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Abstract The presence of different time scales in a dynamic model significantly hampers the efficiency

of its simulation. In multibody systems the fact is particularly relevant, as the mentioned time scales may

be very different, due for example to the coexistence of mechanical components controlled by electronic

drive units, and may also appear in conjunction with significant nonlinearities. This paper proposes a

systematic technique, based on the principles of dynamic decoupling, to partition a model based on the

time scales that are relevant for the particular simulation studies to be performed, and as transparently

as possible for the user. In accordance with said purpose, peculiar to the technique is its neat separation

in two parts: a structural analysis of the model, that is general with respect to any possible simulation

scenario, and a subsequent decoupled integration, which can conversely be (easily) tailored to the study

at hand. Also, since the technique does not aim at reducing but rather at partitioning the model, the state

space and the physical interpretation of the dynamic variables are inherently preserved. Moreover, the

proposed analysis allows to define some novel indices relative to the separability of the system, thereby

extending the idea of “stiffness” in a way that is particularly keen to its use for the improvement of

simulation efficiency, be the envisaged integration scheme monolithic, parallel, or even based on co-

simulation. Finally, thanks to the way the analysis phase is conceived, the technique is naturally applicable

to both linear and nonlinear models. The paper contains a methodological presentation of the proposed

technique, that is related to alternatives available in the literature so as to evidence the peculiarities just

sketched, and some application examples, illustrating the achieved advantages and motivating the major

design choice from an operational viewpoint.

Keywords Efficient Simulation · Weak Coupling · Multibody Systems

1 Introduction

Over the last years, modelling and simulation have been increasingly permeating the daily work of engi-

neers. Simulation models are nowadays used to take decisions at virtually any stage of a project, and even
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to stipulate and mutually assess the behaviour of parts being created by different manufacturers before

they are assembled—see, e.g., [4].

Two are the major consequences of such an evolution. On one side, model creation and management

tools have been dramatically improving, and at present allow to construct extremely complex models on

lightweight computational platforms, like, e.g., a laptop. On the other side, the need has become more

and more strong for manipulation and solution tools that can run on the same platforms, and treat those

complex models efficiently enough. In other words, in the present scenario, the available computational

resources often become the bottleneck of simulation-based studies, and therefore achieving an efficient

integration of complex models becomes even more important.

The facts just mentioned are particularly relevant when addressing multibody systems, where many

different time scales can be observed, and these very often appear together with significant nonlinearities.

Also, in many engineering problems, a multibody system is not simulated alone, but rather in conjunction

with some (fast) drive electronics, and/or some (slow) phenomenon occurring in the process where the

multibody system operates, e.g., a thermo-hydraulic plant.

This paper is part of a long-term research aimed at investigating how to manage the aforementioned

complexity, by devising model analysis, manipulation, simplification and solution techniques that can be

made part of modern modelling and simulation environments, in a view to achieve efficient integration as

transparently as possible for the user.

Complexity – in the sense considered in the entirety of this research – can have different sources,

the major ones being model dimension, nonlinearities, necessity of different modelling paradigms (e.g.,

equation- or algorithm-based), and presence of different time scales (i.e., stiffness).

In the literature, those kinds of complexity are addressed with different approaches. Large-scale sys-

tems are typically handled by means of Model Order Reduction (MOR) techniques [1]. These are however

essentially limited to the linear case, while nonlinear extensions are basically heuristic, domain specific,

or scenario-based [17]. As for multi-paradigm models, advanced tools – typically object-oriented mod-

elling languages – are inherently conceived to handle them, allowing for example to combine equation

and algorithm models [6]; also, co-simulation environments are available to cooperatively employ spe-

cialised simulation tools [2,10]. Finally, the integration of systems with different time scales can be made

more efficient by means of approximation techniques, such as the so called Dynamic Decoupling [3].

Whatever the source of complexity is, here we take as the main goal of model simplification that of

improving computational performance while respecting convenient precision/accuracy constraints for the

specific simulation study at hand. In this respect, it is worth noticing that modern tools already allow to

apply some simplification techniques in quite an easy way. For example, environments like Matlab pro-

vide many well-established functions for linear MOR, e.g., balred. However, to the best of the authors’

knowledge, for virtually all the other mentioned techniques only problem specific solutions are available,

and their full integration in modelling environments is still an open problem.

This paper deals with the exploitation of one of those techniques, namely the mentioned Dynamic

Decoupling (DD). The proposed methodology is grounded on an analysis technique, described in the

following, which is somehow analogous to eigenvalue analysis but applicable also to nonlinear systems.

Said technique, called Cycle Analysis, is the first contribution of this work. A second contribution,

building on the cycle analysis idea, is the proposal of some indices to quantify the “separability” of a

model into submodels, based on DD. By jointly exploiting said contributions, the following main ad-

vances are obtained beyond the state of the art:

1. if a monolithic solution (i.e., no co-simulation) is required, cycle analysis provides evidence of possi-

ble internal weak couplings among dynamic variables, which can be exploited to ease the numerical

integration; in the presence of a parallel computing architecture, this is apparently useful also for

selecting the simulation threads;

2. if one (further) wants to apply integration schemes tailored to decoupled systems, these can be applied

and configured on an objective basis, according to structural properties of the model at hand;
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3. if a co-simulation setting is considered and some degrees of freedom are available as for the model

partitioning, these can be exploited automatically;

4. whatever solution setting is adopted, the proposed indices allow to take any decision concerning its

configuration based on quantities that are easily interpreted by the analyst.

Reference is here made to equation-based object-oriented modelling tools because they are particu-

larly keen to be complemented with the proposed functionalities, but the proposed ideas are completely

general, and applicable also in different contexts.

The rest of the paper is organised as follows. In Section 2 a brief literature review on model simplifica-

tion techniques is presented. In Section 3, the concept of DD is reviewed under a novel viewpoint, while

Section 4 describes the proposed procedure for structural analysis, i.e., the Cycle Analysis. Based on that

method, Section 5 describes some new synthetic indices to characterise and quantify structural properties

of the system, e.g., how much stiff or “separable” a system is, relating those quantities (when possible)

to quantities already present in the literature. Section 6 describes how to exploit the results coming from

the Cycle Analysis in a mixed-mode integration scheme, and in Section 7 some examples are presented

and discussed. Some application-oriented remarks and more general discussion on the proposed method

are reported in Section 8, while Section 9 concludes the paper.

2 Related Work and Contribution

In the context of this work, models are natively created in the form of a-causal Differential-Algebraic

Equations (DAE) systems. The typical chain of operations of a modelling and simulation environment,

that starts from said native model description and ends with the simulation code, can be broadly divided

into two parts.

The first part, which we call acting on the continuous-time equations, converts the a-causal DAE sys-

tem into a causal Ordinary Differential Equations (ODE) one. This is done without altering the equations’

semantic, by resorting to techniques such as the Tarjan algorithm, alias elimination, index reduction, and

so forth [6]. The same operation can also be done by accepting some semantic alteration – i.e., by altering

the continuous-time equations – in exchange for an efficiency improvement. The major techniques for

such a purpose are, MOR [1] and scenario-based approximations [16, 17].

