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ABSTRACT

Self-adaptive software systems are designed to support a
number of alternative solutions for fulfilling their require-
ments. These define an adaptation space. During operation,
a self-adaptive system monitors its performance and when
it finds that its requirements are not fulfilled, searches its
adaptation space to select a best adaptation. Two major
problems need to be addressed during the selection process:
(a) Handling environmental uncertainty in determining the
impact of an adaptation; (b) maintain an optimal equilib-
rium among conflicting requirements. This position paper
investigates the application of Adaptive Model Predictive
Control ideas from Control Theory to design self-adaptive
software that makes decisions by predicting its future per-
formance for alternative adaptations and selects ones that
minimize the cost of requirement failures using quantitative
information. The technical details of our proposal are illus-
trated through the meeting-scheduler exemplar.

Categories and Subject Descriptors

D.2.10 [Software Engineering]: Design—methodologies
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1. INTRODUCTION
Self-adaptive systems are designed to maintain the fulfill-

ment of their requirements in dynamic environments. When
a failing requirement is encountered the system adapts by
switching to an alternative configuration. The set of the
available configurations constitute the system’s adaptation
space. Unfortunately, configuration selection is not an easy
task as requirements are often conflicting and an adaptation
that restores a failed requirement may break another one.
For example, restoring a failed performance requirement by

adding a server to a system may fail an operating costs re-
quirement. In addition, stakeholders often over-constrain
the system-to-be, or propose unrealistic unfeasible require-
ments [14]. Such conflicts can be accommodated by set-
ting realistic thresholds, making a satisfactory equilibrium
attainable. However, for many software systems setting ac-
curate thresholds is at best guesswork, since there are no
physical laws that account for the relationship between con-
trol parameters and requirements for an adaptive system.

Current approaches [5,8,21] deal with conflicting require-
ments and adaptation costs by making predictions about
the system’s environment and anticipate failures by mak-
ing reconfiguration plans that optimize the utility output
over time using a control theoretic technique, named Model
Predictive Control (MPC), and variations of it [12]. How-
ever, these approaches are specific to resource provisioning
and therefore architectural configurations, ignoring the di-
mensions of requirements and behavior of the adaptation
space [2]. Moreover, the lack of a software engineering method-
ology which relates the elements of MPC and those of a self-
adaptive software system prevents designers from applying
this technique to domains other than service-based applica-
tions, where the current approaches focus on.

In this position paper we describe how a combination of
concepts from Software Engineering (SE) and Control The-
ory (CT), in the same line of work as in [4], can tackle in a
systematic way the problem of conflicting requirements and
overestimation of system capabilities while applying adap-
tation strategies that maximize the system’s outcome over
time with minimum adaptation effort. Towards this direc-
tion we propose a combined use of MPC [12] and an on-
line learning mechanism [10], similarly to [13,15], to predict
the future behavior of the controlled system within a speci-
fied horizon and dynamically compose adaptation strategies
that will minimize the divergence of each requirement from
the specified threshold prescribed by the stakeholders. Fur-
thermore, we examine how the synthesis of a controller can
be part of a SE process for designing self-adaptive systems.
The adoption of MPC guarantees the avoidance of over-
shooting, management of constraints, and optimal tradeoff
among conflicting requirements across time using prioritiza-
tion techniques. In particular, we use Analytic Hierarchy
Process (AHP) [1,7].

The rest of the paper is organized as follows. Section 2
introduces the baseline of our proposal. Section 3 investi-
gates how MPC can be applied for quantitative adaptation.
Finally, Section 4 concludes the paper.
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Figure 1: Three-peaks model for the Meeting Scheduler case study.

2. PRELIMINARIES AND MOTIVATING

EXAMPLES
Our proposal adopts concepts from Goal-Oriented Re-

quirements Engineering (GORE) such as goals for model-
ing stakeholder requirements, softgoals for modeling qual-
ity requirements, and AND/OR refinements that refine goal
G into simpler goals whose satisfaction (all/at least one)
implies the satisfaction of G, following traditional boolean
semantics. Tasks are actions that a component (hardware
/software components, or an external actor) can implement
to fulfill or operationalize a goal. For example, in Fig. 1,
Schedule meeting is a top-level goal, while Good participa-
tion is a softgoal. The goal Schedule meeting is AND refined
into subgoals Initiate Meeting, Book Meeting and Manage
Meeting.

