
July 4, 2014 Mathematical and Computer Modelling of Dynamical Systems 2013-MCMDS-
modelcomputingsystems

To appear in Mathematical and Computer Modelling of Dynamical Systems
Vol. 00, No. 00, Month 20XX, 1–21

A Dynamic Modelling Framework

for Control-based Computing System Design

Alessandro Vittorio Papadopoulosa ∗, Martina Maggioa,

Federico Terraneob and Alberto Levab

aDepartment of Automatic Control, Lund University,

Ole Römers väg 1, SE 223 63 Lund, Sweden
bDipartimento di Elettronica, Informazione e Bioingegneria,Politecnico di Milano,

Via Ponzio 34/5, 20133 Milano, Italy

(2013)

This manuscript proposes a novel viewpoint on computing systems’ modelling. The classical
approach is to consider fully functional systems and model them, aiming at closing some
external loops to optimise their behaviour. On the contrary, we only model strictly physical
phenomena, and realise the rest of the system as a set of controllers. Such an approach
permits rigorous assessment of the obtained behaviour in mathematical terms, which is hardly
possible with the heuristic design techniques, that were mainly adopted to date. The proposed
approach is shown at work with three relevant case studies, so that a significant generality
can be inferred from it.

Keywords: Computing systems; feedback control; scheduling; memory
management; resource allocation.

1. Introduction

The complexity of many computing system functionalities is nowadays abruptly
increasing [15]. For example, consider the Linux scheduler. In the Kernel version
2.4.37.10 (September 2010) all of its code was contained in a single file of 1397
lines. In version 2.6.39.4 (August 2011) the scheduler code is spread among 13 files
for a total of 17598 lines.
Indeed, when such “explosions” are experienced, the overall design approach to

the functionalities is to be somehow reconsidered. The presented research proposes
to adopt a design approach, entirely based on the systems and control theory. This
would allow the reduction of heuristics that are widely present in modern oper-
ating (and computing) systems. The main advantage of the abolition of heuris-
tics is that the properties of interest could then be formally assessed [19]. If a
control-theoretical design is carried out, the formal tools of stability, observability,
reachability and so forth can be brought into play, to state that the system will
behave as expected in the presence of unpredictable situations and disturbances.
It is worth noticing that to the best of our knowledge this approach has not yet

∗Corresponding author. Email: alessandro.papadopoulos@control.lth.se

1



July 4, 2014 Mathematical and Computer Modelling of Dynamical Systems 2013-MCMDS-
modelcomputingsystems

been attempted, i.e., no computing systems functionality has to date been con-
ceived and developed based on a dynamic model of some physical phenomenon to
be controlled1.
The lack of a system- and control-theoretical attitude in the design of computing

system components has quite clear historical reasons, see again [19]. For the purpose
of this paper, one fact is most important to notice in this respect. While in any other
context controlled objects can be modelled based on physical (first) principles, this
is not the case for computing systems, because in such systems the “physics” is
created by the designer him/herself. This is well exemplified by a famous quote by
Linus Torvalds [34], who wrote

‘I’m personally convinced that computer science has a lot in common with physics.
Both are about how the world works at a rather fundamental level. The difference, of
course, is that while in physics you’re supposed to figure out how the world is made
up, in computer science you create the world. Within the confines of the computer,
you’re the creator. You get to ultimately control everything that happens. If you’re
good enough, you can be God. On a small scale.’

In the absence of a modelling framework, however, system design (or according
to Linus, creation) is invariantly carried out directly in an algorithmic setting,
without any means to formally assess its behaviour. As “more physics” is created,
the absence of a rigorous dynamic description may thus, sooner or later, pose
intractable problems as for its governance: the scheduler explosion just mentioned
is a notable example of this trend.
As a consequence, the non system-theoretical scenario sketched out above could

to date be tolerated, but it cannot be assured that said tolerability will carry over
to the future. Rigorous – and possibly simple – modelling frameworks to ground
system design upon are becoming a necessity, since there is much to do in this
direction before problems exacerbate [10].
The main message this paper wants to convey, is that if one accepts to re-design

part of said system – that has been conceived in an algorithmic way – such a
framework can be found by (usefully) limiting the model scope to describe the
real physical phenomenon on which the addressed aspects of the system behaviour
depend. If this is done, surprisingly simple formalisms can be used—a noticeable
example indeed of process/control co-design, and in the authors’ opinion, a step
forward with respect to previous research.
This paper concentrates on the modelling side of the problem, by showing the

ideas above at work, extending [25] with an additional and deeper analysis of the
examples treated therein, and proposing a novel framework dealing with memory
management. Some words are spent on the consequent advantages in terms of
system (and control) design, limiting however the depth to sketching out possible
solutions, and referring the interested reader to the convenient literature when this
is applicable. On a similar front, a comprehensive presentation of the current state
of this research, specialised however to the context of operating systems, can be
found in [19].
In this paper, the formalism of discrete-time dynamic systems is exploited. An

alternative – and in some cases also coordinated – approach for the control of
computing system could be based on supervisory control and discrete event sys-
tems [29, 35]. However, in the authors’ opinion, the modelling effort carried out in

1In the scheduler case, to stick to the example, the phenomenon is how the Central Processing Unit
(CPU) is distributed among the running tasks. Such distribution depends on control actions, i.e., on the
time slice allotted to each task at each scheduler’s intervention, and on exogenous disturbances, such as
task blockings, resource contentions, and so on.

2



July 4, 2014 Mathematical and Computer Modelling of Dynamical Systems 2013-MCMDS-
modelcomputingsystems

this paper would greatly simplify the design of the controllers also if supervisory
control was the control paradigm of choice, since it provides with more insights in
the problem to be solved and in what influences the dynamics to be controlled.

