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ABSTRACT

This paper proposes an approach to build a reduced order model for
a Switched Affine (SA) system. The main idea is to transform the
SA system into an equivalent Switched Linear (SL) system with
state reset, and then apply balanced truncation to each mode and
redefine the reset maps so as to best reproduce the free evolution
of the system output. A randomized method is proposed for order
selection in the case when the input is stochastic and one is inter-
ested in reproducing the output of the original SA system over a
finite time-horizon. The performance of the approach is shown on
a benchmark example.

Categories and Subject Descriptors

G.1.2 [Mathematics of Computing]: Approximation;
G.1.6 [Mathematics of Computing]: Optimization—Stochastic

programming

Keywords

Model reduction; Switched systems; Randomized algorithms

1. INTRODUCTION
This paper deals with the problem of approximating a hybrid sys-

tem by means of some simpler model, see e.g. [12,13,15,19,22,26]
to cite a few. Hybrid systems are characterized by intertwined con-
tinuous and discrete dynamics, and are suitable for modeling com-
plex, large scale systems, as shown in [18] where an overview on
the application of hybrid models to various domains is presented.
The study of hybrid systems is more challenging than that for other
classes of systems, and many problems still lack an effective solu-
tion. In particular, this is the case for the design of reduced order
models.

In this paper, we focus on the design of an approximate model
for a switched affine system. More specifically, our goal is to obtain
a simpler model of the system which can be effectively used for
system verification over some finite horizon T.
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Verification of properties related to the hybrid system evolution,
like, e.g., safety and reach/avoid properties, are typically addressed
through numerical methods that scale badly with the state-space di-
mension, [1,2,9,11,16,20,24,27]. The aim of the approximation is
then to build a model that mimics the behavior of the original sys-
tem and that can be used in place of the system to scale-up numer-
ical methods for the verification of the property of interest. When
the hybrid system input is stochastic, the notion of approximate
simulation introduced in [15] can be used to quantify the model
performance.

The approach proposed in this paper is inspired by [19], where a
balanced truncation is adopted for reducing the order of the linear
dynamics governing the evolution of the continuous component of
an hybrid system. The main advances with respect to [19] are

• the extension to the class of switched affine systems;

• the introduction of a novel method for defining the state reset
map that provides better performance than the one adopted
in [19]; and

• the introduction of a procedure to select the order of the re-
duced model based on a randomized approach, when the in-
put is stochastic.

Note that, differently from most of the works on switched affine
(or linear) system reduction, [23, 26], the transitions between dis-
crete modes in the considered switched affine system class are de-
termined by an endogenous signal that depends on the continu-
ous state evolution, which makes the approximation problem more
challenging.

The rest of the paper is organized as follows. We start with a
brief review of balanced truncation for linear systems in Section 2.
We then describe the considered switched affine system class (Sec-
tion 3) and the proposed model reduction method (Section 4). The
randomized approach to model order selection is illustrated in Sec-
tion 5, whilst a numerical example showing the performance of the
approach is presented in Section 6. Finally, some concluding re-
marks are drawn in Section 7.

2. BALANCED TRUNCATION FOR LINEAR

SYSTEMS: A BRIEF REVIEW
There is a vast literature on model order reduction for linear sys-

tems (see e.g. [4, 14, 21]). In particular, balanced truncation is one
of the more popular techniques, and the one adopted here for reduc-
ing the order of the continuous dynamics within each mode. The



balanced truncation method rests on the representation of the sys-
tem in the balanced realization form, which is recalled next for the
purpose of self-containedness.

Let S be a continuous-time linear time-invariant dynamic sys-
tem described in state-space form through a 4-tuple of matrices
(A ,B,C ,D):

S :

(
A B

C D

)
.

Suppose that S is controllable, observable and asymptotically
stable.

DEFINITION 1 (BALANCED SYSTEM). System S is balanced
if Wc = Wo, where

Wc =
∫ ∞

0
eA τ

BB
T eA T τ dτ

Wo =
∫ ∞

0
eA T τ

C
T
C eA τ dτ

are, respectively, the infinite controllability and observability Grami-
ans of S . Furthermore, S is principal-axis balanced if Wc =Wo =
Σ, with

Σ = diag{σ1,σ2, . . . ,σn} ,

where σi are the Hankel singular values of S , listed in decreasing

order.

The problem of finding the balanced realization of a system is
equivalent to that of determining a balancing transformation ma-
trix T such that

{
Wc = TWcT ∗

Wo = T−∗WoT−1 ⇒ Wc Wo = T (WcWo)T−1 = Σ2,

where T ∗ denotes the Hermitian adjoint of T , which, in turn, re-
duces to solving the following minimization problem [4]

min
T

tr
[
TWcT ∗+T−∗

WoT−1
]
= 2tr{Σ} . (1)

The system in the balanced state-space form is then obtained by
applying the transformation matrix T , i.e.,

S :

(
A B

C D

)
=

(
TA T−1 TB

C T−1 D

)
.