The second part, which we call acting on the discrete-time solution, consists of taking the ODE

model as the basis to generate routines that – once linked to the numeric solver of choice – provide the

simulation code. Assuming that acting on the discrete-time solution is done “correctly”, i.e., preserving

numerical stability, also in this case two ways of operating can be distinguished. The first one does not

alter the solution semantic, applying the chosen discretisation method as is. In this case, errors in the

solution only come from the inherent imperfection of that method. The second way conversely alters the

semantic, by deliberately deviating from the natural application of the discretisation method. Notice that

most co-simulation techniques naturally fall in the second class (see, e.g., [10]).

In this paper we concentrate on the last way of operating, for which DD [3, 18] is a powerful tech-

nique, albeit not fully exploited in a structured (thus possibly automated) manner. For the purpose of this

section, suffice to say that this technique aims at partitioning a model into submodels, based on time-

scale separation. The method is particularly of interest – as will be better detailed in Section 3 – because

it can be divided into two well separated phases: an analysis part performed on the overall model, and a

simulation part that can either be monolithic or make use of co-simulation.

To motivate the choice of focusing on DD, a brief discussion on the major possible alternatives is in

order. As already stated, among the techniques that act on the continuous-time equations, MOR ones are

the most adopted, and there exists a vast literature on the matter. MOR is based on the idea of approxi-

mating a certain part of the high-dimensional state space of the original model with a lower-dimensional

state space, by performing a projection. Roughly speaking, the main differences among MOR techniques
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come from the way the projection is performed. In any case, most MOR techniques were developed for

linear systems [1], and this hampers their application to complex physical cases, where high dimension

often appear in conjunction with nonlinearities.

In fact, developing effective MOR strategies for large nonlinear systems is quite a challenging and rel-

atively open problem [11]. Some proposals can be found in the literature, based, e.g., on linearisation or

Taylor expansion [8], bilinearisation [20], or functional Volterra series expansion [12], followed by a suit-

able projection. Other proposals worth mentioning are those based on Proper Orthogonal Decomposition

(POD) [7], to produce approximate truncated balanced realisations for nonlinear systems [21], often to

find approximate Gramians [15]. However, the former type of MOR extensions for the nonlinear case are

in practice stuck to quadratic expansions, which strongly limits their applicability. As for the latter type,

the cost of evaluating the projected nonlinear operator is often quite high, which reduces computational

performance.

Recently, works specifically targeting the reduction of object-oriented models have appeared [16,17].

The main idea is that one can define some operation to be performed on the nonlinear system – e.g.,

“neglect a term”, “linearise a part of the model”, and so on – and use some ranking metrics to identify a

priori which is the “best” (single) manipulation that can be done on the model. Apparently, the limit of this

approach is that ranking all the possible manipulation combinations is not feasible—in fact, the authors

try to find out some other heuristics, such as clustering techniques, to reduce the combinatorial part of

the approach. Moreover, there is no guarantee that performing the manipulations in the ranked order will

eventually lead to the optimal manipulation, since they are considered one at a time. Another problem

is the high cost of generating the reduced order models, due to necessity of computing “snapshots” in

the time domain, i.e., simulations of the reduced model to check whether a given error bound is fulfilled,

which in turn requires performing numerous simulations of the original nonlinear system. Furthermore,

this approach is scenario-based, i.e., the simplified model is guaranteed to be good – and the error within

the error bound – only for a set of initial conditions, a set of inputs and a time span. If the scenario

is changed, the overall manipulation must be performed again, limiting again the applicability of the

method.

The quite old idea of DD has thus been recently reconsidered, for example by the Transmission Line

Modelling (TLM) approach of [23, 24]. TLM is based on modelling the propagation of a signal which

is limited by the time it takes to travel across a medium. By utilizing this information it is possible

to partition the DAE system into independent blocks that may be simulated in parallel. This leads to

improved simulation efficiency since it enables full performance of multi-core CPUs. However it requires

the analyst to explicitly introduce the transmission model, i.e., the decoupling part, by introducing some

additional components, based on his/her intuition.

Based on the previous discussion, we now spend some additional words on the advantages of the

technique proposed in this work, and sketched out in the introduction, with respect to the analysed alter-

natives.

In comparison with MOR, our proposal does not alter the state vector, nor does it involve base changes

in the state space, thereby preserving the physical meaning of dynamic variables. Also, instead of attempt-

ing to simplify the model in a view to a monolithic solution only, we go exactly in the opposite direction,

as the model is not reduced but partitioned, with the same rationale of [24].

Of course, our proposal is not the only way to partition a system. As an alternative, for example, one

may cut the subspace spanned by the eigenvectors associated with its fast eigenvalues. However, this is

possible only in the linear case, while extensions to nonlinear models require local linearisation. This

does preserve the dimension of the state space, but to recover the native dynamic variables of the model,

a coordinate transformation is necessary at each integration step, to the apparent detriment of simulation

efficiency.

No matter how the partition is obtained, then, it can be exploited in two ways. One is to ease a

monolithic solution, in some sense adapting the model to the used architecture (single solver with a unique
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integration step). The other is to conversely tailor the solution architecture to the model as analysed

and partitioned by the method; this can be used to fruitfully employ parallel simulation, or even co-

simulation. If the latter route is taken, eigenvalue-based partitioning reveals however another problem,

as the properties of a so obtained partition may change in time, while decoupled integration, let alone

co-simulation, require the same partition to be specified a priori.

As a consequence, for the specific purpose of this work, state selection criteria are preferable to

eigenvalue-based ones, also in accordance with [22], and in this context the proposed method exhibits the

further advantage of being naturally keen to a nonlinear context.

With respect to scenario-based approximations, the most computing-intensive part of the proposal

(as will be explained later on) is simply not scenario-based: information related to the considered sce-

narii come into play only at a later stage, and this separation results in lightening the computing effort.

Furthermore, the proposal does not alter the model equations, thus being less exposed to the possible

unpredictable effects of local modifications at the overall system level.

Finally, contrary to the TLM approach, this work aims at having decoupling emerge from an auto-

mated analysis of the model, and not introduced by the analyst, still having the advantage of exploiting

full multi-core CPUs performances, by parallel simulation.

The contributions of this work can thus now be better qualified as follows.

– Cycle Analysis quantitatively characterises the dynamics of the addressed system, including the nu-

merical integration algorithm, without resorting to eigenvalue-based techniques, therefore applying to

both the linear and the nonlinear case.

– Some “separability indices” are defined, whose information content extends beyond that of previously

introduced quantities, like stiffness coefficients. The proposed indices thus complement traditional

“stiffness” measures in basically two senses: (a) they are not tied to the sole idea of “fast” and “slow”

dynamics, and (b) they apply also to nonlinear systems.

– The two ideas above are suitably joined to demonstrate, with a proof-of-concept application and some

examples, that they can be used to achieve an automatic application of DD, i.e., to build a tool that

partitions a model requiring the analyst to provide only information that pertains to the physics of the

simulated object.

3 Dynamic decoupling

Multi-physics models are often made of parts evolving within different time scales, and the core idea of

DD is to exploit this partition to enhance simulation efficiency.

In some cases, figuring out how to partition a model can be quite straightforward, but this is not

general at all. For example, in mechatronic systems, a “slow” mechanical part is often driven by “fast”

electric circuits. However, even if this is the case, characterising the found time scales quantitatively –

e.g., to determine whether or not it is really convenient to partition the model, and how to do it – may

not be equally simple, since the actual evidence of multiple time scales may not only come from the

presence of multiple physical domains, but also strongly depend on parameter values. Furthermore, there

are cases in which multiple time scales are not originated by multiple physical contexts, but emerge from

some structural characteristics of the model that are virtually impossible for the analyst to detect a priori,

especially for large models.