In our previous work [1] we proposed a qualitative adap-
tation process inspired by feedback loop control. The design
of this process includes three basic concepts: Awareness Re-
quirements, Evolution Requirements and System Identifica-
tion.

Awareness requirements (AwReqs) impose constraints on
the failure of other requirements and correspond to the set-
points of the adaptation mechanism. AwReqs are associated
with variables named indicators that measure their success
degree. For example, AR4 dictates that the goal Find Room
must never fail, whereas AR1 prescribes that 85% of time the
weekly cost of meetings must be less than 500 Euros. Hence,
the associated indicators are I4 = 100% and I6 ≥ 85%.
Every indicator is constantly monitored and when its value
diverges from the one prescribed by the stakeholders, the as-
sociated AwReq fails and adaptation is triggered. In control-
theoretical terms, indicators correspond to the system’s out-
puts.

Evolution requirements (EvoReqs) [18] describe when and
how other requirements should change at runtime. For ex-
ample, an EvoReq may be“If requirementR fails three times
in a row, replace it with requirement R−”, where R− is a

weaker (i.e., easier to fulfill) requirement. Such requirements
are useful to evolve unfeasible requirements that were ini-
tially elicited from the stakeholders.

System Identification. Indicators are controlled by con-
trol parameters (CPs) set by the adaptation mechanism. In
our recent work [2] we proposed an iterative process, named
three-peaks to guide the software designers elicit a larger
adaptation space that includes control parameters from the
three dimensions of a software system, requirements, behav-
ior and architecture. Requirement control parameters (Re-
qCPs) are derived either from OR-refinements or physical,
information resources required by the system, in order to
operate. For instance, V P1 in Fig. 1 is a ReqCP that gets
its values from the ordered set {t2 −→ t3 −→ t4}. On the
other hand, RfM and HfM are integer variables that rep-
resent how many local rooms and hotel rooms respectively
are provided for meetings. MCA is yet another ReqCP that
represents how many conflicts for the timeslot chosen and
the participant timetables, while FhM represents from how
many participants the system should collect time tables in
order to satisfy the goal G5. Behavioral control parame-
ters (BCPs) stem from system behavior, modeled with flow
expressions (see Fig. 1), that capture allowed sequences of
fulfillment of subgoals in order to fulfill a parent goal. For
example, the goal Book Meeting can be fulfilled either by
finding room first and then a date (G6;G7) or find a date
first and a meeting room afterwards (G7;G6), see Fig. 1.
These two potential sequences constitute the set of values for
BCP1. Finally, Architectural Control Parameters (ACPs)
capture variability in cases where more than one component
are assigned with the fulfillment of the same goal or task,
such as the task select room automatically which is carried
out either by a component that finds the best equipped room
or the another one which finds the cheapest room available.
ACP1 gets as value the selected component’s name.

Apart from CPs, the system’s indicators are influenced by
parameters found in the system’s environment that cannot
be controlled, named Environmental Parameters (EPs). Ex-



amples of such parameters include the price of hotel rooms,
the response time of invited participants to timetable collec-
tion requests and their punctuality in attending the meetings
after confirming their presence. EPs capture environmental
uncertainty, since they are changing in a non-deterministic
manner, adding disturbances to the system. For instance,
the hotel room prices in certain periods rise, sometimes de-
creasing the indicator I1 since the costs of meetings exceeds
the allocated budget. Therefore, the system should respond
to such changes of the environment and if possible anticipate
them.

