
Event-Driven Application Brownout: Reconciling
High Utilization and Low Tail Response Times

David Desmeurs
Department of Computing Science,

Umeå University, Sweden
Email: david.desmeurs@umu.se

Cristian Klein
SimScale GmbH, Germany1

Email: cklein@simscale.com

Alessandro Vittorio Papadopoulos
Department of Automatic Control,

Lund University, Sweden
Email: alessandro@control.lth.se

Johan Tordsson
Department of Computing Science,

Umeå University, Sweden
Email: tordsson@cs.umu.se

Abstract—Data centers currently waste a lot of energy, due
to lack of energy proportionality and low resource utilization,
the latter currently being necessary to ensure application re-
sponsiveness. To address the second concern we propose a novel
application-level technique that we call event-driven Brownout.
For each request, i.e., in an event-driven manner, the application
can execute some optional code that is not required for correct
operation but desirable for user experience, and does so only if
the number of pending client requests is below a given threshold.
We propose several autonomic algorithms, based on control
theory and machine learning, to automatically tune this threshold
based on measured application 95th percentile response times. We
evaluate our approach using the RUBiS benchmark which shows
a 11-fold improvement in maintaining response-time close to a
set-point at high utilization compared to competing approaches.
Our contribution is opening the path to more energy efficient
data-centers, by allowing applications to keep response times
close to a set-point even at high resource utilization.

Index Terms—graceful performance degradation; event-driven
control; machine learning; tail response time;

I. INTRODUCTION

Data-center energy efficiency is an increasing concern.
Already this sector consumes more than 1.3% of the world’s
electricity and is among the sectors with the fastest power
increase [1]. Even worse, most of this energy is being wasted
due to two reasons: lack of energy proportionality and low
utilization. Current hardware lacks energy proportionality [2],
i.e., the performance per watt is not linear with the utilization.
This is due to the fact that some components, such as memory,
disk, and even parts of the CPU, are consuming energy even
when in idle. Lack of energy proportionality is problematic in
itself, if hardware is operated at high utilization. Unfortunately,
servers are mostly utilized between 10% and 50% [2]. The
main reason is to leave headroom, so that applications may
remain responsive, despite fluctuations in the number of users
accessing them, i.e., the arrival rate. However, even assuming
a constant average arrival rate, due to the variance in inter-
arrival time, applications need some headroom to maintain
responsiveness, as proved in queuing theory [3].

A promising method to increase hardware utilization with-
out sacrificing application responsiveness is Brownout [4].
The method is inspired from brownouts in electrical grids,
which are intentional or unintentional voltage drops meant to

1work partially done while working at Umeå University, Sweden

avoid blackouts by reducing energy consumption. Similarly,
Brownout for cloud applications is a minimally-intrusive soft-
ware engineering paradigm, which avoids application overload
by selectively disabling some computations. In essence, a
developer marks some content as essential, i.e., required to
satisfy an end-user’s request, and some as non-essential, i.e.,
it can be disabled but is highly desirable to serve. For example,
for an e-commerce application the product description is es-
sential, while recommendations of similar products can be seen
as non-essential. In Brownout, a feedback controller monitors
application response time and periodically recomputes the
ratio of requests to serve with non-essential content during
the next time period.

Brownout has shown to be a useful concept to avoid
overloads. However, when Brownout is active, i.e., some non-
essential content is dropped, the response time is often far
off the desired set-point, and may present spikes. This is
mostly due to two reasons: the periodic nature of the controller
and the fact that controller decisions are based on response
time alone. Experience with the related problem of load
balancing [5] suggests that improvements can be achieved by
taking a control decision for each request, i.e., in an event-
driven manner, and by basing these decisions also on queue-
length.

In this paper we present an improved approach to Brownout.
We start by proposing a software architecture that externalizes
the decision on serving optional content to a proxy, which
implements the feedback control loop (Section III). By running
isolated from the business logic, the proxy can more precisely
monitor the number of requests in transit (commonly called
queue-length) and response times of requests. Furthermore, the
proxy decides for each request, i.e., in an event-driven manner,
whether it should be served with optional content or not. In
contrast to the previous approach where decision making was
periodic, this allows the application to keep response times
close to a set-point and CPU utilization higher.

The potential improvements of this architecture depend on
autonomic algorithms that decide which requests to serve with
optional content. We investigate solutions based on feedback
control (Section IV-A) and on machine-learning with offline
training (Section IV-B). Since each of these has advantages
and disadvantages, we propose a combined approach, where
the feedback loop is complemented with machine-learning as

feedforward signal (Section IV-C). We evaluate all approaches
through a common experiment based on the popular RUBiS
cloud application benchmark and compare the results with the
initial, periodic Brownout (Section V). Our results show a
11-fold improvement in maintaining response time close to
a set-point at high utilization compared to the initial periodic
Brownout [4] without lowering utilization. Although this im-
provement may vary a lot according to certain parameters such
as the length of the pending request queue, as it is directly
used to make the decision to serve optional content or not.
For instance, we observed a 4-fold improvement in a scenario
with low average queue-length.

By keeping applications responsive, despite having them
operate at high utilization, our contribution is opening up the
path to more energy efficient data-centers without requiring
energy proportional hardware. Furthermore, our contribution
may be of interest to other designers of autonomic control
loops, to better understand the trade-off between event-driven
and periodic decision making.

II. BACKGROUND AND MOTIVATION

Admission control is a well-proven technique to ensure
good resource utilization while avoiding system overload.
A common way to guarantee web server performance is to
drop and/or reorder certain requests when overloads (situ-
ations with many requests with very high response times)
are detected by using diverse techniques related to request
scheduling and admission control [6]–[9]. For instance, in [8],
requests are sorted into classes, and each class has a weight
corresponding to possible income for the application owner.
The income is then maximized by an optimization algorithm.
In [9], admission control is based on user-sessions, which can
be admitted, rejected, or deferred. Another related work is
the implementation of an autonomic risk-aware overbooking
architecture that, by adaptive admission control, is able to
increase resource utilization in cloud data centers by accepting
more virtual machines than physical available resources [10].

Other works involving partial execution of requests exist.
In [11], computations at the end of requests can be dropped
to improve performance and meet given task deadlines. For
that purpose, a set of scheduling algorithms are proposed and
evaluated. Similar work is realized in [12], also with requests
being time bounded implying lower answer quality but better
performance. In [13], the quality of result is measured, i.e.,
there is a decline in quality when requests are not fully
executed. In order to do so, certain requests are run twice, one
time request execution completes, i.e., deliver all components,
and a second time, requests are faster thanks to neglected data.

In the field of big data, dropping certain computations is
also considered. In [14], a system named ApproxHadoop, an
extension of Hadoop1, is designed with three mechanisms
proposed as a general approximation of MapReduce2. One
of them is task dropping where only a subset of tasks are

1https://hadoop.apache.org/
2http://research.google.com/archive/mapreduce.html

executed. An error bound is estimated for MapReduce jobs and
once a certain target is achieved, remaining tasks are dropped.
In [15], SQL queries are approximated to obtain error and
response time constraints in order to improve performance. For
that purpose, samples are created and then carefully selected
based on an analysis of the data and past queries. As a
result, a trade-off between accuracy and response time is
made to be able run fast certain queries on large amounts
of data. In [16], accuracy of queries is also investigated
with a distributed system named DICE based on data cube
exploration. This system includes a master/slave architecture
where the master distributes queries to each slave and the
slaves may either speculatively execute the queries or use
cached data. As a result, queries are run faster with a certain
level of approximation.

In cloud data centers, the Brownout paradigm [4] enables
graceful user experience degradation with admission control
carried out by removing optional contents from requests (as
opposed to dropping requests). The initial version of this
paradigm uses a controller that only takes into account the
response time. The controller outputs a dimmer value, such
that 0 ≤ dimmer ≤ 1, which is used to decide whether to
serve optional contents or not. The dimmer is periodically
updated based on an error computed with a given set-point and
the 95th percentile of the measured response times during the
last control period. Then, for each following incoming request,
the probability that optional contents are served depends on
the dimmer value. By using this process, the initial periodic
Brownout has shown to successfully avoid overloads, however
response times that significantly deviate from the set-point
and occasional spikes have been observed. This is due to
the periodic nature of its controller that makes the decision
whether to serve optional contents based on response time
only.

