
FLOPSYNC-2: efficient monotonic clock synchronisation

Federico Terraneo∗, Luigi Rinaldi∗, Martina Maggio†, Alessandro Vittorio Papadopoulos†, Alberto Leva∗
∗Politecnico di Milano, Milano, Italy

†Lund University, Sweden

Abstract—Time synchronisation is crucial for distributed sys-
tems, and particularly for Wireless Sensor Networks (WSNs),
where each node is executing concurrent operations to achieve
a real-time objective. However, synchronisation is quite difficult
to achieve in WSNs, due to the unpredictable deployment
conditions and to physical effects like thermal stress, that cause
drifts in the local node clocks. As a result, state-of-the-art
synchronisation schemes do not guarantee monotonicity of the
nodes clock, or are relying on external hardware assistance. In
this paper we present FLOPSYNC-2, a scheme to synchronise
the clocks of multiple nodes in a WSN, requiring no additional
hardware, and based on the application of control-theoretical
principles. The scheme guarantees low overhead, low power
consumption and synchronisation with clock monotonicity.

We propose an implementation of FLOPSYNC-2 on top of
the microcontroller operating system Miosix, and prove the
validity of our claims with several-days-long experiments on
an eight-hop network. The experimental results show that the
average clock difference among nodes is limited to a hundred of
ns, with a sub-µs standard deviation. By introducing a suitable
power model, we also prove that synchronisation is achieved
with a sub-µA consumption overhead.

I. INTRODUCTION

Synchronising the clocks of different nodes is a problem
that dates back to the advent of distributed systems [7, 8].
A network of nodes needs synchronisation whenever many
events should be ordered and processed depending on their
arrival times or, more in general, whenever the nodes should
coordinate towards a common objective. In Wireless Sensor
Networks (WSNs) nodes coordination is crucial, especially
when real-time operations must be executed.

However, it is especially difficult to obtain and maintain
synchronisation in WSNs. This may be due to jitters and
uncertainty associated with the arrival of external timing
information. Protocols may repeat the synchronisation pack-
ets transmission to obtain better accuracy, however at the
expense of a higher energy consumption, which is undesir-
able for battery powered devices. Further difficulties come
from the deployment conditions. Nodes may be deployed
in extreme environments, like an active volcano [17], where
thermal stress could cause significant clock drifts, and the
number of synchronisation messages transmitted should be
minimised. Even in not so extreme cases, ageing effects and
manufacturing limitations can harm synchronisation.

This work was partially supported by the Swedish Research Council
(VR) for the projects “Cloud Control” and “Power and temperature control
for large-scale computing infrastructures”, and through the LCCC Linnaeus
and ELLIIT Excellence Centers.

The mentioned difficulties caused synchronisation
schemes to neglect guarantees on clock monotonicity [2,
4, 6, 10, 12, 16, 18] or to rely on support, either from the
power lines [14] or from external hardware [1].

We build on FLOPSYNC [9], our first attempt to in-
troduce control theory for synchronisation. FLOPSYNC is
based on a proportional-integral (PI) controller and can only
compensate for a constant or slowly varying clock skew.
In this paper we overcome this limitation by introducing
FLOPSYNC-2, a message passing synchronisation scheme
that on the contrary relies on a tailored controller structure,
and requires no purpose-specific hardware. Different from
the majority of the literature contributions, the sent packets
do not contain any data and synchronisation is achieved by
checking their actual arrival times against those expected
by the recipient nodes. To guarantee clock monotonicity,
nodes never reset the values of their internal clocks, as
this could lead to potential backward or forward jumps in
time. The tailored control scheme is used to select a clock
correction that is introduced along the interval between the
reception of two subsequent synchronisation packets. We
theoretically prove that we achieve error convergence and
clock monotonicity, without external support.

To verify our claims, we implemented FLOPSYNC-2
using the Glossy flooding scheme [5] on top of the mi-
crocontroller operating system Miosix, which is released as
open source software and available for download. We per-
formed many experiments to certify that the nodes’ clocks
are synchronised, including a test with an eight-hop network
deployed in an office building, and also outdoor ones. In
all cases nodes had to keep their clock synchronised for
several days. Our results indicate that the average difference
between the WSN nodes’ clocks is of the order of 100ns,
with a sub-µs standard deviation, even when the nodes
are deployed in an environment where the temperature is
time varying and environmental conditions can influence the
nodes’ behaviours. Also, our synchronisation scheme has a
very low energy overhead. To support this claim we used
a suitable power model to compute the amount of power
consumed for the synchronisation phase, both for the radio
module of each node and for the CPU. The current consumed
for the purpose of synchronisation is less than 1µA.

II. METHODOLOGY

Our target WSN is composed by a master node and a
certain number of slaves. The aim of the synchronisation

scheme is to align the clocks of the slave nodes to the master
one. The master node periodically sends synchronisation
packets by means of a flooding scheme like Glossy [5], with
period T . Therefore, we can assume that medium access
contention does not introduce transmission time uncertainty.

The key innovative idea of the presented research is that
the master node does not send timestamps and the slave
synchronisation is based on the expected and actual arrival
time of synchronisation packets. If the expected arrival
time matches the effective one, the clock of the slave is
synchronised with the master. Otherwise, the slave node
applies a correction that depends on the difference between
the two mentioned times.

The initial offset between the slave and the master node
should be eliminated. Indeed, initialisation is the only mo-
ment when the master node sends a timestamp. When a slave
joins the network, it asks the master for the reference time
t0 corresponding to the transmission of the next synchroni-
sation packet, and for the value of T . Upon reception, the
slave waits until the next synchronisation packet arrives and
initialises its local clock to t0. This zeroes the offset and
synchronises the slave with the master.

To maintain the clock synchronised, the slave node be-
haves as follows. At the reception of each k-th synchronisa-
tion packet, the slave measures the synchronisation error as
the difference between its expected and actual arrival time,
both counted in the local clock tloc. Based on this error, the
slave computes an additive correction u(k), attempting to
match a span of T + u(k) in the local time to a span of T
in the reference one. As a last operation, the slave sets the
expected local time for the next packet, i.e., it waits in its
local time for T +u(k) instead of T . The slave iterates this
process upon receipt of each synchronisation packet. Note
that all the slave computations are in the local time, and no
timestamp transmission or local clock reset is required after
initialisation, leaving the slave hardware clock uncorrected.

