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Abstract: This paper proposes a means to quantify the aptitude of a dynamic model to be
partitioned into weakly coupled submodels. The proposal applies to both linear and nonlinear
systems, is largely independent of their scale, and requires information that is easy to provide on
the part of the analyst. The presented indices can be exploited in different manners, from easing
numerical integration on monolithic solution platforms to tailoring distributed or co-simulation
ones based on the particular characteristics of the model at hand. Examples are reported to
show the usefulness and the practical viability of the proposal.

Keywords: Dynamic modelling, efficiency enhancement, numerical simulation, distributed
simulation, nonlinear models, large-scale systems.

1. INTRODUCTION AND RELATED WORK

Efficient dynamic simulation is becoming more and more
important for all engineering studies. Modern tools allow
to construct and manage very complex models also on
lightweight platforms, such as laptops. As such, however,
the computational capabilities of the target platform often
becomes the bottleneck, especially if simulation tools need
bringing to the plant floor (e.g., to streamline and facilitate
commissioning).

Different approaches can be taken to cope with the afore-
mentioned complexity. The most common is the adoption
of Model Order Reduction (MOR) techniques [Antoulas,
2005, Donida et al., 2010], which are widely studied but
are well-established only in the linear case. When dealing
with nonlinear systems only problem-specific extensions
are available, essentially based on linearisation or Taylor
expansion, bilinearisation, or functional Volterra series ex-
pansion, followed by a suitable projection (see, e.g., Inno-
cent et al. [2003]).

Another interesting approach is, for example, the Trans-
mission Line Modelling (TLM) presented in Sjölund et al.
[2010]. TLM is based on modelling the propagation of a
signal which is limited by the time it takes to travel across
a medium. By utilizing this information it is possible to
partition the system into independent blocks that may be
simulated in parallel. This leads to improved simulation
efficiency since it enables full performance of multi-core
CPUs. This, how ever requires that the modeller explicitly
introduces the transmission model, i.e., the decoupling
part, by introducing some additional components, based
on his/her intuition.

Schiela and Olsson [2000] propose an eigenvalue-based
technique, more similar to the one related to this research,
where a structural analysis is performed aimed at splitting
the system into two subsystem so as to use a mixed-mode
integration method to improve simulation efficiency. This

? A.V. Papadopoulos is member of the LCCC Linnaeus Center at
Lund University.

is natural for linear systems, but the eigenvalue analysis
hinders extensions to the nonlinear case.

This paper is part of a long-term research path aimed at
endowing modelling and simulation tools with the capa-
bility of automatically introduce suitable approximation
in the solution of complex nonlinear models, so as to
achieve the needed simulation efficiency, and above all, in
as transparent a manner as possible for the user. In the
previous work Papadopoulos et al. [2013] we introduced an
analysis technique to partition a system based on the time
scale of its dynamics, and a way to exploit that partition by
mixed-mode integration. Here we propose other technical
means to exploit the same information, and we define some
separability indices to quantify the keenness of a system
to be partitioned.

2. BACKGROUND

In this section we summarise some background concepts
and briefly review previous results [Papadopoulos et al.,
2013], to contextualise the additional contributions of this
paper in the overall research path.

The main idea is to enhance simulation efficiency by
partitioning the dynamic model at hand, based on the time
scale of the contained dynamics. Peculiar to our research
is however the analysis technique used for that purpose,
named Cycle analysis (CA), and described below. The
so obtained system partition can be exploited by mixed-
mode (i.e., implicit-explicit) integration, as suggested, e.g.,
in Schiela and Olsson [2000], or taken as the basis for
further quantifications of the model “separability”, which
is the specific subject of this paper.

2.1 Cycle analysis

The main idea of CA is that in a causal ODE model, both
each variable and each equation can be associated with a
characteristic time scale. To this end, consider the state-
space form of a continuous-time system

ẋ = f(x,u) (1)



that discretised with the Explicit Euler (EE) method with
integration step h yields

xk+1 = xk + h · f (xk,uk) . (2)

Suppose now that (2) is at an asymptotically stable
equilibrium. If a small perturbation is applied to a single
state variable xk, a transient occurs, and either the same
perturbation affects the other state variables, without in
turn re-affecting xk, or the same perturbation, after some
integration steps, re-affects xk.

In the first case, no numerical instability can be introduced
by the numerical integration process, but in the second
case there is a “dependency cycle” among some state vari-
ables that may lead to unstable behaviour of the integra-
tion algorithm (intuitively, if along the dependency cycle
the perturbation is amplified). CA detects the dependency
cycles in the system, and defines conditions under which
the perturbation cannot lead to numerical instability.