2. The quest for a physics

Before going into details, in this section we spend some words to show that many
typical problems in the computing systems domain, can be addressed with a general
viewpoint by adopting a dynamic modelling framework. In the next sections, the
ideas presented below in general, are specialised and declined in some representative
examples.
At the very core of any computing system behaviour there is some strictly phys-

ical phenomenon. For example, in the case of an operating system scheduler, that
phenomenon has the form

accCPU(k) = accCPU(k − 1) + burst(k) + disturbance(k)

where k counts discrete time instants, accCPU(·) is the CPU time accumulated
by a task, burst(·) is the CPU timeslice allotted to the task, and disturbance(·)
accounts for any difference between burst(·) and the actual CPU use by the task.
Similar models can be obtained for many other problems. For example, suppose

that an application needs to accomplish its task at a specified rate, like a video en-
coder that needs to process a desired number of frames per second. Suppose that
the application speed depends on some resources, like the number of processing
units, and these resources are shared with other applications, so that some arbi-
tration mechanism is required to manage them. In such a case, the present state
of the application’s progress toward its goal depends on the progress state before
the last resource arbitration instant, and on the allotted resources at that instant.
In the most general case, the behaviour of a computing system ultimately de-

pends on extremely fine-grained facts, down to the detailed behaviour of any single
assembler instruction and electronics transient. This is one of the main difference
between modelling computing systems or purely physical objects. The fine-grained
physical level is often the only level that can be rigorously defined in computing
system modelling.
On the contrary, in physical systems, there is usually a more abstract modelling

level. In thermal systems, for example, one can avoid treating fine-grain phenomena
(in that case, molecular motions) since there exist suitable macro-physic entities
(e.g., temperature or enthalpy) that allow to write rigorous balances (e.g., of en-
ergy) to base dynamic models upon.
In the development of computing systems, in addition, no set of “first princi-

ples” has de facto ever been sought. Sticking again to the scheduling example,
action policies are typically defined as “give the CPU to the task with the earliest
deadline” by foreseeing their effect in some nominal conditions (for a schedulable
task pool, doing so there will be no misses). Alternatively, in the control of the
application’s progress, the action policy can be expressed as “give an additional
core if the application is too slow, remove a core if the application is too fast”.
Apparently, the algorithmic attitude to the problem hinders the possibility to for-
mally address dynamic properties of the system at hand, as it attempts to find a
(control) solution without a modelling phase.
In the addressed domain, in other words, there is classically no distinction among

the behaviour of the system in the absence of such actions, the desired behaviour

3



July 4, 2014 Mathematical and Computer Modelling of Dynamical Systems 2013-MCMDS-
modelcomputingsystems

of the same system, and the way actions are to be determined based on the above.
There is no evidence of the fundamental elements of a (control-oriented) modelling
process.
Deepening the analysis, one may object that many works deal with computing

system control, and do use control-theoretical methodologies, see for example [1,
9, 27, 31] and, particularly, [11]. This is true, but virtually all of them take the
computing system as is and close loops around it (e.g., aiming at a certain CPU
distribution by altering task deadlines). Doing so however requires to model the core
phenomenon plus all the “created physics” around it (e.g., the existing deadline-
based scheduler).
In the authors opinion, the presence of such “unconsciously created” physics is a

major reason for the complexity of most computing systems’ models, at least as far
as the ultimate scope of said models is to design parts of those systems in the form of
controllers. To circumvent the problem, one should thus in the first place evidence
the core phenomenon, i.e., that part of the system behaviour that really relies on
physics and cannot be altered. Most often, modelling that phenomenon is enough
to describe the system in a view to suitably control it [21, 25]. In some cases, in
addition, the so obtained models will be natively (almost) uncertainty-free, making
control design and assessment very straightforward. In other cases, there may be
relevant uncertainty, or – in other words – some aspects of the system behaviour will
not admit a clear physical interpretation. In such cases, the advice is to figure out
some convenient grey box description – as opposite to the black box approaches that
the literature dominantly presents [11, 27] – based on qualitative considerations on
input-output relationships. As will be shown, this approach generally leads to more
complex but still tractable models: control design may be correspondingly harder,
but still there will be the possibility of a rigorous assessment.
In the following, some examples are shown of how the proposed approach leads

to dynamic models of computing system components that can successfully serve
the evidenced needs, while being very simple and thus suitable for powerful and
rigorous analysis and control result assessment.

3. A unified framework for task scheduling

This section shows how the task scheduling in a preemptive single-processor system
can be fully treated having as model class that of discrete-time dynamic systems,
in some cases even linear and time-invariant. A few words are also spent on the
natural attitude of said modelling formalisms to scale up towards, for example,
multicore or multiprocessor contexts, where any other modelling formalism and
design approach do experience severe difficulties. The reader interested in more
details on the problems encountered by literature approaches can refer, e.g., to [28].
Consider a single-processor multitasking system with a preemptive scheduler,

preemptive meaning that the scheduler can interrupt the current task and substi-
tute it with another one. Let N be the number of tasks to schedule. Define the
round as the time between two subsequent scheduler intervention. Let the column
vectors τp(k) ∈ RN , τr(k) ∈ R, ρp(k) ∈ RN , b(k) ∈ Rn(k) and δb(k) ∈ Rn(k),
1 ≤ n(k) ≤ N ∀ k represent, respectively,

• the CPU times actually allocated to the tasks in the k-th round,

• the time duration of the k-th round,

• the times to completion (i.e., the remaining CPU time needed by the task
to end its job) at the beginning of the k-th round for the tasks that have

4



July 4, 2014 Mathematical and Computer Modelling of Dynamical Systems 2013-MCMDS-
modelcomputingsystems

a duration assigned (elements corresponding to tasks without an assigned
duration will be +∞, therefore allowing for the presence of both batch and
interactive tasks),

• the bursts, i.e., the CPU times allotted by the scheduler to the tasks at the
beginning of the k-th round,

• the disturbances possibly acting on the scheduling action during the k-th
round (for example because one of the tasks release the CPU before its burst
has expired or because of an interrupt management amidst the task opera-
tion),

where n(k) is the number of tasks that the scheduler considers at each round. In
the traditional scheduling policies n(k) is constant and equal to one—an exam-
ple of aprioristic constraint that in principle can be relaxed, maybe resulting in
better performances. Denote by t the total time actually elapsed from the system
initialisation.
A very simple model for the phenomenon of interest is then























τp(k) = Sσb(k − 1) + δb(k − 1)

τr(k) = 11×N τp(k − 1)

ρp(k) = max (ρp(k − 1)− Sσb(k − 1)− δb(k − 1), 0)

t(k) = t(k − 1) + τr(k)