Finally, at any instant between the k-th and the (k+ 1)-
th synchronisations, which we denote by introducing a
fractional index ∆ ∈ [0,1), the slave can obtain an estimate
t̂(k+∆) of the reference time as

t̂(k+∆) = t(k)+ [tloc(k+∆)− tloc(k)] ·
T

T +u(k)
(1)

where t(k) is the (known) master transmission time for the
k-th synchronisation packet, tloc(k) the local timestamp upon
reception of the same packet, and u(k) the correction term.

The computation of u(k) can be done by solving a feed-
back control problem, tractable in the linear time-invariant
framework. A tailored solution for the control problem is
given in the following..

III. SYNCHRONISATION AS A CONTROL PROBLEM

Assume, without loss of generality, that the origin of both
the reference and the local clock are set at the transmission

of the synchronisation packet corresponding to the initiali-
sation of the slave clock at k = 0, so that t(0) = tloc(0) = 0.

Denote with fo the nominal frequency of the slave node
oscillator, and with δ f (t) its variation over the reference
time t. Irrespectively of the reason that caused δ f (t), if no
synchronisation action is taken, the offset evolves according
to

o(t) := t− tloc(t) = t−
∫ t

0

fo +δ f (τ)
fo

dτ. (2)

The slave acts by altering the expected time for the next
synchronisation packet te

loc(k+1) by a quantity u(k), which
means setting

te
loc(k+1) = te

loc(k)+T +u(k). (3)

The expected arrival time te
loc(k) and the actual arrival time

ta
loc(k) for the k-th packet take the form

te
loc(k) = kT +

k−1

∑
h=0

u(h), ta
loc(k) = kT +

∫ kT

0

δ f (τ)
fo

dτ. (4)

Also, the slave measures the synchronisation error at the
k-th period as the expected arrival time minus the actual one
for the synchronisation packet, both measured with respect
to the local clock, that is,

e(k) = te
loc(k)− ta

loc(k). (5)

Substituting (4) in (5) yields

e(k) =
k−1

∑
h=0

u(h)−
∫ kT

0

δ f (τ)
fo

dτ, (6)

which shows that synchronisation is exact when the sum over
k of the corrections u(k) equals the integral of the normalised
frequency variation δ f / fo up to kT :

Expanding and rearranging, we then get

e(k+1) =te
loc(k+1)− ta

loc(k+1)

=
k

∑
h=0

u(h)−
∫ (k+1)T

0

δ f (τ)
fo

dτ

=e(k)+u(k)−
∫ (k+1)T

kT

δ f (τ)
fo

dτ

=e(k)+u(k)+d(k)

(7)

which describes the evolution in time of the synchronisation
error e(·) as a function of its past value, of u(k), that
assumes the role of the control signal, and of possible
unexpected behaviours, captured by the term d(k), which
must be rejected.

Using the Z -transform [20], where z−1 denotes the
discrete-time unit delay, one can rewrite Equation (7) as

E(z) = P(z)
(
U(z)+D(z)

)
, P(z) :=

1
z−1

. (8)

Since δ f (t) is caused by physical phenomena, obviously
no synchronisation-related action can affect it. In principle,

−R(z) P(z)
u(k)

+

e(k)d(k)+

Figure 1: Feedback control scheme for the generic slave
node.

one could use an arbitrarily complex model to take into
account crystal imperfections, ageing, thermally induced
frequency variations, oscillator nonlinearities, short-term jit-
ter and any other possible cause of de-synchronisation.
However, a controller can treat all the above as exogenous
disturbances d(k), while the controlled system given by
Equation (8) is linear, time-invariant, device-independent,
and uncertainty-free. This allows to provide guarantees on
stability that do not depend on d(k), and to tackle the
synchronisation problem at the individual node level, in a
completely decentralised manner.

IV. CONTROL SYNTHESIS

In this Section we discuss the synthesis of the controller
denoted by R(z) in the scheme of Figure 1 (the error set
point is identically zero, thus not reported for compactness).
For feedback problems without uncertainty on P(z), a con-
venient synthesis technique is to prescribe the closed-loop
disturbance-to-error transfer function E(z)/D(z) to match a
desired one Fo(z), which means practically to decide that the
effect of the disturbance on the error should remain within
certain bounds. From Figure 1,

E(z)
D(z)

=
P(z)

1+R(z)P(z)
:= Fo(z), (9)

which readily provides R(z) as

R(z) =
P(z)−Fo(z)

P(z)Fo(z)
. (10)

A. Disturbance modelling

Given the device independence of model (8), Fo(z) has
to be chosen based on the expected disturbances. In this re-
spect, d(k) has four main components: crystal imperfections,
ageing, short-term jitter, and thermal stress.

Crystal imperfections contribute a constant skew term, and
ageing phenomena are extremely slow (acting typically on a
time scale of days) with respect to any reasonable T . Both
their effects thus vanish if Fo(z) produces an output that
tends to zero for any constant input; this requires Fo(1) = 0.

Short-term jitter is integrated over each synchronisation
period, and the result of the integral contributes to d(k).
A control-theoretical approach to deal with this kind of
problems, is to model the overall disturbance as a white
noise, i.e., an unpredictable noise with a bounded variance.
In this case, we can exploit a notable result in control-theory,
which is related to the H2 norm of a system. The H2 norm
measures the asymptotic variance of the response to white

noise [20], i.e.,

‖Fo(z)‖2
2 = lim

k→∞
E
[
y(k)2]−E [y(k)]2 (11)

To minimise the effect of possible disturbances on the
system’s output, the H2 norm should be kept as small as pos-
sible. In this respect, the advantage of adopting FLOPSYNC-
2 is threefold. First, the synchronisation-related information
is moved from the content to the arrival time of the syn-
chronisation packets, that can be made very short. Second,
FLOPSYNC-2 uses a MAC-bypassing flooding scheme,
thus there is no MAC-induced jitter in the synchronisation
packets reception. Third, rebroadcasting is done in hardware:
coupled to extremely predictable code paths, this practically
eliminates software-induced jitter. Only two jitter terms thus
remain, coming from oscillator and packet transmission.