Initial experiments showed that basing decisions (to serve
optional contents or not) on the queue-length, that is, the num-
ber of pending requests in a web server (a proxy in our case),
leads to closer response times to the aimed set-point compared
to what has been achieved with the initial periodic Brownout.
Therefore, in this paper, the primary goal is to investigate
an event-based approach where an event is triggered by the
arrival of a new request. Hence we design and implement
algorithms that make the decision, for each request, of whether
to serve optional contents based on the queue-length in order
to keep response times close to a set-point. Another design
goal is to maximize the number of times optional contents
are served. Deactivating optional contents reduces the user
experience and should thus be applied only when necessary.
For example, a study found that recommendations, which
can be marked as optional, can increase sales of songs by
50% [17], which makes optional contents desirable, e.g., in e-
commerce applications. By maximizing the number of optional
contents served, CPU utilization is implicitly maximized as
well (although keeping a small headroom can be adequate).

III. ARCHITECTURE

Brownout can be deployed within a proxy for a web server.
This proxy should be able to measure the arrival rate of
incoming requests, the response time of each request, and
the ongoing queue-length of pending requests. By using this
information, Brownout is executed in a control loop each
time period (e.g., every second) to update a queue threshold
value. For each client request, the proxy piggybacks a boolean
value that indicates if the current queue-length is below
the threshold. The web server (logic layer) enables optional
contents for requests with this flag set. Figure 1 outlines this
architecture. In this paper we assume that requests are handled
by a server deployed in a Virtual Machine (VM), as we
consider Brownout to be used with virtualization in cloud data
centers, even though it is not a requirement. Optional content
may take time to generate, in particular if an interaction with a
database is necessary. Requests without optional contents are
thus leaner, resulting in lower response time. Subsequently
there are three types of possible VM utilization:

• Low utilization. When a VM is lowly utilized, the 95th
percentile response time (RT95) is considered well below
the set-point, even if optional content is served for all
requests.

• High utilization. When a VM is highly utilized, optional
contents are not always served in order to achieve appli-
cation responsiveness. In this case RT95 varies around
a set-point fixed in the Brownout algorithm, with the
algorithm aiming to keep RT95 as close as possible to
the set-point.

• Overload. When a VM is overloaded, application respon-
siveness is not achieved implying very high RT95, far
above the set-point, despite that no optional content is
served.

If there is more than one VM, the proxy also acts as
load balancer distributing requests to all VMs. In this case,
the measurement of arrival rates, response times and queue-
length must be separated, that is, distinct measurements for
each VM. However, we henceforth consider only one VM as
the focus of this paper is on the performance of our event-
driven Brownout algorithms. Part of an envisaged future work
is to include the event-driven Brownout algorithms with load
balancing algorithms, just as it was done with the initial
periodic Brownout [5]. Figure 1 represents the deployment
of Brownout in a proxy interacting with a single VM.

IV. DESIGN OF AUTONOMIC ALGORITHMS

In this section we describe the autonomic algorithms devel-
oped for event-driven Brownout. First we investigate a feed-
back controller approach, then Machine Learning Algorithms
(MLAs) based on offline training, and finally a combination
of the controller and a selected MLA based on online training.

A. Feedback Controller

To be able to dynamically set the queue threshold value
used to decide whether optional contents should be served, we
employ control techniques. Proportional-Integral-Derivative

Fig. 1. Event-driven Brownout architecture. A proxy runs Brownout and
interacts with an application, in this case a web server running inside a VM.

(PID) and PI controllers are widely used in practice, with more
than 95% of all industrial control problems being solved by
PID control [18], and control theory is a useful approach for
self-managing systems [19]–[21].

1) PI Controller: We design a PI controller that sets the
threshold to stabilize 95th percentile response times (RT95)
around a set-point. Measuring the 95th percentile response
time instead of the average allows to produce consistent
response times [22], and, overall, more timely responses for
the users, hence improving their satisfaction [23]. The PI
controller is outlined in Algorithm 1.

Algorithm 1 PI controller with filter and anti-windup
1: threshold← 0
2: previousError ← 0
3: y ← 0 // used to filter the process variable (RT95)
4: while server is running do
5: if filter is activated then
6: y ← p∗y+(1−p)∗RT95 // p is the filter parameter
7: error ← setPoint− y
8: else
9: error ← setPoint−RT95

10: end if
11: threshold← threshold+Kp ∗ (error −
12: previousError) +Ki ∗ error ∗ controlPeriod
13: // Saturation, using AR EWMA, which is the expo-
14: // nential weighted moving average of the arrival rate
15: threshold←min(max(threshold, 0), AR EWMA)
16: previousError ← error
17: sleep for controlPeriod
18: end while

Given the error measured during each control time period
(controlPeriod), the PI controller outputs a feedback, which
is the threshold value. The parameters Kp and Ki, as well
as the filter parameter p (with 0 ≤ p < 1), are tuned offline.
The reason we use a PI controller instead of a PID controller,
which includes a derivative part, is that the Kd parameter
associated with the derivative part can be difficult to tune and
often does not significantly improve performances [24]. It is
estimated that only around 20% of all deployed controllers use
a derivative part [25].

With a PI controller, the tuning parameters Kp and Ki

determine how fast the controller reacts to significant changes.
With high Kp and Ki, we observe that RT95 is further away
from the set-point compared to when the arrival rate does not
significantly change. Therefore, if only the PI controller is
used to determine threshold values, a tradeoff must be found
between RT95 close to the set-point but slow reactions to
significant arrival rate changes, or RT95 further away from
the set-point but with faster reactions to significant changes in
arrival rate.

2) Windup and Anti-Windup Solution: To avoid the windup
phenomena [18], [24], we need to bound the threshold. The
obvious lower boundary is 0 as there is no need for the
threshold to be lower than 0, the queue-length of incoming
requests can never be negative. The upper boundary is less
obvious. It is important to serve optional contents whenever
possible so the user experience is not deteriorated, therefore
the threshold should be high enough during low utilization in
order to always serve optional contents, as the queue-length
would always be below the threshold. We observe that taking
the arrival rate as upper boundary produces a suitable anti-
windup solution. Indeed it is unlikely that the queue-length for
the next second will be higher than the previous measured ar-
rival rate. However, for accuracy, the arrival rate exponentially
weighted moving average (AR EWMA in Algorithm 1) is
taken as upper boundary to smooth the arrival rate that may
fluctuate a lot.

3) Process Variable Filter: When the hardware configura-
tion (e.g., number of CPU cores) allows a high number of
requests to be treated at the same time, we observe that the
queue-length is high on average, and so is the threshold when
the VM is highly utilized. In contrast, when a low number
of requests is served at the same time, the queue-length and
therefore the threshold are much lower. As the threshold is
an integer, very low values of threshold and arrival rate can
lead to oscillations in RT95 due to discretization issues. If
these oscillations are too significant, we observe that RT95

can be far away from the set-point, which is undesired. To
counteract this problem, a filter on the process variable, i.e.,
RT95, can be added. We use a low-pass filter, including a p
parameter that determines how much noise is canceled. The
filter is activated or deactivated based on a certain number of
past threshold values, e.g., during the past 300 seconds. The
filter is activated if the average threshold is below a value
considered low, e.g., 10.

4) Bootstrap: Right after the proxy is initiated, the thresh-
old is set to 0, and it needs some time to increase to appropriate
values. As a result, some optional contents are not served
during the first seconds no matter the workload, which is
unwanted in case of low utilization. To avoid this problem,
optional contents can always be served before any control,
and then the initial threshold can be set to the first measured
arrival rate. As a result, optional contents are always served
at the beginning, and if the VM is overloaded, the threshold
quickly decreases thanks to the controller in order to stabilize
RT95 around the set-point. This technique is useful when the

workload is unknown, which is common in real-world scenar-
ios. This technique can also be applied when the controller is
combined with a machine learning algorithm (Section IV-C). A
machine learning algorithm does not produce useful outputs
until it has been properly trained, implying that during that
time, only the controller is used to update the threshold.