As a result, DD is formally based on some characteristics of the mutual relationships among the

model state variables, that are formulated in an abstracted manner with respect to the underlying phys-

ical domain(s). For a short explanation of the DD rationale, consider the generic state equation of a

continuous-time ODE model, and write it as

φi(x)
dxi(t)

dt
= γi(x,u) (1)
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where function φi plays the role of a time-varying “capacitance” associated with the state variable xi, while

function γi conveys the contributions of all states (including xi) and inputs (variables u) to its variation.

Given this, DD can be synthetically expressed as the following two principles.

1. If, in a certain region of the state and input space, some γi/φi ratio is “small”, then in the discrete-time

solution it can be acceptable to use the value of xi computed at the previous integration step, given its

“slow” variation;

2. If, in a certain region of the state and input space, the contribution of a certain x j to γi is “small”, then

in the discrete-time solution it can be acceptable to use the value of x j at the previous integration step,

given the “small” error introduced in the computation of the new xi.

The two principles above take different forms in various contexts (see, e.g., [3] for a thermo-hydraulic

application) but are per se general. From an operational viewpoint, DD can be thought as composed of two

subsequent phases, termed here structural analysis and decoupled integration. The former is an offline

activity, and consists of identifying in the model possible occurrences of the two principles above. The

latter consists of exploiting the analysis outcome to select and suitably configure an integration scheme

so as to improve simulation efficiency.

Both phases can be carried out with multiple techniques. For the structural analysis phase, we propose

here a novel method, called Cycle Analysis (CA), described in the following, that is particularly suited to

investigate mutual relationships among dynamic variables independently of the structure of the individual

state equations, and therefore carries most of the merit for the applicability of the entire technique to the

nonlinear case. For the decoupled integration phase, we conversely resort to mixed-mode integration

similar to the one proposed in [22], but any co-simulation framework can be used, e.g., the one proposed

in [10].

A very important point to keep in mind is that pursuing an automatic application of DD is a twofold

problem. On one side, the analysis phase needs to be performed by an automatic procedure rather than

manually. On the other side, the outcome of said phase must take a form that is readable for the analyst,

who is typically an expert of the addressed physical domain, not of simulation. Such an output is carried

out by means of a set of separability indices. The following sections thus deal, in this order, with CA, with

the correspondingly obtained separability indices, and with the use of both for decoupled integration.

4 Cycle analysis

4.1 Preliminaries and definitions

Consider the generic ODE system

ẋCT (t) = f(xCT (t),uCT (t)) (2)

where xCT ∈ R
nCT is the vector of state (i.e., dynamic) variables, and uCT ∈ R

mCT the vector of input

variables. Generally speaking, the idea of CA is to obtain from the discretisation of (2) a directed graph

representing the mutual influence among the dynamic variables along the integration steps, and then to

compute quantities that generalise – in a sense that will be explained later – the idea of “time constants”

for the linear case.

To this end, discretise (2) with any explicit method with fixed time step h1. It is important to notice

right from now that the method used in this phase is a “probe method”, i.e., just functional to the analysis

1 It is known that any multi-step method can be reduced to a single-step method with an increased state space vector. Thus, in

this paper we focus only on the case of single-step methods without loss of generality.



A model partitioning method based on dynamic decoupling for the efficient simulation of multibody systems 7

technique, while the successive simulation phase is in no sense tied to it. The corresponding discrete-time

system can be thus written as

xk+1 = FN (xk,uk,h) (3)

where xT
k ∈ R

n, with n = nCT is the discrete-time state, while the form of function FN (·, ·, ·) depends on

the particular numerical integration method N .

The required dependency directed graph (or digraph) G is formally defined as

G = (N,E), N = {1, . . . ,n}, E = {ei, j} ⊆ N ×N. (4)

The nodes of G are associated with the discrete-time model dynamic variables, while its edges are

characterised by a source node, a destination node, and a weight, defined by the operators

ς
[

ei, j
]

:= i, δ
[

ei, j
]

:= j, ρ
[

ei, j
]

:=
∂Fi

∂x j

. (5)

Notice that the construction of G is straightforward based on the structure of system (3).

Definition 1 A path p of length L in a digraph G = (N,E) is an ordered sequence of L edges, where the

destination node of each edge is the source node of the following one in the sequence. Formally,

p := 〈e1,e2, . . . ,eL〉, with ei ∈ E, ∀i ∈ {1, . . . ,L},
with δ [ei] = ς [ei+1] , ∀i ∈ {1, . . . ,L− 1}.

A path can be also denoted by means of the ordered sequence of touched nodes, i.e.

p = 〈ς [e1] ,ς [e2] , . . . ,ς [eL] ,δ [eL]〉.

Definition 2 A path with no repeated nodes is called a simple path (or walk).

Definition 3 A simple cycle c of length L exists in a digraph G = (N,E) iff

1. there exists a simple path 〈e1,e2, . . . ,eL−1〉,
2. there exists one edge eL from δ [eL−1] to ς [e1].

For the sake of clarity, a simple cycle can be graphically represented as shown in Figure 1.

ς [e1] ς [e2] . . . δ [eL−1]

e1 e2 eL−1

eL

Fig. 1 Graphical representation of a simple cycle.

Adopting the same notation used for paths, a simple cycle can be denoted as

c = 〈ς [e1] ,ς [e2] , . . . ,ς [eL−1] ,δ [eL−1] ,ς [e1]〉,

i.e., by listing the ordered sequence of the touched nodes.

Notice that the definition of a simple cycle in terms of edges is unique up to a circular permutation,

while the definition in terms of touched nodes varies according to which of them is (conventionally) taken

as the “first” one in the cycle. This is why we prefer to use the definition in terms of edges.

In the following we shall make reference only to simple cycles, thus “cycle” and “simple cycle” will

be used interchangeably.
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Definition 4 The cycle gain µc(h) of a cycle c is defined as

µc(h) = ∏
ei∈c

ρ [ei] . (6)

4.1.1 An explanatory example

Let us consider the continuous-time linear time-invariant dynamic system

ẋCT = AxCT =





−1 0.5 0

0.5 −1.5 0.5
0 0.5 −1



xCT ,

Suppose that the discretisation of choice for the analysis part is the Heun’s algorithm [6]. Thus, the

corresponding discrete-time system (3) becomes

xk+1 = FHeun(xk,h), FHeun(xk,h) =

(

I3×3 +Ah+
(Ah)2

2

)

xk, (7)

where I3×3 is a 3× 3 identity matrix, and x = xCT . Therefore, the dependency graph G associated to the

system has a weight matrix

W =
∂FHeun

∂x
= I3×3 +Ah+

(Ah)2

2
= I3×3 +

h

8





5h− 8 4− 5h h

4− 5h 11h− 12 4− 5h

h 4− 5h 5h− 8



 ,

yielding a completely connected graph, represented in Figure 2.