The first term can be measured synchronising two nodes
by wire. Experiments showed that for T = 60s the stan-
dard deviation was 610ns. The second term is seen at the
transceiver interrupt line. In the experiments, we obtained
a standard deviation of 50ns. Since the two jitter sources
can be considered independent, the total uncertainty can be
computed by summing their variances, yielding a total of
612ns. Hence, to keep the standard deviation of e(k) below
1µs, ‖Fo(z)‖2 has to be less than 1.5. Of course, different
hardware would give other results, but the characterisa-
tion procedure is straightforward. Moreover, the obtained
‖Fo(z)‖2 limit is not strict, as will emerge in the following,
and it can be taken as a reasonable default for typical COTS-
based WSN nodes.

The final source of disturbance is thermal stress. The
time scale of this component is often comparable to the
synchronisation period. Therefore, the choice of Fo(z) needs
to take this aspect into account. From this viewpoint, the
harshest disturbance that a slave may face is a radiative
heat rate step, which occurs for example in the case of a
shade-sunlight transition [16]. We can describe a node as
a single thermal capacity, that exchanges heat convectively
with an external environment at the exogenously determined
temperature θe, and is subject to a radiative thermal flux Φr.
Hence, the dynamic behaviour of the node temperature, and
of the crystal temperature θx, is ruled by the continuous-time
linear model

ρV c
dθx(t)

dt
= SrΦr(t)− γSc(θx(t)−θe(t)) (12)

where ρ , V , c are respectively the node volume, average
density and average specific heat, Sr is the radiated surface,
Sc that involved in convective heat exchange, and γ the
convective heat transfer coefficient. Assume that a Φr step
from 0 to Φr is applied at t = 0, while θe stays constant
at θ e and the node is initially at the equilibrium with the
environment, i.e., θx(0) = θ e. The asymptotic temperature

reached by the node is

θ x = θ e +
Sr

γSc
Φr, (13)

and the resulting transient is

θx(t) = θ e +(θ x−θ e)

(
1− e−

γSc
ρV c t
)
, (14)

while the maximum temperature variation rate is

dθx(t)
dt

∣∣∣∣
t=0

=
γSc

ρV c
(θ x−θ e) =

Sr

ρV c
Φr. (15)

Consider now a parallelepiped node with
• a width and length from 3 to 10cm,
• a height from 1 to 2cm,
• an average density from 700 to 1200kg/m3,
• an average specific heat from 400 to 800J/kg◦C,
• a heat exchange coefficient from 5 (still air) to 50

(medium-strong wind) W/m2 ◦C.
Assume Sc to be the total surface and Sr the front one
only, and take Φr = 500W/m2 to consider an average sun
inclination. The result is an asymptotic temperature from
about 3 to 30◦C above the external one, a transient duration
of 2−80min, and a maximum temperature rate between 1.5
and 10◦C/min.

With a period T from a few seconds to a few minutes, and
considering the parabolic temperature-to-frequency crystal
characteristics, the thermal contribution dθ (k) to d(k) can
steadily increase for several periods from the heat rate step,
maintaining however a ramp-like shape if viewed on the
horizon of a few periods. Therefore, since it is advisable
to have the error approach zero before the oscillator tem-
perature settles, Fo(z) has asymptotically yield zero output
also for any constant-rate input; hence, it has to contain two
unity zeroes.

B. Controller structure selection

Summarising, we need an Fo(z) with one unity zero to
drive to zero the error (two if thermal stress is relevant at the
synchronisation time scale, in the sense above) and an H2
norm below 1.5. We thus selected two transfer functions, to
be used cooperatively as explained below, namely

Fo
1 (z) =

z−1
z2 , Fo

2 (z) =
(z−1)2

(z−α)3 , 0 < α < 1, (16)

which respectively correspond, as per (10), to the controllers

R1(z) =
2z−1
z−1

, R2(z) =
3(1−α)z2−3(1−α2)z+1−α3

(z−1)2 .

(17)
Figure 2 shows the H2 norms of Fo

1 (z) and Fo
2 (z), together

with the error responses they produce for a unit step and
a unit-slope ramp disturbance d(k), applied at k = 0. When
considering Fo

2 (z), time responses were obtained with three
representative values of α , commented on shortly.

As can be seen from the leftmost plot, ‖Fo
1 (z)‖2 has an

acceptable value, and the same is true for ‖Fo
2 (z)‖2 in a

wide enough span of α . Thus, both controllers perform
satisfactorily in the face of jitter. Observing the other two
plots, however, the same controllers exhibit a different
behaviour in the presence of a skew that varies abruptly
and then sustains the new constant value (centre plot, step
response) or that increases for a long time with respect to
T (rightmost plot, ramp response). Controller R1(z) is better
when it is to eliminate a step-like skew, while in the ramp
case it structurally cannot achieve error convergence while
the skew is increasing. This means that in the presence of
a heat rate step – that is, of a skew ramp – with R1(z) the
error will start converging toward zero only when the skew
becomes constant, which is when the temperature has settled.
With R2(z), convergence is achieved also with a ramp-like
skew. The rejection of a step-like skew is worse, however,
and large values of α can cause the ramp response not to
start converging before a certain number of steps.

As a result, we choose to employ R1(z) for the first two
periods after the slave initialised its clock, to rapidly com-
pensate for a skew that at the beginning is totally unknown,
and then switch to R2(z). Moreover, we set α = 3/8 – i.e.,
a value that eases computations to the advantage of speed –
since this gives more or less the same H2 norm as R1(z),
see the points marked in the leftmost plot of Figure 2, and
only slightly deteriorates the error convergence in the ramp
disturbance case.

