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Abstract— Disturbance rejection is a primary objective in
many industrial control loops, thus a relevant goal for au-
totuning controllers. Nonetheless, autotuning has invariantly
to cope with a reduced amount of process information. As a
consequence, with the standard single-loop structure typically
adopted in the addressed context, effective disturbance rejection
calls for strong feedback, and therefore the solutions available to
date fall sometimes short of perfection. This paper discusses the
matter basically from a methodological standpoint, evidencing
some structural reasons for the observed shortcomings. The
result is a synthesis approach improving rejection performance
with respect to existing and well established tuning rules, on a
rigorously sound basis. Simulation examples are presented to
support the proposal.

I. INTRODUCTION AND MOTIVATION

In many control applications, especially in the process
domain, an effective rejection of load disturbances is the
primary issue, and designing an autotuning controller for that
particular purpose, might be challenging indeed.

Quite intuitively, the problem was recognised long ago.
Quoting from [23], for example, “often, academic papers
show no load inputs at all, although the load is the prin-
cipal source of disturbances to most control loops. [...] The
overemphasis on set-point tuning is regrettable, because with
lag-dominant processes, the PID settings that are optimal for
set-point response give poor load response and vice versa”.

Much progress has been done since the quoted paper
appeared, see, e.g. [1], [16], [17], [21], [24], [25]. However,
the addressed problem still has some open aspects. With no
exhaustiveness claims, the research presented herein has two
purposes. The first is to propose a rule assessment viewpoint
that is not specific to any particular tuning paradigm, so as
to provide some general and methodologically sound clues
for improvement. The second is to present a tuning rule
designed along the presented assessment rationale, to witness
its practical applicability.

The paper is organised as follows. Section II provides a
brief literature review, examining the main routes taken to
date to address the problem, and Section III provides some
background material to establish a rule-abstracted evaluation
of disturbance-targeted tuning techniques. Section IV analy-
ses some tuning rules along the devised guidelines, leading in
Section V to propose a specific approach. Section VI presents
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some comparative tests, and finally Section VII draws some
conclusions, also sketching out future research.

II. BRIEF LITERATURE REVIEW

The variety of (auto)tuning rules for industrial controllers,
especially of the PI/PID type, is simply impressing [2], [4],
[5], [28], [30]. To rapidly get an idea of the scenario the
reader can refer, e.g. to the comprehensive book [19], where
a huge number of such tuning rules is described. Simplifying
for brevity, one can observe that the first rules that appeared
in the literature were conceived for the process control
domain, and they were focused exactly on disturbance rejec-
tion. Later on, however, when developments in the available
computational resources allowed for more articulated model
identification and parametrisation techniques, and also for
the necessity of extending autotuning to other domains
like motion control, the “set-point overemphasis” observed
in [23] started emerging.

Given the large number of available rules, anyway, more
than one classification of them was attempted, see e.g [4],
and one of the axes for said classifications is whether the rule
is targeted to set-point tracking or to disturbance rejection.

To discriminate between the two objectives, two routes
are traditionally taken. The first one is centred on the tuning
policy. When the emphasis is on set-point tracking, most
frequently a cancellation-based one is chosen, implicitly
accepting that the controller zero(es) be located near the
frequency of the process model dominant pole, which is
normally quite low with respect to the bandwidth required
for effective disturbance rejection: examples are the IMC-
PID rule [18] and its numerous variants [25]. When on
the contrary the focus is on disturbance rejection, policies
are conversely adopted that inherently tend to maximise
the closed-loop cutoff, typically resorting to relay-based
tuning [7], [11], [14], [30] or direct synthesis techniques,
that aim at prescribing the closed-loop transfer function that
is most relevant for the desired objective [8], [16].

The second route grounds the controller tuning on the
minimisation of some integral index [9], as done also for the
well known “kappa-tau” method [4]. In this case, set-point
tracking or disturbance rejection are privileged by simply
computing the index to be minimised on the response to a
set-point or disturbance input.