(1)

where 11×N is a row vector of length N with unit elements, and Sσ ∈ Σ a N×n(k)
switching matrix. The elements of Sσ are zero or one, and each column contains at
most one element equal to one. Matrix Sσ determines which tasks are considered
in each round, to the advantage of generality (and possibly for multiprocessor
extensions). Notice that, since n(k) is bounded, the set Σ is finite for any N .
Several scheduling policies can be described with the presented formalism, by

merely choosing n(k) and/or Sσ(k). For example

• n = 1 and a N -periodic Sσ with

Sσ(k) 6= Sσ(k − 1), 2 ≤ k ≤ N (2)

produce all the possible Round Robin (RR) policies having the (scalar) b(k)
as the only control input, and obviously the pure round robin if b(k) is kept
constant,

• generalisations of the RR policy are obtained if the period of Sσ is greater
than N , and (2) is obviously released,

• n = 1 and a Sσ chosen so as to assign the CPU to the task with the minimum
row index and a ρp greater than zero produces the First Come First Served
(FCFS) policy,

• n = 1 and a Sσ that switches according to the increasing order of the initial
ρp vector produces the Shortest Job First (SJF) policy (notice that this is
the same as SRTF if no change to the task pool occurs, as can be seen in
Figure 1),

• n = 1 and a Sσ selecting the task with the minimum ρp yields the Shortest
Remaining Time First (SRTF) policy.

The capability of model (1) to reproduce the mentioned policies is shown in
Figure 1, in the case of n(k) = 1, N = 5, and Sσ(k) chosen as described above.

5



July 4, 2014 Mathematical and Computer Modelling of Dynamical Systems 2013-MCMDS-
modelcomputingsystems

R
R

Bursts to processes Disturbances

0

5

10

15

20

Execution time

F
C
F
S

0

5

10

15

20

S
J
F

0

5

10

15

20

0 20 40

rounds

S
R
T
F

0 20 40

rounds

0 20 40
0

5

10

15

20

rounds

Figure 1. Capability of the presented single model of reproducing classical scheduling policies such as
RR, FCFS, SJF, and SRTF.

In all these policies, the core phenomenon can be noticed in the form

τp(k) = Sσb(k − 1) + δb(k − 1).

Also the “added physics” can be noticed, as the algorithm used to select n(k)
and/or Sσ(k).
If one attempts to model both things together, to close the loop around the

existing scheduler, then switching systems must be brought into play.
If, on the contrary, one models the core phenomenon only, and treats all the rest

as part of the controller, the single and trivial equation just written is enough.
Notice that here in modelling the core phenomenon no uncertainty is present, nor

6



July 4, 2014 Mathematical and Computer Modelling of Dynamical Systems 2013-MCMDS-
modelcomputingsystems

is there any measurement error, since the only required operation is to read the
system time.
Based on model (1) one can thus abandon “non control theoretical” (and often

not even closed-loop) choices of Sσ as in the examples just sketched, and synthesise
schedulers as controllers with very simple blocks, for example of the PI or Model
Predictive Control type [18, 23]. The so conceived policies are tendentiously less
computational-intensive than those where a control loop is conversely closed around
an already functional scheduler, i.e., not around the core phenomenon only.
For example, some work introduce controllers to adjusts the bursts, with the

purpose of keeping the entire system utilisation below a specified upper bound
[2, 3, 6]. In these works the burst duration is adjusted according to the results
of the execution of a controller, built to optimize different cost function. Each
of these cost function requires to redesign the control strategy and no control-
based selection of the next task is envisioned. On a different page, the authors of
[4] re-order the list of tasks to be scheduled with a round robin algorithm in an
embedded device, with the aim of reducing cache misses. Control is introduced to
meet a system requirement by acting on a parameter of a fully functional scheduler,
rather than to simplify the design of the entire scheduler.
The approach proposed here, instead, models the core phenomenon and uses that

model to pursue a real control theoretical solution, where properties of the closed-
loop system could be formally proved. In this respect, a possibility is to endow (1)
with a cascade control structure, aimed at controlling both τr, i.e., the round
duration, and the distribution of said duration among the active tasks. This can be
done with very simple controllers, as shown in [18], and allows to specify the desired
behaviour as a certain level of responsiveness, corresponding to the round duration,
and fairness, related to the mentioned distribution. The paper just quoted also
contains comparisons with some major (non control-centric) scheduling policies,
witnessing the advantages of the proposed approach. Note that said approach allows
to give a control-theoretical sense to terms like “responsiveness” and “fairness”,
that are widely used and well understood in the computing systems community.

4. A unified framework for memory management

In this section, the proposed approach is applied to another core functionality of
operating systems, namely that of memory management.
The operation of a memory manager works can be (roughly) described as follows.

The RAM in a computing system is divided in pages of fixed size. Those pages can
be allocated to processes running in the operating system, which make memory
requests. Of course, the quantity of available memory is limited by the total amount
of RAM, and situations in which the processes are requiring more than said upper
bound may occur. The memory manager needs to be able to handle such cases, by
temporarily saving some pages on disk, i.e., by “swapping” out pages through a
specified policy, most frequently the so called Least Recently Used (LRU). Those
swapped pages can be requested in a different moment by an application (such
an event being termed a “page fault”), and the memory manager is in charge of
retrieving the appropriate pages and swap them back in RAM.
The relevance of the problem stems from several reasons. Even if the advances

of technology make much more memory available for running applications, these
are steadily more demanding in terms of memory pages. Memory is thus still a
limited, thus critical, resource. Furthermore, memory is continuously requested
and relinquished by processes over time, in an a priori hardly predictable manner;