FLOPSYNC-2 does not operate by explicitly estimating
the skew. However, since d(k) is the offset accumulated over
one synchronisation period, d(k)/T is readily interpreted
as the average skew over that period. Also, since u(k) is
computed attempting to match T + u(k) in the local time
to T in the reference one, the quantity −u(k)/T is in fact
an estimate of the average skew just mentioned. Hence, the
transfer function from the real (average) skew to its estimate
takes the form

S(z) =
−U(z)/T
D(z)/T

=
R(z)P(z)

1+R(z)P(z)
(18)

that with R2(z) becomes

S2(z) =
(1−α)(3z2−3αz−3z+α2 +α +1)

(z−α)3 (19)

To evidence the advantages inherently yielded by such
a way of estimating the skew, we can look at a typical
shade-sunlight transient like that shown in Figure 3. The
crystal has a nominal frequency of 32kHz at 25◦C, and a
temperature coefficient of −0.035ppm/◦C2. Its temperature
undergoes an exponential transient of amplitude and duration
of about 20◦C and 20min (topmost plot). The real skew
has the behaviour shown by the dotted black line in the
centre plot, descending toward zero at the nominal frequency
temperature, and then increasing to the asymptotic value.

0 0.2 0.4 0.6 0.8 1

1

2

3

α = 0.125

α = 0.375

α = 0.500

kαk

H
2

no
rm

||F◦1 (z)||2
||F◦2 (z)||2

0 5 10 15 20

−0.5

0

0.5

1

k

e(
k)

w
ith

a
st

ep
d(

k)

F◦
1 (z)

F◦
2 (z),α = 0.125

F◦
2 (z),α = 0.375

F◦
2 (z),α = 0.500

0 5 10 15 20
0

1

2

k

e(
k)

w
ith

a
ra

m
p

d(
k)

F◦
1 (z)

F◦
2 (z),α = 0.125

F◦
2 (z),α = 0.375

F◦
2 (z),α = 0.500

Figure 2: H2 norms and time responses of Fo
1 (z) and Fo

2 (z).

20
30

T
[◦

C
]

Temperature

-2

0

2

4

6

Sk
ew

an
d

Sk
ew

es
tim

at
es

[µ
s/

s]

true skew
FLOPSYNC-2
regression, n = 4
regression, n = 8
regression, n = 16

0 1000 2000 3000

-2

0

2

Sk
ew

es
tim

at
es

er
ro

r
[µ

s/
s]

FLOPSYNC-2 regression, n = 4
regression, n = 8 regression, n = 16

Figure 3: Skew estimates during a temperature transient.

The gray lines represent regression-based skew estimates
with a period of 1 minute and a window of respectively 4,
8, and 16 past samples. The thick line is the skew estimated
by FLOPSYNC-2, as per (19) with α = 3/8. The bottom
plot finally shows the skew estimate errors.

We could just notice that FLOPSYNC-2 is faster at
recovering a good estimate, but there is a more general and
important remark. In the real life of a WSN node, there is
simply no such thing as a “true and constant skew to be
estimated”. Skew is influenced by thermal dynamics whose
inputs (in this case, radiative heat) can vary with largely
unpredictable amplitude and rate. This makes synchroni-
sation techniques using regression-based skew estimation
structurally weak, whence the numerous (and often complex)
workarounds proposed in the literature [15]. Estimating the
skew based on error feedback naturally leads to follow its
dynamics without these workarounds.

C. Parametrisation

Suppose that a WSN needs deploying in a place where
accessing the nodes is impossible, like the volcano of [17],
and must operate correctly for a certain mission duration.
In such a case, the choice of the synchronisation period

0 2 4 6 8 10 12 14

0

1

A

B

C

Time [minutes]

Sy
nc

er
ro

r
[µ

s]

Figure 4: The FLOPSYNC-2 design requirements.

20 40 60 80

0.2

0.4

0.6

T [s]

α

Figure 5: Feasible (T,α) and Pareto-optimal frontier.

is critical. Correct operation requires good synchronisation,
which given the harsh thermal conditions, calls for a small
T . Attaining the mission duration requires on the contrary
to preserve the battery life of the nodes, thus claiming for as
large a T as possible. In the absence of a method to configure
the WSN before its deployment, heuristics can easily lead
to excessive conservatism in either direction. As a result,
operation may be correct but batteries can die too early, or
batteries can last long enough, but synchronisation may be
too poor. In both cases, the mission may fail-

Thanks to the use of dynamic models, FLOPSYNC-2
provides a solution to such problems. Increasing T prolongs
battery life at the cost of a larger peak error for thermal
events, while increasing α up to the value that gives the
minimum ‖Fo

2 (z)‖2 reduces jitter to the detriment of error
convergence time. It is thus possible to perform an offline
design space exploration with the proposed model; this
yields the (T,α) couples that guarantee the required syn-
chronisation quality under the assumed (worst-case) thermal
stress, together with the Pareto-optimal values to target a
WSN toward battery life, or minimum synchronisation error.

We created a configuration tool to easily perform the
mentioned offline design space exploration. The user fills
a form to provide the nominal crystal parameters, which

can be obtained from the data sheet, the expectable thermal
stress, i.e.,
• a minimum external temperature θe,min and a maximum

one θe,max, such as the minimum temperature during
winter and the maximum during summer for outdoor
applications,

• a maximum magnitude rθ ,max for the temperature vari-
ation rate,

• a maximum magnitude ∆θmax for the temperature swing
in a single thermal event, as it is very unlikely that said
swing spans the entire (θe,min,θe,max) range,

and the synchronisation requirements. Given the shape of
a typical error trace during a temperature transient with
FLOPSYNC-2, the tool allows to select the maximum
tolerable error peak magnitude after a thermal event (A in
Figure 4) and the maximum time C for the error to fall
below a prescribed range of values centred around zero
with amplitude B < A after such an event. The user is then
presented with an output similar to Figure 5. The coloured
region contains the feasible (T,α) couples, and the thick
black line is the Pareto-optimal frontier.

The tool was validated by comparing its results with
several experiments made with real WSN nodes recording
the synchronisation error during thermal transients of various
amplitude and rate, resulting in less than 20% errors in the
maximum synchronisation error prediction. This result was
achieved despite only using the nominal crystal parameters
taken from its data sheet.

FLOPSYNC-2 guarantees stability and error convergence
to zero structurally. Thanks to the robustness of the feedback
loop, the sole consequences of incorrect couples of (T,α)
is a larger error peak and/or a slower convergence. In
“standard” applications, thus, one can use the proposed
default values safely, and no configuration effort is required.
In more critical cases, the sole knowledge (also approximate)
of nominal parameters and environmental limit conditions,
can be used to make sure a priori that the WSN will behave
correctly, and will not loose performance due to poor syn-
chronisation or waste energy due to excessive conservatism.