1 2e
1,1

e
1,2

e
2,2

e
2,1

3

e
2,3

e
3,3

e
3,2

e
1,3

e
3,1

Fig. 2 Dependency graph associated with the discretised system (7).
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In this case, the set of simple cycles C present in the graph G, and the corresponding cycle gains are

c1 = 〈e1,1〉 µc1
(h) =

5h2

8
− h+ 1,

c2 = 〈e2,2〉 µc2
(h) =

h

8
(11h− 12),

c3 = 〈e3,3〉 µc3
(h) =

h

8
(5h− 8),

c4 = 〈e1,2,e2,1〉 µc4
(h) =

h2

64
(4− 5h)2 ,

c5 = 〈e1,3,e3,1〉 µc5
(h) =

h4

64
,

c6 = 〈e2,3,e3,2〉 µc6
(h) =

h2

64
(4− 5h)2 ,

c7 = 〈e1,2,e2,3,e3,1〉 µc7
(h) =

h4

512
(4− 5h)2 ,

c8 = 〈e1,3,e3,2,e3,3〉 µc8
(h) =

h4

512
(4− 5h)2 .

Notice that if the matrix W is symmetric, it is sufficient to consider only its lower triangular part

(including the diagonal).

4.2 The analysis technique

As anticipated, the ultimate goal of the analysis is to (automatically) recognise the presence in the model

of different time scales, and cluster the dynamic variables accordingly. The underlying rationale of the

approach is based on a convenient interpretation of the cycle gains of Definition 4.

To provide this interpretation, let us consider system (3) at an asymptotically stable equilibrium, i.e.,

xk+1 = xk. Suppose to apply a small impulsive perturbation to one state variable xi. A transient will then

occur, and two things may happen:

– the perturbation affects the other state variables, without re-affecting xi, i.e., in the associated model

digraph G, there is no cycle involving node i;

– the perturbation, after some integration steps, re-affects xi, i.e., there exists at least one dependency

cycle involving node i.

In the first case, no numerical instability can be introduced by the integration method. This is conversely

possible in the second case, and occurs if the perturbation undergoes a sufficient amplification along at

least one of the involved cycles. Since that amplification is quantified by the corresponding cycle gain, we

can conjecture that the perturbation vanishes if all the gains of the involved cycles are in magnitude less

than a certain µ , while instability arises if at least one of said gains is larger in magnitude than a certain

µ > µ .

It is now worth recalling that, considering an ODE system at a certain asymptotically stable operating

point, in the vicinity of said point (i.e., near enough to it for the linearisation of the original system to

be sufficiently precise) there exists one value of h that constitutes the boundary between a stable and an

unstable behaviour of the discrete time solution.

It is also well known that with explicit methods, instability originates from model dynamics that have

a fast time scale with respect to the employed integration step. Since the cycle gains depend on h, if an

unstable behaviour is observed, it is legitimate to state that the dynamic variables involved in the cycles

that provide the excessive amplification are evolving with a time scale that is “fast” with respect to h.



10 Alessandro Vittorio Papadopoulos, Alberto Leva

Based on the discussion above, we can now describe the analysis procedure as follows.

1. Select an explicit fixed-step integration method. It is worth stressing that this method is only func-

tional to the analysis, and in no sense constrains the choice of the method(s) used for the subsequent

decoupled integration.

2. Discretise the system.

3. Construct the digraph.

4. Perform a topological analysis to find the set C of all the (simple) cycles. The potential complexity

of the cycle search operation will be discussed later on.

5. Express the cycle gains as per (6).

6. Construct a set of inequalities in the form

|µc(h)| ≤ α, ∀c ∈ C , (8)

where α is the single real parameter of the analysis, to be discussed in the following.

7. Solve each inequality individually for h, thereby associating with each cycle a value for the integration

step that produces low enough a magnitude of the corresponding gain.

8. Associate each variable xi with the most restrictive constraint hxi
on h among the set of cycles Cxi

=
{c ∈ C |xi ∈ c}, i.e., finding the maximum value of h which fulfils all the constraints (8) on the cycle

gain associated with xi. Formally,

hxi
=max h

s.t. h > 0,

|µc(h)|< α, ∀c ∈ Cxi
.

The final result of the analysis is thus having each dynamic variable associated with a time scale. More

precisely, if α was correctly chosen (in a sense to be discussed), it is guaranteed that if the integration step

is set below a certain hi, then the discretised ODE equation that computes xi,k+1 cannot be responsible for

possible instabilities.

Ranking the dynamic variables by hi will provide the basis for the subsequent decoupled integration.

Before that, however, it is convenient to show how the procedure just sketched can be specialised and

implemented with an integration method of the considered class. For the sake of simplicity we here select

the Explicit Euler one.

4.3 A possible analysis implementation

Taking the Explicit Euler (EE) as the “probe” integration method – see the remark before (3) – the dis-

cretised system of the same equation specialises to

xk+1 = xk + h · f(xk,uk) . (9)

Thus, the edge weights of the associated digraph take the form

ρ
[

ei, j
]

(h) =















1+ h · ∂ fi

∂xi

if i = j,

h · ∂ fi

∂x j

if i 6= j.

As a consequence the cycle gains (6) can be computed as

µc(h) =















1+ h · ∂ fi

∂xi
if L = 1 and

∂ fi

∂xi
< 0,

hL ∏
ei, j∈c

∂ fi

∂x j

otherwise,
(10)
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resulting in a set of constraints

|µc(h)| ≤ α ⇒























0 < h ≤ (1+α)

∣

∣

∣

∣

∂ fi

∂xi

∣

∣

∣

∣

−1

if L = 1 and
∂ fi

∂xi

< 0,

0 < h ≤ L
√

α ·
∣

∣

∣

∣

∣

∏
ei, j∈c

∂ fi

∂x j

∣

∣

∣

∣

∣

− 1
L

otherwise.

(11)

As can be noticed, in that very simple case, the set of constraints (11) can be solved analytically in a

closed form. This is one of the advantages of adopting EE instead of a more complex integration method

for the analysis part.

An additional interesting remark is that, in the nonlinear case, CA produces results that depend on

the considered equilibrium. Since using EE as a probe method allows to express the constraints on h as a

function of α in a closed form, this opens the possibility of performing a parametric analysis depending

on the equilibrium point of interest, e.g., the working point of the system. In many practical cases this will

not significantly affect the result of the analysis since it is just a means of associating each variable with

a time scale, which usually do not vary abruptly during the simulation. However, this possibility widens

the applicability of the proposal.

4.4 Cycle analysis and eigenvalue analysis

In the literature, two are the major techniques to serve an analogous purpose, concerning time scale

analysis, as that of this paper: eigenvalue [22] and Lyapunov exponent analysis [14, 27]. This section

compares our technique to eigenvalue analysis, spending also some words on the Lyapunov exponent

subject, as for the problem of guaranteeing the stability of the discrete-time solution. Doing so, we also

provide the background for the subsequent discussion of Section 5 on how the analysed techniques can

lead to a suitable partition of the system, in a view to a decoupled solution. To this end, we first go through

a representative example, and then draw the necessary general conclusions.

4.4.1 An example: loosely damped models and stability issues

Consider the linear, time-invariant, autonomous system

ẋ =

[

−ωnξ −ωn

√

1− ξ 2

ωn

√

1− ξ 2 −ωnξ

]

x, (12)

that has the two complex conjugate eigenvalues

λ1,2 =−ωn ·
(

ξ ± ı
√

1− ξ 2
)

,

with natural frequency ωn > 0 and damping factor 0 < ξ ≤ 1, thus being asymptotically stable. If (12)

is discretised with the EE method, the eigenvalues of the corresponding discrete-time system provide the

stability condition

h < 2
ξ

ωn

:= hs. (13)
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Fig. 3 Dependency graph associated with system (12) discretised with EE.