The first step in CA is to build the dependency digraph
(or directed graph) G = (N,E) associated with the model.
Said digraph has a node n ∈ N for each state, while the
set of edges is formed as

E = I + h
∂f

∂x
where h is the integration step and the ∂f/∂x is the
Jacobian of the continuous-time system. In other words,
the Jacobian of (2) is the adjacency matrix of the weighted
digraph, and accounts for the propagation entity of the
disturbance from the i-th variable to the j-th one.

The second CA step is to detect the set C of all cycles in
the digraph. For every cycle c ∈ C detected in G, the cycle
gain is then computed.

Definition 1. A cycle gain µc(h) of a cycle c ∈ C is

µc(h) =
∏

xi,xj∈c
ei,j =


1 + h

∂fi
∂xi

if L = 1

hL ·∏xi,xj∈c
∂fi
∂xj

if L > 1

where ei,j are the edges involved in the cycles and L is the
length of the cycle.

The cycle gain quantifies how much the disturbance given
to a single state variable xi ∈ c is amplified along one cycle
c. Apparently, by suitably constraining this quantity, we
ensure that no numerical unstable behaviours can occur.
Starting from the computed µc(h), inequalities of the form
|µc(h)| ≤ α can be set for each cycle, yielding

0 < h ≤ (1 + α)

∣∣∣ ∂fi
∂xi

∣∣∣−1

if L = 1 and
∂fi

∂xi
< 0

0 < h ≤ L
√
α ·

∣∣∣∣∏xi,xj∈c
∂fi

∂xj

∣∣∣∣−
1
L

otherwise.

(3)

where α is an upper bound on the allowed amplification of
the disturbance entering the cycle. As a result, every cycle
c ∈ C has been associated with a constraint on h, i.e., with
an upper bound on the integration step which allows the
perturbation not to be amplified along c.

Finally, each variable xi is associated with the most
restrictive constraint hxi on h among the set of cycles
Cxi

= {c ∈ C|xi ∈ c}. Formally,

maximise hxi

subject to |µc(h)| ≤ α, ∀c ∈ Cxi .
(4)

The result of CA is that each dynamic variable is associ-
ated with an upper bound of the integration step needed

for a numerically stable integration, thus with a quantity
related to its time scale. As a result, the variables can
be ordered, for example, by increasing value of hi and
presented to the modeller, who can decide how to cut the
model. For further details on CA, the interested reader is
referred to Papadopoulos and Leva [2014].

2.2 Exploiting CA by integration method

CA can be exploited to improve simulation efficiency by
clustering the dynamic variables by time scale. One can
then use explicit integration methods for the slow ones,
and implicit methods for the fast ones. This implies losing
a precise representation of fast phenomena, but on the
other hand it improves efficiency. To exemplify, consider
the generic nonlinear ODE system

ẋ = f (x) (5)

and assume it to be partitioned into two subsystem: one
with slow dynamics, the other with fast dynamics. Follow-
ing an approach similar to the one presented in Schiela
and Olsson [2000], we can left-multiply the state vector
by a projection matrix P = diag{p1, p2, . . . , pn}, with
pi ∈ {0, 1} to select the slow part, and by P = I − P
to select the fast part. Therefore (5) can be written as{

ẋS = P ẋ = P f
(
xS ,xF

)
ẋF = P ẋ = P f

(
xS ,xF

) (6)

where xS represents the slow variables, and xF the fast
ones. In this work we use Explicit Euler (EE) for the slow
part, and Implicit Euler (IE) for the fast part, but the
presented concepts are totally general.

Using those methods, equation (6) can be expressed as

xSk+1 =Pxk+1 = Pxk + hP f
(
xSk ,x

F
k , tk

)
xFk+1 =Pxk+1 = Pxk + hP f

(
xSk+1,x

F
k+1, tk

)
,

which in the linear case becomes

xSk+1 =Pxk + hPAxk

xFk+1 =Pxk + hPAxk+1.

Composing those two equations, and solving for xk+1, we
can obtain

xk+1 = (I − h (I − P )A)
−1

(I + hPA)xk.

Alternatively to the proposed techniques, other couples
of Explicit-Implicit Runge-Kutta methods can be used,
for example all the ones proposed in Schiela and Olsson
[2000], Ascher et al. [1997]. In principle one could also use
completely different methods, which however we do not
discuss here owing to the predominant diffusion of Runge-
Kutta ones.