The qualitative positive or negative influence of CPs on
indicators is captured by differential relations. For example,
the differential relation ∆(I2/MCA) < 0 means that by in-
creasingMCA by one unit I2 will decrease, while ∆(I5/MCA)
> 0 means that by increasing MCA I5 will also increase.
Similarly, the differential relations ∆(I1/ACP1) [BestEqip
Room Service −→ BestPriceRoomService] > 0 (the ar-
rows indicate growing enumeration values), means switching
to the component that finds the available room with the best
price increases the success rate of I1. The differential rela-
tions are symmetric and are provided by domain experts,
which makes them prone to human errors and inaccuracies.

Indicators related to the same CP with conflicting influ-
ence, such as I5 and I2 from the previous example, are called
conflicting indicators. When multiple failures are detected
the adaptation mechanism must perform trade-offs, fixing
the most important requirements first. Towards this direc-
tion, we set priorities over indicators using AHP. Due to
lack of quantitative information on the impact of CPs on
indicators, we define alternative conservative and optimistic
adaptation policies to guide the trade-off process. A conser-
vative adaptation policy forbids the adaptation mechanism
from fixing a failing indicator if the value of a non-failing
indicator is about to decrease. The absence of quantitative
information limits the precision of the adaptation process,
given that there might exist values of CPs that fix low pri-
ority indicator while all the other affected indicators still re-
main above their thresholds. On the other hand, optimistic
adaptation policies allow tuning parameters that decrease
indicators of higher priority requirements hoping they re-
main above their threshold. Again, the lack of quantitative
relations and planning in the adaptation process can result
in leading to failure important requirements in order to fix
other, less significant ones.

3. A CONTROL-BASED APPROACH
Defining an adaptation strategy able to satisfy the most

important requirements under the presence of uncertainty is
not an easy task without adopting quantitative approaches.
This section sketches a general control-based design proce-
dure that can be used to accommodate this task.

A design process. As in various types of systems, some of
the indicators might depend not only on the chosen value
of the control parameter, but also on its past and on the
values of other indicators [9, 16]. For instance, if the par-
ticipation to the meetings drops and the value indicator I2
is 60% instead of 75%, decreasing MCA, in order to fix this
failure will not have immediate impact, but gradually I2 will
increase until it reaches the desired value. Such systems are
called dynamic systems.

The first step is to better understand how the control
parameters affect the indicators. The differential relations

Controller System
AwReq

CP

I
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Figure 2: Reference control scheme.

presented in the previous section, provide only qualitative
information, and cannot be easily exploited with control
techniques. A more expressive way to capture these rela-
tions is to consider the relation between control parameters
CP(·) ∈ R

m, and indicators I(·) ∈ R
p, as a discrete-time

linear dynamic system
{

x(t+ 1) = A · x(t) +B · CP(t)

I(t) = C · x(t)
(1)

where x(·) ∈ R
n is the state of the system—notice that the

state might not have a meaningful interpretation, but it is
functional to defining in a more compact form the relation
between CP(·) and I(·). Since the system has m inputs,
and p outputs, it is a Multiple-Input and Multiple-Output
(MIMO) system.

The matrices (A,B,C) describe the dynamics of the sys-
tem, and can be identified from experimental data through
system identification techniques for MIMO systems, e.g.,
subspace identification methods see [10,19,20]. Note that in
case A is a matrix of all zeros, the system is characterized as
static. However, our MPC is also applicable to static MIMO
systems. This analytical model can be used to predict the
future behavior of the system over a finite time horizon, and
as such is also referred as prediction model. Having identi-
fied the model of the system (1), the control scheme of Fig. 2
can be set up.

The next step is to design a control mechanism, therefore,
decide what type of “Controller” to use [4, 13, 15]. MPC is
a natural choice for the problem-at-hand for various rea-
sons [12]. First of all, it is naturally formulated for MIMO
systems. There are generally many control parameters, and
indicators that need to be controlled. Moreover, both indi-
cators and control parameters have upper and lower bounds
that the decision-making strategy should take into account.
MPC allows one to formulate the problem as the minimiza-
tion of a functional subject to given constraints as follows:

minimizeCPt+k

N−1
∑

k=0

J(AwReqt+k, It+k,CPt+k) (2)

subject to Imin ≤ It+k ≤ Imax

CPmin ≤ CPt+k ≤ CPmax

xt+k+1 = A · xt+k +B · CPt+k

It+k = C · xt+k

xt = x(t), k = 0, . . . , N − 1.