Applying CA, the digraph of Figure 3 is readily built, and the cycle gains turn out to be

µ〈e1,1〉 =ρ
[

e1,1
]

= 1+ h
∂ f1

∂x1
= 1− hωnξ

µ〈e2,2〉 =ρ
[

e2,2
]

= 1+ h
∂ f2

∂x2
= 1− hωnξ

µ〈e1,2,e2,1〉 =ρ
[

e1,2
]

·ρ
[

e2,1
]

= h2 · ∂ f1

∂x2
· ∂ f2

∂x1
=−h2ω2

n (1− ξ 2)

leading to the α-dependent constraints

|µ〈e1,1〉|< α ⇒ h ≤ 1+α

ωnξ
:= hc,1

|µ〈e2,2〉|< α ⇒ h ≤ 1+α

ωnξ
:= hc,2

|µ〈e1,2,e2,1〉|< α ⇒ h ≤ 1

ωn

·
√

α

1− ξ 2
:= hc,3

(14)

It is then interesting to compare the stability bounds on h provided by eigenvalue analysis, and those

that limit the magnitude of he cycle gains provided by CA. In particular, the CA bounds on h are looser

than the eigenvalue-related bounds (thus CA does not guarantee discrete-time stability) if hs ≤ hc,i, i.e.,














2
ξ

ωn

≤ 1+α

ωnξ

2
ξ

ωn

≤ 1

ωn

·
√

α

1− ξ 2

⇒
{

α ≥ 2ξ 2 − 1

α ≥ 4ξ 2
(

1− ξ 2
) (15)

4.4.2 Discussion

In the example – but this is intuitively general – a value of α can be found so that the CA constraints

also guarantee stability, as the eigenvalue ones do. In particular, there exists an α that makes the two

upper bounds on h coincident. below said value, α however provides to CA an additional degree of

freedom with respect to eigenvalue analysis, and this degree of freedom can be exploited to attenuate the

effects of mutual dependencies among the discrete-time dynamic variables—a purpose that is apparently

decoupling-related, and not natural to pursue with the eigenvalue-based approach.

Coming back to the example, we can notice that the value of α that makes the two bounds on h

coincide, depends only in ξ and not on ωn. This is more relevant than it may seem at a first glance, since

if we focus on which of the two constraints in (15) dominates, depending on ξ , we notice that for high

damping factors this is the one related to the two cycles with L = 1 relating each dynamic variable to

itself, while for low damping factors the dominant constraint comes from the cycle with L = 2 involving

both dynamic variables; this is illustrated in Figure 4.

In other words, while a reduction of ξ – viewed from the eigenvalue standpoint – appears just as a

stability degree reduction, the same fact – observed conversely by CA – reveals its nature of a stronger
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Fig. 4 Stability conditions on the parameter α w.r.t. ξ .

coupling between parts of the system. In this sense, therefore, CA provides stability-related information

in a way that is particularly keen to be used for system partitioning in a view to decoupled integration.

To see the same matter from another viewpoint, one can notice that for a (linear) system of order n,

eigenvalue analysis provides n constraints on h, one per each of the system modes, while CA provides at

least n constraints, one constraint per system cycle. In other words, with eigenvalue analysis one observes

the system mode by mode, implicitly considering a state space where all those modes are decoupled (The

examples showed this only for a couple of complex modes, but the generalisation is straightforward).

With CA, on the contrary, the same information is split in such a way to explicitly evidence the couplings

that eigenvalue analysis – in the sense above – conceals.

Incidentally, in the linear case, CA provides exactly n constraints in the case of a triangular system

system with real eigenvalues, as in such a case said eigenvalues appear in the diagonal of the dynamic

matrix; in this case, quite obviously, the value of α discriminating stability from instability is the unity.

5 Separability indices

The result of CA is to associate each dynamic variable with an upper bound of the integration step, thus

with a quantity related to its time-scale. The variables can then be ordered – and possibly clustered – by

increasing value of hxi
. Based on this, some synthetic indices will now be defined, useful for deciding

how to partition the original model in weakly coupled submodels. It will also be shown how such indices

extend the idea of “stiffness”, like CA was shown to evidence more decoupling-related information than

eigenvalue analysis.

To start, consider the classical stiffness indicator based on eigenvalues analysis, i.e., the stiffness ratio.

Definition 5 (Stiffness ratio) The stiffness ratio σR [6] is defined as the ratio between the absolute largest

real part and the absolute smallest real part of any eigenvalue, i.e.,

σR =
maxi |ℜ{λi}|
mini |ℜ{λi}|

.
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Fig. 5 Two cases of linear systems with the same stiff ratio.

Highly stiff systems are associated with high values of σR. The definition of σR, however, cannot be

applied to any stiff system, excluding for example those of order 1. In addition, for systems with eigen-

values on or very close to the imaginary axis, σR can be misleading, as it just considers the real part of

the eigenvalues, and may flag as non-stiff a system with a highly oscillatory behaviour.

Apparently, the stiffness ratio is defined for a linear (or linearised) system, and indicates how much

the smaller time scale differs from the larger one. It is thus a good index for understanding whether or not

to use an integration method for stiff systems on the entire model, but gives no information on how many

“clusters of time scales” are present in it, nor on which dynamic variable belongs to which cluster.

To exemplify, let us limit to the linear case, and consider Figure 5. In the left graph, the continuous-

time eigenvalues of the system (indicated with the cross) are not equally spaced in the left-half-plane, and

can be divided into two clusters: those that are close to the origin are associated with “slow dynamics”,

while the others are associated with “fast dynamics”. The presence of the two different time scales is

also evidenced by computing the stiffness ratio of Definition 5. Let us now consider the right graph of

the same figure. In this case, the stiffness ratio is the same, since the closest and the farthest eigenvalues

from the origin are the same, while the eigenvalues of the system are almost equally distributed in the

left-half-plane. This feature of the system is strictly related to how much the system can be “separable”

and is not evidenced in any way by the stiffness ratio.

Coming back to the CA approach, two different indices based on it can be defined. One (the stiffness

index, see Definition 6) quantifies the span of the time scales in the model, analogously to the one of

Definition 5. The other (the separability index, see Definition 8) indicates to what extent the clusters of

dynamic variables corresponding to those time scales the system can be computed in a decoupled manner.

Both indices are function of α , and being based on CA, they can be computed also for nonlinear systems.

Denote by H the set of integration steps hxi
associated with each dynamic variable, and assume H

ordered by ascending values of h, i.e.,

H = {h1 ≤ h2 ≤ . . .≤ hN}.

Based on that, the following definitions can be given.
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Definition 6 (Stiffness index) The stiffness index for a given α is the ratio between the minimal and the

maximal integration step found with the CA, i.e.,

σ(α) =
hmax(α)

hmin(α)
. (16)

Analogously to the stiffness ratio σR, also for the stiffness index highly stiff systems are associated

with high values of σ .

Definition 7 (Separability term) The separability term for a given α , and for a given couple of variables

xi and x j is

sα (i, j) =
|hi(α)− h j(α)|

maxm (hm+1(α)− hm(α))
, hi,h j ∈ H .