Summarising, exploiting CA by integration method leads
to join the best of implicit and explicit integration in a
knowledgeable manner for the case under question. The
resulting integration scheme is represented in Figure 1.

Explicit
method

Implicit
method

uk
xS
k+1

xF
k+1

Fig. 1. Mixed-mode integration scheme.



3. EXPLOITING CA BY SIMULATION
ARCHITECTURE

Broadly speaking, we can say that CA can be exploited
along two fundamental axes. One – already treated – refers
to the used integration methods, the other – which is the
novel contribution of this work – to the adopted simulation
architecture.

To enhance simulation efficiency, it is useful to identify
which parts of a model can be simulated in parallel. To this
end, the dependency digraph used for CA can be further
exploited by detecting Parallelisable Cycle Sets (PCS), as
briefly explained in this section.

A PCS is defined in the simplest manner as a set of cycles
in the digraph that share a single node and have no other
nodes in common. Extensions can be given considering
sets of common nodes instead of a single one, or “weak”
absence of other common nodes, for example based on the
dominance of some cycle gains over others, but these are
not necessary for the purpose of this section and cannot
be treated in this work due to space limitations. The
interested reader can refer to Fortunato [2010] for some
details on how to formally define and detect PCS-like
structures – usually defined as community in the network
analysis theory – on the same digraph used here for CA.

The key idea motivating the search for PCS is that it is
not infrequent to encounter situations in which fast parts
of an overall model are made mutually dependent only by
slower ones. This happens, for example, when several heat
networks are connected to a large central energy storage.
Another similar situation is when the presence of some
controls eliminates high-frequency variabilities and thus
confines the coupling of some parts of the model to low
frequency only. This could be the case when branches of a
grid are connected to a central strong node, which is tightly
controlled. A possible example of PCS as seen on the model
digraph is shown in Figure 2. If the model parameters
actually make the PCS emerge, node C would be the
common one, and the four subsystems corresponding to
the cycles in the PCS would be composed of nodes {T},
{R}, {B}, and {L, LT, LB}.

CL R

T

B

LT

LB

Fig. 2. An example of PCS as seen on the model digraph.

The usefulness of PCS comes by simply observing that
they evidence situations like those just mentioned, and
that in such cases the fast parts of the system can not
only be dynamically decoupled from the slow ones, but also
simulated in parallel. Furthermore, given the variety of the
encountered time scales, the same model can give rise to
different partitions into parallelisable models, depending
on how the modeller chooses to split the time scales. Based
on this idea, PCS can be exploited in at least two ways.

First, they can be detected on the entire digraph, i.e.,
before possibly selecting the time scale splits. Even in
the case of a monolithic solution, and independently of
the integration method, doing so provides an automatic
selection of which parts of the system can be parallelised,
e.g., by acting as discussed in Casella [2013].

Second, one can perform CA as described in the previous
sections, and then detect PCS only for those parts for
which implicit methods are to be used, so as to combine
the improvements coming from DD with an efficiency
enhancement of the most computationally intensive part
of the simulation code.

From a more technological standpoint, one can then just
employ parallel computing architectures, or even use the
so obtained information to structure a co-simulation setup.
In the latter case, the proposed technique provides more
formally grounded an alternative to heuristics based e.g.
on the minimisation of the number of signals exchanged
among the co-simulation units [Kernighan and Lin, 1970,
Hendrickson and Devine, 2000]. Of course such optimisa-
tions are not possible when the structure of the simulation
setup is dictated by the used software tools, but in the
last years formalisms and standards have been emerging
to provide designers with more freedom in this respect,
see e.g., Andersson et al. [2011], Blochwitz et al. [2012],
Papadopoulos and Leva [2013].

4. SEPARABILITY INDICES

The result of CA is to associate each dynamic variable
with an upper bound of the integration step, thus with a
quantity related to its time-scale. The variables can then
be ordered – and possibly clustered – by increasing value
of hxi

. Based on this, some synthetic indices will now be
defined, useful for deciding how to partition the original
model in weakly coupled submodels. It will also be shown
how such indices extend the idea of “stiffness”, like CA was
shown to evidence more decoupling-related information
than eigenvalue analysis.

4.1 Measuring stiffness

To start, consider the classical stiffness indicator based on
eigenvalues analysis, i.e., the stiffness ratio.