B. Machine Learning Approaches

Techniques from statistical machine learning have shown to
be effective for feedback control in cloud data centers [26],
[27]. As Algorithm 1 shows satisfying results in some situa-
tions according to how the tuning parameters are determined,
learning from these results can lead to improvements, i.e.,
avoiding slow controller reactions to significant arrival rate
changes, or RT95 being too far away from the set-point.
Therefore we investigate other approaches to find appropriate
thresholds with MLAs. Here the described MLAs are trained
offline with data from favorable states.

1) Producing Favorable States: A favorable state is based
on a set of measured data. A state S can be represented as a
tuple:

S := (RT95, arrival-rate,%-optional-content, ...). (1)

States are generated by measuring the arrival rate, RT95,
and amount the of optional content obtained using the PI
controller with diverse workloads. Next, the favorable states
are extracted, by keeping only the data points for which RT95

deviates by less than 10% from the set-point. Then, during
offline training, MLAs are trained to later be able to reproduce
favorable states.

2) Initial Approaches: We first investigated a classification
algorithm, the perceptron, which is based on a neural network
that classifies and associates favorable states with threshold
values. However, even though we observed that the perceptron
could produce decent results (i.e., RT95 not being too far away
from the set-point), it does not seem the most appropriate
MLA in this context. Indeed only one feature seems necessary
– the arrival rate – and many favorable states are needed to
train the perceptron. However, during these experiments we
noted a proportional relation between arrival rate and threshold
during high utilization (i.e., when Brownout is active, with
optional contents sometimes being dropped). Hence we used
the least square method to obtain a linear model, i.e., an
equation of the form threshold = a∗arrivalRate+b, where
a and b are parameters determined by the least square method
(using favorable states). However, thresholds obtained using
this method are sensitive to the equation parameters, and they
are incorrect when the VM is lowly utilized or overloaded as
the values found for a and b are only suitable during high
utilization. This is not the case when the VM is lowly utilized
(the threshold being much higher than the queue-length) or
overloaded (the threshold being 0 so the queue-length is
always above the threshold implying no optional content being
served). As these initial machine learning approaches have
drawbacks, we instead opt for a simple algorithm that learns
from past arrival rates and thresholds.

3) Mapping Arrival Rate to Threshold: A simpler way to
obtain thresholds given the arrival rate is to map arrival rates
to thresholds in case of favorable states, i.e., a new threshold is
inserted in a map only when a favorable state is detected. With
an offline training method, the map is eventually populated
during an initial and long experiment where the workload
slowly increases. This covers most possible arrival rates (until
a certain upper limit) and thus enough favorable states should
be produced. The map M is defined as

M = {(ar1 : t1), (ar2 : t2), ..., (arn : tn)} (2)

where n is the total number of keys/values in the map, ari is an
arrival rate indexed by i, and ti is the threshold corresponding
to ari.

Algorithm 2 Mapping arrival rate to threshold
1: Map M is populated with arrival rates and thresholds

previously produced during offline training
2: threshold← 0
3: previousThreshold← 0
4: while server is running do
5: AR← arrivalRate
6: threshold← median({M [AR+ i] |
7: i = 0,±1,±2, ...,±K})
8: if threshold = null then
9: threshold← previousThreshold

10: end if
11: previousThreshold← threshold
12: sleep for controlPeriod
13: end while

As shown in Algorithm 2, the median of a set of thresholds
close to ti is used to obtain a final threshold given the
arrival rate ari. Therefore a threshold can be obtained even
if ti does not exist in the map, and possible inaccuracies
can be avoided. If there is still no output from the MLA
(threshold = null in Algorithm 2), then the previously
determined threshold is used. Although, with a sufficient
offline training, this should not happen. The number of closest
thresholds is determined by a K value, which is inspired by
the K Nearest Neighbors (KNN) algorithm [28]. We select
the median instead of the average as the latter is sensitive to
outliers. This type of outliers can occur when the measured
arrival rates are in transit from low utilization with very high
thresholds, to high utilization with proportional thresholds, or
from high utilization to overload with thresholds set to 0 (so
optional contents are never served). The parameter K should
be carefully chosen. If K is too low, inaccuracies are possible
as not enough thresholds in the map are taken into account. But
K should not be too high to avoid to take irrelevant thresholds
into account, that is, thresholds corresponding to arrival rates
far away from the current measured one.

4) Undesirable Offline Training: Offline training may not
be feasible for two reasons. First, in a real environment (e.g., a
web developer wants to use Brownout with a web application)
a benchmark of the web application is needed for the MLA

to be trained, which is tedious. Another reason is that the
context is likely to change. For instance, the application can
run in a VM consisting of two cores, and later the VM is
reconfigured to use eight cores. At this moment all previously
learned data based on two cores would be useless, and another
offline training would be necessary. Instead, to counteract
these possible context changes, an online training approach is
necessary, but the threshold must be set somehow to be trained
with favorable states. For that, a controller can be combined
with an MLA that is progressively trained online with detected
favorable states.

C. Controller with Machine Learning

Combining a control algorithm with an MLA could achieve
the best of the two approaches. Indeed the MLA cannot be
executed alone as, at some point, it has to be trained with
favorable states. Conversely using the controller only implies
a tradeoff between RT95 being close to the set-point and slow
controller reactions to significant arrival rate changes, versus
a RT95 further away from the set-point but faster controller
reactions to sudden changes in arrival rate.

1) PI Controller with MLA Feedforward: A possible ap-
proach is to use MLA output as feedforward signal in the
control algorithm. The final controller output is equal to the
feedback added to the feedforward. The MLA is used to obtain
the feedforward component, with the mapping of arrival rate
to threshold, by taking the median of a set of thresholds given
the current arrival rate. The feedforward part is next handled
by a filter, as shown in lines 8 to 12 in Algorithm 3.

2) Filtering the Feedforward Signal: As the MLA is trained
online, inaccurate feedforward signals may occur, as well as
non-existing ones (when the median function in Algorithm 3
does not contain any threshold). In order to keep the feed-
forward signal relevant, a filter is added. Subsequently the
feedforward part does not change suddenly, and the feedback
can quickly compensate to obtain appropriate thresholds.

3) Other Possible Approaches: In addition to the controller
with MLA outputs as feedforward signal, we investigated
two other approaches. The first approach is to either use the
controller or the MLA. When the MLA has no output, the
controller is used to set the threshold, and when the MLA
has been trained enough to output threshold values, these
values are directly used to set the threshold. The second
approach is a dynamic equation technique where the threshold
is set to a ∗ arrival-rate + b where a is a value set by
the controller feedback, and b a value set thanks the least
square method using threshold values in the map (of arrival
rate to threshold). The reasons for this implied dynamic linear
equation are the observed proportionality between arrival rate
and threshold during high utilization, and the ability of the
controller feedback (a value) to quickly adapt to arrival
rate changes while still being able to handle low utilization
and overload. However, even though these two approaches
can produce decent results, they proved not as good as the
above described controller with MLA outputs as feedforward.

Algorithm 3 PI controller with feedforward
1: threshold← 0
2: previousError ← 0
3: feedback ← 0
4: previousFeedforward← 0
5: y ← 0 // used to filter the process variable (RT95)
6: while server is running do
7: AR← arrivalRate
8: feedforward← median({M [AR+ i] |
9: i = 0,±1,±2, ...,±K})

10: feedforward← pf ∗ previousFeedforward +
11: (1− pf) ∗ feedforward // pf as filter parameter
12: if filter is activated then
13: y ← p ∗ y + (1− p) ∗RT95 // p as filter parameter
14: error ← setPoint− y
15: else
16: error ← setPoint−RT95

17: end if
18: feedback ← feedback +Kp ∗ (error −
19: previousError) +Ki ∗ error ∗ controlPeriod
20: feedback ← min(max(feedback, −feedforward),
21: AR EWMA− feedforward)
22: threshold← feedback + feedforward
23: previousError ← error
24: previousFeedforward← feedforward
25: sleep for controlPeriod
26: end while

Consequently, we mainly describe and evaluate the controller
with MLA outputs as feedforward signals in this paper.