7



July 4, 2014 Mathematical and Computer Modelling of Dynamical Systems 2013-MCMDS-
modelcomputingsystems

as such, the time scale of memory usage – thus management – is quite fast.
The LRU-based “traditional” attitude toward memory management, sketched

out above and dating back to works like [7, 14, 20], has two major issues. One
is related to the system-wide nature of the LRU scheme, the other to the purely
demand-based (or in other terms, event-triggered) activation of the memory man-
ager. As a result, its behaviour is not optimal in many significant use cases.
A typical example is when a memory-intensive background task is run concur-

rently with some interactive ones, which can easily happen, for example, when
using the same machine for running both heavy batch jobs and a window manager
to provide a graphical user interface. When the background task’s memory alloca-
tions cause the exhaustion of the available RAM, the LRU scheme will swap out
pages from arbitrary processes, most probably including the interactive ones, thus
causing a significant reduction in their responsiveness. This is caused by the lack
of a memory manager that can act on a per-process basis, so as to control which
are the processes that have exceeded their memory limit, and have to be selected
as targets for swap-outs.
The negative impact of swapping out pages onto application responsiveness is

a widely known fact, however at present (at least, to the best of the authors’
knowledge) no systematic attempts to model the problem have emerged, and only
ad hoc algorithmic solutions have been introduced.
Another limitation of current memory management systems, as mentioned, is

their purely event-triggered nature. A typical example that exacerbates this lim-
itation is when a process transiently allocates a large amount of memory, as it
frequently happens for the linking phase at the end of the compilation of large
software projects. In this case part of that process will be swapped out, and due to
the system-wide LRU scheme, also part of other processes most likely will. When
the complex task ends, the memory occupation drops sharply, resulting in a large
amount of free RAM. If in this situation the system is left idle, it will not recover
responsiveness as fast as it could, due to swap-in being only triggered by applica-
tion page faults. Therefore, it may happen that memory pages remain swapped out
for a long time even if RAM is available. Subsequently, when a process requests
those pages, a disk access will be triggered, stalling the process and decreasing its
responsiveness. Moreover, the swap-in of those pages may occur when the CPU is
highly loaded, while from the swap-out instant till the page faults there may have
been plenty of time with a low CPU load.
Summarising, there are two fundamental questions that current memory manage-

ment schemes fail to address, which are what to swap and when to do it. The first
question addresses per-process memory limits, and could be used to achieve mem-
ory access temporal isolation [36]. The second question opens the door to transfers
between swap and RAM that are time-triggered instead of event-triggered by pro-
cess page faults. In the opinion of the authors, this is another problem for which
hardly any modelling effort has been spent to date, having as result a practically
ubiquitous use of pure heuristics, and thus a management (i.e., control) that falls
significantly short of perfection. When control-based techniques were applied by
closing loops around a memory manager conceived in the traditional way rather
than around the core phenomenon alone, the same attitude has often given rise to
quite complex solutions, see, e.g., [24].
Analysing the situation with the proposed approach, on the contrary, it is quite

straightforward to state memory management as a feedback control problem, by
posing for it the following objectives:

(1) use as much RAM as possible without saturating,

8



July 4, 2014 Mathematical and Computer Modelling of Dynamical Systems 2013-MCMDS-
modelcomputingsystems

(2) give each process a (soft) quota to make it a candidate for swap-outs when
this is exceeded (not forbidding anyway its allocation, whence the “soft”
adjective above), and

(3) un-swap memory back to RAM when this is possible, based on a time-, not
only event-triggered mechanism.

Adopting this viewpoint, here too the core phenomenon physics is quite simple,
as the generic (i-th) process can be represented by the discrete-time, linear and
time invariant model

{

mi(k) = mi(k − 1) + ai(k − 1)− dmi(k − 1) + pfi(k − 1) + ui(k)

si(k) = si(k − 1)− dsi(k − 1)− pfi(k − 1)− ui(k − 1)
(3)

where the state variables mi and si are respectively the quantity of allocated
RAM and swap memory. The index k counts the memory-affecting operations,
making (3) discrete-time but not sampled-signals. The other quantities are either
process-generated requests – i.e., ai, dmi, pfi, dsi, treated here as disturbances –
or memory-manager decisions — i.e, ui, that is the input of the model (explained
below).
In detail, ai and dmi are respectively the allocated and deallocated quantity of

memory in RAM, and dsi is the deallocated memory from swap. The term pfi
represents the page faults that a process can generate (in a highly unpredictable
manner, depending on its memory use pattern) and acts symmetrically on RAM
and swap.
Note that all the quantities mentioned so far (except for ui) are physically bound

to be nonnegative. Also note that all are known by the memory manager, and are
therefore measurable without error.
As for ui, this is the only variable on which the memory manager can act, and

represents the amount of memory that is moved from RAM to swap or vice versa;
ui is thus the only quantity that can take both positive and negative values. The
resulting model is composed of two discrete integrators per process, subject to
physical constraints, and reads as



















































mi(k) ≥ 0 ∀i = 1, . . . , N

N
∑

i=1

mi(k) ≤ βM

si(k) ≥ 0 ∀i = 1, . . . , N

N
∑

i=1

si(k) ≤ S

(4)

where M and S are the maximum amount of memory and swap in the system,
while β takes into account that some of the physical memory may be reserved,
for example by the operating system itself. The βM term is here called global
maximum memory occupation. For completeness, if both memory and swap are
exhausted, there is another component of the operating system – named the out
of memory killer – that terminates processes to free up memory. Such an event
is however considered a pathological system condition, indicating a malfunction
of some process – that should occur very sporadically – or an erratic swap space

9



July 4, 2014 Mathematical and Computer Modelling of Dynamical Systems 2013-MCMDS-
modelcomputingsystems

configuration on the part of the system administrator [8]. Both cases are apparently
not to be dealt with by the memory manager, thus not addressed herein: for our
purposes, in other words, the swap space can be considered infinite.
The physical constraints (4) are partly naturally enforced by the system. For

example, if a process has no swap, it cannot generate page faults, and it cannot
deallocate memory it does not have (if programming errors causes a program to
attempt that, the kernel detects the error and terminates the process before the
memory system is set to an inconsistent state).
Memory allocations are conversely unconstrained, hence the system cannot work

in the total absence of control, here represented by ui(k), that is constrained by



























ui(k) ≥ −mi(k)− ai(k) + dmi(k)− pfi(k)

ui(k) ≤ si(k)− dsi(k)− pfi(k)

N
∑

i=1

ui(k) ≤ βM −

N
∑

i=1

(

mi(k) + ai(k)− dmi(k) + pfi(k)
)