V. IMPLEMENTATION

FLOPSYNC-2 is made of four components: the flooding
scheme, the controller, the virtual clock, and the resynchro-
nisation scheme. The first two are implemented as periodic
tasks with period T . The virtual clock is called every time
the reference time is needed, while the resynchronisation
module is executed when a slave joins the network, or loses
synchronisation, for example due to a long-lasting interfer-
ence that prevents the reception of several synchronisation
packets.

A. The flooding scheme

The purpose of the flooding scheme is to receive and
rebroadcast the synchronisation packets. It also measures

their actual arrival time ta
loc(k), suitably corrected for the

transmission delay. This is easily computed based on packet
length, hop count, and radio data rate. Since in FLOPSYNC-
2 synchronisation information is given by packet arrival
times, the radio channel must be clear from access con-
tention when synchronisation packets are flooded. Therefore,
all the nodes turn off their MAC layer for a short time
window every period T , and the flooding scheme takes full
control of the transceiver. No further constraint is imposed
on the radio usage outside the synchronisation window: a
node can use an ordinary low power listening MAC, for
example.

FLOPSYNC-2 rebroadcasts synchronisation packets in
hardware, to eliminate software-induced retransmission jit-
ter. The used hardware timer has an input capture channel, as
in [5], but also an output compare one. The capture channel
is connected to the transceiver SFD1 interrupt line, thereby
taking a local clock timestamp of the synchronisation packet
arrival. A constant delay is then added in software to the
timestamp, and the resulting value is written in the output
compare register. The output compare feature allows to raise
a pin on the microcontroller when the preset time is reached,
thereby triggering the packet transmission in hardware. This
allows to introduce a very deterministic rebroadcast delay.
As the following experiments will show, this makes the
synchronisation error nearly independent of the number of
hops.

Finally, FLOPSYNC-2 has no requirement on the content
of the synchronisation packet, which enhances power effi-
ciency by reducing the consumption overhead at both the
transmitter and the receiver end. As an example, the Glossy
flooding scheme requires a one byte field in the packet used
as retransmission counter. This allows to flood the network
with a packet whose payload is just one byte. To the best of
the authors’ knowledge, no other scheme can work with such
small packets. If the radio transceiver additionally supports
variable length packets, piggybacking can be used to send
commands to the entire network with the same periodic
flooding used for synchronisation, while reducing the packet
length to one byte when there are no commands to transmit.

B. The FLOPSYNC-2 controller

The purpose of the FLOPSYNC-2 controller is to compute
u(k), thus the expected arrival time te

loc(k+ 1) for the next
synchronisation packet: te

loc(k + 1) allows to schedule the
next time when the flooding scheme will take over the radio,
while u(k) is used by the virtual clock. This computation is
done by R2(z) except for the first two steps, where R1(z)
runs. The controllers can be implemented efficiently with
integer arithmetic, particularly if α is chosen as a rational
number having a power of two as denominator.

1SFD or Start Frame Delimiter is the byte that marks the beginning of a
packet in the 802.15.4 standard. Most radio transceivers have an interrupt
line that is raised when it is received.

FLOPSYNC-2 also minimises idle listening, by adapting
the time advance w of the radio activation with respect to
the expected synchronisation packet arrival. This is crucial
for power efficiency, and critical in terms of power/reli-
ability tradeoff. A too short w results in a high risk of
missing synchronisation packets, while a too long one wastes
power [19].

To adapt w, the algorithm computes the error variance
in batches of N = 8 error samples, by keeping only two
variables (the sum of the errors and of their squares). The
variance is used to compute the standard deviation σ , and w
is set to 3σ , clamped between a minimum and a maximum
(in the current implementation, 30µs and 5ms). This results
in adapting w every N ·T seconds. Note that the so computed
w can be used by the radio stack for additional power
optimisations, for example to efficiently implement slotted
or TDMA MAC protocols.

As soon as the packet is received, the receiver is turned
off, and the flooding scheme rebroadcasts it. If instead the
packet is not received, the radio is kept in receive mode
for a maximum of 2w+ packetTime, where packetTime is
the time necessary for the packet transmission. After that,
the packet is considered lost, w is doubled, and since this
lack of information does not allow to run the controller,
the u value of the previous period is used also for the
present one. Finally, a counter is incremented every time
a synchronisation packet is lost, and reset to zero when
one is received. If the counter exceeds a threshold (3
in the current implementation), the slave node undergoes
resynchronisation.

The FLOPSYNC-2 controller, with dynamic w adaptation,
is reported in Listing 1 to demonstrate its simplicity. When
implemented for the reference architecture, only 28 bytes
of RAM (plus a few ones of stack) are needed, and the
full code, including the part handling packet losses not
shown here for brevity, occupies only 604 bytes. Concerning
execution speed, the code takes on average 4.4µs, increasing
to 7.2µs when w is recomputed.

C. The virtual clock

The purpose of the virtual clock is to translate from
the local time to the reference one, and vice versa. The
translation takes as input the value of tloc to convert as well
as t(k), the reference time when the last synchronisation
packet was sent, the local time te

loc(k) when the same packet
was expected, and u(k). Time translation is done by rewriting
tloc as te

loc(k)+(tloc−te
loc(k)). The first term is converted into

the reference time by replacing te
loc(k) with t(k), as this is

the reference time when the last synchronisation packet was
sent. The tloc− te

loc(k) term is then corrected with a linear
interpolation employing u(k)/T as the skew estimate (see
Figure 3). The reference time estimate then comes from (1).