In the literature, and especially in the last decades, the
tradeoff between set-point tracking and disturbance rejection
has indeed been gaining importance. Works like [24], [25]
attempted to improve IMC-like policies (also) in that respect,
and interesting ideas for the addressed problem can be drawn
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Fig. 1: Typical control loop with load disturbance.

from deep investigations on the potentialities of the relay
approach like those by [20] and [26]. More in general,
and focusing essentially on model-based tuning methods,
some authors tried to re-visit and tailor well established
approaches to the specific purpose of disturbance rejection
– see, e.g. [29] – or to exploit the two-degree-of-freedom
(2-dof) nature of many industrial controllers [22]. In the
case of one-degree-of-freedom (1-dof) controllers, finally,
worth mentioning is the work by [1], who propose to balance
servo and regulatory operation by weighing two specialised
parametrisations.

In any case, and despite the undoubtedly vast, deep and
effective research effort observed so far on the addressed
matter, to the best of the authors’ knowledge no analysis was
yet proposed to formally evidence, and possibly structurally
motivate, the frequently observed shortcomings of “tradi-
tional” tuning rules – more or less independently of their
specific purpose – when particularly effective disturbance
rejection is desired. We thus attempt here to provide such
an analysis, and consequently some clues for improvement.

III. BACKGROUND

Consider the typical linear time-invariant control loop of
Figure 1, where P(s) and R(s) are respectively the transfer
function of the process and of the controller, w(t) is the set-
point, y(t) the controlled variable, u(t) the control signal,
and d(t) a load disturbance. Since obviously

Q(s) :=
Y (s)
D(s)

=
P(s)

1+R(s)P(s)
(1)

it follows immediately that the frequency response of Q(s)
can be approximated as

Q( jω)≈
{

1/R( jω) |R( jω)P( jω)| � 1
P( jω) |R( jω)P( jω)| � 1

(2)

assuming that in the vicinity of the cutoff frequency ωc the
process magnitude is decreasing, and that the controller is of
type 1 or more. This suggests that to achieve a good rejection
of d(t), one should aim at maximising |R( jωc)|. In addition,
controller zeroes at a significantly lower frequency than ωc
reveal their detrimental effect in the form of a plateau of
|Q( jω)|. Since the value of any gain (or frequency response
magnitude) depends on the units adopted for the involved
input and output variables, we here assume that suitable
normalisations are in place – as is typical in industrial
control schemes – so that comparisons between e.g. |R( jωc)|
and |P( jωc)|, or conclusions drawn based on |Q( jω)|, are
physically meaningful.

Coming back to the main topic, let ΦR be the maximum
phase lead that R(s) can introduce. Ideally, assuming that the
controller obviously contains neither right half-plane zeroes
nor poles, ΦR equals 90◦ times the number of controller
zeroes, minus its type. This would however require to locate
all the zeroes at “low” frequency and all the poles at “high”
frequency, therefore incurring in the pathology above, to say
nothing about possible numerical conditioning problems in
the digital control law. Thus, to stick to common controller
structures, a PID can reasonably yield a ΦR up to 60◦, while
a PI is clearly limited to zero. Whatever value is chosen
for ΦR, however, supposing that a phase margin of ϕm is
required, the frequency ωc,max such that

arg◦(P( jωc,max))+ΦR = ϕm +180◦ (3)

provides an upper bound for ωc. Assuming a lowpass process
behaviour in the vicinity of ωc, increasing that frequency
means having the open-loop frequency response cut the 0dB
axis with larger values of the controller frequency response
magnitude, thus favouring load disturbance rejection—but
in the absence of controller zeroes producing the already
mentioned |Q( jω)| plateau.

Finally, to improve robustness against process perturba-
tions (or modelling errors, as will be discussed later on), the
magnitude of the control sensitivity function

C(s) :=
R(s)

1+R(s)P(s)
(4)

has to be kept as low as possible in the band where said
perturbations/errors are expected, and particularly near the
cutoff [13], [16]. Since with the same approximation above
one can write

C( jω)≈
{

1/P( jω) |R( jω)P( jω)| � 1
R( jω) |R( jω)P( jω)| � 1

(5)

this requirement conversely calls for an open-loop frequency
response cutting the 0dB axis with a low value of |R( jωc)|.