Finally, the kernel handles memory in terms of pages, which are a set of contigu-
ous memory locations, with a typical size being 4KB. Therefore, all quantities in
the model are expressed in memory pages, and are meaningful only if integers. From
such a model, it is quite straightforward to design a feedback controller enforcing
the objectives above: details on how to do that can be found in [33].
For the purpose of this work, it is however worth pointing out which are the

benefits of the proposed modelling approach. First, the problem was naturally split
into a how much and a what part. The proposed control policy decides how much
to swap in or out and on this basis achieves its goal. Deciding what to swap in or
out is here irrelevant, and can be devoted to any underlying mechanism without
hampering the mentioned achievements.
The same could be stated about resource allocation. Indeed, the authors came

to suspect that quite in general, a major reason why simple and powerful control
theories seem unnatural to apply to computing systems design, is that problems
are formulated in such a way that the how much and the what part stay inter-
twined, while when the former is isolated, most often it can be treated with simple
formalisms, and normally the results can be realised in a transparent manner with
respect to how the latter is addressed. For example, once how much to swap out
is decided, one can transparently use LRU, possibly on a per-process basis, or any
other policy. In one word, there is room for virtually any high-level (i.e., nearer to
the software application) policies, pretty much like a well designed layer of periph-
eral simple controllers eases the setup of more complex, centralised regulations in
hierarchical, plant-wide process control.
Finally, notice that here too the model is virtually uncertainty-free, which is quite

common a situation in the particular case of computing systems, and definitely
worth exploiting with a control-theoretical design approach.
To witness the usefulness of the approach, Figure 2 shows how a model based

on (3) can lead to an effective memory management when complemented with the
simple control policy described in the following.

• Each process has a memory use limit, the sum of these limits not exceeding
the available RAM minus a small amount reserved for the operating system,
see (4).

• When the requested RAM exceeds the available one, only processes exceeding

10



July 4, 2014 Mathematical and Computer Modelling of Dynamical Systems 2013-MCMDS-
modelcomputingsystems

Figure 2. An example of model-based memory management.

11



July 4, 2014 Mathematical and Computer Modelling of Dynamical Systems 2013-MCMDS-
modelcomputingsystems

their limit can be swapped out.
• When there is free RAM and used swap, a time-triggered mechanism is in-

voked to swap pages into RAM, based, e.g., on a Least Recently Swapped
policy (with obvious meaning).

As can be seen, in Figure 2 there are at the beginning three active processes. All
of them allocate memory, until the RAM is exhausted (around k = 100). However,
since Process 1 is below its memory limit, it is still allowed to allocate RAM, and
only the other two are subject to swap-out; only the memory limit change for
Process 1 at k = 300 makes it too subject to swap-out. Also, when some RAM
is available and some swap is used (from k = 600), the swap space is emptied
by time-triggered swap-in, that co-operate with the (event-based) memory reclaim
caused by the termination of Process 1. The interested reader can refer to [33] for
further details on the control policy sketched above.
Contrary to the scheduling case, comparing the proposed control strategy to

others is not possible here, however. In fact, the present state of the art is practically
composed of system-wide policies only. These do not allow any memory usage
control on a per-process basis, and therefore one could at most compare aggregate
data at the machine level. Independently of “who is the best” in this respect,
the reasons why a certain memory management policy could adversely impact the
behaviour of a process, reside precisely in the inability of system-wide controls to
respond to individual process requirements.

5. A unified framework for resource allocation

Up to this point, the focus was set on the management of specific resources, namely
CPU and memory, for which one could envision ad hoc optimisation techniques. In
this section, a wider viewpoint is conversely taken, to illustrate how the proposed
approach is suited also for the generic “resource allocation” problem, that has been
gaining a lot of attention in the last years.
In this wider context, the term resource may assume different meanings. In a

single device, an application may receive computational units or disk space, while
in a cloud infrastructure, a resource can be a server devoted to responding to
some requests. Each manageable resource is here a touchpoint in the sense given to
this term in [13]. Some proposals to address the management of a single resource
were published in the literature. However, the management of multiple interacting
resources is still an open research problem and solutions are more rare [26]. In-
tuitively, the number of ways the system capabilities can be assigned to different
applications grows exponentially with the number of resources under control, and
the need for a model is apparent.
In this section we show that, also in the case of resource allocation, a core phe-

nomenon can be identified and modelled. In this case, however, the dynamic rela-
tionship between the resource allocated to a system and the performance obtained
by the usage of said resources is far from being trivial, and uncertainties are gen-
erally present. If one installs additional sensors in the system so as to measure
exactly what pertains to the core phenomenon, the resulting models are still much
simpler and reliable than those obtained by attempting to describe the system as
is.
Generally speaking, the resource allocation problem consists in dynamically mod-

ifying the amount of system resources (memory, disk, bandwidth, number of com-
puting units, and so forth) allotted to an application, in such a way the said ap-

12



July 4, 2014 Mathematical and Computer Modelling of Dynamical Systems 2013-MCMDS-
modelcomputingsystems

plication progresses towards its goal at the desired rate. Recalling the example of
Section 2, one may want a video encoder to process exactly 30 frames per sec-
ond, despite different amount of computational resources needed by the individual
frames, and the overall system load. Quite intuitively, the progress rate – that in
this work is measured in WorkLoad Units (WLU) per second – is defined on a per
application basis (e.g., for a video encoder it could be the completion of one frame).
In most cases, however, a measure of the mentioned progress rate is not available,

since usually hardware performance counters are used [17, 32]. The relationship be-
tween the progress rate and typically measured quantities is another clear example
of added physics – or better, in this case, physics that should not be in the control
loop – as the core phenomenon is here “how the progress rate dynamically reacts
to resources”.
On a time scale suitable for evaluating (and possibly controlling) an application

behaviour, the effect of allotting more or less resources to that application, can be
viewed as practically instantaneous. However, the efficacy of a given resource on the
application progress may vary over time. For example, if an application is presently
executing operations that do not require parallelism, the effect of allotting more
computational units is modest. Similar considerations hold for memory, disk space,
or other resources.
Contrary to the remark above, the time scale of resource-to-performance effects

is almost invariantly comparable to that suitable for monitoring and controlling.
Therefore, if one accepts to introduce a progress rate measurement, it turns out

that many relevant problems can be treated with discrete time nonlinear dynamic
systems of simple structure, obtained with a grey box approach.
For example, when the resources to allot are computational units c and clock fre-

quency f while the application progress rate pr is measured with the Application
Heartbeats framework [12], a vast campaign of experiments and data analysis indi-
cated that a model that is simple enough to be used for control but still describes
the system in a fairly complete way is