V. EVALUATION

In this section we evaluate the algorithms for event-driven
Brownout: the feedback controller, the MLA based on offline
training, and the combination of controller and MLA based on
online training. We take into account their performance, com-
pare them, and discuss the most suitable one in a web server
scenario. In addition we evaluate the initial periodic Brownout
in the same conditions to determine the improvement of our
event-driven algorithms.

The main focus of the presented performance evaluation is
on how close the response time, i.e., RT95, is to the set-point.
However, in order to give an idea of the used energy, we show
also CPU measurements.

A. Experiment setup

To be able to run experiments to test algorithms and produce
results, the benchmark web application RUBiS3 has been
deployed in our cloud testbed. The RUBiS application has
been modified in a previous work [4] to have a URL pointing
towards a page including optional contents. The modification
of RUBiS has an important impact: requests with optional
contents need much more resources and therefore results in
slower response times than requests without optional contents.

3http://rubis.ow2.org

The application is running inside a VM hosted by the Xen
hypervisor [29]. Xen is deployed in a server consisting of
a total of 32 CPU cores (AMD OpteronTM 6272 at up to
2.1 GHz) and 56 GB of memory. The lighttpd4 web server
is installed in the domain-0 of Xen (the domain-0 being
separated from the VM(s)). Lighttpd acts as a proxy to forward
requests from emulated users to the VM, hence event-driven
Brownout algorithms are implemented within the lighttpd
source code. The RUBiS application running with an Apache
web server in the VM is waiting for requests from the lighttpd
proxy. To emulate users, we use the Httpmon5 tool, which
can be used in either open or closed model. In a closed
model, a new request is only sent upon the completion of a
previous request followed by a configurable think-time. In an
open model, a new request is sent independently of previous
requests’ completion [30]. The intensity of the workload can
be configured at run-time through the concurrency parameter,
which roughly corresponds to the number of users accessing
the website. For that purpose, Httpmon applies a Poisson
distribution, a reasonably realistic model for emulating real
website users sending requests [31].

We configured certain parameters for all evaluation experi-
ments, as follows:

• The filter parameter p for filtering the process variable
RT95, and the filter parameter pf for filtering the feed-
forward signal (see algorithms in Section IV-A1 and Sec-
tion IV-C1), are set to 0.6 and 0.95, respectively. These
values have been selected after testing filters parameters
in {0.5, 0.6, 0.7, 0.8, 0.9, 0.95} with repeated experiments
to see which values gave to the best results.

• The exponentially weighted moving average smoothing
the arrival rate, which is used as upper boundary in
case of saturation (Section IV-A2), takes into account the
10 past measured arrival rates, which implies a 18.18%
smoothing.

• The set-point is set to 0.5s. The reason is that, in general,
users dislike requests taking too long and may give
up [32]. As the 95th percentile response time implies
a 5% tolerance of requests being above the set-point, a
set-point of 0.5s is justified as it globally avoids most
requests taking set-point + error second(s), where error
represents the average deviation of RT95 from the set-
point. Although, for applications where users would not
mind waiting longer to receive responses, a higher set-
point can be used.

• The control time period is 1 second, and measurements
(such as the 95th percentile response times (RT95),
threshold values, percentages of optional contents served,
and CPU utilization) are made each second and taken into
account by the event-driven Brownout algorithms.

• The Httpmon tool is configured with a think-time of 3
seconds to emulate users sending requests.

Finally, the Kp and Ki parameters must be tuned for the

4http://www.lighttpd.net/
5https://github.com/cloud-control/httpmon

control algorithms. Diverse methods for controller tuning ex-
ist [24]. However we employed a simple exhaustive approach,
as satisfying results could be produced with this approach. For
that purpose, we ran many experiments with sets of values for
Kp and Ki to try all possibilities within certain limits. Indeed
it was not useful to try too high values as we observed that
RT95 becomes less and less close to the set-point with high Kp

and Ki. We obtained the best results with a low value for Kp,
around 1, and a higher value for Kp, around 6 (not shown
with figures for briefness). In addition, a process variable
filter can be activated when thresholds are low on average, as
previously explained in Section IV-A3. We observed that low
values for both Kp and Ki lead to slow controller reactions
to significant arrival rate changes, but RT95 is closer to the
set-point when no such changes occur. The reverse effect
is observed with high values for both Kp and Ki. In our
experiments, a significant arrival rate change occurs within
seconds, when the concurrency is low and then suddenly high,
or vice versa.

B. No Brownout vs. Initial Brownout

We produce experimental results with diverse number of
concurrent emulated users sending requests. The number of
concurrent users (concurrency) is changed every 100 seconds,
which is specified at the top of the figures, and always the same
(conc.: 200, 1200, 200, 700, 600, 500). The Httpmon tool is
configured with a closed model, and the VM is configured
with an 8 cores CPU.

RT95 [sec]
utilization [%]

++++++++++++
++

++++++
+++++
+++++
+++++
++++
++++
++++++
++++
+++++
+++++
++
++++
++

+

++
+
++
+
++
++
++
++++
+

+
++
+
+

+

++
+

+

++++

+

++

++

++
++

+

+++

+

+

+
+
+
+++

+

++
+++
+
+
++
+

+
++
+

+

+
+

+++
+

+
+

++

+

+

++++
++

++

+

+
++
+
+

+

+

++
+
+
+

+

+

+

++

+

+

+
+
++++

+

+

+

+

++

++
+++

+

+

+
+

+
++
+

+

+

++

+

+
+

++

+

+
+

+

+

++

+++

+

+

+

+
++

+

+++
+

+

+

+

+
+

+

+

+

+
++

+

+

+

+

+++

+

0 100 200 300 400 500 600
0

200

400

Time [sec]

conc.: 200 1200 200 700 600 500

0

20

40

60

80

100

RT95 [sec]
utilization [%]

Fig. 2. No Brownout, RT95 in seconds (dotted) and CPU utilization [%].

Figure 2 shows results from an experiment where Brownout
is not used, with RT95 (dotted) and CPU utilization (green
line). As we can see, the VM is overloaded, with really high
RT95. When the largest concurrency (1200 concurrent users)
is applied, RT95 starts to increase rapidly and keeps growing.

Figure 3 shows the effect of the initial periodic Brownout on
the same workload, i.e., the same concurrency pattern. As we
can see, RT95 is much lower than without Brownout. This is
due to Brownout being activated (i.e., some optional contents
are dropped) to avoid the VM to be overloaded. In order to
do that, the dimmer value (red line), here represented as
a percentage (right axis), is used as a probability implying
that optional contents have dimmer% chance to be served.
However, as previously mentioned, RT95 is not close to

+++
++++
+++
++
++
+

++
+

++
+
+

+++
+
+++

+

++
++

+

++++++
++

+

+

+++

+
+
++
++
++

++++
++++
+
+

+
+

+
+
++
++

+++

+++
+
+++++
+

+

++
+
+

+

+

+++++
+
+

+

+

+

+

+

+
+

+

+
+

+

+

+

+

+

+

+

+

+

+++
+++

+

++

++

+

+

++++
++++
+

+
+

+

+

++
++

+

++++++
+++
++
+
++
+
+
+

+
++++

++

++++
+

+++

+
+

+

+

+++
+++++
+
++++++++++++++

+++
++
+

++

+

+++++

++
+
+

+
+
++
+++
+
+

++

++
+
+

++++
++
+
++
+

++

+
+
+
+
++++
++

+

+
+

+
++
+
++

++

+
+

+
+

+

++

+

++
++
+++

++

+
+

++
+

+

+

+

+

+++++
++
+

+

+

+

+

+++++++
+
+
+

+
+
+

+

+++++
+
++
+
+
++
+
+

+

+

+++++
++

+
+
+
++
++++
++++

+

+

+

+

+

+
+++

+
+
+
+
+

++
+
+
+
++
++
++
+
++
+
+

++

+

++
++
++++
+
++
+
+
+

+
++
+

+

+
++

+

+
+
+++
+
+
++
+

+

+

+++
++++
++
+
++
+
+
+

+

++

+

+++++
+++++++++++

+

+

+

+

+

+
+
+++++++
+++++

+
++
++

+++
++
+++
++++
+

+

++
++

++++++
+++
+

+
+

+
+++
++

+++
+

+
++
+

++

+
+

+

+
+++
+
+
+
+
+

++

+
+++

+
+
+++
+
++
+

+
+
+
+

++++
+
++
++
++
+
+
+
++++
+
+
+
+

++
+

+

++++
+
+

++++
++

0 100 200 300 400 500 600
0

5

10

15

Time [sec]

conc.: 200 1200 200 700 600 500

0

20

40

60

80

100

RT95 [sec]
utilization [%]
dimmer [%]