The idea of the balanced truncation method is that in the bal-
anced realization the state variables are ordered by decreasing im-
portance as for their contribution to the input/output map, so that
one can decompose the state vector (and the system) into two parts
and neglect that with lowest importance. Formally, vector x is sep-
arated into two components

x =

[
x1

x2

]
, S :




A11 A12 B1

A21 A22 B2

C1 C2 D


 .

with x1 ∈ R
nr and x2 ∈ R

n−nr . Correspondingly,

Σ =

[
Σ1 0
0 Σ2

]
,

and if Σ1 and Σ2 do not contain any common element, then, the
matrices Aii (i = 1,2) are asymptotically stable [17].

A reduced order model Sr of the system can then be obtained by
setting x2 = 0 and eliminating its contribution, thus getting:

Sr :

(
Ar Br

Cr Dr

)
=

(
A11 B1

C1 D

)
.

Alternatively, one can set ẋ2 = 0, thus obtaining

Sr :

(
Ar Br

Cr Dr

)
=

(
A11 −A12A−1

22 A21 B1 −A12A−1
22 B2

C1 −C2A−1
22 A21 D−C2A−1

22 B2

)
. (2)

An estimate of the neglected state x2 is then given by

x̂2 =−A−1
22 A21x1 −A−1

22 B2u, (3)

which corresponds to the condition ẋ2 = 0. If Σ1 and Σ2 do not
contain any common element, then, Sr is asymptotically stable,
controllable and observable [17]. Moreover, the static gain of Sr

is equal to that of the original system S.
In order to select the order of the reduced model, one can choose

γ ∈ [0,1] and set

nr = min{i ∈ {1,2, . . . ,n} : ψ(i)< γ},

where ψ : {1,2, . . .n} → [0,1) is defined based on the Hankel sin-
gular values σ1 ≥ σ2 ≥ ·· · ≥ σn of system S as follows:

ψ(i) = 1−
∑i

j=1 σ j

∑n
j=1 σ j

. (4)

The bound γ can be used as a knob to control the tradeoff be-
tween the dimension of the reduced state and the quality of the
approximation.

Approximation by balanced truncation preserves stability and
the difference between system S and its reduced model Sr has its
H∞-norm bounded by the sum of the neglected Hankel singular
values as follows:

‖S−Sr‖H∞
≤ 2tr{Σ2} .

3. MODELING FRAMEWORK
We consider the class of Switched Affine (SA) systems, whose

evolution is characterized through a discrete state component qa

taking values in Q = {1,2, . . . ,m} and a continuous component
ξa ∈ Ξa = R

n evolving according to an affine dynamics that de-
pends on the operating mode qa. Correspondingly, the output ya ∈
Ya =R

p is an affine function of the state and the input u ∈U =R
m

that depends on qa as well. In formulas:

{
ξ̇a(t) = Aqa

ξa(t)+Bqa
u(t)+ fqa

ya(t) = Cqa
ξa(t)+gqa

.
(5)

A collection of polyhedra {Doma,i ⊆Ya×U, i∈Q} is given, which

covers the whole set Ya ×U1. Each polyhedron Doma,i is defined
through a system of ri linear inequalities:

Doma,i = {(ya,u) ∈ Ya ×U : G
ya

i ya +Gu
i u ≤ Gi},

with G
ya

i ∈ R
ri×p, Gu

i ∈ R
ri×m and Gi ∈ R

ri .
The system evolves according to the dynamics associated with mode
i as long as (ξa,u) is such that (ya,u) keeps evolving within Doma,i

and commute to the dynamics associated with j ∈ Q as soon as
(ya,u) exits Doma,i and enters into Doma, j .

REMARK 1. Doma,i appears to be a function of both ya and

u. However, if Gu
i = 0, then, the dependence on u is not present.

Furthermore, those cases when the transition condition depends

on the whole state ξa can be reframed in our setting by including

ξa in the output variables.

1∪i∈QDoma,i = Ya ×U



REMARK 2. Note that if {Doma,i, i ∈ Q} is a polyhedral subdi-

vision of Ya×U (i.e., a finite collection of polyhedra on Ya×U such

that ∪i∈QDoma,i =Ya×U, each polyhedron Doma,i is of dimension

p+m, and the intersection Doma,i ∩Doma, j , i 6= j, is either empty

or a common proper face of both polyhedra), then, the SA system

reduces to a piecewise affine system.

4. SYSTEM REDUCTION
In this section, we introduce a procedure for designing a reduced

order model of the SA system (5) that tries to best reproduce its
output ya. The proposed procedure rests on Assumption 1 below,
and is based on the following key steps:

• reformulation of the SA system as a Switched Linear (SL)
system with state reset;

• model reduction of the SL system through balanced trunca-
tion of the continuous dynamics and definition of appropriate
state reset maps when a mode transition occurs;

• reconstruction of the output of the SA system based on the
reduced SL system.

ASSUMPTION 1. For any i ∈ Q, matrix Ai is Hurwitz, (Ai,Bi)
is controllable, and (Ai,Ci) is observable.

4.1 Reformulation of the SA system as a SL
system with state reset

We next build a SL system with state reset that is equivalent to
the original SA system, in that (ξa,qa) and ya can be recovered
exactly from the state and output variables of such a system.