pr(k) = p · pr (k − 1) + (1− p) · (kc c (k − 1)αc + oc) (kf f (k − 1)αf + of ) (5)

where parameter p ∈ [0, 1) is essentially related to the sampling time used for the
performance measurements, thus not application specific; the other (time varying)
parameters account for resource response of the application. Specifically, kc, αc and
oc denote how the application responds to changes in the number of computational
units c while kf , αf and of take care of the responses to clock frequency variations.
Note that (5) contains a nonlinear static (multi-)input characteristic cascaded to
a linear dynamics, in accordance with the idea that the control time scale is very
slow with respect to the actuation one, and complexity resides essentially in the
actuators’ influence on the process.
Model (5) is apparently of the grey box type, as its structure is envisioned a

priori based on “physical” considerations, while its parameters come from an iden-
tification process.
In fact, in most of the addressed situations [22], parameter p (the discrete-time

pole) typically takes low values in the [0, 1) interval, indicating that at the control
time scale, the action of actuators is nonlinear but practically instantaneous. Some
exceptions may arise for example when some actuating action requires to negotiate
resources with the operating system, e.g., posting requests that may be fulfilled at a
time scale comparable to that of control, but nonetheless the modelling hypotheses
introduced hold reasonably true in all the cases of interest, and in most of them
the system to be controlled actually behaves as a nonlinear static one cascaded to

13



July 4, 2014 Mathematical and Computer Modelling of Dynamical Systems 2013-MCMDS-
modelcomputingsystems

a pure one-step delay.
As a possible objection, application behaviour variabilities can be present and

depend on many factors, including for example the processed data, hence the pro-
posed modelling approach may not seem very useful. However, its usefulness can
be perceived by observing that, with a sufficiently wide – yet in general affordable
– number of profiling tests, one can obtain range and rate bounds for parameter
variations. By generating parameter behaviours based on that information, one can
then simulate a potentially infinite number of possible application behaviours in
much less time than the same number of real runs would require, which is very
useful in a view to synthesise and assess controllers. Notice that attempting to do
the same thing with classical black box identification applied to linear models – a
widely used approach – is for the problem at hand less effective, as such models
are structurally inadequate, and any order selection procedure would eventually
produce very complex structures.
Needless to say, reverting for a moment to control, the simplicity of (5) – once

that model was tested for the capability of actually replicating application runs –
suggests correspondingly simple regulators, contrary to what one would conclude
based on standard black box models.
Coming to some examples referring to benchmark applications, Figure 3 shows

the bodytrack and vips measured progress rate and the one estimated with the
identified simulation model (5) for a particular run, where the parameters’ be-
haviour was obtained by means of an Extended Least Squares procedure. The used
applications are bodytrack and vips, taken from the PARSEC benchmark suite.
The rationale behind the suite, together with its use, is presented in [5], to which
the interested reader is referred for details.
Figure 4 conversely shows the outcome of the classical black box identification

process, using the ARX (AutoRegressive with eXogenous input) and the ARMAX

(AutoRegressive and Moving Average with eXogenous input) model structures for
a run of the vips application.
Figure 3 illustrates that (5) is actually capable of replicating the data, by catch-

ing main variabilities and trends in a way suitable for control design—its sole
purpose here. Figure 4 also suggests that AR(MA)X models are not keen to cap-
ture the relevant application behaviour. In fact, if one tries to identify the same
data with the Matlab Identification toolbox, performing an order selection for the
ARX(na, nb) model, the result is that the identification procedure tries to give to
the model as much higher an order as it can, indicating that the structural choice
is not adequate.
For completeness, the grey box model (5) used in the presented examples, de-

noting with ϑ̂ the estimated parameter vector, is parametrised for vips as

ϑ̂vips =





kc
αc

oc



 =





258.75388
1.1930687
681.67218



 ,

14



July 4, 2014 Mathematical and Computer Modelling of Dynamical Systems 2013-MCMDS-
modelcomputingsystems

0 10 20 30 40 50 60 70
0

2

4

6

time (s)

p
r
(W

L
U
/s
)

bodytrack

pr data
estimated pr

0 5 10 15 20 25 30 35
0

2000

4000

time (s)

p
r
(W

L
U
/s
)

vips

pr data
estimated pr

Figure 3. Collected data from the specified software application (black solid line) and simulation with the
grey box identified model (blue dashed line).

and for bodytrack as

ϑ̂bodytrack =

















kc
αc

oc
kf
αf

of

















=

















0.1931659
1.613834
3.5964752
2.3736936
0.1609101
−1.9965658

















.

In addition, by introducing a fit measure, the obtained models can be ranked.
The fit measure allows to determine how close the output of the estimation is to
the real process that it models. Here, the measure is set to

[

1−
‖Y − Ŷ ‖2

‖Y − Ȳ ‖2

]

· 100

where Ŷ is the output of the estimators and Y is the measure of the real data.
Table 1 shows the obtained results in the vips case.
Notice that, starting from the system insight induced by the grey box model,

successful adaptive control could be achieved with an ARX(1, 1) structure.

15



July 4, 2014 Mathematical and Computer Modelling of Dynamical Systems 2013-MCMDS-
modelcomputingsystems

0

2000

4000

p
r
(W

L
U
/s
)

pr data

ARX(1,1)

0

2000

4000

p
r
(W

L
U
/s
)

pr data

ARX(10,10)

ARX(20,20)

0 5 10 15 20 25 30 35
0

2000

4000

time (s)

p
r
(W

L
U
/s
)

pr data

ARX(30,30)

ARMAX(10,10,10)

Figure 4. Identification results for the vips software application with different model structures. The
data used for the identification are denoted in black with a solid line, the simulation results of the
ARMAX(10, 10, 10) in orange with a dashed-dotted line, the ARX(30, 30) in violet with a densely dotted
line, the ARX(20, 20) in green with a densely dashed line, the ARX(10, 10) in red with a densely dotted
line, and the ARX(1, 1) in blue with a dashed line.

Table 1. Results obtained with the Matlab Identification Toolbox for the vips application with various
model structures.

