doi: 10.1145/2382570.2382572.

[19] A. Filieri, C. Ghezzi, A. Leva, and M. Maggio, “Reliability-
driven dynamic binding via feedback control”, in ICSE Work-
shop on Software Engineering for Adaptive and Self-Managing
Systems, ser. SEAMS, 2012, pp. 43–52. doi: 10 . 1109 /
SEAMS.2012.6224390.

[20] L. Wu, S. K. Garg, and R. Buyya, “SLA-based admission
control for a Software-as-a-Service provider in cloud com-
puting environments”, Journal of Computer and System
Sciences, vol. 78, no. 5, pp. 1280–1299, 2012. doi: 10.1016/
j.jcss.2011.12.014.

[21] L. Tomás and J. Tordsson, “Improving cloud infrastructure
utilization through overbooking”, in Proceedings of the 2013
ACM Cloud and Autonomic Computing Conf., ser. CAC,
2013, 5:1–5:10. doi: 10.1145/2494621.2494627.

[22] A. Ali-Eldin, M. Kihl, J. Tordsson, and E. Elmroth, “Effi-
cient provisioning of bursty scientific workloads on the cloud
using adaptive elasticity control”, in Proc. 3rd Workshop
on Scientific Cloud Computing Date, ser. ScienceCloud 12,
2012, pp. 31–40. doi: 10.1145/2287036.2287044.

[23] A. Gandhi, M. Harchol-Balter, R. Raghunathan, and M. A.
Kozuch,“AutoScale: dynamic, robust capacity management
for multi-tier data centers”, ACM Trans. Comput. Syst.,
vol. 30, no. 4, 14:1–14:26, 2012. doi: 10.1145/2382553.
2382556.

[24] H. Nguyen et al., “AGILE: elastic distributed resource scal-
ing for Infrastructure-as-a-Service”, in Proc. 10th Int. Conf.
on Autonomic Computing, ser. ICAC, 2013, pp. 69–82.

[25] R. Sturm, W. Morris, and M. Jander, Foundations of Ser-
vice Level Management. SAMS, 2000.

[26] B. H. Cheng et al., “Software engineering for self-adaptive
systems”, in Software Engineering for Self-Adaptive Sys-
tems, B. H. Cheng et al., Eds., Berlin, Heidelberg: Springer-
Verlag, 2009, ch. Software Engineering for Self-Adaptive
Systems: A Research Roadmap, pp. 1–26. doi: 10.1007/
978-3-642-02161-9_1.

[27] R. Miller and J. Malinowski, Power System Operation. McGraw-
Hill Education, 1994.

[28] B. Galloway and G. Hancke, “Introduction to industrial
control networks”, Communications Surveys Tutorials, IEEE,
vol. 15, no. 2, pp. 860–880, 2013. doi: 10.1109/SURV.2012.
071812.00124.
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