Summarising, there is more to tuning a controller for
disturbance rejection than merely maximising ωc. It is in fact
required to make |R( jωc)| – that incidentally is determined
once ωc is, assuming P(s) known at least nominally – as
large as possible compatibly with a small enough |C( jωc)|.
On the other hand, it is also required to take care of the
aspect of Q( jω), at least near ωc, by avoiding the observed
possible plateau. The question is then how closely well
established tuning rules for industrial (PI/PID) controllers
fulfil the desire just expressed, and that said desire consist
of both achieving a performance/robustness tradeoff, and
governing Q( jω) satisfactorily.

IV. TUNING RULE ANALYSIS

This section analyses a few tuning rules in the light of the
considerations of Section III. For space reasons the scope
is here restricted to model-based PID rules adopting for the
process model the FOPDT (First Order Plus Dead Time)
structure, i.e.,

P(s) =
µ

1+ sT
e−sD, with T > 0, D≥ 0. (6)
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Fig. 2: Behaviour of some PID tuning rules for FOPDT models in the light of the ideas of Section III.

Five rules, all referring to a real PID, are here considered.

(i) The one proposed in [12], targeted at minimising the
IAE (Integral of the Absolute Error) for “regulatory”
operation, i.e., for load disturbance rejection.

(ii) The analogous one proposed again in [12], minimising
the IAE, but for “servo” operation, i.e., for set-point
tracking.

(iii) The “direct synthesis” rule presented in [27].
(iv) The IMC-PID cancellation-based rule in the version by

[15], with the λ tuning parameter, that is interpreted
as the desired closed-loop dominant time constant,
chosen with the well established relationship λ =
max(0.25D,0.2T ).

(v) The same as (iv), applied however with λ = 0 to
achieve as wide a control bandwidth as possible com-
patibly with the controllability characteristics of the
process as evidenced by its normalised delay (see e.g.
[4] for a discussion on this matter).

(vi) The rule proposed in [31], and adopted in [1] as the
optimal load-disturbance (regulatory control) response.

The rules above were applied to process (6) with µ = 1 and
T = 1, for the normalisation reasons mentioned above, while
the normalised delay θ := D/T varies in the range [0.1,1.4],
so as to have the test cover both lag- and delay-dominant
cases. Plots (a) to (e) in Figure 2 respectively report

• the phase margin ϕm,
• the cutoff frequency ωc,
• the inverse of the control sensitivity frequency response

magnitude at ωc,
• the ratio of ωc with the maximum cutoff frequency

ωc,max achievable by taking as ΦR the maximum phase
lead introduced by the tuned PID,

• and the magnitude of R( jω) at ωc.

Analysing the presented results, several remarks can be
made. Concerning Figure 2a, the disturbance-targeted rule
apparently follows a different rationale with respect to all the
others, exhibiting a tendency to sacrifice (nominal) stability
in favour of a larger ratio of the achieved cutoff frequency

with respect to its ωc,max (Figure 2d). This is consistent
with a higher regulator frequency response magnitude at ωc,
especially for delay-dominated processes (Figure 2e), as in
such cases the decision of not accepting a stability degree
reduction is invariantly detrimental to disturbance rejection.
Also, privileging rejection leads to less conservative tuning,
as shown by the tolerable model error bound provided by
the inverse control sensitivity magnitude (Figure 2c). All
in all, however, grounding the regulatory/servo selection
on minimising some integral index on a set-point or a
disturbance response, surely produces some orientation of the
tuning results in one or the other direction, but does not yield
significantly larger bandwidths (Figure 2b) especially in lag-
dominated cases, and above all does not push the ωc/ωc,max
ratio over quite low values. Also, at least on the case of a
slight delay dominance, a cancellation-based tuning policy is
not necessarily keen to impair disturbance rejection. This can
be seen by observing that in Figure 2d, up to θ ≈ 0.8 both the
direct synthesis rule and the IMC-based one, provided that
λ is not selected in a conservative way, produce values of
ωc/ωc,max comparable to those obtained with a disturbance-
targeted rule. Finally, in significantly delay-dominant cases,
aiming at disturbance rejection is paid evidently in terms of a
reduced robustness in the face of model errors/perturbations
with relevant effects in the vicinity of ωc (Figure 2c).