Let ξ ∈ Ξ = Ξa evolve according to a linear dynamics that de-
pends on the operating mode q ∈ Q as follows:

{
ξ̇ (t) = Aqξ (t)+Bqu(t)

y(t) = Cqξ (t)
(6)

where y ∈ Y = Ya.
Set ȳa,q = Cqξ̄a,q + gq, where ξ̄a,q = −A −1

q fq, with Aq invert-
ible by Assumption 1. A transition from mode i ∈ Q to mode j ∈ Q

occurs as soon as (y+ ȳa,i,u) exits Domi and enters Dom j , where
Domq = Doma,q, q ∈ Q.

When a discrete transition from mode i∈Q to mode j ∈Q occurs
at time t−, then, ξ is reset as follows

ξ (t) = ξ (t−)+ ξ̄a,i − ξ̄a, j. (7)

PROPOSITION 4.1. Suppose that the SA and SL systems are ini-

tialized with ξa(0) = ξa,0, qa(0) = qa,0, and ξ (0) = ξa,0 − ξ̄a,qa,0 ,

q(0) = qa,0, respectively, and are both fed by the same input u(t),
t ∈ [0,T ]. Then, the execution of ξa, qa and ya over [0,T ] can be

recovered from those of ξ , q and y as follows:

qa(t) = q(t)

ξa(t) = ξ (t)+ ξ̄a,q(t) (8)

ya(t) = y(t)+ ȳa,q(t).

PROOF. The result immediately follows by observing that ξ̄a,q

and ȳa,q are the state and output equilibria of system (5) associated
with u = 0.

REMARK 3. Note that the reset condition in (7) is such that

variable ξa reconstructed from ξ according to (8) is continuous.

Continuity of ξa is generally not guaranteed if ξ is approximated

through a reduced order model of the SL system.

4.2 Reduction of the SL system
A reduced order model of the SL system with reset defined be-

fore can be obtained by applying balanced truncation (2) to each
single linear dynamics in (6). This is is in order to best reproduce
the evolution of the output y within a fixed mode, and also the dis-
crete transitions between modes, since they are defined through a
condition involving y.
We associate to each mode qr ∈ Q a reduced model of order nr,q ≤
n: {

ẋr,qr
(t) = Ar,qr

xr,qr
(t)+Br,qr

u(t)

ŷ(t) =Cr,qr
xr,qr

(t)+Dr,qr
u(t)

(9)

and define transitions between modes, say from mode i to mode
j, by evaluating when (ŷ + ȳa,i,u) exits from domain Domi and
enters into Dom j . As for the state reset map (7) associated with a
transition from mode i ∈ Q to mode j ∈ Q, we shall reformulate it
in the following form

xr, j(t) = L jixr,i(t
−)+M jiu(t

−)+N ji. (10)

where xr,i(t
−) ∈ R

nr,i , xr, j(t) ∈ R
nr, j , and L ji, M ji, N ji are matrices

of appropriate dimensions.
We shall present next two methods to define matrices L ji, M ji,

N ji. In both of them we shall refer to the following variables:

1. the estimate x̂i of the state of the SL system dynamics asso-
ciated with mode i ∈ Q in balanced form. x̂i is reconstructed
from the reduced state xr,i according to:

x̂i =

[
xr,i

−A−1
i,22Ai,21xr,i −A−1

i,22Bi,2u

]

=

[
Inr,i×nr,i

−A−1
i,22Ai,21

]
xr,i +

[
0nr,i×1

−A−1
i,22Bi,2

]
u

(11)

Expression (11) can be rewritten in compact form as

x̂i = Hi xr,i +Ki u, (12)

with

Hi =

[
Inr,i×nr,i

−A−1
i,22Ai,21

]
Ki =

[
0nr,i×1

−A−1
i,22Bi,2

]

where Inr,i×nr,i is an identity matrix of dimension nr,i × nr,i,
and 0nr,i×1 is a zero vector of nr,i elements;

2. the estimate ξ̂i of the state of the SL system associated with
mode i ∈ Q:

ξ̂i = T−1
i x̂i, (13)

obtained from x̂i through the balanced transformation matrix
Ti.

We are now in a position to defined the reduced state reset maps
for a transition from i ∈ Q at time t− to j ∈ Q at time t.

a) reset map proposed in [19]:

We start setting

xr, j(t) =Enr, j x̂ j(t)

where Enr, j is a matrix that extracts the first nr, j rows from x̂ j(t),
being nr, j the dimension of xr, j in mode j. Now,

x̂ j(t) = Tj ξ̂ j(t) = Tj

(
ξ̂i(t

−)+ ξ̄a,i − ξ̄a, j

)

= Tj

(
T−1

i x̂i(t
−)+ ξ̄a,i − ξ̄a, j

)

= Tj

(
T−1

i Hi xr,i(t
−)+T−1

i Ki u(t−)+ ξ̄a,i − ξ̄a, j

)
,



so that

xr, j(t) =Enr, j Tj

(
T−1

i Hixr,i(t
−)+T−1

i Kiu(t
−)+ ξ̄a,i − ξ̄a, j

)
.