Definition 2. (Stiffness ratio). The stiffness ratio σR as
defined in Cellier and Kofman [2006] is defined as the ratio
between the absolute largest real part and the absolute
smallest real part of any eigenvalue of the Jacobian of (1),
i.e.,

σR =
maxi |<{λi}|
mini |<{λi}|

.

It is worth saying that highly stiff systems are associated
with high values of σR.

Apparently, the stiffness ratio is defined for a linear (or lin-
earised) system, and indicates how much the smaller time
scale differs from the larger one. It is thus a good index
for understanding whether or not to use an integration
method for stiff systems on the entire model, but gives no
information about how many “clusters of time scales” are
present in it, nor about which dynamic variable belongs to
which cluster.

To exemplify, let us limit to the linear case, and consider
Figure 3. In the left graph, the continuous-time eigenvalues
of the system (indicated with crosses) are not equally
spaced in the left-half-plane, and can be divided into two
clusters: those that are close to the origin are associated
with “slow dynamics”, while the others are associated with
“fast dynamics”. The presence of the two different time
scales is also evidenced by computing the stiffness ratio of
Definition 2. Let us now consider the right graph of the
same figure. In this case, the stiffness ratio is the same,



since the closest and the farthest eigenvalues from the
origin are the same, while the eigenvalues of the system
are almost equally distributed in the left-half-plane. This
feature of the system is strictly related to how much the
system can be “separable” and is not evidenced in any way
by the stiffness ratio.

−4 −2 0 2
−4

−2

0

2

4

<{λ · h}

={
λ
·h
}

−4 −2 0 2

<{λ · h}

Fig. 3. Two linear systems with the same stiffness ratio.

Coming back to the CA approach, two different indices
based it can be defined. One (the stiffness index, see
Definition 3) quantifies the span of the time scales in the
model, analogously to the one of Definition 2. The other
(the separability index, see Definition 5) indicates to what
extent the clusters of dynamic variables corresponding
to those time scales the system can be computed in a
decoupled manner. Both indices are function of α as
indicated in (3), and being based on CA, they can be
computed also for nonlinear systems.

Denote by H the set of integration steps hxi
associated

with each dynamic variable as in (4), and assume H
ordered by ascending values of h, i.e., H = {h1 ≤ h2 ≤
. . . ≤ hN}.
Based on that, the following definitions can be given.

Definition 3. (Stiffness index). The stiffness index for a
given α is the ratio between the minimum and the maxi-
mum integration step found with the cycle analysis, i.e.,

σ(α) =
hmax(α)

hmin(α)
. (7)

4.2 Measuring separability

Analogously to the stiffness ratio σR, also for the stiffness
index highly stiff systems are associated with high values
of σ.

Definition 4. (Separability term). The separability term
for a given α, and for a given couple of variables xi and xj
is

sα(i, j) =
|hi(α)− hj(α)|

maxm (hm+1(α)− hm(α))
, hi, hj ∈ H.

Definition 5. (Separability index). The separability index
for a given α is the unity minus the ratio between the
maximum and the average difference among two subse-
quent values of the time scales, i.e.,

s(α) = 1−
1

N − 1

∑N−1
i=1 hi+1(α)− hi(α)

maxi (hi+1(α)− hi(α))

= 1− 1

N − 1

∑N−1
i=1 sα(i+ 1, i).

Apparently, high values of s(α) ∈ (0, 1) indicate that the
time scales involved in the system are different enough to
be effectively separated.

In the following, the presented indices will be used to
evaluate the level of stiffness and separability of the con-
sidered examples. Summarising, the stiffness ratio and
index are comparable and synthetic descriptions of the
separation between the maximum and the minimum model
time scales, not suited however for understanding whether
said model can be partitioned. The separability index
is another synthetic one, but is specifically targeted at
quantifying the possibility of such a separation. The sepa-
rability term is a local index to a couple of adjacent time
scales, and an analysis of its behaviour can easily suggest
possible separation points.

4.3 Separability analysis

The proposed separability index (5) is a synthetic descrip-
tion of a structural property of the overall system, but ad-
ditional information can be extracted from CA, providing
also suggestions on how the system can be partitioned.
However, CA – thus the computation of the proposed
indices – usually requires the choice of a value of α, which
is discussed in [Papadopoulos et al., 2013].

On the basis of those remarks, a parametric separability
analysis can be performed:

(1) perform a parametric CA, and express the time scales
associated with each dynamic variable as a function
of α ∈ (0, 1);

(2) for each value of α ∈ (0, 1), order the time scales
obtaining a set of values of the integration steps
H = {h1 ≤ h2 ≤ . . . ≤ hN};

(3) for each value of α ∈ (0, 1), compute the separability
terms sα(i+ 1, i) for all i = 1, . . . , N − 1;

(4) plot the obtained sα(i + 1, i) as a function of α and
i = 1, . . . , N − 1, possibly as a colormap.