Fig. 3. Initial periodic Brownout activated with pole = 0.9 as recommended
in [33], RT95 in seconds (dotted), dimmer and CPU utilization as percentages.

the set-point and sometimes presents spikes. Spikes appear
prominently when the concurrency changes rapidly, such as
from 250 to 1500 after 100 seconds.

C. Controller, Machine Learning, and Combined Approach

Here we present results obtained with the feedback con-
troller, the MLA based on offline learning, and the combi-
nation of controller and MLA based on online training. The
experiment settings are the same as the ones in Figure 2
and Figure 3 (i.e., same concurrencies, closed model, and 8
cores CPU) to easily compare the effects of the event-driven
Brownout algorithms.

Figure 4 shows results from an experiment where the
threshold is set with the controller feedback. The parameters
Kp and Ki are set to 1, which is a low value in order to avoid
threshold oscillations due to noise in RT95. As we can see,
when the concurrency suddenly changes, especially during the
first half of the experiment, RT95 is far away from the set-
point of 0.5s that is represented with the horizontal green line.
As a result, RT95 needs some time to be reach the set-point
again after significant concurrency changes, which is a slow
controller reaction. This is also the case at the very beginning
of the experiment. As the previous feedback (see Algorithm 1)
is initially set to 0, it needs time to increase and, along with
the controller algorithm, leads to appropriate thresholds. The
two horizontal lines above and under the line for the set-
point represent tolerance values (0.4s and 0.6s), therefore we
consider it acceptable when RT95 is between these two lines
(given the context of an 8 cores CPU, with a closed model). We
can also see that, when the concurrency does not significantly
change during the last 300 seconds of the experiment, the
controller has no need to react fast, which is why RT95 is close
to the set-point. The graph on the top shows the percentage of
optional contents served and the CPU utilization in the VM.
As expected, when the concurrency is high, the percentage
of optional contents served is low, and reversely, when the
concurrency is low, more optional content is served. As the
VM is highly utilized for the whole experiment (i.e., the
percentage of optional contents is always between 0% and

100%), the CPU utilization should be maximized (potentially
with a small headroom), which is the case except for the low
concurrency 200 where the headroom can be quite large.

Figure 5 shows results from an experiment made in the
same context as the one in Figure 4, except that Kp = 15 and
Ki = 15, which is an aggressive tuning. With higher values
for the tuning parameters, we can see fast controller reactions
to concurrency changes, but RT95 is further away from the
set-point during the last 300 seconds of the experiment. The
reason is that, with high Kp and Ki values, the threshold is
quickly updated when errors are large due to significant arrival
rate changes, but the threshold is also more sensitive to the
noise observed in RT95, which may degrade performances.

Overall, Figure 4 and Figure 5 respectively show low tuning
and aggressive tuning. By using the moderate tuning described
at the end of Section V-A (with Kp = 1 and Ki = 6), we
can achieve the best performance, that is, RT95 begin close
enough to the set-point and still have fast enough reactions to
significant arrival rate changes.

Figure 6 shows results produced with the mapping of arrival
rate to threshold as MLA, based on significant offline training.
The results are satisfying and the threshold is quickly updated
when the concurrency changes. The parameter K is set to 4
implying that up to 9 map entries are taken into account to
produce thresholds.

Figure 7 shows results produced with the controller with
MLA outputs as feedforward signals, based on online training.
The controller is tuned with Kp = 1 and Ki = 6, as a tradeoff
between RT95 being close to the set-point and fast reactions
to significant arrival rate changes. The parameter K was set
to 4 implying that up to 9 map entries are taken into account
to obtain feedforward values. As we can see, RT95 follows
the set-point closer and closer over time. This is thanks to
the incremental training of the MLA where favorable states
are collected during runtime, which gives better feedforward
signals as the experiment progresses.

D. Performance Comparison and Discussion

We compare the performance of all evaluated algorithms
as follows. First, we determine the total amount of error
errortotal. For that, with each measured RT95 during exper-
iments (every second), the error |setpoint − RT95| is added
to the total error, i.e., errortotal ← errortotal + |setpoint −
RT95|. All evaluation experiments are conducted within high
utilization, implying that Brownout is always active with
optional contents being served between 0% and 100%, and
that RT95 oscillates around the set-point. Next we divide the
total error with the duration of the experiment (in seconds)
to obtain the mean absolute error. The mean absolute error
represents how far RT95 is from the set-point.

1) Evaluation with Challenging Concurrencies: In order to
evaluate all algorithms, we used the set of concurrencies shown
in Figure 8. Each concurrency is used 100 seconds, implying
a total time of 1600 seconds for each experiment, and all
experiments are repeated 10 times for statistical significance,
with mean absolute errors and their deviations being described

0

20

40

60

80

100
conc.: 200 1200 200 700 600 500

0

20

40

60

80

100

% optional content
utilization [%]

+

+

+

+

+++
+
+

+

++
+
+
+
+
+

+

+
+

+

++
+

++
+

++

+
+

+
+

+

+

+
+

++
+

+

+
+
+

+

+

+

+
+

+

+

+

+
+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

++

+

+
+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+
+

+
++
+

+
+

+

+

+

+

+

+

+

+
+

+
+

+

+

+

+

+
+

+

+

++

+

++

++

++

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

++

+
+

+
+

+

+

+

+

+

+

+
+

+

+

+

+

+
+

+

+

+

+

+

+
+

+

+

+

+

+

++

+

+

+

+

+

+

++

+

+

+

+

+

+

+
++

+

+

+

+

+

+

+

++

+

+

++

+

+
+
++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+
+
+

+

++

+

+

+

+++

+

+
+

+

+

+

+
+

+

+

+

+
+

+

+

+

+

+
+

+

+

+

+

+

++

+

+
+

+

+

+

+

+

+

+

+

+
++

+

+

+

+

+

+

+

+

++

+
+

+
+

+
+
+

+

+

+

+

+

+

+
+

+

++

+
+

+

+

+

+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

++

+
+

+

+

+

+
+
+

+

+

+
++

+

+

+

+

++

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

++

+

+

+

+

+
+

++

+

+

+

+

+

+

+

+

+

+
+
++
+

+

+
+

+

+

+

+
+
+

+

+

+++

+

+

+
+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

++

+
+

+

+

+
+

+

+

++
+

+

+

+

+

+
+
+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+
++

+++
+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+

+

+

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1.0

Time [sec]

0

10

20

30

RT95

threshold

Fig. 4. Feedback controller, tuned with Kp = 1 and Ki = 1.

0

20

40

60

80

100
conc.: 200 1200 200 700 600 500

0

20

40

60

80

100

% optional content
utilization [%]

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

++

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

++

+

++

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

++

+

+

+

+

+

+

+

+

+

+
+
+

+

+

+

+

+

+

+
+

+

+

+++

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

++

++

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+
+
+

+
+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+
++

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+
+

+

+
+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+
+

+

+
+

++

+

+

+

+

+

+

++

+

+

+
+

+

+

+
+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

++

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+
+

+

+

+

+

+
+

+
+

+

+

++

+

+

+
+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+
+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+++

+

+

+

+

+

+

+

+

+

+

+

++++
+

+
++

++
++
+
+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+
+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1.0

Time [sec]

0

10

20

30

RT95

threshold

Fig. 5. Feedback controller, tuned with Kp = 15 and Ki = 15.