Definition 8 (Separability index) The separability index for a given α is one minus the ratio between

the maximal and the average difference between two subsequent values of the time scales, i.e.,

s(α) = 1−

1

N − 1

N−1

∑
i=1

hi+1(α)− hi(α)

maxi (hi+1(α)− hi(α))
= 1− 1

N − 1

N−1

∑
i=1

sα(i+ 1, i).

Apparently, high values of s(α) ∈ (0,1) indicate that the time scales involved in the system are dif-

ferent enough to be effectively separated.

In Section 7, the presented indices will be used to evaluate the level of stiffness and separability of the

considered examples. Summarising, the stiffness ratio and index are comparable and synthetic descrip-

tions of the separation between the maximum and the minimum model time scales, not suited however

for understanding whether said model can be partitioned. The separability index is another synthetic one,

but is specifically targeted at quantifying the possibility of such a separation. The separability term is a

local index to a couple of adjacent time scales, and an analysis of its behaviour can easily suggest possible

separation points. The separability term will be used in the following to perform a parametric analysis

with respect to α , allowing to identify the aforementioned separation points.

6 Decoupled Integration

Referring to the partition of DD into structural (cycle) analysis and decoupled integration, one can notice

that even the adoption of the sole first part yields performance improvements independently of the adopted

integration scheme. In this section we concentrate on the second part, describing a possible decoupled

integration method that exploits the partition coming from CA. More precisely, we consider here the

use of a mixed-mode integration method, but alternative ones may be considered, e.g., co-simulation

architectures.

The underlying idea is that implicit methods are able to simulate stiff systems with larger integration

periods, at the cost of solving a nonlinear set of algebraic equations at each step, while explicit methods

are better in terms of performance, but cannot deal with stiff systems equally well. Having separated the

system in (at least) two parts with different time scales, it is possible to use an implicit method for the

fast part(s), and an explicit one for the slow part(s), exploiting the advantages of both kinds of integration

algorithms.
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If this approach is taken, using for the mixed-mode integration the Implicit Euler (IE) and the EE

methods, the discrete-time system associated with the continuous-time one reads







xs
k+1 = xs

k + h · f
(

xs
k,x

f
k ,uk

)

x
f
k+1 = x

f
k + h · f

(

xs
k+1,x

f
k+1,uk+1

) (17)

As can be seen, in (17) the fast component x
f
k+1 can be computed considering xs

k+1 as an input.

Figure 6 shows the resulting mixed-mode integration scheme.

EE

IE

uk
x

s
k+1

x
f

k+1

Fig. 6 Explicit/Implicit Euler integration scheme.

Of course, the achieved efficiency improvement depends on the chosen methods. However, the com-

plexity of implicit methods is typically O(n3), where n is the dimension of the model, while that of

explicit ones is typically O(1). Thus, even having part of the model integrated with an explicit method,

the step size being automatically tailored to the required precision, easily results in a relevant increase of

the simulation speed.

7 Examples

7.1 Double-mass, triple spring-damper

M1 M2

k1
k2 k3

d1d1 d2d2 d3d3

Fig. 7 Double-mass, triple spring-damper.

This example refers to a simple test problem, similar to that presented in [10]. The considered system

is composed of two masses and three parallel spring-damper elements, connected as shown in Figure 7,

and moving in a horizontal plane (i.e., gravity has no effect). The model includes also the vertical dis-

placement dynamics of the two masses y1 and y2, which are included in the analysis, even if in the

addressed scenario is not considering gravity. Both elasticity and damping friction are assumed to be lin-

ear phenomena, so that the couplings between the dynamic variables can be easily determined by acting

on the elastic constants ki and the damping factors di. In particular, in the reported test, M1 = M2 = 1kg,

k1 = 500N/m, d1 = 5N s/m, k2 = 1N/m, d2 = 1N s/m, k3 = 5N/m, and d3 = 1N s/m.
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Letting x1 and x2 the horizontal positions of the two masses represented in Figure 7, the model can be

written as
{

M1ẍ1 =−(d1 + d2)ẋ1 + d2ẋ2 − (k1 + k2)x1 + k2x2

M2ẍ2 = d2ẋ1 − (d2 + d3)ẋ2 + k2x1 − (k2 + k3)x2

(18)

A preliminary analysis is needed so as to understand if the model, with the given set of parameters is

suited to be partitioned. This is carried out by means of a parametric CA, where EE is chosen as the probe

integration method, i.e., by exploiting the closed-form solution (11), and by computing the separability

terms of Definition 7. The result is shown in Figure 8, where the numbers on the vertical axis index the

variables ordered by increasing time scale.

0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

7

8

9

sα (i+1, i)

α

Separability index

0

0.5

1

Fig. 8 Separability parametric analysis of the double-mass, triple spring-damper system.

It is apparent from the figure, that the highest separability term is obtained between the 4-th and the

5-th variable, suggesting where to partition the model for the decoupled integration.

According to CA there are 17 cycles in the model digraph, and choosing α = 0.5, the following

constraints on the integration step are obtained.

ẋ1 : h ≤ 0.0315912 ẋ2 : h ≤ 0.288675

x1 : h ≤ 0.0315912 x2 : h ≤ 0.288675

ẏ1 : h ≤ 0.0446767 ẏ2 : h ≤ 0.408248

y1 : h ≤ 0.0446767 y2 : h ≤ 0.408248

(19)

Based on the aforementioned analysis, we can partition the model into two submodels by separating

the first 4 variables – the set of the ones on the left, that are considered fast – from the other 4 — the set

of the ones on the right that are considered slow. Hence, the integration step can be chosen as h = 0.05.

Notice that incidentally the analysis brought to intuitive indeed a result, i.e., to separate the two set of

equations associated to the two masses, without any a priori suggestion to the method of the physical

structure of the system.
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Fig. 9 Simulation results of the double-mass, triple spring-damper system.

Table 1 Simulation statistics Double-mass, triple spring-damper.

Mixed-mode LSODAR IE EE

# Steps 101 483 101 500

# Function ev. 302 949 302 –

# Jacobian ev. 5 28 5 –

# Fun. ev. in Jac. ev. 25 – 45 –

# Newton iterations 201 – 201 –

# Newton fail 0 – 0 –

Accuracy 5.969 – 5.964 14.472

Sim time 0.10s 0.12s 0.11s 0.13s

Figure 9 shows the numerical results of the mixed-mode integration method, while Table 1 presents

some comparative simulation statistics. Vertical displacement are not reported here, since they are all zero

as gravity is not considered.

To evaluate the effectiveness of the approach we compared mixed-mode simulation results to a so-

lution taken as reference, that in the absence of an analytical one is that coming from a highly accurate,

variable-step method with tight enough tolerances, i.e., in this case LSODAR, with relative and absolute

tolerances set to 10−6.

The mixed-mode integration method is able to capture the system behaviour, especially for the steady-

state, while the choice of a “large” integration step has the effect that the “fast” dynamics, i.e., the transient

oscillations, are approximated by a slower dynamics. Furthermore, simulation statistics show that also in

this first (linear) example, performance is slightly improved with respect to other first-order methods, i.e.,

Explicit and Implicit Euler. In addition, the accuracy is really close to that obtained with a pure IE.

To complete the example, the proposed indices proposed in Section 5 are here computed. In particular,

computing the time scales (19) of model (18) by means of CA yield the following indices. Notice that σR
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cannot be computed since there are purely imaginary eigenvalues in the system.