Replicating the test here reported with other tuning rules,
omitted here for brevity, indicates that the remarks made so
far are quite general. Therefore, we take this analysis as the
starting point for the following considerations.

V. THE PROPOSED APPROACH

The rationale of the proposed tuning approach is to shape
|Q( jω)| in such a way to both limit its maximum value, and
avoid its plateau. An example of how this can be achieved
in a very simple case, is exemplified in Figure 3. In detail,
here a PI is tuned by cancellation on a first-order model, and
then augmented with a pole-zero couple located immediately
below the cutoff frequency, the pole preceding the zero, so
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Fig. 3: Introductory example illustrating the proposed ap-
proach rationale: cancellation-based PI (dashed plots) and
the same PI augmented with a pole-zero couple (solid plots).

as to reduce |Q( jω)| near the cutoff, and in particular just
below it.

Numbers are inessential in this example, but it is worth
noticing that the approach leads to a real PID. However, the
additional zero and pole with respect to the starting PI, are
not used respectively to increase the open loop frequency
response phase at the cutoff, and to limit the high-frequency
control sensitivity, as is frequently done by tuning rules. On
the contrary, said control sensitivity remains to the PI value,
which is almost invariantly lower than that obtained with a
PID, while the effect achieved by introducing the pole-zero
couple, is to practically eliminate the detrimental plateau of
|Q( jω)|.

As can be seen right from the PI-based example just
sketched, the achieved advantage in terms of load disturbance
rejection can be quite significant. There is a price to pay
in terms of phase margin, however, and most important,
determining the correct location of the pole-zero couple may
be quite critical if the addressed situation is just slightly more
complex than the one shown in this section. Therefore, the
idea of acting on |Q( jω)| as done above remains the main
one, but is directly viable only in very simple cases. The way
to obtain the desired result needs thus a more general and
formal qualification.

A. Applying the approach

To put the presented ideas to work, we choose here to
tune a real PID on a FOPDT model like (6). For simplicity
we assume also µ > 0. To start, replace the delay term e−sD

in (6) with the (1,1) Padé approximation (1− sD/2)/(1+
sD/2). Write the so obtained rational process model as

M(s) =
bM0−bM1s

1+aM1s+aM2s2 , (7)

and the real PID to be tuned as

R(s) =
bR0 +bR1s+bR2s2

aR1s+aR2s2 . (8)

with bM0, bM1, aM1 and aM2 all positive parameters.
The considered situation leads to a fourth-order Q( jω),

that structurally has a zero in the origin. To minimise the
plateau of its frequency response magnitude, a viable way
is to have all its poles coincide, i.e., to set as the synthesis
objective

Q(s) = Q◦(s) :=
QN(s)

(1+ sτQ)4 , (9)

where QN(s) is the polynomial numerator of Q(s), and τQ >
0 is a tuning variable discussed later on. Constraining the
denominator of Q(s) as per (9), and using (7) and (8) in (1),
one obtains the regulator parameters as

bR0 =
1

bM0

aR2 =
τ4

Q

aM2

aR1 =
4b2

M0τ3
Q +6bM0bM1τ2

Q +b3
M1bR0 +4b2

M1τQ

bM1(aM1bM0 +bM1)+aM2b2
M0

+

− aM1aR2b2
M0 +aR2bM0bM1

bM1(aM1bM0 +bM1)+aM2b2
M0

bR1 =
4τQ−aR1 +bM1bR0

bM0

bR2 =
aM1aR2 +aM2aR1−4τ3

Q

bM1

(10)

To guarantee stability (in nominal conditions) for the
closed-loop system, since M(s) is asymptotically stable and
the characteristic equation for that system obviously has
four coincident roots in s =−1/τQ, it is required the (real)
pole of R(s) not in the origin to be negative, which ensures
the absence of critical cancellations. Observing that aR2 is
positive by construction, this in turn requires the positivity of
aR1—a bound on τQ that is easily enforced in any practical
implementation. It is furthermore easy to ensure that for each
possible combination of the parameters in (7), that are all
positive by hypothesis, a range of τQ exists which produces
a positive aR1, since

aR1|τQ=0 =
b3

M1

bM0
(
bM1 (bM1 +aM1bM0)+aM2b2

M0

)> 0,

daR1

dτQ

∣∣∣∣
τQ=0

=
4b2

M1

aM2b2
M0 +bM1 (aM1bM0 +bM1)

> 0,

lim
τQ→+∞

aR1 =−∞.