0

20

40

60

80

100
conc.: 200 1200 200 700 600 500

0

20

40

60

80

100

% optional content
utilization [%]

+

+

+

+

+

+

+

+

+

+

++

+

+

+

++

+

+

+

+
++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+
+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+
+

+
+

+

+

+

++

+

+

+
+

+

+

+

+
+

+

+

+

+

+
++

+

+

+
+

+

+
+
+

+

+
+

+

+

+
+

+

++

+

++

+
+

+
+

+

+

+

+
+

+

+

+

+

+

+

+
+

+
+

+

+

+

+

+

+

+

+++

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+
+

+

+

+

+
+

+

+

+

+

++

+

+

+

+

++

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

++

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

++

+

+

+

+

+

++

+

+

+

+

+

+

+
+

+
+

+

+

+

++
+

+
+

+

+

+

+

+

+
+

+

+
+

+
+

+

+
+

+

++

++

++

++

++
+
+

+
+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+
+++

+

+

+

+

+
+

+

+

+

+

+
+

+

+

+
+
+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
++

+
+

+
+

+
+

+

+

+

+

+
+
+

+

+

+
+

+

+

+

+

+

+

+
+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+

+

+

+

++

+

+

+
+

+

+

+

+

+

+

+

+
+

++

+

+

+

+

+

+

+

+

+

+

+
+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+
++

+

+

++

+

+

+

+

+

+

++

+

+

+

+
++

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1.0

Time [sec]

0

10

20

30

RT95

threshold

Fig. 6. Mapping of arrival rate to threshold, K = 4 (implying 9 map entries).

0

20

40

60

80

100
conc.: 200 1200 200 700 600 500

0

20

40

60

80

100

% optional content
utilization [%]

+

+
++

+

+

+

+

+

+

+

+

++
+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+
+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+
++

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

++

+

+

+

+

+
+

+

+++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

++

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+
+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

++

+

+

+

+

+

++

+
+

+

+
+

+

+

+

+

+

++
+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+
+
+

+

+
+

+

+
+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

++

+

+

+

+
+

+

+

+

+

+
+

+
+
+
+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

++

+

+

++

+

+
+

+

+

+

+

+

++

++

+
+

+

+

+

+

+

++

+
++

+

+

+

+

+

+

++

++

+

++
+
+

+

+

+

+

+

+

+

+

+

+

+

++
+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+
++

+

+

+

+

+

+

+

+

+

++

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+
+

+
+

+

++

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

++

+

+

+

+

+

+

+

++

+
+

+

+

+

+

+

+

+

+

+

+
+

+

+

++

+

+
+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+
+

+

+
+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+
+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+
+
+

+

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1.0

Time [sec]

0

10

20

30

RT95

threshold

Fig. 7. MLA output as controller feedforward, Kp = 1, Ki = 6, K = 4.

in Table I. The first set of 8 concurrencies (for the first 800
seconds) is repeated with small differences (during the last 800
seconds) to see if the MLA can produce appropriate outputs
even though it was not trained online during the first half of
the experiment with the exact same concurrencies.

0 200 400 600 800 1000 1200 1400 1600
0

500

1000

Time [sec]

C
on

cu
rr

en
cy

Fig. 8. Main evaluation experiment: set of 16 concurrencies.

In Table I, the second, fourth and fifth rows show the
comparison between feedback controllers with low, high, and
tradeoff value of Kp and Ki values. The experiment includes
significant arrival rate changes (implied by the significant
concurrency changes), which explain why the controller with
low Kp and Ki values produces a high mean absolute error,
as this controller reacts slowly to the significant arrival rate
changes.

The mean absolute error obtained by using the mapping of
arrival rate to threshold based on offline training is the lowest
(first row of Table I), as the MLA already knows the threshold
to output for any arrival rate, at any time in the experiment.
For the controller with MLA outputs as feedforward signal
(third row of Table I), it is fair to notice that its MLA starts
with a handicap: it has no knowledge to begin with, and must
be trained during the experiment, hence the obtained result
is satisfying. One possibility to achieve a better performance
would be to use MLA outputs only once the map is populated
with a minimal number of entries. Hence the MLA would wait
to be trained enough before having an impact to determine
thresholds. However we chose not to do that in this evaluation
experiment as it would not be fair. Indeed, if the MLA outputs
are used in the middle of the experiment, then, as the next
set of concurrency is approximately the same with the first
part, the mean absolute errors would be optimal. In contrast,
if the MLA outputs are used before or after the middle of the
experiment, then mean absolute errors would not be optimal.

2) Ensuring RT95 Close to the Set-Point with Low Tuning:
We claim that low Kp and Ki values enable RT95 to be close
to the set-point when the arrival rate does not significantly
change. In order to confirm this, we run another evaluation
experiment with a constant concurrency of 600 emulated users
(implying a highly utilized VM) to avoid significant arrival rate
changes. The experiment is not repeated but is run for 2000
seconds in order to achieve stable results.

Table II shows the comparison between a PI controller with
low Kp and Ki values and a PI controller with higher Kp

and Ki values. For a fair comparison, we ignored the first
seconds of the experiments as the feedback must increase

TABLE I
MAIN EVALUATION OF BROWNOUT ALGORITHMS. VM CONFIGURED WITH AN 8 CORES CPU. CONCURRENCIES DESCRIBED IN FIGURE 8.

Algorithm Mean error
closed model

Mean error
open model

Advantage Drawback

Mapping of arrival rate to
threshold (offline training),
K = 4

0.055± 0.002 0.056± 0.003 Overall, RT95 is close to the set-point
enough, thanks to the offline training

Possible inaccuracies in the map (but not
significant), and may require re-training

Feedback controller, tuned
with Kp = 1 and Ki = 6

0.059± 0.001 0.059± 0.002 Tradeoff between fast reactions to significant arrival rate changes and RT95

being close to the set-point

Controller with MLA outputs
as feedforward signals, Kp =
1 and Ki = 6, and K = 4

0.063± 0.001 0.062± 0.001 Once the MLA has been sufficient
trained, the controller feedback avoids
MLA inaccuracies

May produce suboptimal results when
the MLA has not been trained enough

Feedback controller, tuned
with Kp = 15 and Ki = 15

0.068± 0.001 0.068± 0.001 Reacts fast to significant arrival rate
changes

Does not keep RT95 close enough to
the set-point if no significant changes in
arrival rate

Feedback controller, tuned
with Kp = 1 and Ki = 1

0.079± 0.002 0.081± 0.002 Keeps RT95 close to the set-point
when there is no significant arrival rate
changes

Reacts slow in case of significant arrival
rate changes

Initial periodic Brownout, with
pole = 0.8 as recommended
in [4]

0.644± 0.057 0.836± 0.349 The pole set to 0.8 enables slightly faster
controller reactions than with pole =
0.9

RT95 is still not close enough to the set-
point, with possible spikes

Initial periodic Brownout, with
pole = 0.9 as recommend
in [33]

0.962± 0.191 1.732± 0.558 The pole set to 0.9 is the best configu-
ration, according to [33]

RT95 is not close enough to the set-
point, with possible spikes

TABLE II
EVALUATION OF FEEDBACK CONTROLLER ALGORITHMS. CONCURRENCY:

600. VM CONFIGURED WITH AN 8 CORES CPU.

Algorithm Mean error
closed model

Mean error
open model

Feedback controller, tuned with
Kp = 1 and Ki = 1

0.045 0.045

Feedback controller, tuned with
Kp = 15 and Ki = 15

0.059 0.061

initially to appropriate thresholds, in particular with low Kp

and Ki values. As we can see, the lowest mean absolute error
is obtained with low Kp and Ki values. This confirms that
low Kp and Ki values imply RT95 to be more close to the
set-point than with high Kp and Ki values, when the arrival
rate does not significantly change.