σ(0.5) = 12.923, s(0.5) = 0.779.

The stiffness index σ(α) indicates that the system is highly stiff. On the other hand, the separability

index s(α) shows that the considered example has dynamics evolving with quite different time scales,

thus making it effective to partition the model into subsystems. Finally, to decide how to obtain that

partition, adequate clues are provided by Figure 8.

7.2 Mechanical system with brake

M

m
k

F

x

Fig. 10 Mechanical system with brake.

In this example, the system of Figure 10 is considered. A body of mass M moves on a horizontal

guide subject to an exogenous motor torque command τo(t) = 10sin(2πt/5) and to friction, acting on

the wheels. The motor is not modelled for simplicity, and the relationship between the torque command

and the actual torque τ(t) is simply represented by a unity-gain, first-order continuous-time system. Also,

the motor-wheel system compliance is lumped in a single rotational elasticity, δϕ indicating the angle

difference between its sides. Another body of mass m is connected to the first one by a spring, and is also

subject to friction with the former. The system also contains a brake, mounted on mass M and acting on

the guide, thus introducing an input-by-state nonlinearity.

In the following xM denotes the position of mass M, xm that of mass m, ϕ the angle of the wheels, and

ω their angular velocity.

Similarly to what have been done for the previous example, a preliminary analysis keeping α as a

parameter is needed to understand if the system at hand exhibits quite different time scales. The result of

this parametric analysis is presented in Figure 11.

In this case, CA detects 19 cycles. The highest separability term depends on the choice of α , since

for values close to 1 the separability terms assume higher values for i = 5, i.e., partitioning the system

between the 5-th and the 6-th variables, while for lower values of α , the highest separability term is

obtained for i = 6. Assuming that it is preferable to keep the fast subsystem as small as possible, in this

case we proceed with α = 1.0.

ẋM : h ≤ 9.9988× 10−5 δϕ : h ≤ 0.111111

xm : h ≤ 0.00632456 ϕ : h ≤ 0.149535

ẋm : h ≤ 0.00632456 ω : h ≤ 0.149535

xM : h ≤ 0.0141421

τt : h ≤ 0.0526316
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Fig. 11 Separability analysis of the mechanical system with brake.

Partitioning the system as suggested by the parametric analysis means, for example, to choose an

integration step h = 0.06 for the mixed-mode integration method, obtaining as fast variables the set of the

ones on the left, and as slow variables the set of the ones on the right.

Figure 12 shows the numerical results of the mixed-mode integration method, while Table 2 presents

some comparative simulation statistics.

Table 2 Simulation statistics for the mechanical system with brake.

Mixed-mode LSODAR IE EE

# Steps 168 8363 168 105

# Function ev. 1296 18816 1293 –

# Jacobian ev. 103 928 103 –

# Fun. ev. in Jac. ev. 618 – 927 –

# Newton iterations 1128 – 1125 –

# Newton fail 102 – 102 –

Accuracy 9.962 – 1.480 10.567

Sim time 0.45s 2.17s 0.50s 23.9s

As in the previous case, the LSODAR solution is taken as a reference to compare the obtained results.

Also in this case, the mixed-mode integration method is able to capture the main dynamics in accordance

with the chosen separation time scale. Furthermore, simulation statistics show that also in this example –

which has an input-by-state nonlinearity – there is an improvement in terms of performance with respect

to other methods, especially for LSODAR, which is a variable-step one.

To complete the example, the proposed indices proposed in Section 5 are here computed, yielding the

following indices—notice that due to the nonlinearity of the system, σR cannot be computed.

σ(1.0) = 1495.528, s(1.0) = 0.635.

The stiffness σ(α) index shows that the system is highly stiff, while the separability one shows that

it is also well suited to be partitioned.
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Fig. 12 Simulation results of the mechanical system with brake.

7.3 Triangle of masses

The considered system is composed of three masses, moving in a vertical plane subject to gravity and to

the action of six spring-damper elements, as shown in Figure 13 (a two-dimensional model was created

for simplicity). Notice that this model is strongly nonlinear due to the spring equations in two dimensions,

and the eigenvalue analysis is not applicable.

In the following, xi and yi represent the horizontal and vertical displacement of the three masses,

while the indices b, c, l, r and t indicate respectively bottom, center, left, right and top. The spring
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Fig. 13 The “triangle of masses” system (dampers are not represented to simplify the drawing).

elasticity coefficients ki and the damping factors di are reported in Table 3, while the three masses are

mbc = mtl = mtr = 1kg.

Table 3 The “triangle of masses” system parameters.

Parameter Value Parameter Value

ktl 1N/m dtl 1N s/m

ktr 1N/m dtr 1N s/m

kbc 1N/m dbc 1N s/m

klr 1N/m dlr 2N s/m

kcl 10N/m dcl 1N s/m

kcr 1N/m dcr 1N s/m

Also in this case, a parametric CA is performed so as to analyse the structure of the system, and

Figure 14 shows its result.

In the “triangle of masses” system, the computed separability terms evidence that there is a neat

separation between the 8-th and the 9-th variable, suggesting this as a good point for the partition.

The CA detected 3984 cycles, evidencing how significant the impact of the system’s degrees of free-

dom can be on the number of cycles. Anyway, all cycles are found in less than 1s. The choice of α can

be made on the basis of Figure 14, trying to maximise the separability term, e.g., by choosing α = 0.5.

The resulting constraints are thus

ẏbc : h ≤ 0.0832703 ẋtl : h ≤ 0.207409

ybc : h ≤ 0.0832703 ẏtl : h ≤ 0.207409

ẋbc : h ≤ 0.0838537 xtl : h ≤ 0.207409

xbc : h ≤ 0.0838537 ytl : h ≤ 0.207409

ẋtr : h ≤ 0.0868503

xtr : h ≤ 0.0868503

ẏtr : h ≤ 0.0870024

ytr : h ≤ 0.0870024
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Fig. 14 Separability analysis of the triangle of masses system.

Table 4 Simulation statistics for the masses triangle.

Mixed-mode LSODAR IE EE

# Steps 200 596 200 2000

# Function ev. 1236 1232 857 –

# Jacobian ev. 13 38 13 –

# Fun. ev. in Jac. ev. 117 – 169 –

# Newton iterations 1036 – 657 –

# Newton fail 5 – 4 –

Accuracy 0.871 – 0.780 1.337

Sim time 0.38s 0.51s 0.4s 0.48s

As in the other examples, the variables on the left are the fast ones, and those on the right the slow

ones. The choice of h = 0.1 partitions the model in those two subsystems for the mixed-mode integration,

obtaining the numerical simulation represented in Figure 15 (simulation statistics are reported in Table 4).

Notice that for EE a smaller integration step (h = 0.01) was used, for numerical stability reasons.

LSODAR is also taken as the reference solution, and the mixed-mode integration presents an im-

provement in terms of simulation speed, while the accuracy is close to the one of IE.

To complete the example, the indices proposed in Section 5 are here computed, yielding the following

results—notice that also in this case, due to the nonlinearity of the system, σR cannot be computed.

σ(0.5) = 2.491, s(0.5) = 0.899.

The stiffness σ(α) index shows that the considered system is sufficiently stiff, but nonetheless the

separability one shows that it is suited for the partition, since its time scales are well separated.