(14)

By direct comparison of this expression with (10), we get the reset
matrices:

L ji = Enr, j TjT
−1

i Hi

M ji = Enr, j TjT
−1

i Ki

N ji = Enr, j Tj

(
ξ̄a,i − ξ̄a, j

)
.

According to a similar reasoning, the system is initialized as fol-
lows

qr(0) = qa(0) = q0

xr,q0
(0) = Enr,q0

Tq0

(
ξa(0)− ξ̄a,q0

)
,

with the understanding that (ya(0),u(0)) is an interior point of
Doma,q0

for any admissible u(0).

b) reset map best reproducing the output free evolution:

Model reduction techniques for asymptotically stable linear sys-
tems aim at finding a model that best reproduce the forced re-
sponse of the system, while neglecting the free evolution. This
motivates the introduction of an alternative reset map that mini-
mizes the norm-2 error when reproducing the free evolution of the
output y. More precisely, we set

xr, j =Ψ j ξ̂ j

and choose Ψ j so as to minimize

J =
∫ +∞

0
‖y f r, j(t)− ŷ f r, j(t)‖

2 dt, (15)

where y f r, j and ŷ f r, j respectively denote the free evolution of the

original linear dynamics (6) initialized with ξ̂ j and that of the re-

duced order dynamics (9) initialized with xr, j = Ψ j ξ̂ j. The solution
to this optimization problem can be found analytically as shown in
Proposition 4.2.

PROPOSITION 4.2. Matrix Ψ j minimizing (15) for any ξ̂ j is

given by

Ψ j = W
−1

r,o, jW×, j.

where

Wr,o, j =
∫ +∞

0
(eAr, jt)TCT

r, jCr, je
Ar, jt dt (16)

W×, j =
∫ +∞

0
(eA jt)TCT

j Cr, je
Ar, jt dt (17)

and invertibility of the infinite observability Gramian Wr,o, j is guar-

anteed by the observability of the reduced order model (9) with

q = j.

PROOF. The cost function J can be written as

J =
∫ +∞

0
(C je

A jt ξ̂ j −Cr, je
Ar, jtxr, j)

T (C je
A jt ξ̂ j −Cr, je

Ar, jtxr, j) dt

=xT
r, jWr,o, jxr, j −2xr, jW×, jξ̂ j + ξ̂ T

j Wo, j ξ̂ ,

where we set

Wo, j =
∫ +∞

0
(eA jt)TCT

j C je
A jt dt.

Then, the minimum of J as a function of xr, j satisfies

∂J

∂xr, j
= 2Wr,o, jxr, j −2W×,q′ ξ̂ j = 0

yielding the reset map

xr, j = W
−1

r,o, jW×, jξ̂ j.

Note that the quantity (16) is the solution of the Lyapunov equa-
tion

Ar, jWr,o, j +Wr,o, jA
T
r, j +CT

r, jCr, j = 0,

while quantity (17) is the solution of the Sylvester equation

AT
r, jW×, j +W×, jA j +CT

r, jC j = 0.

Given Ψ j, the following derivations

xr, j(t) =Ψ j ξ̂ j(t) = Ψ j

(
ξ̂i(t

−)+ ξ̄a,i − ξ̄a, j

)
=

=Ψ j

(
T−1

i x̂i(t
−)+ ξ̄a,i − ξ̄a, j

)

=Ψ j

(
T−1

i Hixr,i(t
−)+T−1

i Kiu(t
−)+ ξ̄a,i − ξ̄a, j

)
(18)

using the reset map (7) and equations (13) and (12) lead to the
following definition of the matrices in the reset map (10):

L ji = Ψ jT
−1

i Hi,

M ji = Ψ jT
−1

i Ki,

N ji = Ψ j

(
ξ̄a,i − ξ̄a, j

)
.

As for the system initialization, we set

qr(0) = qa(0) = q0

xr,q0
(0) = Ψ j

(
ξa(0)− ξ̄a,q0

)
.

A different reset map that accounts for the switching nature of
the system can be obtained by considering a finite horizon [0,τ] for
the minimization of the free evolution error:

J =
∫ τ

0
‖y f r, j(t)− ŷ f r, j(t)‖

2 dt.

The resulting optimal Ψ
(τ)
j can be computed through the following

expression

Ψ
(τ)
j = W

−1
r,o, j(τ)W×, j(τ),

with

Wr,o, j(τ) =
∫ τ

0
(eAr, jt)TCT

r, jCr, je
Ar, jt dt

W×, j(τ) =
∫ τ

0
(eA jt)TCT

j Cr, je
Ar, jt dt,

the proof being analogous to that in the infinite horizon case. The
above finite horizon quantities can be computed as

Wr,o, j(τ) = Wr,o, j −
∫ +∞

τ
(eAr, jt)TCT

r, jCr, je
Ar, jt dt = Wr,o, j −W

(τ,∞)
r,o, j ,

W×, j(τ) = W×, j −
∫ ∞

τ
(eA jt)TCT

j Cr, je
Ar, jt dt = W×, j −W

(τ,∞)
×, j ,

where the quantities W
(τ,∞)

r,o, j and W
(τ,∞)
×, j can be obtained respec-

tively as the solution of the Lyapunov and Sylvester equations

Ar, jW
(τ,∞)

r,o, j +W
(τ,∞)

r,o, j AT
r, j +

(
eAr, jτ

)T
CT

r, jCr, je
Ar, jτ = 0,

AT
r, jW

(τ,∞)
×, j +W

(τ,∞)
×, j A j +

(
eAr, jτ

)T
CT

r, jC je
A jτ = 0,



which are identical to the previous ones except for the fact that C j

and Cr, j are replaced by C je
A jτ and Cr, je

Ar, jτ , respectively. Note
that well-posedness of the above equations is guaranteed by the
fact that A j and Ar, j are Hurwitz.