One can argue on the choice of te
loc(k) instead of ta

loc(k),
which is apparently a better estimate of the local time

1 int uo = 0, uoo = 0; // past control values
2 short eo = 0, eoo = 0; // past errors
3 int sum = 0, squareSum = 0; // variance computation data
4 char count = 0, init = 0; // counter and pre-init
5 unsigned short w = wMax; // idle listening time
6 unsigned int eat = period; // expected arrival time
7

8 while (1) { // each synchronisation k
9 disableMacLayer();

10 unsigned int timeout = (2*w) + packetTime;
11 waitForSync(timeout);
12 int at = rtc.getValue(); // actual arrival time
13 rebroadcastWithGlossy();
14 short e = eat - at; // error on arrival time
15 if (init == 0) {
16 // quick skew estimation controller
17 init = 1; uo = -2 * 512 * e; uoo = -512 * e;
18 } else {
19 if (init == 1) {
20 init=2; uo/=2; // transition to second controller
21 }
22 // controller: alpha = 3/8, multiplied by 512
23 int u = (2*uo) - uoo - (960*e) + (1320*eo) - (485*eoo);
24 uoo = uo; uo = u; eoo = eo; eo = e;
25 // idle listening minimisation
26 sum += e; squareSum += e * e; ++count;
27 if (count >= numSamples) {
28 // variance computed as E[Xˆ2]-E[X]ˆ2
29 int mean = sum / numSamples;
30 int var = (squareSum/numSamples) - (mean*mean);
31 // using the Babylonian method for square root
32 int stddev = var/7;
33 for (int j=0; j<3; j++)
34 stddev = (stddev + var/stddev)/2;
35 // set the slack time to 3 sigma
36 w = stddev * 3;
37 if (w > wMax) w = wMax;
38 if (w < wMin) w = wMin;
39 sum = 0; squareSum = 0; count = 0;
40 } // end if
41 } // end for
42 eat += period + uo/512; // updating expected arrival time
43 enableMacLayer();
44 rtc.sleepUntil(eat - w);
45 }

Listing 1: FLOPSYNC-2 controller and variance estimator.

corresponding to t(k). However, if ta
loc(k) were used, an

instantaneous correction of the local clock would result,
thereby impairing its monotonicity. On the contrary, the
adopted choice makes the error constant across the boundary
between two synchronisation periods, thus being the key
point for its continuity and monotonicity.

D. The resynchronisation scheme

This component takes care of recovering from a synchro-
nisation loss, as well as allowing a slave that has just joined
the network to receive the first synchronisation packet. Its
task consists of resetting the FLOPSYNC-2 controller’s state
variables to zero and initialising the idle listening time
advance w to its maximum value.

Initial offset elimination is done with a timestamp re-
quest/response protocol, taking advantage of the ordinary
MAC protocol used by the nodes when not running the
flooding scheme — i.e., transmitting sporadic timestamps.
To avoid any time uncertainties due to access contention
in the request/response protocol, the response packet does
not contain the current time, rather the reference time

1 2 3 4 5 6 7 8
-1µs

0

+1µs

50ns

86
6n

s

26ns

85
8n

s

-25ns

85
8n

s

-12ns

87
7n

s

29ns

87
3n

s

-62ns

88
0n

s

-113ns

89
1n

s

-104ns

88
8n

s

hop

e(
k)

Figure 6: FLOPSYNC-2 average synchronisation error and
standard deviation as a function of the hop count.

when the next synchronisation packet will be sent. As this
occurs at a constant period T which is also sent in the
response packet, the reference time corresponding to all
future synchronisation packets can be determined. It should
however be stressed that the reference time is only used by
the virtual clock, while the synchronisation controller is fed
by the difference between the expected and actual packet
time only, both counted in the local clock tloc.

VI. EXPERIMENTAL RESULTS

FLOPSYNC-2 has been implemented on a WSN node
platform employing an ARM Cortex-M3 microcontroller
running at 24MHz, and a CC2520 transceiver. The soft-
ware is written in C++, as an application for the Miosix2

operating system. The implementation uses Glossy for pre-
dictable flooding latency, and the virtual high-resolution
timer (VHT) [16] without the skew compensation method,
to achieve high local clock resolution with low consumption.

In all the reported experiments T is set to 60s, and α to
3/8. To measure the error between synchronisation instants
and test the virtual clock, the slaves send additional packets
every 1.5s to the master. These packets are used only in
performance evaluation tests and not in normal operation
mode.

A. Synchronisation error distribution

To tests the statistical distribution of the synchronisation
error, we performed a six-days-long experiment with nodes
distributed in an office building, forming an eight-hop net-
work, and exposed to interferences like Wi-Fi networks, to
provide a realistic setting.

Figure 6 shows the average synchronisation error and
its standard deviation as a function of the hop count.
Observe that the average is extremely low, a few tenths
of nanoseconds. For small hop counts, this is even less
than the tick resolution of the employed timer, which is
42ns. The merit for so high a precision is due to the
integral action in the FLOPSYNC-2 controller that can be
viewed as a means to account for an infinite number of
past error samples (opposite for example to the forcedly
limited window of regression-based skew compensation).
Also, both the average error and its standard deviation show

2The source code, including also the FLOPSYNC-2 configuration tool,
is available for download as free software at http://gitorious.org/flopsync.

0

100

200

300

Sy
nc

er
ro

r
[µ

s] FTSP
FBS
FLOPSYNC-2

0 10 20 30 40 50 60

30
40

Time [minutes]

Te
m

p
[◦

C
]

Temperature

Figure 7: Synchronisation error during the temperature tran-
sient caused by a shade to sunlight transition.

a significantly weak dependence on the hop count: this is
a merit of the hardware flooding protocol, that practically
eliminates jitter accumulation from one hop to the next one.

An important fact to notice is that during the experiment
no de-synchronisations were observed, although interfer-
ences did cause synchronisation packet losses. This proves
that resynchronisations are infrequent, and therefore the
timestamp request/response protocol for offset compensation
outlined in section V-D is more efficient than including a
timestamp in each synchronisation packet.

Finally, the time spent in idle listening was logged
throughout the experiment, and on average it was 21 µs per
period. This value will be used in Section VI-C to estimate
the FLOPSYNC-2 consumption overhead.