7.4 Discussion

After showing the examples, their collective outcome could be summarised as follows. First, when there

is an evident dynamic separation in the system, the proposed technique finds it without requiring a priori
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Fig. 15 Simulation results for the triangle of masses system.

information on the part of the user. In other words, the technique is backed up by observing that the

produced results are in accordance with intuition, when intuition can figure them out.

Also, and in some sense a complement, the proposed indices allow to synthetically appreciate the

possible internal model couplings that can be exploited via DD, even when these are not apparent at all.

Moreover, and specific to the use of the technique for mixed-mode integration, its characteristics are

very suited to the typical studies that are required to really have simulation follow the life-cycle of the

project, as envisaged in the introduction. On this final point, however, some more words are in order.

When a simulation study is required to answer a specific question, most frequently the focus is on

part of the system, or – somehow equivalently – on part of the phenomenon occurring in it. In such a

very frequent case, the rest of the system does not need to be simulated accurately, provided that the

boundary conditions presented to the part that is relevant for the study, allow for a precise evaluation of

the investigated quantities. In many situations of the type just mentioned, the interest of the analyst is

on certain time scales on the system phenomena, and provided these are well reproduced, loosing faster

behaviours is not only acceptable, but in fact necessary to achieve the desired performance. In fact, the

same remark holds also for almost the totality of MOR techniques, where low-frequency approximations

of the original model are the typical result, and the quality of a reduction is not evaluated in terms of

time error – which is typically large due to the transients – but rather in terms H∞-norm of the difference
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between the original and the reduced model, i.e., in the frequency domain. This is totally analogous to the

proposed approach, where a good approximation is not strictly related to a small simulation error, but to

a good representation of the time scales of interest.

8 Application-oriented remarks

After presenting the proposed DD-based technique in its entirety, a few words are in order to motivate

some of the adopted choices, and discuss its practical use.

Starting from CA, its application requires to to select the “probe” discretisation method. The choice

made in this work is the EE one, and some motivation for that is in order.

In fact, after describing the CA technique, we could observe that the ranking of the dynamic variables

by time scale was obtained by exploiting a known weakness of explicit fixed-step integration (probe)

methods, i.e., their fairly small region of numerical stability—see, e.g., Figure 16 for the Explicit Runge-

Kutta (ERK) family [6].
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Fig. 16 Numerical stability domains of ERK (interior of the curves).

The natural method selection guidelines are therefore the conservatism of the obtained ranking, and

the ease in writing and solving the constraint inequalities on h. By the way, the second guideline is the

major reason why explicit methods are considered, since in the opposite case it would be necessary to

solve those inequalities numerically.

Having so motivated the choice for explicit methods, and given that CA was shown to be applicable

to any of them, the method selection problem is reduced to its core. Among all the methods that are

still candidates at this point, the EE one has the advantage of always permitting an analytical closed-

form solution of the constraint inequalities, while exhibiting small enough a stability region to provide

a conservative ranking (see again Figure 16 recalling that EE coincides with ERK1). From a practical

standpoint, the authors cannot see any reason for the use of different methods, except possibly for those
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Adams-Bashforth type in the case of extremely loosely damped dynamics, and in general the EE method

performed satisfactorily in all the numerous applications considered so far.

A possible issue with CA is the computational complexity of the method. Unfortunately the problem

of finding all the cycles in a digraph has complexity O
(

2|E|−|N|+1
)

, and is a well-known and studied

problem in the operations research community [9, 13, 25, 26]. This is of course a limitation with strongly

connected digraphs, which are however seldom encountered when modelling physical systems, especially

in the multibody case. Just to give an idea, a python implementation of CA which takes no longer than

1 s to perform the overall search and analysis in all the considered examples.

Apart from the last remark, in the first place CA is an offline activity with respect to simulations,

and needs to be performed only once for a given model. Then, optimisations are possible for the search

procedure so as to make the required computation time well acceptable, achieving a detection rate of

thousands of cycle per second (see the remark in the example of Section 7.3). Describing the software

implementation of CA is not within the scope of this paper; it is however worth mentioning that the

used one is still a proof-of-concept prototype. See [19] for some ideas and ongoing research on CA

performance improvement, and software details.

To conclude this point, it is worth evidencing that the possibly incurred computational complexity

is paid back, as anticipated, in terms of the information coming from CA. In particular, CA dictates

not only the time scales associated with each state variable, but also which are the variables that are

mutually interacting. This information can be used to identify independent components in the model –

the strongly connected components of the dependency graph – to make the simulation code parallel,

possibly combining this work with [5] (a matter deferred to future research).

Another point to discuss is the choice of α , which is the only design parameter of the method, and

controls the tradeoff between the accuracy of the resulting simulation, and the achieved degree of de-

coupling. Specifically, lower values of α result in a higher simulation accuracy, but also in a reduced

capability to detect weakly coupled components.

At this stage of the research, in the choice of α some heuristics is still required. According to ex-

perience, we could say that a reasonable default choice for α is the unity in the presence of systems

exhibiting only overdamped dynamics, while things can be more critical, requiring lower values, in the

presence of loosely damped behaviours. Further investigation of this matter is devoted to future works,

but it can already be stated that suitable guidelines for the choice of α , possibly problem-specific as just

suggested, can be devised quite easily. It is also worth noticing that the computationally intensive part

of the method is the analysis of the model digraph, which does not depend on α: if needed, performing

multiple analysis runs with different values for that parameter, until a reasonable accuracy/separability

compromise is found, is therefore an affordable task. Even more specifically, if EE is chosen as the probe

discretisation method, stiffness index, separability terms and index can be computed as a function of α ,

allowing for a parametric analysis as performed in the previous section.

On the same front, we could thus better qualify the statement made in section 2, that the presented

technique “is not scenario-based”. In fact the result of the technique – i.e., the model partition – does

depend on the considered operating point, but (again, if a convenient probe method like EE is used) this

dependence just means that the ranking of the dynamic variables may need to be re-computed, while the

analysis is done only once. This is not true for other scenario-based techniques – see, e.g., [17] – where

the entire procedure has to be repeated.

As a final remark, although the matter rigorously strays from the scope of this paper, the very relevant

problem of model initialisation in a co-simulation context [2] is tendentiously easier to handle if one

first obtains and initialises a monolithic model, and then partitions it. The advantages of the presented

technique in this respect should be quite evident.
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9 Conclusion and future work

A technique for the automatic application of dynamic decoupling was presented, that is naturally applica-

ble to nonlinear models, and presents to the analyst information in the form of time scales corresponding

to the dynamic variables, which is easy enough to interpret and handle also for non specialists.

With respect to the major available alternatives, the presented technique has more than one advantage.

It preserves the state space of the model, can be considered scenario-free, and is applicable both in the

case of a monolithic solution and of co-simulation.

Examples were presented and commented to explain the rationale of the technique, and also to illus-

trate its operation in a few representative situations.

Future work deals with further investigation of the physical interpretation of α , and on how to formally

relate it to the simulation accuracy. More in perspective, one of the long term goals of this research

is integrating the proposed technique – and also alternative ones like MOR, TLM, and so forth – with

modern modelling and simulation tools, with a particular attention to Modelica-based ones, by setting up

a unifying approximation framework, as sketched in [19], so as to provide to the final user a larger set of

functionalities that can be used in an automatic and transparent way.
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