The matrices in the reset map (10) and the system initialization
are given by:

L ji = Ψ
(τ)
j T−1

i Hi,

M ji = Ψ
(τ)
j T−1

i Ki,

N ji = Ψ
(τ)
j

(
ξ̄a,i − ξ̄a, j

)

and

qr(0) = qa(0) = q0

xr,q0
(0) = Ψ

(τ)
j

(
ξa(0)− ξ̄a,q0

)
.

The choice for τ depends on the settling times of the different
mode dynamics. A sensible choice is suggested in the numerical
example of Section 6.

4.3 Reconstruction of the SA system output
The output of the SA system is reconstructed based on (8) using

the output ŷ of the SL reduced system as an estimate of the output
y of the SL system:

ŷa(t) = ŷ(t)+ ȳa,qr(t).

5. A RANDOMIZED METHOD FOR MODEL

ORDER SELECTION
In this section, a randomized method is described for selecting

the order of the reduced order model of the SA system when the
input u is stochastic and the goal is verifying a finite horizon prop-
erty that depends on the behavior of the SA system output ya along
the time horizon T .

The proposed method involves feeding the reduced model and
the system with some realizations of the stochastic input. This in
practice means that either the distribution of the input is known, or
some of its realizations are available as historical time series.

As discussed in Section 2, a sensible way of choosing the order
of the reduced model for a linear system is setting a threshold value
for the ψ function in (4) and then define the order accordingly. By
following the same logic as in [19], a function ψq : {1,2, . . .n} →
[0,1) can then be considered for each mode q ∈ Q

ψq(i) = 1−
∑i

j=1 σ j,q

∑n
j=1 σ j,q

,

where σ1,q ≥ σ2,q ≥ ·· · ≥ σn,q are the Hankel singular values of
the SL system dynamics (6) in mode q, and the order of the model
(9) defining the reduced SL system can be set according to

nr,q = min{i ∈ {1,2, . . . ,n} : ψq(i)< γ},

for each q ∈ Q.
Our goal is now to introduce a method for choosing an appropri-

ate value for γ .
To this purpose, we denote by ŷ

γ
a the estimate of ya obtained through

the reduced SL system with parameter γ , and by Γ the (finite) set
of threshold values for γ , those that result in a different choice for
{nr,q, q ∈ Q}.

In order to choose an appropriate order for the reduced dynam-
ics associated to each mode, we quantify the approximation error
through some function dT (·, ·) that maps each pair of trajectories

ya(t), t ∈ T , and ŷ
γ
a(t), t ∈ T , into a positive real number dT (ya, ŷ

γ
a)

that represents the extent to which the output ya of the SA system
differs from its estimate ŷ

γ
a along the time horizon T . Obviously,

if we set γ = 0, then, no reduction is performed and dT (ya, ŷ
γ
a) = 0

since ŷ
γ
a(t) = ya(t), t ∈ T .

Note that dT (ya, ŷ
γ
a) is a random quantity since it depends on the

realization of the stochastic input u(t) and the (possibly) stochastic
initialization ξa(0) of the SA system.

According to the notion of approximate simulation in [3,10,15],
we assess the approximation quality of the reduced order model
with parameter γ through the maximal value ρ⋆

γ taken by dT (ya, ŷ
γ
a)

over all realizations of the stochastic input and initial state except
for a set of probability at most ε ∈ (0,1). An ‘optimal’ value for
γ can then be chosen by inspecting the values of ρ⋆

γ as a function
of γ and selecting the appropriate compromise between quality of
the approximation and tractability of the resulting reduced order
model.

For each γ ∈ Γ ⊂ [0,1], the approximation quality ρ⋆
γ of the re-

duced order model with parameter γ is the solution to the following
chance-constrained optimization problem:

CCPγ :min
ρ

ρ (19)

subject to: P{dT (ya, ŷ
γ
a)≤ ρ} ≥ 1− ε.

REMARK 4 (CHOICE OF dT (ya, ŷ
γ
a)). As argued in [3], the di-

rectional Hausdorff distance

dT (ya, ŷ
γ
a) = sup

t∈T

inf
τ∈T

‖ya(t)− ŷ
γ
a(τ)‖ (20)

is a sensible choice for dT (ya, ŷ
γ
a) when performing probabilis-

tic verification such as, e.g., estimating of the probability that ya

will enter some set within the time horizon T . For the verification

of more complex reachability properties, such as that of reaching

some set only after passing through some region within a given

finite time interval, however, this choice for dT (ya, ŷ
γ
a) is not ade-

quate since the timing information is lost, and one can opt for

dT (ya, ŷ
γ
a) = sup

t∈T

‖ya(t)− ŷ
γ
a(t)‖.