B. Effects of temperature stress

One of the most extreme tests, yet common for real de-
vices, that a clock synchronisation scheme has to withstand
is the skew variation caused by a shade-sunlight transition.
The capabilities of FLOPSYNC-2 are here compared with
FTSP [10], a representative clock synchronisation scheme
based on linear regression, and FBS [2] a representative
example using non tailored control-based schemes. During
the test, three nodes respectively running the mentioned
synchronisation schemes, were placed in an enclosure and
exposed to the sun. The enclosure has the double purpose
of providing a realistic setting for a network deployed in an
outdoor environment, and of keeping the temperature of the
nodes as uniform as possible, so as to better compare their
response. FTSP was configured with a window of 8 data
samples, as in the TinyOS implementation, while FBS was
configured with Ki = K p = 0.7847, as suggested in [2].

The result is shown in Figure 7. Compared with FTSP,
FLOPSYNC-2 performs significantly better: error feedback
quickly compensates for the varying skew, achieving a
maximum error of 45µs, while with FTSP the error rises
up to 293µs. Also, FLOPSYNC-2 requires just 7 minutes
to steer the error into a ±20µs range, while FTSP requires
38 minutes.

In comparison with FBS, FLOPSYNC-2 reduces the
synchronisation error to ±20µs within seven minutes and
keeps the error in the same range even while temperature is

14µA

3.5mA

10.2mA

30nA

175µA
1.6mA

22.3mA
25.8mA

R
ad

io
C

PU

400µs

250µs

20µs

100µs
330µs

200µs

400µs

20µs

250µs+w

30µs

payload

200µs

160µs

200µs

152µs

20µs

payload

160µs

170µs

PLLboot VHTboot
Vreg
on xtalon radioinit

jitter
assor. waitSFD waitFRM checkbsp

&rebr.

jitter
assor.

trigger
&u,w

waitSFD waitFRM
Vreg
off

sleep

Figure 8: Current consumption trace for a slave node.

still increasing. On the contrary, the PI controller of FBS
exhibits a higher maximum error of 94µs and does not
adequately compensate for the error until the temperature
has settled. As a result, FBS takes 28 minutes to bring
the error in the same ±20µs range. As for clock mono-
tonicity and continuity, FTSP and FBS rely on timestamp
transmission and clock corrections. Although when tem-
perature is not changing FTSP and FBS can accommodate
for a consequently constant skew, this is not true during a
temperature change, where instantaneous clock jumps are
observed. These jumps may cause backward corrections of
the local clock. FLOPSYNC-2, instead, guarantees clock
monotonicity.

C. Energy consumption model

This Section shows the FLOPSYNC-2 energy efficiency,
introducing a consumption model. During the execution, we
profiled the implementation, extracting the operating state
(active, deep sleep, etc.) transitions for both the microcon-
troller CPU and the transceiver. The so obtained timing
information, combined with current consumptions from data
sheets, gives us an estimate of the current consumption.

Figure 8 shows the current consumption profile for a slave
node. The master has a similar profile, except for the packet
reception. At the beginning of each synchronisation period,
the CPU wakes out of deep sleep, starts its internal PLL
and enters the run state at the full clock frequency. It then
performs VHT resynchronisation, and brings the transceiver
out of deep sleep, which requires waiting for the transceiver
voltage regulator and oscillator to start. The transceiver is
then configured, and after that the radio and CPU remain
both in the sleep state for some slack time, to absorb the
jitter of the PLL and oscillator startup. Once the slack time
is expired, the CPU instructs the radio to start receiving, sets
a timeout interrupt, and sleeps. When the synchronisation
packet is received, the CPU is awakened, and after a fixed
amount of time, the timer compare channel triggers packet
rebroadcast. While the packet is being sent the CPU runs the
controller and variance estimator, and then sleeps. Finally,
when the packet is sent, the transceiver enters deep sleep,
shortly followed by the CPU.

The FLOPSYNC-2 average consumption overhead can be
obtained by integrating the area below the current profile,
dividing by T , and subtracting the consumption of the node
in deep sleep. The result (parametric in the packet payload,
w, and T) is

Ire f =
25.6µC+0.94µC · payload bytes

T
(20)

for the master node, and

Isync =
37.8µC+1.76µC · payload bytes+25.8mA ·w

T
(21)

for the generic slave. Summarising, with a two-byte payload
(Glossy retransmission counter and checksum3), and the
average value of w taken from Section VI-A, the current
consumption overhead of FLOPSYNC-2 is 458nA for the
master node, and 698nA for the slaves.

VII. RELATED WORK

A first pioneering work on WSN synchronisation is Post-
facto synchronisation [3], that questions the applicability of
established clock synchronisation schemes such as NTP [11]
to WSNs. The proposed solution synchronises clocks only
when needed by listening on a periodically transmitted
synchronisation packet. Another approach is TPSN [6], that
creates a spanning tree of the network, and uses pairwise
node synchronisation along the edges. DMTS [12] enhances
simplicity by having the reference node periodically broad-
cast a packet with its time. The other nodes compare their
local time with the received one, and perform a correction
when needed. The simplest approaches, like those sketched
above, perform only clock synchronisation without skew
compensation, thus the error grows rapidly as the synchro-
nisation period is increased, and suffer from clock jumps at
every synchronisation.

RBS [4] exploits the broadcast nature of wireless links
by having each node record a timestamp when a packet
is received. Nodes then exchange their timestamps over
the radio, and compute a translation table between their
clocks; notably, RBS introduces the use of linear regression
to estimate clock skew. FTSP [10] proposes the use of a
flooding scheme to efficiently distribute the synchronisation
packet, coupled with MAC-level timestamping and linear
regression for skew compensation. Tiny-Sync [18] proposes
a different skew compensation scheme by constraining the
possible skew values through a set of inequalities.

Subsequent research focuses on improving individual
components used to build a synchronisation scheme.
Glossy [5] proposes a particularly efficient flooding scheme
for distributing synchronisation packets, which we build

3802.15.4 packets have a two byte CRC, but this is a high overhead for
a one-byte payload packet. Thus, CRC was disabled when sending sync
packets, and a one-byte checksum is added to the payload.

upon. TCTS [15] enhances the regression-based skew com-
pensation of FTSP with temperature sensing and a tem-
perature to frequency model, to withstand thermal drift,
while our work can compensate for the same drift without
measuring temperature. VHT [16] combines a low power,
low frequency oscillator with a higher frequency one, to
improve both resolution and power efficiency.