The optimization problem (2) is solved over a finite horizon
of N steps ahead, thanks to the prediction model (1). The
solution of the optimal control problem is a plan of future
control parameter values CP⋆

t , . . . ,CP
⋆
t+N−1. Only the first



element of this plan is applied, i.e., CP(t) = CP⋆
t . At time

t+ 1, a new optimization problem is solved analogously.
It is important to notice that the cost function has to be

designed according to the specific domain. A common choice
is:

J(AwReqt, It,CPt) =
∑

i

qi
(

AwReqt,i − It,i
)2

+
∑

j

rjCP
2
t,j

where qi ≥ 0 and rj > 0. The values qi are weighting the
error between the setpoint and the output, using the re-
quirement prioritization result of AHP. On the other hand,
the values rj represent penalties of using one control pa-
rameter over others, and it can be chosen according to the
specific domain [3]. Finally, minimizing the cost function
is interpreted as an effort by the adaptation mechanism to
anticipate requirement failures using analytical prediction
models, giving priority to those of higher importance, while
minimize the aggregate penalties of the planned adaptation
strategy. Whenever, it is unfeasible to eliminate completely
within the time horizon all the failures, EvoReqs can be
used to weaken the failure-insisting requirements, lowering
their thresholds.

Apparently, the quality of the obtained solution depends
on the accuracy of the extracted prediction model. It is
possible that the dynamics relating the inputs and the out-
puts of the system are changing over time, or that the linear
model (1) is not able to capture more complex dynamics of
the system. Therefore, the “Learning” block, in the control
scheme in Fig. 2 is in charge to monitor the input-output
relation of the system, and update the model that is used in
the control mechanism according to the actual behavior of
the system. The learning mechanism can be based on many
different algorithms, ranging from recursive least squares to
recursive subspace identification [6, 11]. Independently of
the learning mechanism, the “Learning” block is in charge of
updating online the model adopted by the MPC algorithm
to predict the future behavior of the system.

The proposed solution is able to cope with environmental
uncertainty, while overcomes the limitation of having qual-
itative information coming from domain experts. In princi-
ple, designers can collect data on the input-output behavior
of the system and therefore to identify a reasonably accurate
linear model describing the dynamics of the system. The
control algorithm exploits such a model for planning a suit-
able adaptation strategy, named plan of control signals in
control-theoretical terms. Finally, the learning mechanism
is in charge of updating the prediction model whenever it
behaves differently than expected.

It is worth noticing that the proposed control scheme is
generic in that the “Controller” and “Learning” blocks can
be realized in terms of any controller or learning algorithm
respectively. For our case, tools that combine optimiza-
tion and satisfiability modulo theories, e.g. [17], can handle
also boolean constraints to the MPC optimization problem.
Such constraints are “If timetables are collected automati-
cally, then the schedule is made automatically as well” (see
Fig. 1).

The main limitation of the approach comes whenever new
requirements are added to the problem. In that case, there
are two possibilities. First, new indicators (i.e., new out-
puts) are introduced to the system and second new control
parameters (i.e., inputs) are added. In both cases, the whole
design procedure needs to be repeated, since no control-

based technique is able to manage structural changes in the
systems.

4. CONCLUSIONS AND FUTURE WORK
In this position paper we investigated the problem of de-

signing an adaptation mechanism for MIMO software sys-
tems that operate within environmental uncertainty. We
used meeting-scheduler as an exemplar to demonstrate the
weaknesses of qualitative adaptation and the need of ana-
lytical models for better adaptation.

We address this problem by proposing the use of MPC.
This type of control uses analytical models that describe the
system’s behavior allowing to forecast future failures in our
requirements and anticipate them in an optimal way with
respect to their priorities.

Finally, we plan to implement an MPC controller and
experiment with simulations of the meeting-scheduler and
other case studies to further evaluate our proposal.
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