Model Delay Best Fits

ARMAX(10, 10, 10) 1 62.24
ARX(30, 30) 9 61.63
ARX(20, 20) 9 61.53
ARX(10, 10) 9 61.36

ARX(1, 1) 1 58.98

To end this section with some control-related material, an example is presented
on what can be achieved in that respect. Figure 5 shows experimental results
performed on the same real applications, i.e., bodytrack and vips, when their
progress is regulated by an adaptive predictive controller based on model (5).
As can be seen, the required set point is well attained also in the presence of

application behaviour’s variations, thus proving the effectiveness of the underlying
modelling approach.
It is worth mentioning that in the resource allocation literature, using math-

ematical models for the allocator design is not the typical case, and heuristics
or reinforcement learning – model-free – techniques are preferred [22]. This is an

16



July 4, 2014 Mathematical and Computer Modelling of Dynamical Systems 2013-MCMDS-
modelcomputingsystems

Figure 5. Experimental control results with bodytrack and vips: the application progress rate is required
to attain a specified set point value.

acceptable approach whenever the problem at hand is quite complex or difficult
to manage, but if a (relatively small) effort in the modelling phase is spent, many
model-based control techniques can be adopted obtaining much better results. Fig-
ure 6 shows the results that can be obtained with vips controlled with different
techniques [22], i.e., a heuristic one (top row), a State-Action-Reward-State-Action
(SARSA) algorithm (second row), an adaptive control scheme (third row) and a
Model Predictive Control (MPC) technique (bottom row). Those techniques were
designed to manage both the Single Resource (SR) case and the Multiple Resource
(MR) one.
As can be noticed, in the case of model-free techniques, the achieved perfor-

mance are worse than in the case of model-based ones, evidencing that spending
some effort in the modelling phase can significantly improve the control results —
recall that the experiments were conducted on real applications. It is also evident
that in the Model Predictive Control example, the controller adapts to exploit the
presence of multiple resources, and will need more time to accomplish its task. On
the contrary, using a single resource (SR) greatly improve the convergence rate.
However, it has to be noted that the multiple resource (SR) controllers tend to set-
tle in states that are more power hungry than its multiple resource counterparts.
However, minimising power consumption falls outside the scope of this paper and
should be investigated more.

17



July 4, 2014 Mathematical and Computer Modelling of Dynamical Systems 2013-MCMDS-
modelcomputingsystems

Figure 6. Experimental results with different model-based/non-model-based techniques.

6. Retrospect and future directions

We have presented different case studies on the use of discrete-time dynamic models
for a control-oriented design of computing system components. It is now the time to
collect and organise the so gathered experience, and make some general statements.
If one approaches computing systems for modelling – and possibly control –

purposes, the paradigms that naturally appear most keen to be applied are un-
doubtedly event-based. A vast literature is available on the use of queue networks,

18



July 4, 2014 Mathematical and Computer Modelling of Dynamical Systems 2013-MCMDS-
modelcomputingsystems

automata, and the like [16, 30, 31]. In our opinion, this is less general than one
may think at a first glance. There are cases – probably more than those mentioned
herein – where it is more convenient to identify some phenomenon that can be
described with discrete-time models, and proceed accordingly as here exemplified.
Quite frequently, the involved models are simple, sometimes even linear ant time-
invariant. Such simple models (think again to the linear case) allow for a rigorous
analysis of stability, reachability, controllability, and similar structural properties.
Furthermore, this simplification is also based on the idea of using discrete-time

but not (necessarily) sampled-signals models. One could well say that this is a
viable way of dealing with events by using a modelling paradigm with more powerful
design and assessment tools.
Finally, since we aim at modelling phenomena occurring in computing systems

more than components of those systems, the approach naturally leads to address
both control and design problems—or more precisely, to view the matter as pro-
cess/control co-design.
The considerations above allow to establish quite deep a relationship between

modelling and control for computing systems, and for other application domains
like industrial processes. Sticking to this example, it is well known that some phe-
nomena and control objectives are best dealt with with time-driven models, while
others call for event-based ones. Correspondingly, a vast literature is available on
how to structure a complete (process) control strategy comprising both time- and
event-based elements, coordinated in a view to attaining the general objectives for
the problem at hand. We suggest that the same approach be applied to computing
systems, as attempting to stick to only one of the two mentioned paradigms quite
often makes the problem hard to tackle, and often limits the achievable results.

7. Conclusions and future work

This work proposed a novel approach to the modelling of computing systems. The
main idea behind this approach is to capture the relevant dynamics of computing
systems with the simplest possible models, grounded on some “physical” principles.
The approach was shown at work with three case studies, and some general ideas
were drawn from that experience.
Along this research line, future developments can be foreseen as the applica-

tion of the presented ideas to other computing system problems, like for example
bandwidth allocation. Much further work is required, but an innovative attempt
was here made to circumvent one of the main obstacles for co-design success. This
attempt is possibly a starting point to rethink from scratch core functionalities of
computing systems with a model-based and control-theoretical attitude.

Acknowledgment

This work was partially supported by the Swedish Research Council (VR) for the
projects “Cloud Control” and “Power and temperature control for large-scale com-
puting infrastructures”, and through the LCCC Linnaeus and ELLIIT Excellence
Centers.

19



July 4, 2014 Mathematical and Computer Modelling of Dynamical Systems 2013-MCMDS-
modelcomputingsystems

References

[1] T. Abdelzaher, J. Stankovic, C. Lu, R. Zhang, and Y. Lu. Feedback performance
control in software services. IEEE Control Systems Magazine, 23:74–90, 2003.

[2] L. Abeni, L. Palopoli, G. Lipari, and J. Walpole. Analysis of a reservation-based
feedback scheduler. In Real-Time Systems Symposium, 2002. RTSS 2002. 23rd IEEE,
pages 71–80, 2002.

[3] B. Alam, M. Doja, and K. Biswas. Finding time quantum of round robin cpu schedul-
ing algorithm using fuzzy logic. In Computer and Electrical Engineering, 2008. ICCEE
2008. International Conference on, pages 795–798, 2008.

[4] K. W. Batcher and R. A. Walker. Dynamic round-robin task scheduling to reduce
cache misses for embedded systems. In Proceedings of the conference on Design,
automation and test in Europe, DATE ’08, pages 260–263, New York, NY, USA,
2008. ACM. .