Notice that for simplicity and readability, the quantities are
expressed in sequence, assuming that the previous ones are
known. An example of how aR1 is varying as a function of
τQ is shown in Figure 4, obtained with bM0 = 1, bM1 = 0.5,
aM1 = 4.5, and aM2 = 2.



Coming to the selection of τQ, we can observe that its in-
verse nominally corresponds to the frequency where |Q( jω)|
exhibits its maximum. Hence, τQ acts on the controller syn-
thesis by governing the closed-loop bandwidth, also affecting
the closed-loop stability robustness as quantified by the
inverse of the nominal control sensitivity frequency response
magnitude.

A viable way to automatically select τQ, which we de-
termined by extensive experimentation and interpolation – a
widely used technique in similar cases, see e.g. [6], [10] –
on both FOPDT processes and FOPDT models identified for
processes of different structures, is to relate it to the model
delay and time constant, namely by the formula

τQ =
D

min(1+θ , 3)
(11)

We found this empirical relationship a good compromise
solution and therefore a useful add-on to the proposed
technique, as testified also by the benchmark testing of which
some examples are reported in the next section.

VI. SIMULATION EXAMPLES

The presented tuning method – termed here “τQ-based”
– was subjected to extensive testing. For brevity we here
present only the results obtained with process classes 2 and
4 in the PID benchmark by [3], as these are particularly keen
to illustrate our claims. Process class 2 is

P(s) =
1

(1+ s)(1+ ps)(1+ p2s)(1+ p3s)
, (12)

with p ∈ {0.1,0.2,0.5,1}. Class 4, that incidentally makes
the method operate in nominal conditions, reads as

P(s) =
e−s

1+ ps
, (13)

with p ∈ {0.1,0.2,0.5,2,5,10}.
Figures 5 and 6 compare the proposed method to those

previously analysed (letters are used according to Figure 2),
evidencing the obtained advantages. Some of the tuning rules
produce unstable dynamics with process (13), and are not
reported in Figure 6.
The rejection quality of the proposed method is always com-
parable to the other methods and generally better. In addition,
a higher uniformity in the shape of the load disturbance
response is obtained over the parameter variation range and
over the process classes.

Finally, Figure 7 shows how the Bode diagrams of
the open-loop transfer function L(s) = R(s)P(s), with pro-
cess (13) for p = 5, vary while considering the different
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Fig. 7: Bode diagram of the open-loop transfer function L(s)
with class 4 for p = 5.

tuning rules. The diagrams highlight the advantages yielded
by the proposed technique as for avoiding the frequency
response magnitude plateau above ωc. As can be seen,
the other methods either exhibit said undesired feature to
a relevant extent or, to avoid it, are forced to reduce the
response speed (see the magnified plot in the same figure).

VII. CONCLUSION AND FUTURE WORK

The problem of tuning process controllers for load distur-
bance rejection was considered. Some PID tuning rules were
examined from that viewpoint, evidencing structural reasons
for the often experienced shortcomings.

Based on the above analysis, an alternative PID tuning
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approach was devised, yielding improved rejection perfor-
mance with respect to existing and well established tuning
rules. Simulation examples were presented to support the
proposal.

Future work will be devoted to further analysing the ob-
tained controller parametrisation and the automatic selection
of τQ. Also, since the proposed approach aims sharply at
rejection, the integration with set point tracking requirements
will be addressed, both adopting a 2-dof structure, and
exploiting weighing techniques in the 1-dof case. Finally, an
implementation of the presented autotuning PID on process
control hardware will be carried out, and more extensive
evaluation campaigns – also experimental – will be done.
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