3) Less Challenging Concurrencies: We observed that our
event-driven algorithms are less satisfying when the queue-
length and thus thresholds are low on average, which is
the case with a VM configured with a 1 core CPU. On
the other hand, the initial periodic Brownout performs better
when the arrival rate does not significantly change, as RT95

spikes can be avoided. Therefore we run another evaluation
experiment with a VM configured with a 1 core CPU, and
a less challenging set of concurrencies (avoiding significant
differences), which is: 40, 100, 160, 100, 40, 80, 90, 100,
110, 120. Each concurrency is used 100 seconds, implying
a total time of 1000 seconds for each experiment, and all
experiments are repeated 10 times for statistical significance,
with mean absolute errors and their deviations being described
in Table III.

Table III shows the comparison between the feedback

TABLE III
FEEDBACK CONTROLLER WITH FILTER VS. INITIAL PERIODIC BROWNOUT.
VM CONFIGURED WITH A 1 CORE CPU. CONCURRENCIES: 40, 100, 160,

100, 40, 80, 90, 100, 110, 120

Algorithm Mean error
closed model

Mean error
open model

Feedback controller + filter, tuned
with Kp = 1 and Ki = 6

0.119± 0.011 0.122± 0.018

Initial periodic Brownout, with
pole = 0.9 as recommended in [33]

0.438± 0.034 0.517± 0.054

controller with filter and the initial periodic Brownout. A
filter is always activated for the controller as it is known
that thresholds are low on average with a VM configured
with a 1 core CPU. As we can see, the initial periodic
Brownout preforms better than in the experiments summarized
in Table I, whereas the event-driven Brownout performs worse
than in Table I. However, even in this setting the event-driven
Brownout outperforms the initial periodic version.

E. Discussion

Let us now discuss the event-driven Brownout algorithms
and their improvement over the initial periodic Brownout.

1) Comparison with the Initial Periodic Brownout: As
described in Section II, the initial periodic Brownout consists
of a controller taking into account RT95 alone. Response
times are not close to the set-point and occasionally present
spikes due to sudden changes in the workload. By running
the evaluation with challenging concurrencies with the initial
periodic Brownout (Table I), we obtain the best results with
pole = 0.8 and a closed model where the mean absolute error
is 0.644 ± 0.057s. By taking into account the performance

of the feedback controller tuned with Kp = 1 and Ki = 6,
which has the lowest error average (excluding the MLA based
on offline training), the event-driven Brownout achieves a
eleven-fold improvement compared to the original Brownout.
However it is fair to notice that this improvement has been
achieved within a certain context including: the hardware
configuration, such as the choice of an eight cores CPU; the
set of concurrencies; the RUBiS application benchmark with
the way optional contents are computed, i.e., the PHP code and
MySQL queries; the chosen think-time of 3 seconds with the
Poisson distribution to emulate requests. In different contexts,
such as the one described in Table III where the improvement
factor is around 4 (taking into account results for both closed
and open models), the event-driven Brownout algorithms may
perform differently. Based on the experiments, we conclude
that the improvement is up to 11 times better.

2) Advantages and Drawbacks: The designed and imple-
mented algorithms have certain advantages and drawbacks
as described in Table I. With the feedback controller, RT95

being close to the set-point mainly depends on how the
parameters Kp and Ki are tuned. With a MLA alone, the
offline training method is what determines how optimal the
threshold values will be, that is, the accuracies and amount
of threshold matching arrival rates. However offline training
may not be feasible in real environments. With the controller
with MLA outputs as feedforward signal, the MLA is based
on progressive online training. Therefore critical moments can
occur when the MLA has not been trained enough, or when
it produces inaccuracies.

3) Event-Driven Brownout in a Web Server Scenario: If
one of the algorithms had to be selected to be deployed
in a web server scenario, the selection would most likely
depend on the web application type. Assuming an application
where unexpected peaks of requests can frequently occur, the
controller with MLA outputs as feedforward signals would
probably be the most suitable method. Indeed, if a feedback
controller is used instead, it might react too slow to unexpected
peaks, unless it is tuned with high Kp and Ki values. However,
in that case RT95 would not always be close enough to the
set-point, in particular when the arrival rate does not change
significantly. Therefore, the controller with MLA outputs as
feedforward signals would enable fast reactions to these peaks
while keeping RT95 close enough to the set-point. However
this approach is not completely robust as the MLA may not
have been trained enough, or it may present inaccuracies.

On the other hand, for an application where unexpected
peaks of requests are less frequent, a simple feedback con-
troller would suffice. Tuned with moderate Kp and Ki values,
such as 1 for Kp and 6 for Ki, the controller would keep
RT95 close enough to the set-point, and the controller would
not need to react fast to significant arrival rate changes as
unexpected peaks would not be frequent. Even if the arrival
rate keeps increasing or decreasing over long periods of time,
the controller would be able to keep satisfying RT95 as the
arrival rate changes would not be sudden. A filter should also
be activated when the required threshold values are low on

average in order to limit large threshold fluctuations.

VI. CONCLUSION AND FUTURE WORK

To improve the initial Brownout paradigm, we investigate
an event-based approach based on the queue-length of pending
requests to make the decision of whether serving optional
contents. We designed and implemented event-driven algo-
rithms that output a threshold used to make the decision. First
we developed a PI controller that updates the threshold each
control period. The PI controller showed decent results, but
we aimed to obtain improvements with machine learning ap-
proaches. Hence, based on favorable states that the controller
can produce, we investigated MLAs and selected a mapping
of arrival rate to threshold. As a MLA must somehow learn
from existing data and offline training is not always feasible,
we implemented a combination of the PI controller and the
MLA based that is trained online. Finally we evaluated all
approaches, compared them, and found that our event-driven
Brownout algorithms show an improvement in maintaining
response-time close to the set-point of up to 11 times without
lowering utilization.

As the initial periodic brownout has been tested with load
balancing algorithms [5], the event-based version of Brownout
could also be tested with these algorithms as part of a future
work. Both Brownout versions avoid overloads, but the event-
based version described in this paper also obtains response
times closer to the desired set-point. This effect could alter
results obtained with the load balancing algorithms, therefore
it is worth to investigate the event-driven Brownout action
with such algorithms. In addition, the initial periodic Brownout
has been included within an overbooking system, where the
purpose was to develop and improve reactive methods in
case of overload situations [34]. Again it would be worth
investigating the effect of the event-driven Brownout on this
work, to see whether the results differ.

In cloud data centers, elasticity enables operators to provide
or withdraw resources autonomically, to match demand to the
available resources as close as possible [35]. For this purpose,
autoscaling methods are applied to, for instance, start new
VMs to avoid overloads commonly detected by monitoring
server utilization or response times. Overall, diverse autoscal-
ing algorithms exist with techniques based on control theory,
reinforcement learning, queuing theory, time-series analysis,
or simple static threshold-based rules [36]. However, for
Brownout-enabled applications, neither the response time nor
CPU utilization are good metrics for overload detection (and
thus not for autoscaling). If a Brownout-enabled application
is autoscaled, then the used elasticity algorithm is likely
to produce unwanted behaviors. Brownout avoids overloads
until a certain point, but it degrades the user experience,
which is undesirable. Therefore a possible future direction is
to create Brownout aware autoscaling algorithms. Intuitively
these autoscaling algorithms should consider VMs overloaded
as soon as Brownout is active (i.e., optional contents are
sometimes dropped), even though, in term of CPU utilization,
these VMs are not overloaded thanks to Brownout. Taking

this into consideration would imply that new VMs are started
to avoid overloads and optional contents would still always
be served unless there are no more available resources, or
during the time new VMs are booting, which can take several
minutes.

ACKNOWLEDGMENTS

This work was partially supported by the Swedish Research
Council (VR) for the project “Cloud Control”, and through the
LCCC Linnaeus and ELLIIT Excellence Centers. The authors
would also like to thank Martina Maggio, Karl-Erik Årzén,
and Francisco Hernández-Rodriguez who have worked on the
initial version of Brownout.

REFERENCES

[1] J. Koomey, “Worldwide electricity used in data centers,” Environmental
Research Letters, vol. 3, 2008.