Irrespectively of the choice for dT (ya, ŷ
γ
a), solving the chance-

constrained problem (19) is known to be difficult, [25], since it in-
volves determining, among all sets of realizations of the stochastic
input and initial state that have a probability 1 − ε , the one that
provides the best (lowest) value for dT (ya, ŷ

γ
a). We then head for

an approximate solution where instead of considering all the pos-
sible realizations for the stochastic uncertainty, we consider only
a finite number N of them called “scenarios”, extracted at random
according to their probability distribution, and treat them as if they
were the only admissible uncertainty instances. This leads to the
formulation of Algorithm 1, where the chance-constrained solution
is determined using some empirical violation parameter η ∈ (0,ε).

Notably, if the number N of extractions is appropriately chosen,
the obtained estimate of ρ⋆

γ is chance-constrained feasible, uni-
formly with respect to γ ∈ Γ, with a-priori specified (high) proba-
bility. This result is based on the “scenario theory”, [7], which was
first introduced for solving uncertain convex programs via random-
ization [5] and then extended to chance-constrained optimization
problems in [6].

PROPOSITION 5.1. Select a confidence parameter β ∈ (0,1)
and an empirical violation parameter η ∈ (0,ε). If N is such that

⌊ηN⌋

∑
i=0

(
N

i

)
ε i(1− ε)N−i ≤

β

|Γ|
, (21)



Algorithm 1 Randomized solution

1: extract N realizations of the stochastic input u(i)(t), t ∈ T ,

i= 1,2, . . . ,N, and N samples of the initial condition ξa(0)
(i),

i = 1,2, . . . ,N, and let k = ⌊ηN⌋;

2: for all γ ∈ Γ do

2.1: determine the N realizations of the output signals y
(i)
a (t)

and ŷ
γ,(i)
a (t), t ∈ T , i = 1,2, . . . ,N, when the SL system

and the reduced order model with parameter γ are fed
by the extracted uncertainty instances;

2.2: compute

ρ̂(i) := dT (y
(i)
a , ŷ

γ,(i)
a ), i = 1,2, . . . ,N;

and determine the indices {h1,h2, . . .hk} ⊂

{1,2, . . . ,N} of the k largest values of {ρ̂(i), i =
1,2, . . . ,N}

2.3: set

ρ̂⋆
γ = max

i∈{1,2,...,N}\{h1,h2,...,hk}
ρ̂(i).

then, the solution ρ̂⋆
γ , γ ∈ Γ, to Algorithm 1 satisfies

P{dT (ya, ŷ
γ
a)≤ ρ̂⋆

γ } ≥ 1− ε, ∀γ ∈ Γ, (22)

with probability at least 1−β .

If we discard the confidence parameter β for a moment, this
proposition states that for any γ ∈ Γ, the randomized solution ρ̂⋆

γ
obtained through Algorithm 1 is feasible for the chance-constrained
problem (19). As η tends to ε , ρ̂⋆

γ approaches the desired optimal
chance constrained solution ρ⋆

γ . In turn, the computational ef-

fort grows unbounded since N scales as 1
ε−η , [6], therefore, the

value for η depends in practice from the available computational
resources.

As for the confidence parameter β , one should note that ρ̂⋆
γ is a

random quantity that depends on the randomly extracted input re-
alizations and initial conditions. It may happen that the extracted
samples are not representative enough, in which case the size of the
violation set will be larger than ε . Parameter β controls the prob-
ability that this happens and the final result holds with probability
1−β . N satisfying (21) depend logarithmically on |Γ|/β , [6], so
that β can be chosen as small as 10−10 (and, hence, 1− β ≃ 1)
without growing significantly N.

PROOF (PROPOSITION 5.1). Note that the chance-constrained
problem (19) needs to be solved for a finite number |Γ| of values
for γ . The application of Theorem 2.1 in [6] to the randomized
solution obtained with Algorithm 1 for each given γ̄ ∈ Γ, provides
the following guarantees on the solution ρ̂⋆

γ̄ :

P{dT (ya, ŷ
γ̄
a)≤ ρ̂⋆

γ̄ } ≥ 1− ε, with probability at least 1−
β

|Γ|
.

As a result, guarantee (22) involving all γ ∈ Γ holds except for a

set whose probability can be upper bounded by ∑
|Γ|
i=1

β
|Γ| = β , thus

proving the thesis.

Notice that the guarantees provided by Proposition 5.1 are valid
irrespectively of the underlying probability distribution of the input,

which may even not be known explicitly, e.g., when feeding Algo-
rithm 1 with historical time series as realizations of the stochastic
input u.

6. A NUMERICAL EXAMPLE
In this section we present a numerical example to show the per-

formance of the proposed approach for model reduction. The ex-
ample is inspired by a benchmark for hybrid system verification
presented in [8].