The result of this kind of analysis is that whenever a
couple of dynamic variables (identified in the set H with
their indices i and i+ 1), the plot will highlight a peak—
examples of those kind of plots are presented later on.

This kind of analysis provides information that is twofold
and immediately interpretable by the modeller. First,
considering only a single peak for simplicity, the variables
on one side of the peak may be considered as coupled, and
highly decoupled in terms of time scale from the variables
on the other side of the peak. This can be exploited for
designing a partition of the system, or multiple in the case
of many peaks. In addition, since the variables are ordered
by time scales, those with lower indices are associated with
fast time scales, the others with slow ones.

4.4 Exploiting the partition

The information coming from the separability analysis can
be exploited in different ways. A first possibility is to split
the model into two submodels, and use suitable integration
methods [Papadopoulos et al., 2013]. On the other hand,
the identified time scales can be used to structure more
complex (co-)simulation architectures, splitting the system
into many subsystems.

In particular, if the time scales present in the considered
model can be clustered into more than two sets, an
iterative approach can be used so as to improve simulation
efficiency, extending the mixed-mode integration method
to a multi-rate mixed-mode integration. The simulation
structure can be obtained as follows

(1) identify the time scales by means of the separability
analysis proposed herein;



(2) according to the time scale of interest, the system
can be split into two subsystems, one slow that will
be simulated with an explicit method, one fast that
will be integrated with implicit method(s);

(3) if the faster dynamics cannot be split into other
subsystems according to the time scales, then the
algorithm terminates;

(4) otherwise, the fast dynamics are split into two sub-
systems, one faster, and one slower, that will be
integrated with a multi-rate implicit method;

(5) go to step (3).

This approach automatically builds the simulation ar-
chitecture, exploiting the system structure without any
added effort on the part of the modeller. The resulting
faster partitions are smaller reducing the computational
complexity of solving them with implicit algorithms.

5. SIMULATION EXAMPLES

5.1 Double-mass, triple spring-damper

M1 M2

k1 k2 k3

d1 d2 d3

Fig. 4. Double-mass, triple spring-damper.

This example refers to a simple test problem, similar to
that presented in González et al. [2011]. The considered
system is composed of two masses and three parallel
spring-damper elements, connected as shown in Fig. 4,
and moving in a horizontal plane (i.e., gravity has no
effect). Both elasticity and damping friction are assumed
to be linear phenomena, so that the couplings between
the dynamic variables can be easily determined by acting
on the elastic constants ki and the damping factors di. In
particular, in the reported test, M1 = M2 = 1 kg, k1 =
500 N m−1, d1 = 5 N s m−1, k2 = 1 N m−1, d2 = 1 N s m−1,
k3 = 5 N m−1, and d3 = 1 N s m−1.

Letting x1 and x2 the horizontal positions of the two
masses represented in Fig. 4, the model can be written
as {

M1ẍ1 = −(d1 + d2)ẋ1 + d2ẋ2 − (k1 + k2)x1 + k2x2
M2ẍ2 = d2ẋ1 − (d2 + d3)ẋ2 + k2x1 − (k2 + k3)x2

(8)

The separability analysis can be perform to understand
if the model is suited to be partitioned. The result of
the parametric analysis is shown in Fig. 5, where the
numbers on the vertical axis index the variables ordered
by increasing time scale.

The highest separability term is obtained between the 4-
th and the 5-th variable, suggesting where to partition
the model for the decoupled integration, however, another
partition could be performed between the 6-th and the
7-th variable.

According to CA there are 17 cycles in the model digraph,
and choosing α = 0.5, the following constraints on the
integration step are obtained.

ẋ1 : h ≤ 0.032 ẋ2 : h ≤ 0.289
x1 : h ≤ 0.032 x2 : h ≤ 0.289
ẏ1 : h ≤ 0.045 ẏ2 : h ≤ 0.408
y1 : h ≤ 0.045 y2 : h ≤ 0.408

(9)
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Fig. 5. Separability parametric analysis of the double-
mass, triple spring-damper system.