[2] L. A. Barroso and U. Hölzle, “The case for energy-proportional com-
puting,” IEEE computer, vol. 40, no. 12, pp. 33–37, 2007.

[3] C. Millsap, “Thinking clearly about performance,” Queue, vol. 8, no. 9,
pp. 10:10–10:20, 2010.

[4] C. Klein, M. Maggio, K.-E. Årzén, and F. Hernández-Rodriguez,
“Brownout: Building more robust cloud applications,” in Proceedings
of the 36th International Conference on Software Engineering. ACM,
2014, pp. 700–711.

[5] C. Klein, A. V. Papadopoulos, M. Dellkrantz, J. Dürango, M. Mag-
gio, K.-E. Årzén, F. Hernández-Rodriguez, and E. Elmroth, “Improv-
ing cloud service resilience using brownout-aware load-balancing,” in
Reliable Distributed Systems (SRDS), 2014 IEEE 33rd International
Symposium on, 2014, pp. 31–40.

[6] A. Robertsson, B. Wittenmark, M. Kihl, and M. Andersson, “Design and
evaluation of load control in web server systems,” in American Control
Conference, 2004. Proceedings of the 2004, vol. 3, 2004, pp. 1980–1985
vol.3.

[7] S. Elnikety, E. Nahum, J. Tracey, and W. Zwaenepoel, “A method for
transparent admission control and request scheduling in e-commerce
web sites,” in Proceedings of the 13th International Conference on World
Wide Web, ser. WWW ’04. ACM, 2004, pp. 276–286.

[8] M. Andersson, J. Cao, M. Kihl, and C. Nyberg, “Admission control with
service level agreements for a web server,” in IASTED International
Conference on Internet and Multimedia Systems and Applications.
ACTA Press, 2005, pp. 275–280.

[9] A. Ashraf, B. Byholm, and I. Porres, “A session-based adaptive admis-
sion control approach for virtualized application servers,” in Utility and
Cloud Computing (UCC), 2012 IEEE Fifth International Conference on,
2012, pp. 65–72.

[10] L. Tomás and J. Tordsson, “An autonomic approach to risk-aware data
center overbooking,” Cloud Computing, IEEE Transactions on, vol. 2,
no. 3, pp. 292–305, 2014.

[11] Y. He, S. Elnikety, and H. Sun, “Tians scheduling: Using partial
processing in best-effort applications,” in Distributed Computing Systems
(ICDCS), 2011 31st International Conference on, June 2011, pp. 434–
445.

[12] Y. He, S. Elnikety, J. Larus, and C. Yan, “Zeta: Scheduling interactive
services with partial execution,” in Proceedings of the Third ACM
Symposium on Cloud Computing, ser. SoCC ’12. New York, NY, USA:
ACM, 2012, pp. 12:1–12:14.

[13] J. Kelley, C. Stewart, N. Morris, D. Tiwari, Y. He, and S. Elnikety,
“Measuring and managing answer quality for online data-intensive
services,” CoRR, vol. abs/1506.05172, 2015.

[14] I. Goiri, R. Bianchini, S. Nagarakatte, and T. D. Nguyen, “Approx-
hadoop: Bringing approximations to mapreduce frameworks,” SIGARCH
Comput. Archit. News, vol. 43, no. 1, pp. 383–397, Mar. 2015.

[15] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica,
“Blinkdb: Queries with bounded errors and bounded response times on
very large data,” in Proceedings of the 8th ACM European Conference
on Computer Systems, ser. EuroSys ’13. New York, NY, USA: ACM,
2013, pp. 29–42.

[16] N. Kamat, P. Jayachandran, K. Tunga, and A. Nandi, “Distributed and
interactive cube exploration,” in Data Engineering (ICDE), 2014 IEEE
30th International Conference on, March 2014, pp. 472–483.

[17] D. Fleder, K. Hosanagar, and A. Buja, “Recommender systems and
their effects on consumers: The fragmentation debate,” NET Institute,
Working Papers 08-44, 2010.

[18] K. J. Åström and R. M. Murray, Feedback Systems: An Introduction for
Scientists and Engineers. Princeton, NJ, USA: Princeton University
Press, 2008.

[19] A. Leva, M. Maggio, A. V. Papadopoulos, and F. Terraneo, Control-
Based Operating System Design. Institution of Engineering and
Technology, 2013.

[20] A. Filieri, M. Maggio, K. Angelopoulos, N. D’Ippolito,
I. Gerostathopoulos, A. B. Hempel, H. Hoffmann, P. Jamshidi,
E. Kalyvianaki, C. Klein, F. Krikava, S. Misailovic, A. V. Papadopoulos,
S. Ray, A. M. Sharifloo, S. Shevtsov, M. Ujma, and T. Vogel, “Software
engineering meets control theory,” in 10th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems, ser.
SEAMS 15, 2015.

[21] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, Jan. 2003.

[22] B. King, Performance Assurance for IT Systems. CRC Press, 2004.
[23] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,

A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store,” SIGOPS Oper. Syst. Rev.,
vol. 41, no. 6, pp. 205–220, 2007.

[24] K. Åström and T. Hägglund, Advanced PID Control. ISA-The
Instrumentation, Systems, and Automation Society, 2006.

[25] K. H. Ang, G. Chong, and Y. Li, “Pid control system analysis, design,
and technology,” IEEE Transactions on Control Systems Technology,
vol. 13, no. 4, pp. 559–576, 2005.

[26] P. Bodik, R. Griffith, C. Sutton, A. Fox, M. Jordan, and D. Patterson,
“Statistical machine learning makes automatic control practical for
internet datacenters,” in Proceedings of the 2009 Conference on Hot
Topics in Cloud Computing, ser. HotCloud’09. USENIX Association,
2009.

[27] M. Maggio, H. Hoffmann, A. V. Papadopoulos, J. Panerati, M. D. San-
tambrogio, A. Agarwal, and A. Leva, “Comparison of decision-making
strategies for self-optimization in autonomic computing systems,” ACM
Trans. Auton. Adapt. Syst., vol. 7, no. 4, pp. 36:1–36:32, Dec. 2012.

[28] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning, ser. Springer Series in Statistics. New York, NY, USA:
Springer New York Inc., 2001.

[29] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,”
SIGOPS Oper. Syst. Rev., vol. 37, no. 5, pp. 164–177, 2003.

[30] B. Schroeder, A. Wierman, and M. Harchol-Balter, “Open versus closed:
A cautionary tale,” in Proceedings of the 3rd Conference on Networked
Systems Design & Implementation - Volume 3, ser. NSDI’06. USENIX
Association, 2006, pp. 18–18.

[31] M. Arlitt and C. Williamson, “Internet web servers: workload char-
acterization and performance implications,” Networking, IEEE/ACM
Transactions on, vol. 5, no. 5, pp. 631–645, Oct 1997.

[32] “Amazon found every 100ms of latency cost them 1% in sales,”
http://blog.gigaspaces.com/amazon-found-every-100ms-of-latency-cost-
them-1-in-sales/, accessed: 2015-02-01.

[33] M. Maggio, C. Klein, and Årzén, “Control strategies for predictable
brownouts in cloud computing,” in Proceeding of the 19th IFAC World
Congress, vol. 19, 2014, pp. 689–694.

[34] L. Tomás, C. Klein, J. Tordsson, and F. Hernández-Rodriguez, “The
straw that broke the camel’s back: safe cloud overbooking with appli-
cation brownout,” International Conference on Cloud and Autonomic
Computing (CAC), pp. 151–160, 2014.

[35] N. R. Herbst, S. Kounev, and R. Reussner, “Elasticity in cloud comput-
ing: What it is, and what it is not,” in Proceedings of the 10th Inter-
national Conference on Autonomic Computing (ICAC 13). USENIX,
2013, pp. 23–27.

[36] T. Lorido-Botran, J. Miguel-Alonso, and J. Lozano, “A review of
auto-scaling techniques for elastic applications in cloud environments,”
Journal of Grid Computing, vol. 12, no. 4, pp. 559–592, 2014.