6.1 Model description
The example deals with the heating of a number of rooms in a

house. Each room has one single heater, but there is some con-
straint on the number of “active” heaters that can possibly be on
at the same time. The temperature in each room depends on the
temperature of the adjacent rooms, on the outside temperature, and
on whether a heater is on in the room or not. The heater is con-
trolled by a typical thermostat, i.e., it is switched on if the temper-
ature is below a certain threshold, and off if it is beyond another
(higher) threshold. Differently from the original benchmark in [8],
we model also the dynamic of the heaters.

When the temperature in a room, say room i, falls below a certain
level, its heater may become active (and eventually be switched
on) if a heater was active in one of the adjacent rooms, say room
j, provided that the temperature in room j is significantly higher
than that in room i. In this case, we shall say for brevity that the
heater is “moved” from room i to room j. The underlying rationale

of the control policy is that, even if all the rooms have their own
heater, the number of heaters that can be on at the same time must
be limited, so as to exploit also the heat exchange among the rooms
in order to maintain some minimum temperature in all rooms.

Let Ti be the temperature in room i, Text the outside temperature,
and hi a boolean variable that is 1 when the heater is on in room i,
and 0 otherwise.

The heat transfer coefficient between room i and room j is ki j ,
and the one between room i and the external environment is ke,i.
We assume that the heat exchange is symmetric, i.e., ki j = k ji. We
say that rooms i and j are adjacent if ki j > 0. The volume of the
room is Vi, and the wall surface between room i and room j is Sr,i j,
while that between room i and the environment is Se,i. Air den-

sity and heat capacity are ρa = 1.225 kg/m3 and c = 1005 J/(kg K),
respectively. Letting φi = ρacVi, we can formulate the following
dynamic model for room i and its heater:

φiṪi = ∑
j 6=i

Sr,i jki j

(
Tj −Ti

)
+Sei

ke,i (Text −Ti)+κiθi

τh,iθ̇i =−θi +hi · pi −χiText

(23)

which is an affine system, with Ti representing the temperature in
the i-th room, κi representing the maximum heat flow rate that the
heater can provide, while pi ∈ {0,1} is a binary variable indicating
if the heater is active in room i. The heater dynamics is represented
by a first-order system with a time constant τh,i. If we neglect the
term −χiText in the heater dynamics and set hi = pi = 1, the heater
state variable θi will tend to 1 so that the heater will provide its
maximum heat flow rate κi to the room when it is active and on.
The term −χiText is introduced to account for the influence of the
external temperature on the effectiveness of the heating system.

6.2 The switching control policy
There is a room policy, which decides whether or not to switch

on the heater of a single room, and a building policy which decides
how to “move” the heaters that can be switched on.



As for the room policy, each room has a thermostat that switches
the heater on if the measured temperature is below a certain thresh-
old, and off when the temperature reaches a higher temperature.
For each room we define thresholds oni and o f fi: the heater in
room i is on if Ti ≤ oni and off if Ti ≥ o f fi.

On the other hand, the building policy can be defined as follows.
A heater is moved from room j to an adjacent room i if the follow-
ing holds

• room i has no active heater;

• room j has an active heater;

• temperature Ti ≤ geti;

• the difference Tj −Ti ≥ di fi.

Notice that the control policy may have non-deterministic behav-
iors, since a room j may have more than one room, e.g., rooms i1
and i2, that is adjacent, and it may happen that conditions for the
building policy to move the heater to room i1 and to room i2 are
satisfied at the same time. To avoid non-deterministic choices in
the policy, each room is identified by some integer index, and, in
the previously mentioned situation, the heater is always moved to
the room with higher index.

Apparently enough, the switching nature of the system originates
from the control policy. The complexity of the considered system
significantly increases with the number of rooms, thus making the
problem particularly suitable for reduction when dealing with real-
istic cases.

6.3 The considered system
In the following we consider four adjacent rooms as represented

in Figure 1, having each its own heater, but with the constraint that
only three heaters can be active at the same time, i.e., ∑4

i=1 pi = 3.

Figure 1: Scheme of the four rooms.

The rooms have different heat transfer coefficients among them,
but identical geometric characteristics. The considered parameters
are reported in Table 1.

Parameters

k12 2 W/(m2K) Sr,i j 12 m2

k23 5 W/(m2K) Se,i 24 m2

k34 2 W/(m2K) Vi 48 m3

ke,i 1 W/(m2K) χi 10−5

Table 1: Four rooms parameters.

The outside temperature is modeled as a sinusoidal source of
period 24 hours with an offset of 4◦C, affected by a band-limited
Gaussian noise with zero mean and variance 4.