Although the problem of event ordering in distributed
systems is well known in the literature [8], most of the
mentioned algorithms are based on instantaneous clock
synchronisation, followed by skew compensation. Such an
approach neglects monotonicity and continuity of the local
clock of each node, and causes event ordering issues even
between timestamps of a single node. This is especially true
when the skew estimate is not correct, such as during a
temperature change. Works that address this problem by only
changing the clock rate exist in the literature, such as [1, 13],
but the first one relies on additional hardware to physically
tune the crystal oscillator frequency, while the second uses
timestamp transmission and a PLL-like algorithm.

This is not the first work that proposes the use of feedback
control for clock synchronisation. Previous approaches use
established control schemes instead of designing a tailor-
made controller. Examples include FBS [2] and FLOP-
SYNC [9] which are based on proportional-integral (PI) con-
trol and can only compensate for a constant or slowly vary-
ing clock skew. Another example is SCTS [13], which uses
a PLL control loop. While a PLL is specifically designed to
perform clock synchronisation, it was originally meant to be
operated on a cycle-by-cycle basis. When applied to WSN
synchronisation, the algorithm is instead operated once every
few million clock cycles, and temperature variations can no
longer be considered a slowly varying disturbance.

Virtually all the proposed approaches use the difference
between a local and a received timestamp as the synchroni-
sation error measure. In these schemes, the synchronisation
packets need to contain timestamps, which is inefficient
considering that state-of-the-art synchronisation schemes
achieve errors in the order of a microsecond. At these
resolutions a 32 bit timestamp overflows too quickly, so
a synchronisation packet may contain up to 8 bytes of
timestamp, resulting in an overhead in both power and radio
bandwidth.

VIII. CONCLUSION

This paper addressed the problem of efficient clock syn-
chronisation for the nodes of a wireless sensor network.
Synchronisation is a very challenging problem for WSNs,
due to the unpredictable deployment conditions and to
physical interference that cause drifts in the internal clock of
each node. The proposed synchronisation scheme is based
on a control-theoretical formulation and a tailored controller
structure.

The scheme was implemented on top of a microcon-
troller operating system, demonstrating that FLOPSYNC-2
preserves clock monotonicity for each node without relying
on any external support. FLOPSYNC-2 can be efficiently
implemented, allowing nodes to achieve sub-µs synchroni-
sation error with sub-µA current consumption overhead.

REFERENCES

[1] M. Buevich, N. Rajagopal, and A. Rowe. “Hardware Assisted Clock
Synchronization for Real-Time Sensor Networks”. In: IEEE 34th
Real-Time Systems Symposium (RTSS). 2013.

[2] J. Chen, Q. Yu, Y. Zhang, H. Chen, and Y. Sun. “Feedback-Based
Clock Synchronization in Wireless Sensor Networks: A Control
Theoretic Approach”. In: IEEE Trans. on Vehicular Tech. 59.6
(2010).

[3] J. Elson and D. Estrin. “Time synchronization for wireless sensor
networks”. In: 15th International Parallel and Distributed Process-
ing Symposium. 2001.

[4] J. Elson, L. Girod, and D. Estrin. “Fine-grained network time
synchronization using reference broadcasts”. In: Symposium on
Operation Systems Design and Implementation. 2002.

[5] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh. “Efficient
network flooding and time synchronization with Glossy”. In: In-
formation Processing in Sensor Networks (IPSN). 2011.

[6] S. Ganeriwal, R. Kumar, and M. Srivastava. “Timing-sync Protocol
for Sensor Networks”. In: International Conference on Embedded
Networked Sensor Systems. 2003.

[7] H. Kopetz and W. Ochsenreiter. “Clock Synchronization in Dis-
tributed Real-time Systems”. In: IEEE Trans. Comput. 36.8 (Aug.
1987), pp. 933–940.

[8] L. Lamport. “Time, Clocks, and the Ordering of Events in a
Distributed System”. In: Communications of the ACM (1978).

[9] A. Leva and F. Terraneo. “Low power synchronisation in wireless
sensor networks via simple feedback controllers: The FLOPSYNC
scheme”. In: American Control Conference (ACC). 2013.

[10] M. Maroti, B. Kusy, G. Simon, and A. Ledeczi. “The Flooding Time
Synchronization Protocol”. In: Conference On Embedded Networked
Sensor Systems. 2004.

[11] D. Mills. “Internet time synchronization: the network time protocol”.
In: IEEE Trans. on Communications 39.10 (1991), pp. 1482–1493.

[12] S. Ping. “Delay Measurement Time Synchronization for Wireless
Sensor Networks”. In: Intel Research. 2003.

[13] F. Ren, C. Lin, and F. Liu. “Self-correcting time synchronization
using reference broadcast in wireless sensor network”. In: IEEE
Wireless Communications (2008).

[14] A. Rowe, V. Gupta, and R. Rajkumar. “Low-power Clock Synchro-
nization Using Electromagnetic Energy Radiating from AC Power
Lines”. In: Sensys. 2009, pp. 211–224.

[15] T. Schmid, Z. Charbiwala, R. Shea, and M. Srivastava. “Temperature
compensated time synchronization”. In: IEEE Emb. Sys. Lett. (2009).

[16] T. Schmid, P. Dutta, and M. Srivastava. “High resolution, low-
power time synchronization an oxymoron no more”. In: Information
Processing in Sensor Networks (IPSN). 2010.

[17] G. Werner-Allen, K. Lorincz, M. Ruiz, O. Marcillo, J. Johnson,
J. Lees, and M. Welsh. “Deploying a wireless sensor network on an
active volcano”. In: Internet Computing 10.2 (2006), pp. 18–25.

[18] S. Yoon, C. Veerarittiphan, and M. Sichitiu. “Tiny-sync: Tight time
synchronization for wireless sensor networks”. In: ACM Trans. on
Sensor Networks (2007).

[19] Y. Zeng, B. Hu, and H. Feng. “Time Division Flooding Synchroniza-
tion Protocol for Sensor Networks”. In: International Conference on
Mobile and Ubiquitous Systems: Networking Services. 2007.

[20] K. Zhou, J. Doyle, and K. Glover. Robust and Optimal Control.
Prentice Hall PTR, 1996. ISBN: 9780134565675.