[5] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark suite: Charac-
terization and architectural implications. In Proc. of the 17th International Conference
on Parallel Architectures and Compilation Techniques, Oct. 2008.

[6] G. Buttazzo and L. Abeni. Adaptive workload management through elastic schedul-
ing. Real-Time Systems, 23:7–24, 2002.

[7] W. Chow and W. Chiu. An analysis of swapping policies in virtual storage systems.
IEEE Transactions on Software Engineering, 3(2):150–156, 1977.

[8] J. Corbet. 2.6 swapping behavior. http://lwn.net/Articles/83588/, May 2004.
[Online; accessed 03-June-2014].

[9] Y. Diao, J. Hellerstein, S. Parekh, R. Griffith, G. Kaiser, and D. Phung. A control
theory foundation for self-managing computing systems. IEEE journal on selected
areas in communications, 23(12):2213–2223, Dec. 2005.

[10] S. Dobson, R. Sterritt, P. Nixon, and M. Hinchey. Fulfilling the vision of autonomic
computing. Computer, 43(1):35–41, 2010.

[11] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury. Feedback Control of Com-
puting Systems. Wiley, Sep. 2004.

[12] H. Hoffmann, J. Eastep, M. D. Santambrogio, J. E. Miller, and A. Agarwal. Applica-
tion heartbeats: a generic interface for specifying program performance and goals in
autonomous computing environments. In Proceeding of the 7th International Confer-
ence on Autonomic Computing, pages 79–88, New York, NY 10036, USA, 2010. ACM
Press.

[13] IBM. An architectural blueprint for autonomic computing. Technical report, Jun.
2005.

[14] R. Jones. Factors affecting the efficiency of a virtual memory. IEEE Transactions on
Computers, 18(11):1004–1008, 1969.

[15] J. O. Kephart and D. M. Chess. The vision of autonomic computing. Computer, 36
(1):41–50, 2003.

[16] M. A. Kjær and A. Robertsson. Analysis of buffer delay in web-server control. In
American Control Conference (ACC), 2010, pages 1047–1052, Jun. 2010.

[17] R. Kufrin. Measuring and improving application performance with PerfSuite. Linux
Journal, 2005:4–10, Jul. 2005.

[18] A. Leva and M. Maggio. Feedback process scheduling with simple discrete-time control
structures. IET Control Theory & Applications, 4(11):2331–2342, Nov. 2010. .

[19] A. Leva, M. Maggio, A. V. Papadopoulos, and F. Terraneo. Control-based Operating
System Design. IET Control Engineering Series. IET, London, UK, Jun. 2013. ISBN
978-1-84919-609-3.

[20] H. Levy and P. Lipman. Virtual memory management in the VAX/VMS operating
system. Computer, 18(3):35–41, 1982.

[21] K. Lindqvist and H. Hjalmarsson. Identification for control: adaptive input design
using convex optimization. In Decision and Control, 2001. Proceedings of the 40th
IEEE Conference on, volume 5, pages 4326–4331 vol.5, 2001. .

[22] M. Maggio, H. Hoffmann, A. V. Papadopoulos, J. Panerati, M. D. Santambro-

20



July 4, 2014 Mathematical and Computer Modelling of Dynamical Systems 2013-MCMDS-
modelcomputingsystems

gio, A. Agarwal, and A. Leva. Comparison of decision-making strategies for self-
optimization in autonomic computing systems. ACM Transactions on Autonomous
and Adaptive Systems, 7(4):36:1–36:32, Dec. 2012. ISSN 1556-4665. .

[23] M. Maggio, A. V. Papadopoulos, and A. Leva. On the use of feedback control in the
design of computing system components. Asian Journal of Control, 15(1):31–40, Jan.
2013. ISSN 1934–6093. .

[24] E. Mumolo and G. Bernardis. A novel demand prefetching algorithm based on volterra
adaptive prediction for virtual memory management systems. In Proc. 30th Hawaii
International Conference on System Sciences, volume 5, pages 160–167, 1997.

[25] A. V. Papadopoulos, M. Maggio, and A. Leva. Control and design of computing
systems: what to model and how. In Proceedings of the 7th International Conference
of Mathematical Modelling, MATHMOD’12, volume 7, pages 102–107. IFAC, Feb.
2012. .

[26] A. V. Papadopoulos, M. Maggio, S. Negro, and A. Leva. General control-theoretical
framework for online resource allocation in computing systems. IET Control Theory
& Applications, 6(11):1594–1602, Apr. 2012. ISSN 1751-8644. .

[27] T. Patikirikorala, A. Colman, J. Han, and L. Wang. A systematic survey on the
design of self-adaptive software systems using control engineering approaches. In
Software Engineering for Adaptive and Self-Managing Systems (SEAMS), 2012 ICSE
Workshop on, pages 33–42. IEEE, 2012.

[28] M. Pinedo. Scheduling Theory, Algorithms, and Systems. Springer, third edition, July
2008.

[29] P. Ramadge and W. Wonham. Supervisory control of a class of discrete event pro-
cesses. SIAM Journal on Control and Optimization, 25(1):206–230, 1987.

[30] A. Robertsson, B. Wittenmark, M. Kihl, and M. Andersson. Design and evaluation of
load control in web server systems. In American Control Conference, 2004. Proceedings
of the 2004, volume 3, pages 1980–1985. IEEE, 2004.

[31] M. Shor, K. Li, J. Walpole, D. Steere, and C. Pu. Application of control theory to
modeling and analysis of computer systems. In Proceedings of Japan-USA-Vietnam
Workshop on Research and Education Systems, 2000.

[32] B. Sprunt. The basics of performance-monitoring hardware. IEEE Micro, 22(4):64–71,
Jul. 2002.

[33] F. Terraneo and A. Leva. Feedback-based memory management with active swap-in.
In Control Conference (ECC), 2013 European, pages 620–625. IEEE, Jul. 2013.

[34] L. Torvalds and D. Diamond. Just for fun: The story of an accidental revolutionary.
HarperBusiness, 2002.

[35] W. Wonham and P. Ramadge. Modular supervisory control of discrete-event systems.
Mathematics of Control, Signals and Systems, 1(1):13–30, 1988.

[36] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memguard: Memory band-
width reservation system for efficient performance isolation in multi-core platforms.
In 19th IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2013.

21