We assume that the initial conditions are deterministic and given
by

T (0) =




20
20
20
20


 , θ(0) =




0
0
0
0


 , h(0) = p(0) =




0
1
1
1


 ,

where T is the vector of the 4 rooms temperatures, θ is the vector
of the heaters states, h and p are the vectors denoting, respectively,
the on/off status and the active/inactive status of the heaters. Obvi-
ously, p(0) satisfies the condition that only 3 over the 4 heaters are
active. As for the (switching) control policy parameters, we use

o f f =




21
21
21
21


 , on =




20
20
20
20


 , get =




19
19
19
19


 , di f =




1
1
1
1


 . (24)

According to the described policy, model (23) can be represented

as a SA system with continuous state ξa =
[
T ′ θ ′

]′
, input u =

Text, and output ya = T :

ξ̇a = A ξa +B u+ fqa

ya = C ξa.
(25)

As for the mode qa, it is identified by the value of h and p, which
determine the affine term entering the dynamics of ξa. The poly-
hedral sets Doma,qa

are determined by the building and room con-
trol policies through the threshold values (24) as described in Sec-
tion 6.2.

Notice that in this example only the affine term fqa
depends on

the discrete mode qa ∈Q, while the state-space matrices (A ,B,C )
are constant.

As for the choice of the order of the reduced model, the standard
approach used in balanced truncation techniques [19] and resting
on classical Hankel Singular Values (HSV) analysis can be applied
so as to identify to what extent reducing the system dynamics in
each single mode. This analysis is independent of the discrete
mode. More importantly, it does not consider the impact of the
choice of the order on the switched system approximation, which
involves also mode transitions.
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Figure 2: Hankel Singular Values sorted by decreasing magni-

tude.



Figure 2 shows the HSV of system (25) sorted by decreasing
magnitude. On the basis of the HSV, it seems that most of the dy-
namics can be caught by reducing the continuous dynamics of the
SA system to a first-order one. Indeed, computing the distance (4)
used in [19] results in ψ(1) ·100 = 2.64%.

As anticipated, this evaluation of the quality of the reduced model
does not account for the impact of mode transitions, thus care has
to be taken when applying it to the context of SA systems. In fact,
classical balanced truncation techniques are typically based on the
assumption that the free evolution of the system can be neglected
since it asymptotically vanishes in an asymptotically stable linear
system, fact that notoriously does not hold true when dealing with
hybrid behaviors.

6.4 Proposed model reduction method
We apply now the proposed model reduction method to the con-

sidered system, including the randomized method for order selec-
tion based on the directional Hausdorff distance (20). In particular,
referring to the chance constrained optimization problem (19), we
choose ε = 0.1, β = 10−6. Thus, setting η = 0.05, and solving the
implicit formula (21), the number of experiments to be performed
for each possible threshold value for γ is N = 778, corresponding
to a number ⌊ηN⌋= 38 of realizations to be removed, as described
in Algorithm 1.

The randomized order selection is performed with the reset maps
(14) proposed in [19], map (18) proposed here for the first time,
both in its finite and infinite horizon versions. As for the choice of
the finite horizon, the time constant τh of the heater is chosen.

Figure 3 shows a realization of the temperatures obtained with
the original model and with the reduced models of order 5 imple-
menting the three reset maps.

Notice that there is a discrete map mγ : Γ→{1,2, . . . ,n} between
the threshold values of γ and the corresponding order nr of the re-
duced order model. In formulas

nr = argmin
i={1,2,...,n}

{
dT (ya, ŷ

γ
a)≤ ρ̂⋆

γ

}
.

For the sake of clarity, it is more convenient to express the estimate
of ρ⋆

γ as a function of the reduced order nr. The values for ρ̂⋆
γ

obtained with the different reset methods are presented in Figure 4
as a function of nr.
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1. 5

 

 

ρ̂
⋆ γ
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(b) ∞

(b) finite

nr

Figure 4: Performance of different reduced models as a func-

tion of the order nr and of the adopted reset map.

6.5 Discussion
Two facts can be noticed by analyzing the results presented in

Figure 4. First of all, the reset map affects the value of the direc-
tional Hausdorff distance, and the novel reset maps exhibit a better
performance for any order nr chosen for the reduction.

Furthermore, the outcome of our analysis through the random-
ized approach is quite different from that based on the HSV only
(see Figure 2). In fact, reducing the system to a first-order ap-
proximation results in quite bad performance when the goal of the
approximation is the analysis of reachability properties for which
the directional Hausdorff distance is a suitable accuracy measure.
In addition, such a drastic reduction yields discontinuities in the
state reset that may possibly produce chattering behaviors. On the
other hand, from the randomized based analysis it appears that one
can push the reduction up to a fifth order without degrading signif-
icantly the accuracy of the model.

7. CONCLUSIONS
In this work, we presented a novel approach to model reduction

of switched affine systems using balanced truncation for reducing
the continuous affine dynamics. The main novel ingredients of the
approach are:

• the introduction of suitable state reset maps that serve the
purpose of making the reduced model best reproduce the free
evolution of the original system; and

• the integration in the reduced order model design of a ran-
domized procedure for model order selection.

The considered class of switched systems is characterized by an
endogenous switching signal, in that the transitions between modes
are determined by the evolution of the continuous state component.
The method can be applied also to the case when transitions are
determined by some exogenous switching signal, possibly proba-
bilistic as in the case of Markov jump linear systems, [28]. In the
case when the switching signal is subject to some dwell time τD

and the approximated dynamics has a settling time smaller than
τD, then, the approximation error introduced by the state reset will
be negligible.
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