Based on the aforementioned analysis, we can partition
the model into two submodels by separating the first
4 variables – the set of the ones on the left, that are
considered fast – from the other 4 — the set of the ones on
the right that are considered slow. Notice that incidentally
the analysis brought to an intuitive result, i.e., to separate
the two set of equations associated to the two masses,
without any a priori suggestion to the method of the
physical structure of the system.

To complete the example, the proposed indices are here
computed. In particular, model (8), and CA result (9) yield

σ(0.5) = 12.923, s(0.5) = 0.779.

The stiffness index σ(α) indicates that the system is
highly stiff. On the other hand, the separability index s(α)
shows that the considered example has dynamics evolving
with quite different time scales, thus making it effective
to partition the model into subsystems. Notice that σR
cannot be computed since there are purely imaginary
eigenvalues in the system.

5.2 Counterflow heat exchanger

This example refers to a counterflow heat exchanger
with two incompressible streams reported in Fig. 6. Both

Ta,i pa,i pa,o

Wall

pb,o Tb,i pb,i

L

Ta,1

Tw,1

Tb,N

Fig. 6. Counterflow heat exchanger scheme.

streams and the interposed wall are spatially discretised
with the finite volume approach, neglecting axial diffusion
in the wall and also in the streams, as zero-flow operation is
not considered for simplicity. Taking ten volumes for both
streams and the wall, with the same spatial division (again,
for simplicity) leads to a nonlinear dynamic system of
order 30, having as boundary conditions the four pressures
at the stream inlets and outlets, and the two temperatures
at the inlets. More precisely, the system is given by

ca
Ma

N
Ṫa,i =waca(Ta,i−1 − Ta,i) +

Ga

N
(Tw,i − Ta,i)

cw
Mw

N
Ṫw,i =−

Ga

N
(Tw,i − Ta,i)−

Gb

N
(Tw,i − Tb,N−i+1)

cb
Mb

N
Ṫb,i =wbcb(Tb,i−1 − Tb,i) +

Gb

N
(Tw,N−i+1 − Tb,i)

(10)
where T stands for temperature, w for mass flowrate,
c for (constant) specific heat, M for mass, and G for



thermal conductance; the a, b and w subscripts denote
respectively the two streams and the wall, while i ∈ [1, N ]
(i = 0 for boundary conditions) is the volume index,
counted for both streams from inlet to outlet, the wall
being enumerated like stream a.

The parameter values used in the example are reported in
Table 1.

Table 1. Parameter values of Model (10).

Parameters

N 30 Mb 1 kg cw 3500 J kg−1 K−1

Ta,in 323.15K Mw 10 kg Ga 8000WK−1

Tb,in 288.15K ca 4200 J kg−1 K−1 Gb 8000WK−1

Ma 0.1 kg cb 3500 J kg−1 K−1

A parametric CA is performed so as to analyse the
structure of the system, and Fig. 7 shows its result. In
particular, 585 cycles are present in the system.
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Fig. 7. Separability analysis of the heat exchanger (10).

The separability analysis highlights that there are at least
a couple of points where the system can be separated.
However, for α = 1.0 there is only one point in which
the system can be split, and it is between the 30-th and
the 31-st variable, separating the faster state variables
Ta,i, from the other ones. It is worth noticing that in
this example, there is no neat physical separation between
the dynamics, since they all belong to the same physical
domain, and also to the same physical object. Separability
analysis, however, can detect those structural properties
of the system independently of its nature.

The synthetic indices are

σ(0.5) = 9.771, s(0.5) = 0.986.

The stiffness σ(α) index shows that the considered system
is sufficiently stiff, but the more interesting aspect is that
the separability one shows that it is very suited for the
partition, since its time scales are very well separated.

6. CONCLUSIONS

In this work we proposed a method for analysing structural
properties of nonlinear dynamical systems, extending the
results presented in Papadopoulos et al. [2013]. Synthetic
indices quantifying the stiffness and the separability of
the considered system are here proposed, that in conjunc-
tion with the parametric analysis can provide immediate
information to the modeller for the construction of the
simulation architecture. In addition, different ways to ex-
ploit the information coming from the parametric cycle
analysis, both from the architectural viewpoint and from
the numerical method one.

In the near future, further investigations are needed for
extending and formally address the properties of the nu-
merical simulation architectures that can be obtained by
means of the proposed exploitations. Therefore, the inte-
gration of the proposed methods to off-the-shelf simulation
tools is the main goal of the overall research, aimed at ease
the modeller tasks in a way as transparent as possible.
Finally, the exploitation of PCS for enhancing simulation
performance of the fast parts is to be applied to some
significant cases.
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